CN107122820A - 具有基于间隙的传感装置的传感器和制作与使用其的方法 - Google Patents

具有基于间隙的传感装置的传感器和制作与使用其的方法 Download PDF

Info

Publication number
CN107122820A
CN107122820A CN201611244149.XA CN201611244149A CN107122820A CN 107122820 A CN107122820 A CN 107122820A CN 201611244149 A CN201611244149 A CN 201611244149A CN 107122820 A CN107122820 A CN 107122820A
Authority
CN
China
Prior art keywords
sensor
gap
antenna
sensing device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611244149.XA
Other languages
English (en)
Inventor
K.多维登科
W.G.莫里斯
T.L.帕克松
R.波蒂赖洛
C.M.瑟曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Pneumatic Brake Technology Co.
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN107122820A publication Critical patent/CN107122820A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0073Control unit therefor
    • G01N33/0075Control unit therefor for multiple spatially distributed sensors, e.g. for environmental monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2216Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in interrogator/reader equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal

Landscapes

  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本公开的发明名称是“具有基于间隙的传感装置的传感器和制作与使用其的方法”,提供了一种传感器。该传感器包括至少一个传感装置和与传感装置在操作关联中的天线,所述传感装置包括第一电极和第二电极以及定义为第一和第二电极的一个或多个面向的内表面之间距离的间隙,其中,间隙距离至少部分地确定一个或多个感应参数的阈值。

Description

具有基于间隙的传感装置的传感器和制作与使用其的方法
背景技术
本发明涉及传感器,并且更具体地涉及化学、物理或生物传感器。
通常,射频标识(RFID)标签用于资产跟踪。例如,RFID标签可用于跟踪物体从某个位置的移除和在该位置物体的替换。RFID标签已经与生物计量读取器(biometric reader)组合在一起。此类RFID电路使用某些功能块来处理生物计量信号和RFID信号。RFID标签能够具有独特的号码,并且能够用于读取具有与标签附连到的物品有关的信息的这些标识号。RFID标签还用于检测容器和行李袋的未经授权打开。RFID标签能包括在多种物品中,如邮票和其它邮寄标签、衣服及许多其它物品。RFID系统近来已被应用于无线传感应用,如基于RFID的温度传感器。
RFID标签的这些和其它属性能够用于形成能够检测化学、生物和物理属性的传感器。
发明内容
在一个实施例中,提供了一种传感器。该传感器包括至少一个传感装置和与传感装置在操作关联中的天线,所述传感装置包括第一电极和第二电极以及定义为第一和第二电极的一个或多个面向的内表面之间距离的间隙,其中,间隙距离至少部分地确定一个或多个感应参数的阈值。
在另一实施例中,提供了一种基于射频的传感器。该传感器包括由两个或更多电极定义的传感间隙和与传感间隙及电极在操作关联中的天线。
在仍有的另一实施例中,提供了一种制作传感器的方法。该方法包括提供具有一圈或多圈的天线,以及形成包括第一和第二电极的并且由第一和第二电极的一个或多个面向的内表面之间距离来定义的传感间隙,其中间隙距离至少部分地确定一个或多个感应参数的阈值,以及其中传感间隙与天线在操作关联中。
附图说明
参照附图阅读以下详细描述时,将更好地理解本发明的这些和其它特征、方面和优点,附图中类似的字符在附图各处表示类似的部分,其中:
图1-3是具有与天线电通信的单独传感装置的传感器的图示;
图4-6是天线的一部分配置成充当传感装置的传感器的图示;
图7是具有带多个孔的电极的传感装置的顶视图;
图8是图7的传感装置的侧视图;
图9是检测关注的物理、化学或生物参数时传感装置的信号变化的图形表示;
图10-12是传感器的检测原理的图形表示;以及
图13是传感器物理上位于测量环境中时由传感器检测和记录感应事件的图形表示。
参照附图阅读以下详细描述时,将更好地理解本发明的这些和其它特征、方面和优点,附图中类似的字符在附图各处表示类似的部分,其中。
具体实施方式
所述技术的实施例涉及具有至少一个传感装置的传感器。传感装置具有第一电极和第二电极。传感装置还包括定义为第一和第二电极的一个或多个面向的内表面之间的距离的间隙。该间隙距离至少部分地确定一个或多个传感参数的阈值。传感参数可包括物理参数(例如,压力)、化学参数(例如,pH、葡萄糖水平、气体)及生物参数(例如,病毒、蛋白质、DNA)。
具有间隙的传感装置可以与天线进行电通信。传感装置可以与天线串联或并联电连接。在某些实施例中,传感器可以是无线的或有线的或电子的、基于(射频标识)RFID的、基于非RFID的或两项或更多项的组合。在传感器是基于RFID的传感器的实施例中,传感器可以是无线传感器。此外,基于RFID的传感器可包括无源RFID标签或半无源RFID标签或有源RFID标签。此外,RFID标签可配置成在诸如但不限于从大约125 KHz到大约135 KHz的低频范围、大约13.56 MHz的高频范围、从大约850 MHz到大约960 MHz的超高频(UHF)范围及大约2.45 GHz - 5.8 GHz的微波频率范围的频率范围来操作。
在某些实施例中,RFID标签可转换成RFID传感器。在RFID标签转换成RFID传感器的这些实施例中,具有间隙的传感装置结合到RFID标签中。在这些实施例中,配置成充当传感区域的间隙可在RFID标签上提供,使得间隙与RFID标签的天线操作关联。如图1-3所示,间隙可以是与RFID标签的天线分开的实体。备选的是,如图4-6所示,间隙可以是天线的一部分。虽然未示出,但图1-6所示实施例可包括两个或更多传感装置。在一些实施例中,天线的大小可以在从大约0.5毫米x0.5毫米到大约100x100毫米的范围中。在一个实施例中,天线的大小可以是大约10毫米x10毫米。
一般情况下,当天线的一部分配置成充当传感装置时,这些部分中的天线圈或绕组之间的间距可以在大约0.005微米到大约500微米的范围中。在一个实施例中,配置成充当传感装置的部分中天线的绕组之间的间距是大约25微米。
在RFID标签中结合传感装置时,传感器的电响应可以是电阻变化、电容变化或电阻和电容变化的组合中的一项或多项。在一个实施例中,通过在RFID标签中结合传感装置,将RFID传感器的电响应转换成天线的复阻抗响应的谐振变化。来自RFID标签的信号反映为通过数字读取器/写入器的RFID标签读取的数字ID的出现或消失或天线的复阻抗的谐振属性中的变化的一个或多个。在本文中使用时,术语“数字读取器/写入器”是从RFID标签的存储器芯片读取数字信息并将用户定义的数字信息写入存储器芯片的装置。数字读取器/写入器也可在本申请中称为“读取器”或“询问器”或“写入器”。在一些实施例中,在RFID标签中添加传感装置可导致形成谐振传感结构。在这些实施例中,环境变化影响传感器的谐振。数字写入器将数据的时间序列写入存储器芯片中。如果传感器的谐振由于传感装置而变化,使得谐振频率位置在写入数字数据的频率范围外,和/或谐振幅度在写入数字数据的幅度(更小或更大)的范围外,则某些值未写入芯片中,由此永久性地存储时间序列数据。对于需要跟踪传感器暴露于环境的时间的时间关键应用,仅在关注的参数超过阈值时才将数字数据记录到芯片上。
在一个实施例中,数字读取器/写入器能够与谐振传感器的阻抗的扫描器组合以确定传感器谐振的属性。在本文中使用时,术语“谐振传感器的阻抗的扫描器”是扫描跨传感器的谐振的频率并确定传感器谐振的属性的装置。传感器谐振的属性的非限制性示例可包括复阻抗信号的宽度、形状、形状的对称性、峰高及峰位置。
当数字读取器/写入器装置与谐振传感器的阻抗的扫描器组合时,RFID传感器的存储器芯片的存储器中存储的数据能够包含传感器谐振的至少一个属性(例如,复阻抗信号的宽度、形状、形状的对称性、峰高及峰位置)。此传感信息与数据的时间序列一起存储到存储器芯片中。传感信息不是一比特信息(开-关响应),而是带有不受传感器限制、但受谐振传感器的阻抗的扫描器限制的信息分辨率的定量信息。
传感间隙的形状可包括时隙、时隙阵列、形态诱发的形状、蛇形、线圈、碎片形或其组合。在某些实施例中,间隙可以为沟道、叉指电极结构、三维(3-D)电极结构或其组合的形式。在某些实施例中,间隙可包括零维间隙结构、一维间隙结构、二维间隙结构、三维间隙结构。零维间隙结构是由带有较小截面的电极形成的间隙结构,使得电极之间的间隙小到足以只容纳一个目标物种(例如,仅一个孢子、仅一个细菌等)。一维间隙结构是由在一个方向中带有较小截面的电极形成的间隙结构,使得间隙小到足以只容纳目标物种的一维阵列(例如,一行中的孢子或细菌)。二维间隙结构是由在两个方向中带有小截面的电极形成的间隙结构。三维间隙结构是由在三个方向中带有小截面的电极形成的间隙结构。间隙的结构也可根据制作的简便而改变,并且还基于需要检测的物理属性和/或化学和/或生物物种而改变。
在某些实施例中,间隙中存在的材料可包括金属、有机材料、半导体材料、有机电子材料、介电材料或其组合。在一些实施例中,间隙可包括用于检测间隙传感器周围的化学、生物和/或物理变化的传感材料。间隙区域中传感材料的非限制性示例包括纳米线、纳米纤维、纳米粒、带有功能添加剂的配置材料、掺杂共轭聚合物、无机材料、有机材料、聚合材料、生物材料、活细胞、生物分子受体、抗体、适体、核酸、通过金属颗粒功能化的生物分子、通过聚合物颗粒功能化的生物分子、通过硅颗粒功能化的生物分子及在传感装置周围的化学、生物和/或物理变化时产生电阻和/或电容的可检测变化的任何其它已知传感材料及它们的组合。
在其它实施例中,间隙可基本上无电极材料。在间隙不包含任何传感材料的实施例中,信号变化可源于间隙中样本构成的变化。样本构成的变化的非限制性示例包括空中的水蒸汽浓度(相对湿度)或水中的任何其它气体、离子浓度(例如脱离子水对比饮用水对比海水)、废水中的有机物质浓度、水中的生物物质(例如,细菌、细胞、病毒)浓度。
在某些实施例中,第一和第二电极的面向的内表面之间的距离可以是在大约几纳米到大约几千纳米的范围中。在一个实施例中,间隙距离在大约2纳米到大约10000纳米的范围中。间隙距离可基于需要检测的参数来确定。例如,间隙距离可基于需要检测的生物属性的大小来确定。在另一示例中,对于检测一般大小是几十微米的细菌,间隙距离可以更大,而对于检测几十纳米的病毒,间隙距离可更小。
在一个实施例中,第一电极或第二电极或两者具有连续表面。例如,第一或第二电极可以是连续的矩形、正方形、圆形或任何其它几何形状。在另一实施例中,第一或第二电极可具有不连续表面。例如,第一或第二电极可具有诸如网格等图案化表面、具有孔的表面(其中,孔可以是或不是通孔)、具有突出结构的表面或其组合。此外,第一和第二电极可具有相同或不同种类的表面。在一个实施例中,介电材料可应用到第一电极或第二电极或两者的一个或多个暴露表面以防止在传感器暴露于传导流体时电极短路。
在某些实施例中,电极材料可以能够传输带有确定的电属性的电流。电极材料的非限制性示例包括诸如铜、铝、金、银、铜的合金(例如,黄铜、青铜)、铝的合金(例如,NambeTM、SiluminTM)、金的合金(例如,ElectrumTM)、传导聚合物、掺杂传导聚合物(如掺杂聚乙炔、掺杂聚苯胺、掺杂聚噻吩)、碳纳米管、碳纤维、碳粒子、碳浆、传导墨或其组合。
在一个实施例中,电极材料的电阻抗小于大约100欧姆。在另一实施例中,电极材料的电阻抗小于大约50欧姆或小于大约0.5欧姆。而天线结构的电阻抗可以在大约0.5欧姆到小于100欧姆的范围中。
在某些实施例中,一种制作传感器的方法可包括提供具有一圈或多圈的天线。此外,制作包括第一和第二电极的传感间隙。在某些实施例中,可通过采用诸如微光刻和/或纳米光刻等技术来制作天线。可通过采用诸如但不限于自组装、卷到卷(roll-to-roll)工艺、光刻、液相沉积、铣削(milling)、聚焦离子束铣削或微光刻等技术来制作传感间隙或传感装置。在一个实施例中,可通过批量制造工艺来形成第一和第二电极。在天线的一部分配置成充当传感装置的实施例中,可通过采用以上所列技术来单独制作间隙。在传感装置是与天线分开的实体的实施例中,传感装置可单独制作并随后耦合到天线。此外,可通过采用上面所列制作技术,将传感装置在并联或串联电连接中耦合到天线。在一个实施例中,传感器可布置在硅表面上,使得间隙内的硅表面不包含任何表面改性以用于分子和分子装配的非特异性结合。
现在参照图1,传感器10包括传感装置12,其具有两个电极16的面向的内表面之间的间隙14,并且间隙长度13定义为沿两个电极16的距离。通过采用连接器17,传感装置12电耦合到天线18。在图1的所示实施例中,传感装置12和天线18串联连接。在一个示例中,连接器17可以是导电线缆、导线、条带或诸如此类。传感器10还包括具有两个末端20和22的天线18。天线的末端20和22使用导体介质24(如导体导线、导体条带或导体线缆)来电连接,该电连接的方式使得导体介质24不将此导体介质跨过的天线18的其它区域电短路。存储器芯片26用于存储信息。芯片26可由从读/写单元传送的射频信号来激活。传感器10的天线18接收和传送信号。天线18传送的信号由布置在传感器10的操作接近处的读取器或拾波线圈(未示出)来拾取。拾波线圈可以是读取器的一部分。在一个示例中,传感器10和拾波线圈可经电感耦合而耦合。备选的是,在另一实施例中,传感器10和拾波线圈不必经电接触来耦合。在此类实施例中,传感器10和拾波线圈可适用于以无线方式进行通信。
如图2所示,传感器30包括具有由电极36定义的间隙34的传感装置32。通过采用电导体40,传感装置32电耦合到天线38。电导体40又耦合到子连接器42,而子连接器直接耦合到传感装置32。在一个实施例中,电导体40和子连接器42可以相同,即,电导体40和连接器42可形成连接介质的连续体。在另一实施例中,电导体40和连接器42可以是不同的物理实体。传感器30还包括存储器芯片44。此外,天线38的两个末端46和48使用导体介质50(如导体导线、导体条带或导体线缆)来电连接,该电连接的方式使得导体介质不将此导体介质跨过的天线38的其它区域电短路。
现在转到图3,传感器52包括具有由电极58定义的间隙56的传感装置54。通过采用电导体60,传感装置54电耦合到存储器芯片62。传感装置54与存储器芯片62之间的电连接经存储器芯片中的模拟输入来执行。存储器芯片62又耦合到天线64。天线64的两个末端66和68使用导体介质70(如导体导线、导体条带或导体线缆)来电连接,该电连接的方式使得导体介质70不将此导体介质跨过的天线64的其它区域电短路。
图4-6示出天线的一部分配置成充当传感装置的实施例。在图4的所示实施例中,传感器72包括天线74。天线74的一部分78配置成充当传感装置80。天线74的该部分78包含充当用于传感装置80的间隙76的天线中的间断。虽然未示出,但在天线74中可以有两个或更多此类间隙。天线74还包括使用导体介质86电连接的两个末端82和84。传感器72还包括存储器芯片87。
图5示出具有天线90的传感器88。天线90包括两个传感装置,即第一传感装置92和第二传感装置94。第一传感装置92包括在绕组98和100的部分之间形成的并具有间隙长度95的第一间隙96。类似地,第二传感装置94包括在绕组104和106的部分之间形成的并具有间隙长度93的第二间隙102。如图所示,绕组98和100及104与106之间的距离比天线90的其余绕组之间的距离更小。这些更小的距离使得能够形成传感装置92和94。天线90还包括使用导体介质112电连接的两个末端108和110。传感器88还包括存储器芯片114。
图6示出采用天线122的传感器120。突出部分124和126配置成充当单个传感装置128。传感装置128包括具有由虚线131表示的间隙长度并且界定在绕组部分132与134之间的间隙130。间隙130从一个突出部124继续到另一突出部126。天线122还包括使用导体介质140电连接的两个末端136和138。传感器120还包括存储器芯片142。与传感装置92和94的单独间隙长度95和93(参见图5)分别相比,传感装置128的间隙长度131更长,由此提供增大的传感面积。在细菌、孢子或病毒的生物检测中,更长的间隙提供捕捉间隙内目标物种的更高概率。在气体和液体的化学检测中,由于传感面积增大,更长的间隙提供更大的信号响应。
图7示出可在所述技术中采用的传感装置146的实施例的顶视图。传感装置146包括在支承结构152之间支承的顶部电极150上的多个孔148。在一个实施例中,孔的直径可在从大约5纳米到大约20000纳米的范围中。顶部电极150可具有诸如正方形、矩形、圆形、六边形、三角形或任何其它多边形的几何形状。图8示出传感装置146的截面侧视图。如图所示,该装置还包括底部电极154。如同顶部电极150情况一样,底部电极可具有诸如正方形、矩形、圆形、六边形、三角形或任何其它多边形的不同几何形状。虽然未示出,但顶部和底部电极150和154可具有或不具有平坦表面。例如,在一个或两个电极上可以有凹陷或突出以定制传感装置的间隙。在一个实施例中,底部电极154可在顶部电极150的方向中具有突出,使得顶部电极150与底部电极154之间的距离在具有突出的区域中更小。
图9示出检测关注的物理、化学或生物参数时传感装置的信号中的变化。在当前考虑的实施例中,测量了天线的复阻抗的谐振属性中的变化。在所示实施例中,天线的复阻抗响应在纵坐标160上示出,并且横坐标162表示测量RFID传感器的谐振的扫描频率。曲线164、166、168和170表示传感器暴露于不同样本或者传感器周围的样本更改其物理、化学或生物属性时作为频率的函数的传感器的复阻抗中的变化。如图所示,传感器的响应变化反映为复阻抗信号的宽度、形状、形状的对称性、峰高及峰位置中的变化,即,曲线164、166、168及170。
在某些实施例中,当天线未检测到达到确定阈值的任何物种或参数时,天线的电路在初始阶段是不完整的。在这些实施例中,由于间隙形成的间断,天线的电路在物理上是不完整的。在这些实施例中,在初始状态中,天线的不完整电路的阻抗可大于或等于约1000欧姆。当要检测的物种或样本的物理属性变化影响间隙的电阻和电容以使谐振的幅度在数字读取器/写入器的操作频率范围高于确定的阈值时,天线的电路是完整的。在此阶段,读取器/写入器能够读取或识别存储器芯片。数字写入器将数据的时间序列写入存储器芯片中。影响传感器的响应的物理属性的非限制性示例是离子化辐射(例如,伽玛辐射、贝塔辐射、X射线)剂量、液体传导率、温度、压力、加速或其组合。
在一个实施例中,传感装置的添加导致形成谐振结构,并且传感装置影响结构的谐振作为环境变化的函数。如果由于对RFID附连的传感装置而更改谐振,使得谐振落在为传感器写入数字数据的频率范围之外,则传感器响应的某些值未写入存储器芯片中,因此永久性地存储时间序列数据。
图10-12示出通过数字读取器/写入器的数字ID读取的出现或消失的概念。中点表示数字写入器/读取器的操作频率范围。数字写入器/读取器的操作频率范围可以是从大约120 KHz到大约5.8 GHz。在一个示例中,中点可以是在大约13.56 MHz频率。如图10所示,在纵坐标172和横坐标174上所绘制的在频率F 176的天线的复阻抗响应由曲线178来表示。在图10的所示实施例中,天线的谐振幅度由于传感装置响应而太弱(曲线180)。在此情况下,写入器不能检测到RFID传感器,并因此未将时间序列的部分写入存储器芯片中。如图11所示,传感器的阻抗/谐振响应(曲线182)由于传感器响应而已偏移,并且由于传感装置的响应而离中点太远(如箭头184所示),读取器/写入器不能发现RFID传感器,并且未将时间序列的部分写入存储器芯片中。现在参照图12,谐振在传感器响应前如箭头188所示远离中点176,并且在传感器响应(186)时与中点重叠,读取器/写入器发现RFID传感器并将时间序列的部分写入存储器芯片中。相应地,读取器/写入器不能检测到RFID传感器,并因此未将时间序列的部分写入存储器芯片中。
图13示出数字数据流192,该数据流具有未由写入器写到存储器芯片上的序列194、196和198,而序列200和202由写入器写入到存储器芯片上。数字数据流由读取器/写入器生成。传感器在物理上位于测量环境中。对于需要跟踪超过预定限制的暴露的时间的时间关键应用,仅在关注的参数超过阈值时,数字数据才记录到芯片上。横坐标204表示时间。对于关注参数的值210和212分别高于阈值214的时间间隔206和208,记录数据流。而对于参数的值222、224和226分别低于阈值214的时间间隔216、218和220,不记录数据流。
存储器芯片中记录的值包含与记录事件的时间和基于间隙的装置的响应的传感值有关的数字数据流。基于间隙的装置的响应的传感值与传感器周围的测量样本中关注的物理、化学或生物参数的浓度或水平或幅度相关。
虽然本文中只示出和描述了本发明的某些特征,但本领域的技术人员将明白许多修改和更改。因此,要理解随附权利要求旨在涵盖落在本发明的范围内的所有此类修改和更改。

Claims (10)

1. 一种传感器,包括:
至少一个传感装置,所述传感装置包括第一电极和第二电极以及定义为所述第一和第二电极的一个或多个面向的内表面之间距离的间隙,其中所述间隙距离至少部分地确定一个或多个感应参数的阈值;以及
天线,与所述传感装置在操作关联中。
2. 如权利要求1所述的传感器,其中所述第一和第二电极的所述内表面之间的所述间隙在大约5 nm到大约10000 mn的范围内。
3.如权利要求1所述的传感器,其中所述天线的一部分配置成充当所述传感装置。
4.如权利要求1所述的传感器,其中所述传感器配置用于检测化学物种或生物物种或物理属性或其组合。
5.如权利要求1所述的传感器,其中所述间隙基本上无电极材料或传感材料或两者。
6.如权利要求1所述的传感器,其中所述间隙包括空气、介电材料、金属、半导体材料、有机电子材料、生物传感材料、有机传感材料、无机传感材料。
7.如权利要求1所述的传感器,其中所述传感器布置在无任何表面改性的硅表面上以使得能够非特异性结合分子、分子装配或两者。
8.如权利要求1所述的传感器,其中所述电极材料包括金属、铜、铝、金、银、铜的合金、铝的合金、金的合金、传导聚合物、掺杂聚乙炔、掺杂聚苯胺、掺杂聚噻吩、碳纳米管、碳纤维、碳粒子、碳浆、传导墨或其组合。
9. 一种基于射频的传感器,包括:
传感间隙,由两个或更多电极来定义;以及
天线,与所述传感间隙和所述电极在操作关联中。
10. 一种制作传感器的方法,包括:
提供具有一圈或多圈的天线;以及
形成包括第一和第二电极的并且由所述第一和第二电极的一个或多个面向的内表面之间的距离来定义的传感间隙,其中所述间隙距离至少部分地确定一个或多个感应参数的阈值,以及其中所述传感间隙与所述天线在操作关联中。
CN201611244149.XA 2008-09-25 2009-09-23 具有基于间隙的传感装置的传感器和制作与使用其的方法 Pending CN107122820A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/237,571 US8159347B2 (en) 2008-09-25 2008-09-25 Sensors having gap based sensing devices and methods of making and using the same
US12/237571 2008-09-25
CN2009801381351A CN102165311A (zh) 2008-09-25 2009-09-23 具有基于间隙的传感装置的传感器和制作与使用其的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2009801381351A Division CN102165311A (zh) 2008-09-25 2009-09-23 具有基于间隙的传感装置的传感器和制作与使用其的方法

Publications (1)

Publication Number Publication Date
CN107122820A true CN107122820A (zh) 2017-09-01

Family

ID=42037039

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201611244149.XA Pending CN107122820A (zh) 2008-09-25 2009-09-23 具有基于间隙的传感装置的传感器和制作与使用其的方法
CN2009801381351A Pending CN102165311A (zh) 2008-09-25 2009-09-23 具有基于间隙的传感装置的传感器和制作与使用其的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2009801381351A Pending CN102165311A (zh) 2008-09-25 2009-09-23 具有基于间隙的传感装置的传感器和制作与使用其的方法

Country Status (6)

Country Link
US (1) US8159347B2 (zh)
EP (1) EP2329254B1 (zh)
JP (1) JP5596692B2 (zh)
CN (2) CN107122820A (zh)
CA (1) CA2736192A1 (zh)
WO (1) WO2010036190A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105922A (zh) * 2018-01-04 2020-12-18 利腾股份有限公司 谐振气体传感器

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9147144B2 (en) 2012-09-28 2015-09-29 General Electric Company Systems and methods for monitoring sensors
US9389260B2 (en) 2012-09-28 2016-07-12 General Electric Company Systems and methods for monitoring sensors
US9536122B2 (en) 2014-11-04 2017-01-03 General Electric Company Disposable multivariable sensing devices having radio frequency based sensors
US9589686B2 (en) 2006-11-16 2017-03-07 General Electric Company Apparatus for detecting contaminants in a liquid and a system for use thereof
US9658178B2 (en) 2012-09-28 2017-05-23 General Electric Company Sensor systems for measuring an interface level in a multi-phase fluid composition
US10914698B2 (en) 2006-11-16 2021-02-09 General Electric Company Sensing method and system
US9538657B2 (en) 2012-06-29 2017-01-03 General Electric Company Resonant sensor and an associated sensing method
US8717146B2 (en) * 2010-06-30 2014-05-06 General Electric Company Methods and systems for integrated interrogation of RFID sensors
US8542023B2 (en) 2010-11-09 2013-09-24 General Electric Company Highly selective chemical and biological sensors
US8947236B2 (en) * 2011-01-18 2015-02-03 Avery Dennison Corporation Sensing properties of a material loading a UHF RFID tag by analysis of the complex reflection backscatter at different frequencies and power levels
US9286562B2 (en) 2011-10-25 2016-03-15 Avery Dennison Corporation RFID-based devices and methods for interfacing with a sensor
US20130162403A1 (en) * 2011-12-27 2013-06-27 Grant Edward Striemer Apparatus and Method for Providing Product Information
US20140015645A1 (en) * 2011-12-27 2014-01-16 The Gillette Company Apparatus and Method for Providing Product Information
US9382579B2 (en) * 2012-03-02 2016-07-05 Nokomis, Inc. DNA/nanoparticle complex enhanced radio frequency transponder: structure of mark for detecting hybridization state and authenticating and tracking articles, method of preparing the same, and method of authenticating the same
JP6089475B2 (ja) * 2012-07-20 2017-03-08 株式会社大林組 充填硬化材の充填確認方法
DE112013004129T5 (de) 2012-08-22 2015-05-21 General Electric Company Drahtloses System und Verfahren zum Messen einer Betriebsbedingung einer Maschine
US10598650B2 (en) 2012-08-22 2020-03-24 General Electric Company System and method for measuring an operative condition of a machine
US10684268B2 (en) 2012-09-28 2020-06-16 Bl Technologies, Inc. Sensor systems for measuring an interface level in a multi-phase fluid composition
CN103675040B (zh) * 2013-11-20 2016-06-29 中北大学 基于低温共烧陶瓷技术的非接触无源气体传感器
US10788439B2 (en) 2014-03-25 2020-09-29 The Procter & Gamble Company Apparatus for sensing environmental moisture changes
US10794850B2 (en) 2014-03-25 2020-10-06 The Procter & Gamble Company Apparatus for sensing environmental pH changes
US10782261B2 (en) 2014-03-25 2020-09-22 The Procter & Gamble Company Apparatus for sensing environmental humidity changes
US10788437B2 (en) 2014-03-25 2020-09-29 The Procter & Gamble Company Apparatus for sensing environmental changes
US10914644B2 (en) 2014-03-25 2021-02-09 The Procter & Gamble Company Apparatus for sensing material strain
US9746442B2 (en) 2014-03-30 2017-08-29 International Business Machines Corporation Switched-capacitor biosensor device
CN104614410B (zh) * 2015-01-26 2017-03-01 西安交通大学 一种基于纳米间隙电极的柔性pH传感器及制造方法
WO2016121952A1 (ja) * 2015-01-29 2016-08-04 アラム株式会社 液体センサ
AT516980B1 (de) * 2015-03-20 2017-10-15 Ait Austrian Inst Technology Anordnung zur Bestimmung der Feuchtigkeit eines Gegenstands
US20170364785A1 (en) * 2016-06-17 2017-12-21 Massachusetts Institute Of Technology Ionic liquid carbon nanotube composites for wireless chemical sensing
EP3447465A1 (en) * 2017-08-25 2019-02-27 Smartrac Investment B.V. Differential pressure sensor with rfid tag
FR3102242B1 (fr) * 2019-10-18 2021-11-05 Univ Aix Marseille Capteur a variation d’impedance ou d’inductance consecutive a une variation d’un mesurande
CN111509375A (zh) * 2019-12-18 2020-08-07 数码服装有限公司 基于纺织材料近场通信无线通信系统
CN117554276B (zh) * 2024-01-09 2024-03-26 中国石油大学(华东) 一种非金属材料老化检测装置与方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531650A (zh) * 2001-05-30 2004-09-22 ��-ɭ˹��ʽ���� 生物传感器
US20070075148A1 (en) * 2005-10-03 2007-04-05 Hitachi, Ltd. Wireless IC tag and manufacturing method of the same
CN101094606A (zh) * 2004-11-04 2007-12-26 L&P100有限公司 医疗设备
CN101251509A (zh) * 2008-04-16 2008-08-27 湖南大学 一种车用氧化锆氧传感器

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228044A (ja) * 2000-02-17 2001-08-24 Yokohama Rubber Co Ltd:The 液体検知方法及び液体検知装置
US20040094414A1 (en) * 2000-03-30 2004-05-20 Manfred Engelhardt Biosensor, biosensor array, method for producing an electrode of a biosensor , method for producing a biosensor
EP1376111A1 (en) * 2002-06-24 2004-01-02 Universite Catholique De Louvain Method and device for high sensitivity detection of the presence of DNA and other probes
JP4092990B2 (ja) * 2002-09-06 2008-05-28 株式会社日立製作所 生体および化学試料検査装置
US7067867B2 (en) * 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
JP3767817B2 (ja) 2002-10-25 2006-04-19 松下電器産業株式会社 温度測定装置
GB0300664D0 (en) * 2003-01-11 2003-02-12 Rolls Royce Plc Sensing film material
JP3787630B2 (ja) * 2003-02-14 2006-06-21 独立行政法人情報通信研究機構 ナノギャップ電極の製造方法
WO2005008450A2 (en) * 2003-03-28 2005-01-27 The Regents Of The University Of California Method and apparatus for nanogap device and array
US7647109B2 (en) * 2004-10-20 2010-01-12 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
KR100679704B1 (ko) * 2005-01-10 2007-02-06 한국과학기술원 분자소자와 바이오 센서를 위한 나노갭 또는 나노 전계효과 트랜지스터 제작방법
US7545272B2 (en) * 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
ATE533403T1 (de) * 2005-03-24 2011-12-15 Metacure Ltd Drahtlose leitungen für magen-darm-trakt- anwendungen
PT1889198E (pt) * 2005-04-28 2015-03-06 Proteus Digital Health Inc Sistema fármaco-informático
US7796043B2 (en) * 2005-07-20 2010-09-14 Neil R. Euliano Medication compliance system and associated methods
WO2007046582A1 (en) 2005-10-21 2007-04-26 Korea Research Institute Of Bioscience And Biotechnology A method for fabricating nanogap and nanogap sensor
US20070090926A1 (en) * 2005-10-26 2007-04-26 General Electric Company Chemical and biological sensors, systems and methods based on radio frequency identification
US8318099B2 (en) * 2005-10-26 2012-11-27 General Electric Company Chemical and biological sensors, systems and methods based on radio frequency identification
US20070292601A1 (en) * 2005-12-15 2007-12-20 Colin Nuckolls Thin Film Devices Utilizing Hexabenzocoronenes
WO2007120312A2 (en) 2005-12-15 2007-10-25 The Trustees Of Columbia University In The City Of New York Sensing devices from molecular electronic devices
US7456744B2 (en) 2006-05-16 2008-11-25 3M Innovative Properties Company Systems and methods for remote sensing using inductively coupled transducers
WO2007139574A1 (en) * 2006-05-26 2007-12-06 Ge Healthcare Bio-Sciences Corp. System and method for monitoring parameters in containers
US20080121045A1 (en) * 2006-11-29 2008-05-29 Cole Matthew C Multiplexed sensor array
US8706208B2 (en) * 2007-03-24 2014-04-22 Board Of Regents, The University Of Texas System Passive wireless gastroesophageal sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531650A (zh) * 2001-05-30 2004-09-22 ��-ɭ˹��ʽ���� 生物传感器
CN101094606A (zh) * 2004-11-04 2007-12-26 L&P100有限公司 医疗设备
US20070075148A1 (en) * 2005-10-03 2007-04-05 Hitachi, Ltd. Wireless IC tag and manufacturing method of the same
CN101251509A (zh) * 2008-04-16 2008-08-27 湖南大学 一种车用氧化锆氧传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105922A (zh) * 2018-01-04 2020-12-18 利腾股份有限公司 谐振气体传感器

Also Published As

Publication number Publication date
JP2012503770A (ja) 2012-02-09
EP2329254B1 (en) 2018-07-04
CA2736192A1 (en) 2010-04-01
US20100073135A1 (en) 2010-03-25
EP2329254A4 (en) 2014-03-05
EP2329254A1 (en) 2011-06-08
JP5596692B2 (ja) 2014-09-24
US8159347B2 (en) 2012-04-17
CN102165311A (zh) 2011-08-24
WO2010036190A1 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
CN107122820A (zh) 具有基于间隙的传感装置的传感器和制作与使用其的方法
US8736425B2 (en) Method and system for performance enhancement of resonant sensors
CN102265144B (zh) 采用分析物识别元件的基于射频传感器
Jiang et al. e‐Textile embroidered wearable near‐field communication RFID antennas
Deng et al. Design of a slotted chipless RFID humidity sensor tag
Behera Chipless RFID sensors for wearable applications: A review
Vena et al. A novel inkjet printed carbon nanotube-based chipless RFID sensor for gas detection
CN102985815A (zh) 使用纳米管的谐振气体传感器
Vena et al. A compact chipless RFID tag with environment sensing capability
Potyrailo et al. Development of radio-frequency identification sensors based on organic electronic sensing materials for selective detection of toxic vapors
CN102265145A (zh) 用于在无线远程传感器中使用铁氧体对准键的系统和方法
WO2008065992A1 (fr) Particule de poudre rf, poudre rf et base contenant une poudre rf
US20150069133A1 (en) Nanotube patterns for chipless rfid tags and methods of making the same
US8766853B2 (en) Method for adding RF powder and RF powder-added base sheet
JP2008203996A (ja) 基体、および基体の存在位置と周波数応答特性の確認システム
Yuan et al. Wireless biosensing using silver-enhancement based self-assembled antennas in passive radio frequency identification (RFID) tags
US8766802B2 (en) Base data management system
Roh et al. Applications of Nanomaterials in RFID Wireless Sensor Components
Perret Chipless labels detection by backscattering for identification and sensing applications
Shen et al. Chipless RFID-inspired Sensing for Smart Agriculture: A Review
Behera et al. Chipless RFID Printing Technologies
Sharif et al. Nature-inspired spider web shaped UHF RFID reader antenna for IoT and healthcare applications
Adhur Kutty Carbon Nanotube Loaded Passive UHF RFID Sensor Tag with Built-in Reference for Wireless Gas Sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210705

Address after: Pennsylvania, USA

Applicant after: Westinghouse Pneumatic Brake Technology Co.

Address before: New York State, USA

Applicant before: General Electric Co.