CN1531208A - 编码调制方法及装置、解调方法及装置、信息记录介质 - Google Patents

编码调制方法及装置、解调方法及装置、信息记录介质 Download PDF

Info

Publication number
CN1531208A
CN1531208A CNA2003101232328A CN200310123232A CN1531208A CN 1531208 A CN1531208 A CN 1531208A CN A2003101232328 A CNA2003101232328 A CN A2003101232328A CN 200310123232 A CN200310123232 A CN 200310123232A CN 1531208 A CN1531208 A CN 1531208A
Authority
CN
China
Prior art keywords
channel signal
bit string
code word
signal bit
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2003101232328A
Other languages
English (en)
Other versions
CN100392984C (zh
Inventor
萱沼金司
岩永敏明
能弹长作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
NEC Corp
Original Assignee
Toshiba Corp
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, NEC Corp filed Critical Toshiba Corp
Publication of CN1531208A publication Critical patent/CN1531208A/zh
Application granted granted Critical
Publication of CN100392984C publication Critical patent/CN100392984C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/30Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording
    • G11B27/3027Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording used signal is digitally coded
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/14Digital recording or reproducing using self-clocking codes
    • G11B20/1403Digital recording or reproducing using self-clocking codes characterised by the use of two levels
    • G11B20/1423Code representation depending on subsequent bits, e.g. delay modulation, double density code, Miller code
    • G11B20/1426Code representation depending on subsequent bits, e.g. delay modulation, double density code, Miller code conversion to or from block codes or representations thereof
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/14Digital recording or reproducing using self-clocking codes
    • G11B20/1403Digital recording or reproducing using self-clocking codes characterised by the use of two levels
    • G11B20/1423Code representation depending on subsequent bits, e.g. delay modulation, double density code, Miller code
    • G11B20/1426Code representation depending on subsequent bits, e.g. delay modulation, double density code, Miller code conversion to or from block codes or representations thereof
    • G11B2020/1457Code representation depending on subsequent bits, e.g. delay modulation, double density code, Miller code conversion to or from block codes or representations thereof wherein DC control is performed by calculating a digital sum value [DSV]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2562DVDs [digital versatile discs]; Digital video discs; MMCDs; HDCDs

Abstract

本发明的编码调制方法及调制装置,其特征在于,具有与(1,7)调制相同的编码率2/3,从数据位串向信道信号位串进行变换,使表示夹于信道信号位串中的位“1”之间的位“0”的个数,最小值是1,最大值是10;不管对哪种数据位串进行调制,游程长度1为6次以上连续的码型“1010101010101”在信道信号位串中不出现。此外,特征是,信道信号位串中具有可以根据DSV(Digital Sum Value)选择“0”或者“1”的DSV控制位;对数据位串使用随机数据时得到的信道信号位串进行NRZI变换后的信号的频率成分,在信道时钟频率的1/10000以下的频率中,与频率成分最大值相比,振幅比小20dB以上。根据这些特征,可以防止PRML检测和解调误差,得到不易影响伺服信号的调制结果。

Description

编码调制方法及装置、解调方法及装置、信息记录介质
技术领域
本发明涉及在光盘上进行数字数据记录或者再生时使用的编码调制方法及调制装置、解调方法及解调装置、以及信息记录介质。
背景技术
将数据记录到光盘上的时候,为了适合记录介质要进行数据的调制。当对记录介质进行数据记录和数据再生的时候,如果该记录再生信号中包含直流成分,例如在盘装置的伺服控制中使用的信号会变得容易产生变动,或者变得容易发生波动。因此,最好是调制信号中尽可能不包含直流成分。
例如,在DVD(Digital Versatile Disc)中,依照将数据位串变换为信道信号位串的游程长度(RUN LENGTH)限制RLL(2,10)规则,即“1”之间必须出现两个以上、十个以下的“0”,采用将8位的数据位串调制为16信道信号位串的8-16调制。这里,RLL(2,10)规则中,“2”表示相邻“1”之间包括的“0”的最小连续个数(称作最小游程长度),另一方面,“10”表示相邻“1”之间包括的“0”的最大连续个数(称作最大游程长度)。此外,8-16调制具备通过根据DSV(Digital Sum Value)从多个表中选择代码字来抑制直流成分的机能。DSV是从NRZI变换后的信道信号位串的头开始,当位是“1”时+1,“0”时-1,依次相加后的总和,是信道信号位串的直流成分大小的大体上的目标值。8-16调制通过从预先准备的多个表中选择使DSV最小的代码字,可以抑制信道信号位串的直流成分变动。
如前述,8-16调制是将数据位串分割为8位单位的数据字并变换为16信道信号位的代码字的调制方法,根据数据位串与信道信号位串的比率得到的编码率是1/2。编码率大意味着检测信道信号位串每1位时可以利用的时间变长。因此,希望编码率大。
作为光盘和磁盘中采用的根据RLL规则的另外的编码,作为具有比8-16调制高的编码率2/3的编码,依照“0”的游程长度限制为1以上7以下,即,最小游程长度是“1”,最大游程长度是“7”的RLL(1,7)规则,将2位的数据位调制为3位的信道信号位的2-3调制已被公知。图15表示具有代表性的RLL(1,7)的2-3调制的编码表。表中表示在作为调制对象的2位数据位的基础上,参照后续的数据位和先行的信道信号位的末尾1位,得到3位信道信号位。在后续的数据位和先行信道信号位中表示的“×”,表示该位可以是“1”也可以是“0”。如果使用依照RLL(1,7)规则的2-3调制,数据位串被变换为“1”之间出现的“0”必须在1个以上、7个以下的信道信号位串。因此,进行NRZI记录时,标记(mark)和空格(space)限制在2T以上8T以下(这里,T是信道信号位串的长度)。依照这种RLL(1,7)规则将数据位串编码为信道信号位串的方法,在特开平10-340543号公报(专利文献1)及特开2000-332613号公报中提出。
特别是,来自高密度记录的盘的再生信号,由于标记长度及空格长度短的码型(pattern)的信号振幅变小,作为信道信号位串的判定变得困难。用数据位长度标准化了的检测孔径幅度,对于8-16调制的1/2,(1,7)调制扩大为2/3,最短标记长度及空格长度,对于8-16调制的3/2,缩短为4/3。由最短标记长度及空格长度缩短产生的影响,主要是出现在以最短标记及空格记录的部分的再生信号振幅降低。由于振幅降低,使用比较仪的再生信号成为二进制的时候,容易发生由于噪声引起的波动增加。由最小游程长度连续发生引起的问题点,在特开平11-346154号公报(专利文献3)中被指出。
但是,在仅最短标记长度及空格长度变短的情况下,通过再生信号处理中使用PRML(Partial Response Maximum Likelihood)检测,可以弥补振幅降低的影响。PRML检测,将从多个信道信号位串候补得到的候补波形与再生波形进行比较,选择与最接近再生波形的候补波形对应的信道信号位串。因此,一部分候补波形中包含信号振幅变小的码型,其余的候补波形的信号振幅大,如果能区别两者就可以把检测误差抑制到很小。
依照以往例表示的RLL(1,7)规则进行2-3调制的调制方式,具有编码率为2/3和高检测孔径宽度幅阔的良好的特征。但是,(1,7)调制的信道信号位串,游程长度成为“1”的概率高,NRZI记录时相当于最短标记和最短空格的2T码型(这里,T是信道信号位长度)容易连续发生。2T码型连续的再生信号,容易发生由PRML产生的检测误差。通过使用PRML检测,可以区别2T码型的再生波形与3T以上的码型的再生波形,在2T码型连续的部分,只根据该部分的再生波形很难特定信道信号位串的相位。因此,在PRML检测中,2T码型连续部分的信道信号位串,根据从其前后的再生波形得到的信息进行特定。如果噪声混入再生波形,在2T码型长的连续部分中,由于连续的2T码型全体1T额度偏离检测,容易产生判定误差。在这种情况下,偏离检测的范围影响到全体误差,容易成为涉及多个字节的检测误差。
此外,最小游程长度1的2T码型长的连续的再生信号中,由于变成信号振幅小的状态长的连续,存在很难从再生信号中抽出信道时钟的问题。在很难确保信道时钟抽出的稳定性的方面,2T码型连续出现的状况不是优选的。在专利文献1和2中,公开了依照RLL(1,7)规则编码的方法,而专利文献1和2为了减少冗余,只公开了在保持RLL规则状态下进行DSV(digital sum value)控制的技术,没有公开由于最小游程长度1的连续而产生的问题点及其解决办法。此外,专利文献3公开了使用具有变换部分的变换表,将最小游程长度的连续限制在规定次数以下。但是,专利文献3利用可变长编码,没有考虑编码率。
此外,使用(1,7)调制记录的信号从盘再生时,具有再生信号中存在低频成分的问题。如果再生信号中包含低频成分,具有例如在盘装置的伺服控制中使用的信号变得容易产生变动的恶劣影响。
发明内容
本发明之目的在于,提供一种具有与(1,7)调制相同的编码率,用于以在信道信号位串中不出现容易引发再生信号的检测误差的码型的调制编码,得到直流成分少,适合高密度记录的编码的编码调制方法及调制装置,以及用于再生的解调方法及解调装置,此外,使用这种编码记录、不容易发生检测误差的信息记录介质。
为了解决上述课题,本发明的编码调制方法及调制装置,其特征在于,具有与(1,7)调制相同的编码率2/3,从数据位串向信道信号位串进行变换,使表示夹于信道信号位串中的位“1”之间的位“0”的个数的游程长度,最小值是1,最大值是10;不管对哪种数据位串进行调制,在信道信号位串中不出现游程长度1为6次以上连续的码型“1010101010101”。
此外,特征是,信道信号位串中具有根据DSV(Digital Sum Value)可以选择位是“0”或者“1”的DSV控制位;对数据位串使用随机数据时得到的信道信号位串进行NRZI变换后的信号的频率成分,在信道时钟频率的1/10000以下的频率中,与频率成分的最大值相比,振幅比小20dB以上。
此外,解调方法及解调装置的特征在于,具备多个解调表,用于储存与由12位的信道信号位串构成的代码字对应的,由8位的数据位串构成的数据字;具备在把信道信号位串按每代码字进行分割以前,检测根据代码字彼此连续时的置换规则被置换的码型,置换为置换前的码型后,分割成由12位的信道信号位串构成的代码字的装置;和根据表示后续的12信道信号位的代码字的信息,对分割后的代码字的解调所使用的解调表进行选择的装置;使用表示12信道信号位的代码字的信息,和选择的解调表,得到由8位的数据位串构成的数据字。
本发明的信息记录介质,对信道信号位串进行NRZI变换,记录与凹坑的长度和凹坑的空格对应的信息的光记录介质,特征是,记录信道信号位串中的游程长度,除去按照规定的周期被插入的同步码型以外,在信道信号位串中不出现最小值为1,最大值为10,游程长度1为6次以上连续的码型,来自凹坑的再生的信号的频率成分,在信道时钟频率的1/10000以下的频率中,与频率成分的最大值相比振幅比小20dB以上的信息。
根据本发明,可以提供具有与(1,7)调制相同的编码率,用于以在信道信号位串中不出现容易再生信号的检测误差的码型的调制编码,得到直流成分少,适合高密度记录的编码的编码调制方法及调制装置,以及用于再生的解调方法及解调装置,此外,使用这种编码记录、不容易发生检测误差的信息记录介质。具体而言,本发明可以得到编码率是2/3,游程长度的最小值是1,最大值是10,并且游程长度1连续的次数被限制在5次以下的信道信号位串。此外,得到低频成分十分小,并且适于高密度记录的信道信号位串。考虑代码字的边界,得到避免影响波及3字节的效果。可以使编码率为2/3,并且在信道时钟频率的一万分之一以下的频率中,振幅强度与最大值相比小20dB以上。另一方面,解调时,可以以12信道信号位的代码字单位进行处理,并且,由于只参照前面或者紧随其后的代码字,可以实现解调误差很难传播的电路结构。此外,具有即使记录密度高也容易将信道时钟稳定地抽出,很难发生检测误差的效果。
附图说明
图1是表示本发明的调制方法中使用的编码表的一部分的图。
图2是表示本发明的调制方法中使用的编码表的另外一部分的图。
图3是表示本发明的调制方法中使用的编码表的另外一部分的图。
图4是表示本发明的调制方法中使用的编码表的另外一部分的图。
图5a是表示本发明的调制方法中使用的置换规则的图。
图5b是表示本发明中可能使用的另外的置换规则的图。
图6是表示编码的频率特性的图。
图7是表示本发明的调制方法中使用的同步码型的图。
图8是表示本发明的调制方法的流程图。
图9是本发明中使用的调制电路的结构图。
图10是表示本发明的解调方法的流程图。
图11是表示本发明的解调方法中使用的分割规则的图。
图12是表示本发明的解调方法中使用的解调表的一部分的图。
图13是表示本发明的解调方法中使用的解调表的另外一部分的图。
图14是本发明中使用的解调电路的结构图。
图15是表示现有的调制方法中使用的编码表的图。
具体实施方式
为了明确本发明的上述以及其它的目的、特征及优点,参照附图对本发明的实施方式进行详细说明。
图1~图4表示本发明的编码调制方法的实施方式涉及的编码表。图1~图4整体表示与十六进制表示的8位的数据字00至FF对应,把12信道信号位的代码字和表示次状态信息S0至S2的值对应相关的三个表。即,以本发明的编码调制,进行将8位的数据字调制为12位的信道信号位,调制率是2/3的8-12调制。三个表分别是现在的状态信息在S0、S1、S2时使用的。表中表示的12信道信号位的代码字除了“0”和“1”以外还使用“*”和“#”。“*”表示当代码字彼此连续时,当紧随其后的代码字的开头位是“1”时作为“0”,是“0”时作为“1”处理的连接位。此外,“#”表示根据从代码字彼此连续的信道信号位串得到的DSV值,可以任意选择“0”和“1”的DSV控制位。
图1~图4表示的S0至S2中三个的编码表,根据表中表示的次状态信息来选择表,代码字彼此连续得到的信道信号位串中不连续出现“1”,并且表示连续出现“0”的个数的游程长度总是维持10以下。由于信道信号位串中不连续出现“1”,对信道信号位串进行NRZI变换并记录时,产生的标记和空格长度必须是2T(T是信道信号位长度)以上。即,了解了按照图1~图4表示的编码表最小游程长度是1,最大游程长度是10的RLL(1,10)规则。因此,避免出现记录和检测困难的,比2T短的标记和空格。如果使用图1~图4的编码表,不管DSV控制位是“0”还是“1”都能这些满足该条件。
此外,当代码字彼此连续时,通过根据图5a所示的连接规则进行置换,可以将游程长度1为6次以上连续的码型“1010101010101”从信道信号位串中排除。游程长度1的码型变为具有对信道信号位串进行NRZI变换并记录时最短的2T的长度的标记和空格。由于游程长度1最大只连续5次,可以避免会在再生时成为问题的信号振幅小的状态连续。连接规则是当连续的两个代码字连接时,将与预先确定的位串一致的代码字置换为由不同的位串构成的代码字的规则。由于图5a的连接规则是使用编码表得到的,适用于把连接位“*”确定为“0”或者“1”以后的代码字。置换前的码型中表示的“×”表示该位是“0”、“1”、“#”、“*”中的任何一个。“×”的位保持置换前的值。根据连接规则置换的信道信号位串中,完全包括编码彼此连接时游程长度1可能连续6次以上的码型。连接规则可以将该信道信号位串置换为从表中的代码字得不到的码型。这里,代码字的连接在先行代码字的连接位置进行,通过图5a的连接规则适用于在连接位置中按照连接位顺序而进行。为了连接先行代码字和后续代码字,代码字可以进行二次置换。
如果使用图1~图4的编码表和图5a的连接规则,可以得到编码率为2/3、游程长度的最小值为1、最大值为10、并且游程长度1连续的次数限制在5次以下的信道信号位串。如果对该信道信号位串进行NRZI变换并用于数据记录,满足标记长度和空格长度在2T以上11T以下,并且,2T的标记和空格最大仅连续5次的条件。2T的标记和空格连续的区域,由于再生信号的振幅不充分,容易导致数据的检测误差。由于将2T码型连续出现的次数限制在5次以内,可以抑制易导致误差的码型的出现。
此外,即使在2T码型连续的情况下,如果变成5次以下那么其长度变为10T以下。在使用PRML检测的情况下,连续的2T码型整体容易发生1T额度偏差的检测误差,而如果连续次数在5次以下,能把偏差的影响扩展的范围抑制在12信道信号位以下。因此,考虑代码字的边界,可以得到避免影响波及到3字节的效果。
下面对编码表中包含的DSV控制位进行说明。DSV是从信道信号位串的开头开始,根据NRZI变换后的信号极性,以对每个信道信号位正极性时加1,负极性时减1而得到的值,表示代码字的直流成分。设初期值为0从开头开始的顺序求得的DSV的绝对值越接近于0,直流成分越小。
在本发明的编码调制方法中,要把通过参照编码表得到的代码字中的DSV控制位“#”的值确定得,使对于下面出现的DSV控制位以前的信道信号位串求得的DSV的值更接近0。图6表示在这种DSV控制情况下得到的NRZI变换后的信号的频率特性例。横轴表示利用信道时钟频率标准化后的频率,纵轴表示频率成分的振幅比。使用该方法对随机的数据进行调制时,如图6所示,振幅成分表示约信道时钟频率的1/4的频率中的最大值。与之相对应,在信道时钟的1/10000以下,变为与最大值相比小20dB以上的振幅。信道时钟的1/10000以下的频率频带中,存在光学头的位置控制中利用的伺服频带。该频带中振幅强度与最大值相比小20dB以上,可以降低给予伺服系统的控制信号的坏影响,对维持位置控制的精度也有效。
图1~图4的编码表中表示的DSV控制位中的每一个,选择“0”和“1”的任何一个时,不管前后连接的代码字,都保证不违反游程长度限制和2T码型的连续次数限制。因此,DSV控制位出现的时刻,不需要确认其前后的信道信号位串的游程长度,可以任意选择“0”和“1”。这在可以简化电路结构之一点上,是有利的。
此外,以上的说明是基于图1~图4的编码表和图5a的连接规则进行的,而使用变更数据字和代码字对应相关的表时,也能得到同样的效果。此外,使用图5a的连接规则置换的码型的全体中不包含2T的标记和空格6次以上连续的码型。因此,通过检测2T码型的连续次数,可以省略部分置换。例如,在图5a的连接规则包含的码型中,可以只置换包含游程长度1为6次以上连续的码型“1010101010101”的部分。此外,即使分配了DSV控制位,也不只限定于图1~图4的编码表的例。例如,将包含1位的DSV控制位的代码字,分割为DSV控制位成为“0”的代码字和成为“1”的代码字这两种,通过将其中一种与其它代码字合成,可以容易变更DSV控制位的位置。由于通过这种操作得到的编码表中DSV控制位的出现频率不变,可以预期有与使用图1~图4的编码表时同样的特性。
在信道信号位串长的时候,有时会由于偏离信道时钟的同步而发生解调误差。为了避免这种情况,通常,采用在信道信号位串中周期地插入同步码型的方法。由此,如果再生时同步发生偏差,那么在检测到下一个同步码型的时刻,同步可以检测出偏差,从而避免误差在以后连续。
图7表示适合本发明的编码调制方法使用的优选的同步码型的例。以包含游程长度12的码型“10000000000001”的点,同步码型可区别于使用图1~图4的调制表和图5a的连接规则得到的码型。同步码型,分别与状态信息S0至S2的情况对应,设置从SY0到SY3四种码型。对于状态信息S1和S2,使用同样的码型。根据状态信息选择插入同步码型,插入同步码型后的代码字,由于使状态信息为S1或者S2继续编码,即使插入同步码型,游程长度的最小值也是1,并且也可以维持不出现游程长度1为6次以上连续的码型这一特征。此外,这里表示包含游程长度12的码型的例,而如果是具有游程长度11以上的码型,由于通常的代码串中不出现,可以将其作为同步码型使用。此外,使用同步码型时,为了使最大游程长度不超过10,代码字和同步码型的连接可以使用图5b所示的连接规则10。换言之,在同步码型与代码字连接的情况下,代码字的连接规则不能保持原样适用,需要使用图5b的连接规则10。该连接规则10,如图5b所示,后续代码字与后述的规定的同步码型SY3连接。
各个同期码型中包含1位的DSV控制位。编码表中的DSV控制位,由于仅对于部分代码字设置,根据调制数据串可能会有不出现DSV控制位的情况。根据本发明的编码调制方法,DSV控制位的值在下一个DSV控制位出现前不能够确定。能获得通过在同步码型内设置DSV控制位,在长的同步码型的每个周期可以确定DSV控制位的值的效果。
作为同步码型设置的四种码型SY0至SY3,可以任意选择,而通过有规则地选择,可以根据检测出的同步码型,在指定信道信号位串中大概的位置中使用。如果不需要指定位置,可以随机选择使用SY0至SY3,也可以只使用SY0一种。此外,同步码型不限定于这里表示的码型,可以任意选择长度。根据同步码型的决定方式,可以包含并变更表示插入同步码型后使用的编码表的状态信息。
图8是表示以上的编码调制方法的流程图。首先,调制开始的时候,状态信息初始化为S1或者S2,同时,DSV初始化为0。如果在将数据按一定字节(例如,91字节)分开得到的数据帧的每一个的开头,按照SY0、SY1、SY2、SY3的顺序插入同步码型,开始调制后的位置是插入同步码型SY0的位置。作为同步码型选择状态S1或者S2中的SY0的码型。随着同步码型的插入,更新状态信息S1或者S2。在同步码型中包含DSV控制位,而在此前DSV控制位尚未出现,因此这里不进行位判定。
这以后,直到下一个同步码型的插入位置,将数据位每8位抽出,利用编码表变换为代码字,同时根据表更新状态信息。然后根据连接规则在代码字彼此置换后连接。但是,在紧随插入同步码型后面的代码字,由于同步码型与代码字成为连接,所以没必要使用代码字的连接规则。在利用编码表得到的代码字中包含DSV控制位的情况下,根据对于直到新得到的DSV控制位的前面的信道信号位串计算的DSV,决定以前的DSV控制位的值。
如上述,一边周期性地插入同步码型一边进行编码。DSV控制位的值往往在下一个DSV控制位出现以前不确定,而在数据的末尾,根据对于直到末尾的信道信号位串计算的DSV决定最后的DSV的值,由此编码结束。如果插入同步码型的周期按照100字节的额度确定,可以减少由插入码型产生的效率低下的影响,可以得到如图6所示的频率特性。此外,编码表中,同步码型表示的DSV控制位的一部分可以转换为控制记录数据的极性。通过转换预先确定的位置上的DSV控制位,可以限定记录在盘上的码型。
图9表示使用本发明的编码调制方法的调制电路的结构。如图所示的调制电路,具有编码表参照电路1、状态寄存器2、多路复用器3以及同步码型插入电路4,编码表参照电路1具备图1~图4所示的多个编码表101。数据串B(t)每8位与从状态寄存器2提供的状态信息S(t)一起提供给编码表参照电路1。编码表参照电路1根据状态信息S(t),参照图1~图4所示的编码表101,输出12信道信号位的代码字X(t),另一方面,根据编码表101把次状态信息输出到多路复用器3。多路复用器3也从同步码型插入电路4得到次状态信息,多路复用器3对其进行选择,把表示次状态的次状态信息S(t+1)输出到状态寄存器2,状态寄存器2将与下一个数据串B(t)对应的状态信息S(t)输出到编码表参照电路1和同步码型插入电路4。由此,编码表参照电路1内部具有多个编码表101,基于由状态寄存器2保持的状态信息S(t)切换编码表101,输出得到的与数据字对应的代码字X(t),和表示下一个应该参照的编码表的状态信息S(t+1)。如图所示的调制电路中,耦合电路5及DSV控制电路6被连接在编码表参照电路1和同步码型插入电路4的输出侧,从该DSV控制电路6输出信道信号位串。
同步码型插入电路4,在预先确定的一定的周期,根据由状态寄存器2保持的状态信息S(t),输出插入到信道信号位串的同步码型,同时输出状态信息。如前述,从编码表参照电路1输出的状态信息与同步码型插入电路4输出的状态信息,经由多路复用器3提供给状态寄存器2。状态寄存器2,在每次从编码表参照电路1输出代码字,或者每次从同步码型插入电路4输出同步码型,进行更新并保持下一个状态信息S(t+1)的工作。
耦合电路5将从编码表参照电路1输出的代码字与从同步码型插入电路4输出的同步码型耦合并输出。代码字彼此耦合时,在耦合电路内,将代码字的末尾包含的耦合位“*”的值确定为“0”或者“1”,同时与图5a所示的耦合规则进行码型比较,一致时进行代码字的置换,然后作为表示信道信号位串的串行数据输出。
DSV控制电路6,基于从耦合电路输出的串行数据,将其中包含的表DSV控制位的信息抽出,决定DSV控制位,使得对于信道信号位串计算的DSV的值接近0,然后作为信道信号位串输出。通过使用这种结构的调制电路,可以简便得到游程长度的最小值是1,最大值是10,并且不出现游程长度1为6次以上连续的码型,低频成分变得十分小,适合高密度记录的信道信号位串。
下面对根据本发明的编码调制方法和调制电路得到的信道信号位串的解调方法进行说明。图10是表示解调方法的流程图。首先,判定再生信号然后从得到的信道信号位串中抽出同步码型。作为抽出的同步码型基点,确定每12信道信号位的代码字的边界。然后,根据表示得到的代码字的边界的信息,从信道信号位串中检测根据连接规则被置换的码型,为了使代码字恢复至置换前的码型而分割代码字。当连接规则使用图5a的规则时,容易进行检测应该逆置换的码型并用于分割的判定,可以根据图11所示的三个分割规则,实现对代码字的置换。接着该处理,使用得到的代码字,通过参照解调表,可以得到作为解调结果的8位的数据字。图11所示的置换前的码型中的“×”,该位可以表示“1”或者“0”,置换后的“×”的位保持置换前的值。
图12和图13表示用于从12信道信号位的代码字得到8位数据字的解调表。表由T0至T2三种构成。除解调对象的代码字以外,还参照紧随其后的代码字或者同步码型,从三种中选择应该使用的表。与解调对象的代码字连续的代码字以位“1”开始时,或者,下一个同步码型是状态0的SY0~SY2时,使用表T0。下一个代码字以“0000”开始时,或者下一个同步码型是状态0的SY3时,使用表T1,此外,下一个代码字以“01”、“001”、“0001”开始时,或者同步码型是状态1,2的SY0~SY3时,使用表T2。利用上述选择的表,得到与解调对象的代码字对应的以十六进制表示的值作为8位位的数据字。当解调对象的代码字后面是同步码型时,当同步码型是与状态S0对应的码型时选择表T0,当是与状态S1或者S2对应的码型时选择表T2,并通过同样的参照而得到数据字。
解调表,由于是使12信道信号位串构成的代码字与8位的数据字对应的形式,与变换表的长度变化的可变长分组编码相比,具有不易发生误差传播的优点。特征是通过限制2T码型的连续次数,使检测误差不易传播,同时有效地降低数据的误差率。
此外,作为表中的代码字没有表示的12信道信号位的码型,和对应的数据字的栏中用“-”表示的码型,是利用本发明的编码调制方法不能发生的码型。当检测到这种码型的时候,将该码型作为不能解调来处理,是包含误差的数据字的信息,并输出任意的数据字。但是,由于再生信号的判定时使用PRML检测,作为解调表中没表示的信道信号位串而被判定的码型,几乎可以在PRML检测阶段排除。因此,可以降低判定与解调中的误差。
下面,利用图14说明解调电路的结构。首先,信道信号位串被输入到同步码型检测电路7。同步码型检测电路,以检测出的同步码型的位置作为基点,将表示代码字边界位置的信息附加到信道信号位串并输出。然后,分割置换电路8,检测与如图11所示的分割规则一致的码型并置换,将信道信号位串分割为代码字并输出。这样得到的代码字串,再通过解调表参照电路9,变换为8位的数据字并输出。在解调表参照电路内,为了解调12信道信号位的代码字,参照与其连续的代码字或者同步码型,选择内部具有的解调表901,抽出其中与代码字对应的数据字。此外,解调表参照电路对于解调表中没出现的代码字,输出不能解调的信息。在解调中,可以以12信道信号位的代码字为单位处理,并且,由于仅参照其前面或者紧随其后的代码字,可以实现解调误差不易传播的电路结构。
此外,使对使用本发明的编码调制方法得到的信道信号位串进行NRZI变换后得到的信号,与凹坑的长度和凹坑的空格对应并记录在光记录介质,具有即使记录密度高也容易稳定抽出信道时钟,不易发生检测误差的特征。此外,从凹坑得到的再生信号中,由于几乎不包含伺服频带的成分,对于用于信号检测的光学拾波器的跟踪性没有损害。这里,如果对本发明涉及的光记录介质进行具体说明,本发明涉及的光记录介质对信道信号位串进行NRZI变换,进行与凹坑的长度及凹坑的空格对应的信息记录。此外,特征是在该光记录介质,记录在信道信号位串中的游程长度除去以规定的周期插入的同步码型以外,在信道信号位串中不出现最小值是1、最大值是10,游程长度1为6次以上连续的码型,自凹坑再生的信号的频率成分,在信道时钟频率的1/10000以下的频率下,记录与频率成分的最大值相比振幅比小20dB以上的信息。
此外,本发明不限定于上述各实施例,在本发明的技术思想的范围内,可以对各实施例进行适宜变更。例如,本发明不仅适用于光记录介质中的读、写,也可以适用于其它的记录介质。

Claims (14)

1.一种编码调制方法,将2n位构成的数据位串变换为3n位(n是整数)的信道信号位串,其特征在于,具有:从数据位串向信道信号位串进行变换,使表示夹于信道信号位串中的位“1”之间的位“0”的个数的游程长度,最小值是1,最大值是10;不管对哪种数据位串进行调制,在信道信号位串中不出现游程长度1为6次以上连续的码型“1010101010101”;和在信道信号位串中,可以根据DSV(Digital SumValue)选择位是“0”或者“1”的DSV控制位。
2.根据权利要求1所述的编码调制方法,其特征在于:通过根据DSV选择DSV控制位的值,对数据位串使用随机数据时得到的信道信号位串进行NRZI变换后的信号的频率成分,在信道时钟频率的1/10000以下的频率下,与频率成分的最大值相比,振幅比小20dB以上。
3.根据权利要求1或者权利要求2所述的编码调制方法,其特征在于:具备多个编码表,由8位的数据位串构成的数据字,与12位的信道信号位串构成的代码字和表示当变换下一个数据字时应该参照的编码表的状态信息对应相关;把数据位串按每8位进行分割,通过参照根据状态信息选择的所述编码表,得到12信道信号位串的代码字,当代码字彼此连续时,通过根据预先确定的置换规则对部分代码字进行置换,得到信道信号位串。
4.根据权利要求3所述的编码调制方法,其特征在于,从编码表中得到的12信道信号位的代码字中包含用于表示根据前面或者紧随其后的位选择“0”或者“1”的耦合位的附加信息,使得即使代码字彼此耦合,位“1”也不连续。
5.根据权利要求1至权利要求4中任何一个所述的编码调制方法,其特征在于,包含游程长度为11以上的码型,使用预先确定的长度的信道信号位串作为同步码型,按照规定的周期将其插入信道信号位串进行调制。
6.根据权利要求5所述的编码调制方法,其特征在于,选择同步码型,使插入该同步码型的信道信号位串中,游程长度的最小值为1,不出现游程长度1为6次以上连续的码型。
7.根据权利要求1至权利要求6中任何一个所述的编码调制方法,其特征在于,作为编码表,使用16进制表示的8位数据字与次状态信息对应相关的表;作为置换规则,使用根据先行代码字与后续代码字的关联而确定的连接规则。
8.一种对根据权利要求1至权利要求7中任何一项所记载的编码调制方法得到的信道信号位串进行解调的方法,其特征在于:具备多个解调表,用于储存与由12位的信道信号位串构成的代码字对应的,由8位的数据位串构成的数据字;具备在把信道信号位串按每代码字进行分割以前,检测根据代码字彼此连续时的置换规则被置换的码型,置换为置换前的码型后,分割成由12位的信道信号位串构成的代码字的步骤,和根据表示后续的12信道信号位的代码字的信息,对分割后的代码字的解调所使用的解调表进行选择的步骤;使用表示12信道信号位的代码字的信息,和选择的解调表,得到由8位的数据位串构成的数据字。
9.一种根据权利要求1至权利要求7中任何一项所述的编码调制方法的编码调制装置,其特征在于:具备多个编码表,用于储存由8位的数据位串构成的数据字对应,由12位的信道信号位串及附加信息构成的代码字,和表示变换下一个数据字时应该参照的编码表的状态信息,具备包含用于表示可以根据DSV的值选择“0”或者“1”的DSV控制位的附加信息,通过参照所述编码表,从数据字和状态信息得到代码字的装置;当代码字彼此连续时,通过根据预先确定的置换规则,对部分的代码字进行置换得到信道信号位串的装置;和计算得到的信道信号位串的DSV,根据所述附加信息决定所表示的DSV控制位的值的装置。
10.根据权利要求9所述的编码调制装置,其特征在于,具备在所述编码表中得到的12信道信号位的代码字中,包含用于表示根据前面或者紧随其后的位选择“0”或者“1”的耦合位的附加信息,使得即使代码字彼此结合,位“1”也不连续,当代码字彼此连续时,决定由所述附加信息表示的耦合位的值,此外,通过根据预先确定的置换规则,对部分代码字进行置换得到信道信号位串的装置;和计算得到的信道信号位串的DSV,决定由所述附加信息表示的DSV控制位的值的装置。
11.根据权利要求9或者权利要求10所述的编码调制装置,其特征在于,具备包含游程长度为11以上的码型,并且包含可以根据DSV的值选择“0”或者“1”的DSV控制位,使用预先确定的长度的信道信号位串作为同步码型,按照规定的周期将其插入信道信号位串进行调制的装置。
12.一种在对根据权利要求5至权利要求7中任何一项所述的编码调制方法得到的信道信号位串进行解调的调制装置,其特征在于:具备多个解调表,用于储存与由12位的信道信号位串构成的代码字对应的,由8位的数据位串构成的数据字;具有从信道信号位串中检测出插入的同步码型的检测装置;在把信道信号位串按每代码字进行分割以前,检测根据代码字彼此连续时的置换规则被置换的码型,置换为置换前的码型后,再分割成由12位的信道信号位串构成的代码字的装置;根据表示后续的12信道信号位的代码字的信息,对分割后的代码字的解调所使用的解调表进行选择的装置;和使用表示12信道信号位的代码字的信息和选择的解调表,得到由8位的数据位串构成的数据字的装置。
13.一种对信道信号位串进行NRZI变换,记录与凹坑的长度和凹坑的空格对应的信息的光记录介质,其特征在于,记录信道信号位串中的游程长度,除去按照规定的周期被插入的同步码型以外,在信道信号位串中不出现最小值为1,最大值为10,游程长度1在6次以上连续的码型,自凹坑再生的信号的频率成分,在信道时钟频率的1/10000以下的频率下,与频率成分的最大值相比振幅比小20dB以上的信息。
14.一种信号变换方法,其特征在于,表示夹于信道信号位串中的位“1”之间的位“0”的个数的游程长度,最小值是1,最大值是10,从数据位串向信道信号位串进行变换时,不管对哪种数据位串进行调制,在信道信号位串中不出现游程长度1在6次以上连续的码型。
CNB2003101232328A 2002-12-18 2003-12-18 编码调制方法及装置、解调方法及装置 Expired - Fee Related CN100392984C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP366191/2002 2002-12-18
JP2002366191 2002-12-18
JP2003399434A JP3957679B2 (ja) 2002-12-18 2003-11-28 符号化変調方法および変調装置、復調方法および復調装置、情報記録媒体
JP399434/2003 2003-11-28

Publications (2)

Publication Number Publication Date
CN1531208A true CN1531208A (zh) 2004-09-22
CN100392984C CN100392984C (zh) 2008-06-04

Family

ID=32396329

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101232328A Expired - Fee Related CN100392984C (zh) 2002-12-18 2003-12-18 编码调制方法及装置、解调方法及装置

Country Status (4)

Country Link
US (1) US6861965B2 (zh)
EP (1) EP1431972A3 (zh)
JP (1) JP3957679B2 (zh)
CN (1) CN100392984C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677450A (zh) * 2018-07-02 2020-01-10 瑞萨电子株式会社 半导体器件和通信
CN112887088A (zh) * 2021-01-21 2021-06-01 西北大学 一种高斯调制方法及连续变量量子安全直接通信系统
CN110677450B (zh) * 2018-07-02 2024-05-14 瑞萨电子株式会社 半导体器件和通信

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4178795B2 (ja) * 2002-01-23 2008-11-12 ソニー株式会社 変調装置および方法、dsv制御ビット生成方法、記録媒体、並びにプログラム
JP4141175B2 (ja) * 2002-05-14 2008-08-27 ソニー株式会社 データ記録媒体、データ記録方法および装置
GB0301700D0 (en) * 2003-01-24 2003-02-26 Macrovision Corp The copy protection of optical discs
JP3960263B2 (ja) * 2003-05-21 2007-08-15 ソニー株式会社 データ記録方法
JP3965385B2 (ja) * 2003-12-24 2007-08-29 株式会社日立製作所 Dvd記録方法及びdvd記録装置
JP3969399B2 (ja) * 2004-03-18 2007-09-05 株式会社日立製作所 記録方法及び記録装置
EP1738364A1 (en) * 2004-04-15 2007-01-03 Koninklijke Philips Electronics N.V. Dc-controlled encoding for optical storage systems
KR100565079B1 (ko) * 2004-09-08 2006-03-30 삼성전자주식회사 코드 생성 방법, 변조 장치 및 변조 방법
US7701825B2 (en) * 2005-06-17 2010-04-20 Macrovision Corporation Apparatus for and a method of authenticating recording media
KR100652434B1 (ko) * 2005-10-06 2006-12-01 삼성전자주식회사 광디스크 기록/재생 장치의 데이터 변조 방법 및 데이터변조 장치
JP4692234B2 (ja) * 2005-11-10 2011-06-01 ソニー株式会社 変調テーブル、変調装置および方法、プログラム、並びに記録媒体
CN100386812C (zh) * 2005-12-16 2008-05-07 清华大学 编码调制方法及装置、解调方法及装置
KR20080096745A (ko) 2006-01-23 2008-11-03 로무 가부시키가이샤 부호화 장치, 복호 장치, 진폭 조정 장치, 기록 정보 판독장치, 신호 처리 장치 및 기억 시스템
JP4735975B2 (ja) * 2006-04-28 2011-07-27 ソニー株式会社 変調装置および方法、プログラム、並びに記録媒体
JP2007334992A (ja) 2006-06-15 2007-12-27 Hitachi Ltd 光ディスク再生装置および光ディスク再生方法
US7557739B1 (en) * 2006-10-17 2009-07-07 Marvell International Ltd. Four-to-six modulation encoder
DE102006056903B4 (de) * 2006-12-02 2008-07-17 Semikron Elektronik Gmbh & Co. Kg Verfahren zur digitalen Kommunikation zwischen zwei Funktionsblöcken eines leistungselektronischen Bauteils
JP4893284B2 (ja) * 2006-12-11 2012-03-07 株式会社日立製作所 光ディスク装置および変調方法
KR20090085257A (ko) * 2008-02-04 2009-08-07 삼성전자주식회사 Dsv 제어 방법, 이에 적합한 기록매체 및 장치
CN101908892B (zh) * 2009-06-04 2013-02-27 清华大学 一种码率为1的游长受限调制编码方法
JP5399975B2 (ja) 2010-05-14 2014-01-29 太陽誘電株式会社 可視光通信用受信機、可視光通信システム、及び可視光通信方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3243140B2 (ja) * 1995-02-20 2002-01-07 パイオニア株式会社 データ変換方式
TW362305B (en) * 1996-10-18 1999-06-21 Koninkl Philips Electronics Nv Apparatus and method for converting a sequence of m-bit information words into a modulated signal
JPH10340543A (ja) 1997-04-08 1998-12-22 Sony Corp エンコード装置、デコード装置、エンコード方法、及びデコード方法
US6091347A (en) * 1997-05-23 2000-07-18 Sony Corporation Device and method for modulation and transmission medium
JP3985173B2 (ja) 1998-05-29 2007-10-03 ソニー株式会社 変調装置および方法、復調装置および方法、並びにデータ格納媒体
JP3551359B2 (ja) 1999-05-25 2004-08-04 日本ビクター株式会社 変調装置、復調装置
US6445313B2 (en) * 2000-02-07 2002-09-03 Lg Electronics Inc. Data modulating/demodulating method and apparatus for optical recording medium
JP3664091B2 (ja) 2001-01-12 2005-06-22 日本ビクター株式会社 変調方法、変調装置、復調方法、復調装置、情報記録媒体に記録する方法、情報伝送方法および情報伝送装置
CN100456640C (zh) * 2001-06-07 2009-01-28 日本胜利株式会社 调制和解调方法与装置、信息传输方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677450A (zh) * 2018-07-02 2020-01-10 瑞萨电子株式会社 半导体器件和通信
CN110677450B (zh) * 2018-07-02 2024-05-14 瑞萨电子株式会社 半导体器件和通信
CN112887088A (zh) * 2021-01-21 2021-06-01 西北大学 一种高斯调制方法及连续变量量子安全直接通信系统
CN112887088B (zh) * 2021-01-21 2022-04-22 西北大学 一种高斯调制方法及连续变量量子安全直接通信系统

Also Published As

Publication number Publication date
CN100392984C (zh) 2008-06-04
JP3957679B2 (ja) 2007-08-15
EP1431972A2 (en) 2004-06-23
US6861965B2 (en) 2005-03-01
EP1431972A3 (en) 2005-12-14
US20040207545A1 (en) 2004-10-21
JP2004213863A (ja) 2004-07-29

Similar Documents

Publication Publication Date Title
CN100392984C (zh) 编码调制方法及装置、解调方法及装置
JP3985173B2 (ja) 変調装置および方法、復調装置および方法、並びにデータ格納媒体
JP3870573B2 (ja) 変調装置および方法、記録媒体、並びに復調装置および方法
EP0779623B1 (en) Digital data transmitting method
CN1227661C (zh) 用于调制和解调数据的方法和装置
JP3722331B2 (ja) 変調装置および方法、並びに記録媒体
CN1205613C (zh) 数据调制和校正方法
JP2000149457A (ja) 変調装置および方法、復調装置および方法、並びに提供媒体
CN1289480A (zh) 游程受限制的数字信息信号的产生
US6670896B2 (en) Method and apparatus for modulating and demodulating digital data
CN100386812C (zh) 编码调制方法及装置、解调方法及装置
JP3757918B2 (ja) 符号化変調方法および変調装置、復調方法および復調装置
JP4207073B2 (ja) 変調装置および方法、記録媒体、並びに復調装置および方法
JP3835100B2 (ja) 信号変調装置、復調装置及び記録媒体
JP4479855B2 (ja) 変調装置、変調方法、記録媒体
JP4155312B2 (ja) 変調装置および方法、記録媒体、並びに復調装置および方法
JP4366662B2 (ja) 変調装置、変調方法、記録媒体
JP4919121B2 (ja) 変調装置、変調方法、および記録媒体
CN1554150A (zh) 编码方法和设备
CN116711009A (zh) 记录介质、记录装置、记录方法、再现装置以及再现方法
JP4479854B2 (ja) 変調装置、変調方法、記録媒体
JP3871171B2 (ja) 復調装置および復調方法
JP2000068849A (ja) 変調装置および方法、復調装置および方法、並びに提供媒体
JP2007207423A (ja) 符号化変調方法および変調装置、復調方法および復調装置
CN1489293A (zh) 将一系列的数据字转换成调制信号的方法及其装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080604

Termination date: 20151218

EXPY Termination of patent right or utility model