CN1464985A - 光学头用物镜、光学头和光盘驱动装置 - Google Patents

光学头用物镜、光学头和光盘驱动装置 Download PDF

Info

Publication number
CN1464985A
CN1464985A CN02802424A CN02802424A CN1464985A CN 1464985 A CN1464985 A CN 1464985A CN 02802424 A CN02802424 A CN 02802424A CN 02802424 A CN02802424 A CN 02802424A CN 1464985 A CN1464985 A CN 1464985A
Authority
CN
China
Prior art keywords
optical
lens
object lens
aspheric
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02802424A
Other languages
English (en)
Other versions
CN1268959C (zh
Inventor
高桥丰和
日根野哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1464985A publication Critical patent/CN1464985A/zh
Application granted granted Critical
Publication of CN1268959C publication Critical patent/CN1268959C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/4238Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in optical recording or readout devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/189Structurally combined with optical elements not having diffractive power
    • G02B5/1895Structurally combined with optical elements not having diffractive power such optical elements having dioptric power
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)
  • Optical Head (AREA)

Abstract

本发明是一种光学头用物镜,用于对光盘进行信息信号的记录和再现,该光学头用物镜的构成部分是:由从物侧依次设置的有非球面的第一面S1和非球面的第二面S2、且至少其中一个面包含衍射面的树脂层(21),以及有非球面的第二面S2和非球面的第三面S3的玻璃透镜;该物镜具有0.8以上的数值孔径(NA),对基准波长420nm以下的、该基准波长数nm以内的波长范围进行光轴上像面的色差修正。该物镜可在像面上达到衍射界限地会聚激光。

Description

光学头用物镜、光学头和光盘驱动装置
技术领域
本发明涉及用于把激光照射到光记录介质并进行信息的记录和/或再现的光盘驱动装置的光学头用物镜、使用该物镜的光学头以及使用该光学头的光盘驱动装置,并涉及能达到衍射极限地把激光会聚到光记录介质的记录面上的物镜,使用该物镜的光学头,以及使用该光学头的光盘驱动装置,
技术背景
作为信息信号的记录介质,通过把激光照射到记录面进行信息的记录和再现的非接触型高密度记录光记录介质被广泛使用。就光记录介质而言,由于对已记录信息信号的检索的简易性等优点,盘状的光记录介质(以下称为“光盘”。)被广泛使用。
光盘,具有同心圆状或螺旋状的记录轨道,相互邻接的记录轨道之间的间隔即轨道间距,通过使之变窄大幅提高信息信号的记录密度,例如CD(Compact Disc)的轨道间距为1.6μm,而近年来的DVD(Digital Video Disc/Digital Versatile Disc)的轨道间距为0.74μm。
对于DVD等通过缩小(使轨道间距变窄)轨道间距来提高信息的记录密度的光盘,为了照射激光来进行信息信号的记录和再现,必须在其记录面上形成比使用大轨道间距的光盘时还要小的光点。
而由物镜会聚的激光光点的直径与激光的设计波长成正比例、与物镜的数值孔径(NA)成反比例。从而,为了使照射到光盘的光点直径变小必须采用数值孔径大的物镜,并选用短波长的激光。
另一方面,为了在光盘上以相位变化方式或其它方式记录信息,由于需要高能的激光,并且需降低由反射的激光产生的激光噪声,因此通过在激光发光元件的驱动电流或电压上重叠高频等方法改变驱动功率,使激光波长在短周期内变动。而且,对于把具相干性(Coherent)的激光照射到光盘的光学头,由于几nm左右的波长变动而产生色差,光盘上的光点将变大。
而如图1所示,光学头具有使激光200会聚到光盘记录面的物镜201。传统技术所采用的物镜201如图1所示,由一个玻璃模压成形的透镜构成,它有一个高会聚能力的非球面201a。
该物镜201,如图2A中所示的球面像差特性图、图2B中所示的像散像差的特性图、图2C所示的畸变像差的特性图可知,即使采用非球面201a,相对±2nm波长的变动也会产生±0.6μm/nm的色差。再有,图2A、图2B和图2C所示的各像差图中,实线表示对于405nm波长的值、虚线表示对于403nm波长的值和点划线表示对于407nm波长的值,在表示像散像差的图2B中,粗线表示对于弧矢像面的值、细线表示对于切向像面的值。
如上所述,为了通过使记录轨道的轨道间距变小来提高记录密度的把信息记录于光盘,最好能由物镜达到衍射界限地会聚激光,形成较小的光点。传统技术所采用的具有非球面201a的由玻璃模压成形的物镜201,由于有如上所述的色差发生,很难达到衍射界限地会聚激光。
发明内容
鉴于如上所述的以往的实际情况所被提出的本发明,其目的在于,提供一种有用的新型物镜,该物镜用于对通过使记录轨道的轨道间距变小来提高记录密度的光记录介质进行记录信息,以及使记录于光记录介质的信息再现的光学头,更具体地说提供一种小型且可有效修正色差、能达到衍射极限地会聚激光的物镜。
另外,本发明以提供使用可有效修正色差并能达到衍射极限地会聚激光的物镜的光学头、使用该光学头的光盘作为目的。
为了达成如上所述的目的而提出的本发明的光学头用物镜的构成部分从物侧开始依次为:有非球面的第一面和由非球面的第二面、且至少其中一个面包括衍射面的树脂层,以及包括非球面的第二面和非球面的第三面的玻璃透镜。而且,在基准波长420nm以下,在该基准波长的几nm以内的波长范围内,修正光轴像面上的色差,同时具有0.8以上的数值孔径。该物镜对像面可达到衍射界限地会聚光线。
本发明中,由于定义衍射型透镜的基面必定具有非球面系数的值,因此,在光学上衍射型透镜能够以良好的平衡且稳定的状态构成。
本发明的物镜,由于其第一面的非球面和第二面的非球面具有相同的基本曲率与非球面系数,其树脂层的膜厚为定值,从而可增强对温度变化等的稳定性。
本发明的物镜,由于使第一面或第二面成为衍射面的树脂层为透射相位型(transmission phase type),同时第一面或第二面由闪耀形状构成,因此,能够不减小透镜的基面曲率半径地提高透镜的数值孔径。由于设为衍射面的第一面或第二面设计为闪耀形状,因此,可消除形成衍射面时的不能加工部分等的衍射效率下降因素及锯齿状(serrated shape)等的透射率下降因素。
本发明的物镜,由于其开口设在第一面的外圆周侧,不使用透镜的外围部,可限于只使用光学特性良好的部分,从而能够抑制组装透镜时的制造误差,使性能稳定。
本发明的物镜,由于衍射面的设计次数为二次以上,因此,通过进一步有效修正色差,能够会聚激光光点直径达到衍射界限,因此,能够应对轨道间距变窄来提高信息记录密度规格的光记录介质的要求。
构成本发明的物镜的玻璃制单片透镜,是由对于420nm以下波长的光折射率为1.65以上的玻璃材料形成,玻璃制单片透镜的形状为弯月形状,因此,可使第三级像差减至最小。
本发明的物镜,由于形成有衍射面的第一面或第二面的表面上形成具有周期大约为基准波长的1/2振幅大约为基准波长的1/2的周期结构、比所述衍射面的凹凸形状还微小的同心圆形状的凹凸形状,因此,即使是对于不能研磨的复合面,其透射率也可达到90%以上。
本发明的物镜,由于在与像面之间设置0.3mm以下厚度的保护盖同时,修正了由保护盖所引起的球面像差,因此,可消除保护盖所引起的球面像差的影响。
为了达成如上所述的目的而提出的本发明的光学头,具有:发射激光的激光发光元件;把激光会聚到光记录介质的记录层的物镜;接收激光的感光元件;把从所述激光发光元件发射出的激光入射于物镜,同时把在光记录介质的记录层反射并透过物镜的激光入射于感光元件的光学元件。用于该光学头的物镜从物侧开始依次由以下部分构成:包括非球面的第一面和非球面的第二面的、至少其中一个面含衍射面的树脂层,以及有由所述非球面的第二面和由非球面形成的第三面的玻璃透镜。该光学头对于基准波长420nm以下、该基准波长的几nm以内的波长范围内,具有修正光轴上像面的色差的能力,同时具有0.8以上的数值孔径。
该光学头,通过在以420nm以下为基准的几nm以内的波长范围内有效修正色差,能够会聚激光光点直径达到衍射界限,因此,可对应于由使轨道间距变窄来提高信息记录密度规格的光记录介质。
该光学头中,通过使从物镜的第三面到像点的工作距离为0.5mm以上,可避免物镜对光记录介质的干涉等问题,同时可在光记录介质的记录层上达到衍射界限地会聚光线。
本发明的光学头,在物镜的第三面与像面之间设置0.3mm以下厚度的保护盖,同时通过使物镜具有修正由保护盖所引起的球面像差的功能,可消除由保护盖所引起的球面像差的影响。
为了达成如上所述的目的而提出的本发明的光盘驱动装置,对构成旋转盘形状的光记录介质通过在所述光记录介质的半径方向上自由移动的光学头进行信息的记录和再现,用于该装置的光学头中设有:发射420nm以下波长的激光的激光发光元件;把激光会聚到光记录介质的记录层的物镜;接收激光的感光元件;把从所述激光发光元件发射出的激光入射于物镜,同时把在光记录介质的记录层反射并透过所述物镜的激光入射于感光元件的光学元件。在此所使用的物镜的构成部分从物侧开始依次有:包括非球面的第一面和由非球面的第二面的、其中至少一个面含衍射面的树脂层,以及包括所述非球面的第二面和非球面的第三面的玻璃透镜。而且,在基准波长420nm以下,在该基准波长的几nm以内的波长范围内,修正光轴上的像面的色差,同时具有0.8以上的数值孔径。
该光盘驱动装置,通过光学头在以420nm以下为基准的几nm以内的波长范围内有效修正色差,可达到衍射界限地会聚激光光点直径,因此,可应对由使轨道间距变窄来提高信息记录密度规格的光记录介质的要求。
通过使从用于光读写的头物镜的第三面到像点的工作距离为0.5mm以上,可避免物镜对光记录介质的干涉等问题,同时能够在光记录介质的记录层上达到衍射界限地会聚光线。
对于本发明的另外其它目的及由本发明所得到的具体优点,以下通过参照附图所进行的实施例的说明进一步明确。
附图的简要说明
图1是表示用于传统光学头的物镜的侧视图。
图2A是表示图1中所示的物镜的球面像差的特性图、图2B是表示像散像差的特性图、图2C是表示畸变像差的特性图。
图3是概略表示本发明适用的光盘装置外观的透视图,图4是表示光盘装置内部结构的分解透视图。
图5是表示本发明的光学头的侧视图。
图6是表示本发明的物镜的纵向截面图。
图7是表示衍射型透镜的闪耀条纹的最小线宽w与焦距fd之间的关系特性图。
图8是表示构成折射型透镜的玻璃材料的部分阿贝数与焦距和衍射型透镜的焦距之间的关系曲线图。
图9A是表示本发明的物镜的球面像差的特性图、图9B是表示像散像差的特性图、图9C是表示畸变像差的特性图。
图10是表示本发明另一例光学头的侧视图。
图11是表示本发明另一例物镜的纵向截面图。
图12是表示本发明又一例物镜的纵向截面图。
图13是说明根据使用金刚石刀头切削加工的闪耀型衍射面的造成的概略透视图。
图14A至图14E是说明根据使用金刚石刀头切削加工而成的闪耀型衍射面的概略纵向截面图。
图15是表示根据使用金刚石刀头切削加工而成的闪耀型衍射面上切削后残留部分的宽度与衍射效率之间的关系。
图16是表示计算图15所示的数值时所使用的闪耀型衍射面的概略纵向截面图。
图17是表示根据使用金刚石刀头切削加工而成的闪耀型衍射面的锯齿状结构的概略纵向截面图。
图18A及图18B是表示用金刚石刀头切削加工闪耀型衍射面的工序过程中途状态的概略纵向截面图。
图19是说明具有锯齿状结构的面上的入射光及出射光状态的概略图。
图20表示对于具有波长尺度的固定周期的凹凸形状表面的结构的振幅(高度)与透射率之间的关系。
图21表示对于具有1/2波长的固定周期的凹凸形状表面的结构的振幅(高度)与透射率之间的关系。
图22表示衍射面和折射面上的各透镜的半径方向与弛垂度之间的关系。
图23表示衍射面和折射面组合而成的复合面的半径方向与弛垂度之间的关系。
图24是表示本发明的光学头用物镜的数值例的透镜结构的示图。
图25A是表示本发明的另一例的物镜的球面像差的特性图、图25B是表示像散像差的特性图、图25C是表示畸变像差的特性图。
图26是表示本发明的光学头用物镜的又一例数值例的透镜结构。
图27A是表示本发明又一例物镜的球面像差的特性图、图27B是表示像散像差的特性图、图27C是表示畸变像差的特性图。
最佳实施例
以下,参照附图就对用于本发明的光学头装置的物镜、使用该物镜的光学头装置及光盘装置进行说明。
以下所示的本发明实施例适用于这样的光盘装置,该光盘装置对使本发明比设置在盘状光记录介质CD(Compact Disc)上的记录轨道的轨道间距还窄的具有大约0.6μm轨道间距的盘状光记录介质,例如,DVD(Digital Video Disc/Digital Versatile Disc)等通过使记录轨道的轨道间距变窄来提高信息的记录密度规格的盘状光记录介质,进行信息的记录,并再现记录于该记录介质的信息。
首先,就对本发明的使用光学头的光盘装置进行说明,该光学头使用本发明的物镜。
本发明所适用的光盘装置1,是通过提高转速使读出已记录的记录信号和写入信息信号达到高速化的装置,例如,可作为采用DVD(Digital Video/Versatile Disc)等通过使轨道间距达到非常小而提高记录容量的光记录介质、作为个人电脑等信息处理装置的外部存储装置使用。
如图3和图4所示,光盘驱动装置1通过具有配置各种机构的机械框架2,机械框架2的上方、左右和前后通过螺丝固定等适当方法固定的盖壳3和面板4覆盖。
盖壳3由顶部3a和从该顶部3a的两侧边分别垂直设置的侧面部3b、3b和图中未示出的后面部一体形成。面板4上形成有横向的长开口4a,开闭该开口4a的门5以其上端部作为支点自由转动地设置在面板4上。面板4上设有进行各种操作的多个操作按钮6。
机械框架2上,设有配置各种机构的机构配置面板7a和从该机构配置面板7a的两侧边竖立设置的侧板7b、7b,该机构配置面板7a的前端部配有凸轮板和各种齿轮的装载机构8。
如图4所示,机械框架2中设有在图4中的箭头A1方向和箭头A2方向的前后方向上可移动的光盘托架9。光盘托架9中形成有前后方向上长的插入通孔9a和承载盘状光记录介质(以下简称为光盘)100的光盘承载凹部9b。在光盘承载凹部9b上承载光盘100时,光盘托架9由装载机构8移动操作,从面板4的开口4a突出于整个装置的外部,在对光盘100进行信息的记录或再现时,以光盘承载凹部9b承载光盘100的状态进入整个装置的内部。
在机械框架2的机构配置面板7a上,如图4所示,移动框架10以其后端部为转动支点可自由转动状态设置。
在移动框架10中,配置有旋转光盘100的马达单元11。该马达单元11包括光盘转台11a和驱动马达11b。在移动框架10上,光学头12以通过图中未示出的导引轴和导螺杆可在安装于光盘转台11a上的光盘100的半径方向上移动状态支承。
移动框架10上,设置有旋转导螺杆的传送马达13。因此,由传送马达13旋转导螺杆时,光学头12在相应于其旋转方向的方向上被导引轴引导并移动。
本发明的光盘驱动装置1中,光盘100以被光盘托架9的光盘凹部9b承载的状态进入装置的内部,由适当的方式保持在光盘转台11a上,并通过马达单元11的驱动马达11b的驱动与光盘转台11a共同旋转时,光学头12一边在光盘100的半径方向上移动,一边对光盘100进行信息的记录或再现。
接着,就对光盘100进行信息的记录或再现的光学头12的结构进行说明。
如图5所示,光学头12在光盘100的半径方向移动自如地被支承,例如,固定在外壳16上的图中未示出的二轴致动器上。在外壳16内,设置产生激光的激光发光元件17和使从该激光发光元件17发射的激光18变成平行光束的准直透镜19等,而且,在图中未示出的二轴致动器上还设置把激光18会聚到光盘100记录层的带色差修正机构的物镜20。
光盘100,是具有与约0.6μm的窄轨道间距的薄衬底的高密度记录对应的规格的光盘,光学头12是适用于对此类光盘100进行信息的记录和再现的光学头。并且,激光发光元件17产生比传统的CD规格的激光波长780nm短的约400nm至410nm波长的激光18,为了减少激光噪声通过把高频电流叠加在驱动电流上,使激光18的波长在短周期内变动。
当在光盘100的记录层中进行记录时,从激光发光元件17发射出高能量的激光18。激光18由准直透镜19变成平行光束,通过物镜20会聚到光盘100的记录层上,通过相位变化等形成记录信息的凹痕。
另一方面,当对已记录的信息进行读取时,以其能量比进行信息记录时低的激光18照射到光盘100的记录层,并且,从光盘100反射的激光1 8由光学头12内的图中未示出的包含分束器等的感光系统检测而完成。
光学头12,为了减少激光噪声使照射到光盘100的激光18的波长变动。由此,改善通过物镜20会聚到光盘100时的色差,从而能够形成达到衍射界限的聚束光点。
以下,就具有色差修正功能的物镜20进行详细说明。
如图5和图6所示,物镜20由从激光发光元件17发射的激光18入射的表面即第一面形成所谓闪耀形状的相位型衍射光学透镜的树脂层21和光焦度大的玻璃制非球面单片透镜22构成。详细地说,物镜20由从物侧开始依次有包含衍射型透镜的非球面的第一面r1和非球面的第二面r2的树脂层21和有非球面的第二面r2和非球面的第三面r3的玻璃制非球面单片透镜22构成。
有闪耀形状的第一面r1为,例如,由金属模压制成形等适当的方法形成的树脂层构成,作为横截面为锯齿型形的所谓闪耀全息图。
物镜20,最好使从透镜的最后面r3到像点的工作距离为0.5mm以上、衍射型透镜被定义的基面(=r2)必须具有非球面系数、第一面r1的非球面和第二面r2的非球面具有相同的基本曲率和非球面系数。
一般而言,对于波长λ(nm)在±δ(nm)范围内变化的光源,由折射型透镜和衍射型透镜构成的组合透镜的消色差条件按如下方法导出。
假设,波长为λ、λ+δ、λ-δ时的玻璃材料的折射率分别为N、N、N,对波长λ±δ范围内的部分的阿贝数(以下称为部分阿贝数)可定义如下。
也就是说,折射型透镜的部分阿贝数νr由以下的式1表示。 ν r = N - 1 N + δ - N - δ - - - ( 1 ) 衍射型透镜的部分阿贝数νd由以下的式2表示。 ν d = λ ( λ + δ ) - ( λ - β ) - - - ( 2 )
假设折射型透镜和衍射型透镜的焦距分别为fr、fd,则由该两种透镜复合的复合透镜的焦距f具有以下的式3所确定的关系,轴上像点的消色差条件用式4表示。 1 f = 1 f r + 1 f d - - - ( 3 ) fr·νr+fd·νd=0         ···(4)
从而,由式3和式4可得出式5。 f r = f ( 1 - ν d ν r ) f d = f ( 1 - ν r ν d ) - - - ( 5 )
由树脂层21构成的衍射型透镜,其为相位透射型,是一种表面形成横截面为锯齿型形状的闪耀全息图形状的透镜。另外,衍射型透镜的闪耀宽度从中心光轴到外围部变窄。假设,闪耀条纹最窄部分的宽度即最小线宽为w,那么它与激光18的激光束半径R、衍射型透镜的焦距fd和激光18的波长λ三者之间的关系,可近似地表示为以下的式6。 f d = w · R λ - - - ( 6 )
再有,光学头12是以波长λ=405nm、波长的变动δ=2nm以内的激光发光元件17作为光源,其激光束直径Φ=3mm、数值孔径(NA)为0.85。
图7,是表示利用式6将闪耀全息图的最小线宽w与衍射型透镜L1的焦距fd之间的关系的曲线图。图8是表示利用式5将折射型透镜L2的玻璃材料的部分阿贝数νr与折射型透镜L2的焦距fr和衍射型透镜L1的焦距fd之间的关系的曲线图。
即,在图7中,若假设闪耀的最小线宽w为2μm时,衍射型透镜L1的焦距fd将为7.40mm,若闪耀的最小线宽w为3μm时fd将为11.1mm,闪耀的最小线宽w为4μm时fd将为14.8mm。在此,透镜的光焦度是焦距的倒数,所以,此类焦距的值成为衍射型透镜L1可取的光焦度的最大目标值。
在图8中,若假设衍射型透镜L1的焦距fd的最小值为7.40mm时,折射型透镜的玻璃材料的部分阿贝数νr可容许在325以上范围。同样地,当衍射型透镜L1的焦距fd为11.1mm和14.8mm时的折射型透镜L2的玻璃材料的部分阿贝数νr的有效范围分别为540以上和750以上。
从而,构成物镜20的玻璃透镜22的透镜玻璃材料,可以选用满足对闪耀条纹的最小线宽w的所述条件的、可玻璃模压成形的材料。例如,如用OHARA公司制的LAH53(商品名)形成的玻璃透镜22,通过与部分阿贝数为约630、最小线宽w约为3μm的衍射透镜进行组合可消除像点的色差。
如此,数值孔径(NA)、激光束直径Φ(=2R)和使用的光源一经确定,作为复合透镜构成的本发明的物镜20的焦距f和衍射型透镜的阿贝数νd也就确定;若规定闪耀条纹的最小线宽为w,则衍射型透镜L1的焦距fd的有效范围就可被确定。还有,通过前述的公式,可确定折射型透镜L2的焦距fr和部分阿贝数νr的有效范围。
一般而言,衍射透镜的相位分布Φ(r)可表达为:
Φ(r)=C1r2+C2r4+C3r6+C4r8+...但,焦距f2与系数C1之间有如以下式7所示的关系成立。 C 1 = 1 2 f d - - - ( 7 )
再有,系数C1是决定衍射透镜的光焦度的系数,也是相当于折射型透镜基面的曲率的量。由此,根据式7选定系数C1
构成衍射型透镜的树脂层21的激光发光元件17侧即光源侧的面的曲率半径r1,并根据以下算式8选定,以使第三级球面像差最小化。 1 r 1 ~ N · ( 2 N + 1 ) 2 ( N - 1 ) · 2 ( N + 1 ) · f - - - ( 8 )
并且,作为衍射型透镜工作的树脂层21的光盘100侧的面的曲率半径r2,根据考虑必要的透镜厚度、同时维持恒定的焦距加以确定。
本发明的具有色差功能的物镜20,能够以上述的各条件作为各构成透镜的初始设定,根据配曲调整(bending)和非球面系数的最优化设计。
以下,就作为物镜20的具体示例的数值实施例进行说明。
再有,以下说明中,“ri”表示从激光发光元件17侧开始数的第i个面及其曲率半径,“di”表示从激光发光元件17侧开始数的第i个面与第i+1个面之间的面间距。
并且,若假设“x”为从非球面顶点的切线平面到离光轴的高度为“h”的非球面上的点的距离、“c”为非球面顶点的曲率(=1/R)、“k”为圆锥常数、“A”、“B”、“C”、“D”、“E”、“F”、“G”、“H”和“J”分别为4次项至20次项的非球面系数时,非球面形状由以下的式9定义。 x = ch 2 1 + { 1 + ( 1 + k ) c 2 h 2 } + Ah 4 + Bh 6 + Ch 8 + Dh 10 + E h 12 + Fh 14 + Gh 16 + Hh 18 + Jh 20 - - - ( 9 )
衍射型透镜可分为振幅型和相位型,而本发明中作为树脂层21构成的衍射型透镜为相位型,特别是,出于效率上的考虑而采用的闪耀全息图形状的透镜。该闪耀全息图,与普通全息图一样,在制造时作为把两个点光源置于无限远点时的各面上的非球面相位的偏差系数,在衬底上用曲线坐标多项式确定。在此,多项式的系数以mm为单位给出衍射基准波长的光程差(OPD)。
也就是说,在衍射型透镜面上的离光轴的高度为R的点上,衍射引起的光程差由下式确定。
OPD=C1R2+C2R4+C3R6+C4R8+C5R10+C6R12+C7R14
     +C8R16+C9R18+C10R20为了产生衍射,使实际形状断续地变化。即,折射率为N的媒质中的光路与空气中的光路之间所产生的光程差以t(N-1)给出,因此,若假设设计波长为λnm时,衍射型透镜的各环带(单元)的台阶高差d为
d=λ/(N-1)·10-3、或,为其整数倍。衍射型透镜的表面形状是这样确定,也就是以光程差OPD除以波长λ所产生的余数作为光程差而产生的深度来确定其表面形状。
图6是表示本发明的物镜20的透镜结构,又表示在玻璃透镜12的玻璃材料上使用所述的LAH53的例。还有,在物镜20与像面即光盘100的信号记录面之间,有设置在光盘100表面上的聚碳酸酯的保护层23。以下的表1给出所述数值实施例中的各数值。
              表1
曲率半径(ri) 面间隔(di) 材料
r1=14.0 d1=0.10 树脂
r2=14.0 d2=1.50 LAH53
r3=4.10 d3=0.70
r4=∞ d4=0.10 聚碳酸酯
r5=∞
表2给出了树脂层21的第一面r1的衍射面和非球面,非球面的第二面r2和非球面的第三面r3的4次项至20次项的非球面系数A(C2)至J(C10)。而且,表2中的“E”表示以10为底数的指数形式。
                                    表2
r1(折射面) r1(非球面) r2(非球面) r3(非球面)
 K(C1) -3.22E-02 -6.11E-01 -6.11E-01 -10.5
 A(C2) -3.71E-03 9.71E-03 9.71E-03 -1.46E-02
 B(C3) -1.35E-03 -1.48E-04 -1.48E-04 -1.15E-02
 C(C4) 1.49E-04 9.52E-04 9.52E-04 9.70E-03
 D(C5) -5.55E-04 -5.55E-04 3.92E-03
 E(C6) -2.46E-03
 F(C7) -1.88E-03
 G(C8) -2.77E-04
 H(C8) 1.19E-03
 J(C10) -2.97E-04
如以上的表2所示,通过使第一面r1的非球面与第二面r2的非球面具有相同的基本曲率和非球面系数,可以将树脂层21的膜厚保持一定,增强其对于温度变化的稳定性。
并且,如表2所示,由于定义衍射型透镜的基面一定具有非球面系数的值,因此,衍射型透镜即树脂层21可通过在光学上良好平衡且稳定的状态构成。
图9A表示物镜20的球面像差、图9B表示物镜20的像散像差、图9C表示畸变像差。在图9A至图9C所示的各像差图中,实线表示对于405nm的波长的值,虚线表示对于403nm的波长的值,点划线表示对于407nm波长的值,在像散像差图中,粗线表示弧矢像面的值、细线表示切向像面的值。并且,衍射基准波长为405nm,设计波长为405nm(403nm至407nm),数值孔径为0.85。
如上所述,本发明的物镜20具有色差修正功能,它由构成衍射透镜的树脂层21和作为折射型透镜的具有高会聚能力能的非球面单片透镜即玻璃透镜12复合而成。因此,当通过使用物镜20的光学头12对高密度记录的光盘进行信息的记录和再现时,即使激光发光元件的波长变化,在光轴上可把聚束光点的焦点位置的移动抑制在0.05μm/nm以内,并可使光盘驱动装置1上对信息的记录和再现动作稳定。
相对于前面图1中所示的对激光的±2nm的波长变动产生±0.6μm/nm的色差的传统的由一枚透镜构成的物镜a,本发明的物镜20对同样的±2nm的波长变动产生±0.01μm/nm的色差。一般,对诸如光学头之类的光学系统而言,要求0.05μm/nm以下的色差,但通过使用本发明的物镜10,可获得足够的性能。从而,用物镜20对高密度记录的光盘,能够提供可以形成小直径光点的光学头和光盘驱动装置。
再有,最好使从透镜20的透镜最后面r3到像点的工作距离为0.5mm以上。因为,如工作距离短,由于粘在光盘表面的灰尘等污垢有可能与物镜20的透镜最后面r3产生接触和抵触,再者,最坏的情况是透镜最后面r3与光盘互相抵触,使双方受到损伤。
在本发明的物镜20中,由于能有效地修正色差,因此,可通过采用今后成为主流的对应可写入光盘的大激光功率的,即设有变动激光功率来降低激光噪声的装置的光学头,可实现对高密度记录信息的再现和记录性能优良的物镜。
本发明的物镜20,由于可把必要的功率分散给衍射型透镜和折射型透镜,在使用相同的玻璃材料时,与传统的物镜的单片透镜相比,可把衍射型透镜即玻璃透镜12设计成小光焦度,因此,可实现构成衍射型透镜的树脂层21的基面的曲率受限制的设计。
而且,本发明的物镜20,由于是由衍射型透镜和折射型透镜一体化形成的单片型透镜,因此,在光学头和光盘驱动装置中,可减少零件的数量,实现小型化并简化装配工序。
如图5和图6所示,所述的物镜20由从物侧开始依次具有包含衍射型透镜的非球面的第一面r1和非球面的第二面r2的树脂层21,以及有非球面的第二面r2和非球面的第三面r3的玻璃制非球面单片透镜22构成。本发明的物镜20,不仅仅局限于该例,从物侧开始的第二面r2也可以是包含衍射型透镜的非球面。就是说,也可以由从物侧开始依次有非球面的第一面r1和包含衍射型透镜的非球面的第二面r2的树脂层21和有包含衍射型透镜的非球面的第二面r2和由非球面形成的第三面r3的玻璃制非球面单片透镜22构成。
包含衍射型透镜的形成闪耀形状的第二面r2,例如,作为横截面为锯齿型形状的所谓闪耀全息图,可由金属模压制成形树脂层的方法、切削玻璃透镜表面等适当的方法形成。
接着,就对本发明的光学头和用于该光学头的物镜的另一示例参照附图进行说明。
该光学头32也与前述光学头一样,包括发射激光的发光元件和感光元件等的所需光学元件和支承物镜35的图中未示出的二轴致动器等装载在通过图中未示出的导引轴和导螺杆支承在底盘11的移动底座14上。
如图10所示,光学头32在光盘100的半径方向上自由移动地支承,例如,具有由外壳33支承的图中未示出的二轴致动器。在外壳33内设置产生激光的激光发光元件37和使从该激光发光元件37发射的激光38变成平行光束的准直透镜39等。从该激光发光元件37发射的激光38经由准直透镜39变成平行光束,并且,通过物镜35把激光38会聚到光盘100的记录层。
光学头32是可对高密度信息记录的光盘100进行信息的记录和再现的光学头。因此,激光发光元件37产生比传统的产生780nm激光波长的CD规格的激光发光元件还要短的波长,例如,产生约400nm至410nm的波长,为了减少激光噪声通过把高频电流叠加在驱动电流上,使激光的波长在短周期内变动。
当对光盘100进行记录时,从激光发光元件37发射出高能量的激光,该激光由准直透镜39变成平行光束,再把该变成平行光束的激光38入射于物镜35并会聚到光盘100的记录层上形成激光光点。通过该激光的能量,记录层例如产生相位变化形成对应于信息信号的凹痕,由此进行信息信号的记录。
另一方面,当对光盘100已记录的信息再现时,从激光发光元件37发射比在进行信息记录时还低能量的激光,该激光由准直透镜39变成平行光束,再把该变成平行光束的激光38入射于物镜35并会聚到光盘100的记录层上形成激光光点。从光盘100的记录层反射的激光经过与入射时相反的光路,由光学头32内的图中未示出的包含感光元件等的感光系统检出。
物镜35的工作距离,即从构成物镜35的透镜的最靠近光盘100的面到像点,也就是到激光会聚的光盘100记录层的距离为0.5mm以上。
下面,就本发明的其他物镜35进行详细说明。
如图11所示,物镜35具有作为第一面的折射和衍射复合面S1,由折射型透镜35r和复合型透镜35d构成。
折射型透镜35r,是由高折射率弯月形状的玻璃制双面非球面单片透镜构成。并且,复合型透镜35d由在折射型透镜35r的光源侧的面即第二面S2上把适当的树脂材料层压而形成的树脂层40构成。
作为第一面的折射和衍射复合面(以下简称为复合面)的S1通过以下方法形成:使树脂层40的表面即折射面S1r具有与折射型透镜35r的S2面即第二面相同的非球面曲率、同时把折射面S1r作为基面即定义衍射面的基准面,把闪耀形状或该闪耀形状中的一种形状的所谓阶梯形状的相位型衍射面S1d即全息图附加于折射面S1r上而形成。
因此,物镜35可通过由树脂层40构成的复合型透镜35d和玻璃制折射型透镜35r组合而成的粘接透镜构成。
构成本发明物镜35中的复合型透镜35d,起修正色差的作用,而折射型透镜35r,起使激光的光点聚光成预定大小的作用。
以下说明中,透镜及其它构成面的编号,从作为光源的激光发光元件侧开始,依次为1、2、3、...,“Si”表示从光源侧开始数第i个面,“ri”表示从光源侧开始数第i个面Si的曲率半径,“di”表示从光源侧开始数第i个面与第i+1个面之间的光轴上的面间距。若假设“x”为从非球面顶点的切线平面到离光轴的高度为“h”的非球面上的点的距离、“c”为非球面顶点的曲率(=1/R)、“k”为圆锥常数、“A”、“B”、“C”、“D”、“E”、“F”、“G”、“H”和“J”分别为4次项至20次项的非球面系数时,非球面形状由以下式10定义。 x = ch 2 1 + 1 + ( 1 + k ) c 2 h 2 + Ah 4 + Bh 6 + Ch 8 + Dh 10 + Eh 12 + Fh 14 + Gh 16 + Hh 18 + J h 20 - - - ( 10 )
一般而言,用于衍射面的衍射光学元件可分为振幅型和相位型,而用于物镜35的衍射面S2d的为相位型,特别是出于效率考虑而设计的所谓闪耀形状的闪耀全息图。该闪耀全息图,与普通的全息图同样地,在制造时候作为把两个点光源至于无限远点时的各面上的非球面相位的偏差系数,使用衬底上的曲坐标多项式而确定。在此,式10中所示的多项式的系数,以mm为单位给出衍射基准波长的光程差(OPD)。也就是说,在衍射型透镜上的离光轴的高度为R的点上,由衍射引起的光程差由下式定义。
OPD=C1R2+C2R4+C3R6+C4R8+C5R10+C6R12+C7R14
     +C8R16+C9R18+C10R20为了产生衍射,实际的衍射面形状会断续地变化。即,折射率为N的媒质中的光路与空气中的光路之间所产生的光程差被提供为t(N-1),因此,若假设设计波长为λ(nm)时,衍射型透镜的各环带(元素)的台阶高差d为
d=λ/(N-1)·10-3、或,为其整数倍。衍射面的闪耀形状这样确定,就是以光程差OPD除以波长λ所产生的余数作为光程差而产生的深度来确定其表面形状。
如上所述,在折射型透镜35r的光源侧的S2面即第二面上层压的树脂层40的表面形成作为第一面的复合面S1,是为了即使使用在折射型透镜35r上不能进行金属模压制成形的材料(玻璃材料),也可以通过层压复印了金属模的衍射面形状的树脂层40来形成折射和衍射复合面。由此,可扩大用于折射型透镜35r的材料的选择范围。
本发明的物镜,也可以如图12所示构成。图12中所示的物镜35A,是在由折射型透镜35r和复合型透镜35d形成的物镜35的像侧再附加复合型透镜35d1的透镜。
折射型透镜35r,由高折射率弯月形状的玻璃制双面非球面单片透镜构成。复合型透镜35d是由在折射型透镜35r的光源侧的面即第二面S2上把适当的树脂材料层压形成的树脂层40构成。复合型透镜35d1是由在折射型透镜35r的像侧面即第三面S3上用适当的树脂材料形成的树脂层41层压而形成。
作为第一面的复合面S1这样形成:构成复合型透镜35的树脂层40的表面即折射面S1r具有与折射型透镜35r的S2面即第二面相同曲率的非球面形状,同时把折射面S1r作为基面即定义衍射面的基准面,把闪耀形状或该闪耀形状中的一种形状的所谓阶梯状的相位型衍射面S1d即全息图附加于折射面S1r
作为第四面的复合面S4这样形成:树脂层41的表面即折射面S4r具有与折射型透镜35r的S3面相同曲率的非球面形状,同时把折射面S4r作为基面即定义衍射面的基准面,把闪耀形状或该闪耀形状中的一种形状的所谓阶梯形状的相位型衍射面S4d即全息图附加于折射面S4r
因此,本发明的物镜35A可由树脂层40构成的复合型透镜35d、玻璃制折射型透镜35r和由树脂层41构成的复合型透镜35d1等三枚透镜粘接而成。
本发明物镜35A中,复合型透镜35d起修正色差的作用,折射型透镜35r起使激光的光点聚光成预定大小的作用,而复合型透镜35d1起改善物镜的图像高度特性的作用。
本发明的物镜35和35A,在复合型透镜35d、35d1的表面即作为第一面的复合面S1或作为第四面的复合面S4上,如后所述,被复印在金属模的复印面形成的金刚石刀头的移动轨迹即锯齿结构。在物镜35和35A中,在金属模压制成形时通过控制金刚石刀头的移动,锯齿结构形成具有大约1/2基准波长的周期的同心圆形状,由此使该锯齿结构与闪耀形状的等相位线一致。适当地构成该凹凸形状的振幅的高低差,以具有提供约1/2基准波长的相位差的厚度。
因此,在本发明的物镜35和35A的复合型透镜35d、35d1的复合面S1或S4表面上,同心圆形状地形成周期约为1/2基准波长的凹凸形状,以使该闪耀形状的等相位线一致。
再有,如图12所示的本发明的物镜35A中,也可以把闪耀形状或该闪耀形状中的一种形状的所谓阶梯形状的相位型衍射面即全息图附加于作为与树脂层41的玻璃制折射型透镜35r的面接触的折射面的第三面S3面上。
这种场合,也可以在构成与树脂层40的折射型透镜35r的第二面S2接触的折射面的第二面S2上,附加闪耀形状或该闪耀形状中的一种形状的所谓阶梯形状的相位型衍射面即全息图。
如本发明的物镜35和35A那样,若使用复合型透镜35d或35d、35d1,则无需增大透镜的直径,就可增大数值孔径(NA)。
本发明的物镜35和35A,如图10所示,通过定中心等光学调整后保持在由复合树脂等合适材料形成两端开口的、大致成圆筒形的透镜架45上。如此,把物镜35和35A预先设置在透镜架45内,可提高把物镜35装入光学头32时的装配工艺性能。
本发明的物镜35和35A,对以420nm以下为基准的几nm以内的波长范围内的光修正其光轴上的像点的色差,折射型透镜35r使用对应于420nm以下波长的光折射率为1.65以上的玻璃材料,并具有1.9mm以下有效焦距,同时层压在折射型透镜35r上的树脂层40和41的厚度为0.1mm以下。
并且,本发明的物镜35和35A,在最靠近光源侧的大折射率的复合面S1上设置开口46,在与像面之间配置0.3mm以下(实际大约为0.1mm)厚度的保护盖42,同时修正由该保护盖42引起的球面像差。再有,开口46由在物镜35和35A的位于最靠近光源侧的第一面S1(复合面)即物侧的整个外圆周部分通过蒸镀适当的金属形成的带状金属薄膜构成。
本发明的物镜35和35A中,构成复合面S1的折射面S1r的非球面形状与折射型透镜35r的树脂层40层压的第二面S2的非球面系数相同。另外,在物镜35A中,构成复合面S4的折射面S4r的非球面形状与折射型透镜35r的其上层压树脂层41的第三面S3的非球面形状相同。
也就是说,由于树脂层40和41的厚度如后所述,例如大约为0.1mm和极薄的0.01mm,因此,通过使折射面S1r的非球面形状与第二面S2的非球面形状相同,并使折射面S4r的非球面形状与第三面S3的非球面形状相同,可把树脂层40和41的厚度看成大致均匀。其原因是,若把树脂层40和41的厚度设成大致均匀,例如,用紫外线硬化树脂通过蚀刻形成复合面S1、S4时,可使树脂层上的曝光时的紫外线照射条件的位置偏离减到最小值。
在本发明的物镜35和35A的最靠近光源侧的面S1上设置开口46,这是为了使对应于开口46的物镜35和35A的装配误差变为零,同时通过限制只使用光学特性良好的部分而不使用透镜的外围部,使其性能达到稳定。
在本发明的物镜35和35A中,复合型透镜35d和35d1最好用具有设计次数为二次以上的更高次数的衍射光可被利用的结构。详细情况以后再作说明,但衍射面S1d的断面形状最好为阶梯状。
还有,本发明的物镜35和35A,具有0.5mm以上的从透镜的最后面(最靠近像侧面)到像点的距离即工作距离。传统的数值孔径大的双组结构的透镜(double type lens),例如,Solid Immersion Lens(SIL)的工作距离约为0.1mm。若工作距离如此短,将会产生物镜与光盘接触等问题。由此,在本发明中如上所述的把从透镜的最后面到像点的工作距离规定成0.5mm以上。
以下,就本发明的物镜35和35A中,为实现激光达到衍射界限地聚光所需的消色差(修正色差)的条件进行说明。
一般而言,对于波长λ(nm)在±δ(nm)范围内变化的光源,折射型透镜和衍射型透镜的复合透镜的消色差条件由如下方式导出。
即,假设波长为λ、λ+δ、λ-δ时的玻璃材料的折射率分别为N、N、N’对波长λ±δ范围内的部分的阿贝数(以下称为部分阿贝数)νr可表示成如以下的式11。 ν r = N - 1 N + δ - N - δ - - - ( 11 )
而且,衍射型透镜的部分阿贝数νd表示以下的式12。 ν d = λ ( λ + δ ) - ( λ - δ ) - - - ( 12 )
如折射型透镜和衍射型透镜的焦距分别为fr、fd,则由该两种透镜复合的复合透镜的焦距f具有如以下的式13的关系,光轴上像点的消色差的条件用式14表示。 1 f = 1 f r + 1 f d - - - ( 13 ) fr·νr+fd·νd=0    ····(14)
从而,可分别由以上的式13和式14得出下式15所示的折射型透镜的焦距fr和衍射型透镜的焦距fd f r = f · 1 - ν d ν r f d = f · 1 - ν r ν d - - - ( 15 )
还有,折射型透镜的部分阿贝数νr由透镜材料的折射率决定,而衍射型透镜的部分阿贝数νd由激光的使用波长决定。在此,如考虑透镜材料的折射率随波长而改变的因素,那么可认为:折射型透镜的部分阿贝数νr是由透镜材料和激光的使用波长决定,而衍射型透镜的部分阿贝数νd是只由激光的使用波长决定。
本发明的物镜35的由折射型透镜和衍射型透镜组成的复合透镜的轴上消色差的条件,在激光的使用波长λ、激光的振动量即波长的变动量δ、透镜的材料、入射激光的激光束直径和数值孔径(NA)设定后即被唯一地确定。
这样,对于光学头用的物镜而言,由于激光的设计波长、激光的激光束直径、物镜的数值孔径成为固定的参数,因此,如确定了透镜的材料,也就确定了折射型和衍射复合透镜的轴上消色差的条件。例如,假设NA=0.8、激光的激光束直径为3mm、λ=410nm、δ=±10nm,折射型透镜35r的材料采用LAH53(OHARA公司的商品名)时,折射型透镜35r的焦距f为2.18mm、衍射型透镜35d的焦距fd为13.31mm。
以下,就本发明的物镜35和35A的双面非球面单片透镜即折射型透镜35r的形状进行说明。
作为定量表示单片透镜形状的量,一般有形状系数q和位置系数p,其定义如以下的式16所示。 q = r 3 + r 2 r 3 - r 2 p = s ′ - s s ′ + s - - - ( 16 )
在上述式16中,r2、r3分别表示单片透镜35r的第一面和第二面的曲率半径,s、s’分别表示物点间距离和像点距离。
构成本发明的物镜35的单片透镜35r,其形状系数q值在±1时成平凹透镜、-1至1时成双凸透镜、取其他值时成弯月形状,位置系数p,为无限系统的透镜时s=∞,由于s’与焦距f相同所以s’=-1。因此,三次球面像差和彗差可分别由形状系数q的二次函数和线性(一次)函数表示。设把三次球面像差最小化的形状系数q为q_SA、把三次彗差化为零的形状系数q为q_CM,则它们可由下式17表示。其中,n表示玻璃材料的折射率。 q _ SA = - 2 p ( n 2 - 1 ) n + 2 p _ CM = - p ( 2 n + 1 ) · ( n - 1 ) n + 1 - - - ( 17 )
如将上式17中表示q_SA的式看作关于n的二次方程式,则当选择折射率n为1.686以上的玻璃材料时,常有q_SA>1,可导出三次球面像差最小的透镜形状为弯月形状。并且,如将上式17中表示q_CM的式看作关于n的二次方程式,当选择折射率n为1.618以上的玻璃材料时,常有q_CM>1,可导出把三次彗差化为零的透镜形状为弯月形状。
如使用折射率n为1.686以上的玻璃材料,使透镜形状变为弯月形状时,可以使三次像差最小化。例如,使用高折射率玻璃材料即前述的LAH53(n=1.83)时,q_SA为1.237、q_CM为1.378。
因此,形状系数q的值变成1以上,透镜形状成为如上所述的可使三次球面像差成为最小、彗差为零的弯月形状。
使用所算出的各自形状系数q_SA和q_CM以及透镜厂商的公式,透镜的第一面和第二面的曲率半径r2和r3可用形状系数q、焦距f和玻璃材料的折射率n表示成以下的式18。 r 1 = 2 f ( n - 1 ) q + 1 r 2 = 2 f ( n - 1 ) q - 1 - - - ( 18 )
因此,用于物镜35的折射型透镜35r由上述的式18求出各面的曲率半径,通过配曲调整确定各值。
接着,就对通过在金属模52的复印面使用金刚石刀头车床切削加工在折射面附加衍射面的复合面复印形状、通过把该复印形状复印于树脂层40形成的物镜35的复合面S1和35A的复合面S1、S4的形状进行说明。再有,以下说明是对本发明的物镜35和35A的复合面S1的形成过程进行的说明,但由于物镜35A的复合面S4的形成过程与复合面S1的复印形状的形成过程基本相同,因此,省略对物镜35A的复合面S4的复印形状的形成过程的说明。
如图13中所示的复合面S1的复印形状的制作方法,使金属模材料的坯料23以车床的旋转轴24为中心在箭头S所示的方向旋转,并使金刚石刀头(以下简称为刀头)56上下移动的同时在箭头T方向移动加工,由此,可在复印面52a上制作形成衍射面附加于折射面的形状的复合面的金属模52。
图14A至图14E是刀头56的前端部56a的形状和由刀头56分别具有不同曲率半径的正折射能力的在非球面基面上制作衍射面的具有复合面的金属模复印形状的放大图。
具体而言,图14A表示通过刀头56切削加工时,在金属模52A的复印面52Aa上,以具有正折射能力的折射面59r为基面附加具有正折射能力的衍射面59d而形成的复合面(复印形状)59的断面形状的图。在该复合面59中,折射面59r的倾斜方向和衍射面59d的倾斜方向相同,由于复合面59的闪耀角度θ为锐角,因此,形状不可能绝对地尖锐的刀头56的前端部56a形成不能切削部分60。
图14B是表示通过刀头56切削加工时,在金属模52B的复印面52Ba上,以折射能力为零的平面即折射面61r为基面附加具有正折射能力的衍射面61d而形成的复合面(复印形状)61的断面形状的图。在该复合面61中,由于闪耀角度θ为锐角,因此,由刀头56的前端部56a形成不能切削部分60。
并且,图14C是表示通过刀头56切削加工时在金属模52C的复印面52Ca上,以具有负折射能力的折射面62r为基面附加具有正折射能力的衍射面62d而形成的复合面(复印形状)62的断面形状的图。在该复合面62中,折射面62r的倾斜方向和衍射面62d的倾斜方向是互相反方向,但由于衍射面62d的倾斜更大,所以复合面62的闪耀角度θ成为锐角,因此,由刀头56的前端部56a形成不能切削部分60。
图14D是表示通过刀头56切削加工时在金属模52D的复印面52Da上,以具有负折射能力的折射面63r为基面附加具有正折射能力的衍射面63d而形成的复合面(复印形状)63的断面形状的图。在该复合面63中,折射面63r的倾斜方向和衍射面63d的倾斜方向为相反方向,由于复合面63的闪耀角度θ成为直角,从而,可全部切削闪耀形状,不会产生由刀头56的前端部56a形成的不能切削部分。
另外,图14E是表示,通过刀头56切削加工时在金属模52E的复印面52Ea上,以具有负折射能力的折射面64r为基面附加具有正折射能力的衍射面64d而形成的复合面(复印形状)64的断面形状的图。在该复合面64中,折射面64r的倾斜方向和衍射面64d的倾斜方向是互相反方向,由于衍射面64d的倾斜比折射面64r的倾斜小,所以复合面64的闪耀角度θ成为钝角,从而,可全部切削闪耀形状,不会产生由刀头56的前端部56a形成的不能切削部分。
图15是表示,衍射面的衍射角恒定时的设计次数、与图16所示的由具有固定周期L的闪耀形状65的刀头56形成的不能切削部分60的切削剩余量(宽度)b和衍射效率(用以b=0时作为100的比率表示)之间的关系的曲线图。再有,图16是表示当激光的波长为405μm、闪耀的最小宽度为2μm时的一次衍射光的衍射角即11.7°作为目标计算衍射效率的结果。
具体而言,图15中,当切削剩余宽度为0μm时与次数无关地衍射效率为100%,但,例如当切削剩余宽度为1μm时光的衍射效率A为40%。因此,在此种状况下为了使衍射效率达到90%以上,有必要使设计次数达到十次以上。
还有,图15中B为两次的光衍射效率、图15中C为五次的光衍射效率、图15中D为十次的光衍射效率。
因此,如图14A至图14C所示的复合面59、61和62,在产生不能切削部分60的复合面时,有必要进行使用按照需要形成的衍射角和随着用于金属模52的复印面22a加工的刀头56的前端部56a的形状而产生的不能切削部分60的切削剩余宽度而确定的高次数衍射光的设计。
另一方面,如图14D和图14E所示的复合面63和64,在不产生不能切削部分60形状的复合面时,就没有相对于对有必要的衍射角对刀头56的前端部56a的形状和衍射光的次数的约束。特别是对如图14D所示的,在复合面64具有闪耀角度θ为直角的阶梯形状衍射面64d情况下,由于从复合面64的中心附近到最外圆周部分的各闪耀条纹的相同部分的面之间彼此平行,因此,具有容易加工和容易评估形状的优点。
接着,就在本发明的物镜35、35A的复合型透镜35d、35d1的表面即复合面S1、S4上形成的、具有周期大约为基准波长(405nm)的1/2振幅大约为基准波长的1/2的周期结构的同心圆形状的微凹凸形状进行说明。
如图13中所示,金属模52,通过使坯料53以车床的旋转轴54为中心在箭头S所示的方向旋转,并相对坯料53使刀头56一边上下移动一边在箭头T方向移动来切削复印面52a而制成。
图17放大表示在金属模52的复印面52a上制成的物镜35和35A的复合面S1或S4的闪耀复印形状,当沿着用虚线所表示的理想的闪耀形状(复印形状)65A连续移动刀头56切削复印面52a时,制作形成有相对理想的闪耀形状65A的加工误差的不能切削部分66和锯齿结构67的闪耀复印形状。
图18A,是表示刀头56切削闪耀的最下点时的状态。也就是说,相对坯料53刀头56沿着理想的闪耀形状65A移动,并且用刀头56正在加工的断面形状68中,刀头56的下部形成有不能切削部分66。
图18B表示,坯料53从图18A中所示的状态旋转一圈以后,刀头56切削到闪耀条纹最下点附近的状态。由于刀头56沿着理想的闪耀形状65A移动、坯料53以固定的速度旋转,因此,每转一圈时的刀头56的切削轨迹在微观上是不均匀的,并形成锯齿结构67。因此,通过金属模锯齿结构67复印于物镜,如图17中用双点划线放大表示经过金属模的复印形状的物镜的衍射形状,在物镜的复合面表面上形成微凹凸形状69。
图19放大表示复印锯齿结构37形成凹凸形状69的物镜的复合面的透射和反射状态。激光70部分地在表面上乱反射形成反射光70a、70a...,减少透射率的同时透射光71也因凹凸形状69的面状态在意想不到的方向上折射并形成漫射光71a、71a...等,使形成凹凸形状69的面的透射率更进一步恶化。不管物镜35、35A的复合面S1、S4由于复印金属模52的锯齿结构67而形成凹凸形状69,由于形成有闪耀形状(衍射光学元件),因此不可能进行研磨加工。
还有,对本发明的物镜35、35A而言,金属模52的复印面52a加工时,通过最佳地控制刀头56相对于金属模52材料即坯料53的的移动,使锯齿结构67形成具有周期约为基准波长的1/2、振幅约为基准波长的1/2的周期结构的同心圆形状,通过锯齿结构67复印于复合面S1、S4的表面而形成的凹凸形状69具有所述周期和振幅。而且,最好使凹凸形状69的方向和闪耀复印形状的方向一致,也就是使各闪耀条纹的形状与凹凸形状的斜面的方向大体一致而成相似形。
图20和图21说明凹凸形状69如何具有如上所述的周期和振幅。
图20表示锯齿结构的复印形状即凹凸形状的周期和使用波长大致相同的结构即0.5μm时,凹凸形状的振幅(高度)与透射率之间的关系。为了比较,同时示出用于本发明的蓝色激光Bu(波长为405nm)入射时和传统的红色激光Re(波长为650nm)入射时的计算结果。
图21是表示,在锯齿结构的复印形状即凹凸形状的周期为使用波长的约1/2的结构即0.2μm时,凹凸形状的振幅(高度)与透射率之间的关系。为了比较,一并记载用于本发明的蓝色激光Bu(波长为405nm)入射时和传统的红色激光Re(波长为650nm)入射时的计算结果。
凹凸形状的周期0.5μm,如以红色激光Re(波长为650nm)为基准进行换算,则取波长以下的结构,如以蓝色激光Bu(波长为405nm)为基准进行换算,则取约为波长或波长以上的结构。
另一方面,凹凸形状的周期为0.2μm,以红色激光Re(波长为650nm)为基准进行换算也好,以蓝色激光Bu(波长为405nm)为基准进行换算也好,均为只取波长的1/2以下的或相同程度的结构。
也就是说,图20中所示的对凹凸形状的周期0.5μm的表面,当入射蓝色激光Bu(波长为405nm)时,透视率随振幅(高度)变大,而下降。如达到与使用波长相同程度的0.5μm振幅(高度),透射率为30%以下。
在同样的面上,当入射红色激光Re(波长为650nm)时,如振幅(高度)在从零到波长程度的范围内,则与高度无关地透射率将变成85%以上。
并且,图21中所示的对凹凸形状的周期0.2μm的表面,当入射蓝色激光Bu(波长为405nm)时,以及在同样的面上,当入射红色激光Re(波长为650nm)时,如振幅(高度)在从零到波长程度的范围内,则与高度无关地透射率为95%以上。
另外,如将振幅(高度)抑制在从波长的1/2到波长相同程度的范围时,将变成具有防止反射效果的表面。
再有,对在金属模52的复印面52a上形成在折射面上复合衍射面而形成的复合面的复印形状的方法,除了所述的通过使用车床和刀头56切削形成的方法外,还可使用所谓蚀刻的方法、薄膜淀积法等用于半导体制造的方法。
如前所述,物镜35和35A的折射型透镜即非球面单片透镜35r的形状,由于使用了高折射率的玻璃材料,因此形成弯月形状。由此,在激光入射侧的面上设计衍射·折射复合面时,该复合面形状由于基面曲率大、具有正折射能力,图14A中所示的复合面59形状成为被复印的形状。并且,如物镜35A那样,在激光入射侧的面上设计衍射·折射复合面时,由于是基面曲率平缓、具有负折射能力的面,从图14C至图14E中任一的复合面62、63、64形状成为被复印的面。
以下,就图14D和图14E中所示的阶梯形状相位型衍射光栅的设计进行说明。
通过光学设计用软件“CODEV”,衍射面的驰垂度ASP(r)由式19定义。 ASP ( r ) = cr 2 1 + 1 - ( 1 + k ) c 2 r 2 + Ar 4 + Br 6 + Cr 8 + Dr 10 - - - ( 19 )
在所述式19中,如k=-1时,二次项的系数变为c/2、变成如式20所示的只有偶次项的多项式。 ASP ( r ) = c 2 r 2 + Ar 4 + Br 6 + Cr 8 + Dr 10 - - - ( 20 )
另一方面,复合面S2的衍射面S2d的相位分布Φ(r)由式21所示的只有偶次项的多项式定义。Φ(r)=C1r2+C2r4+C3r6+C4r8+C5r10    ····(21)
因此,如式21所示的那样,作为相位连续变化的函数处理,直到光学设计的次数。
于是,在衍射面的表面形状设计中,由于利用相位的周期性由相位周期减去整数倍周期所剩部分作为新的相位分布,因此,衍射面的形状变成离散的闪耀形状。因为以该闪耀型离散的相位作为实际材料的厚度换算,所以衍射面的表面变成离散的闪耀形状,其高度变成提供波长的整数倍相位差的厚度。
图22是说明非球面的断面形状和衍射面的断面形状的示图。非球面的断面形状ASP_Sag是由以上的式20得到的,而衍射面的断面形状DOE_Sag是由式21得到的。为了使衍射面的相位与折射复合面的驰垂量具有相同的量度标准,用折射率差去除以相位。
图23是说明折射/衍射复合面形状的示图。若折射和衍射复合面的驰垂度为Sag(r),则可表示成以下式22。 Sag ( r ) = ASP ( r ) + Φ ( r ) N - 1 - - - ( 22 )
在式22中,若Sag(r)=0,由于相位变成完整平面,因此不会对入射的光产生任何影响,并射出光线。此时的衍射面形状将成为提供以波长整数倍的相位的厚度为一个台阶的垂直的阶梯形状。也就是,Sag(r)=O的解,如以下式23所示,可以通过将各次数的系数抵消为零来选择。 k = - 1 C 1 = ( N - 1 ) C 2 C 2 = ( N - 1 ) A C 3 = ( N - 1 ) B C 4 = ( N - 1 ) C C 5 = ( N - 1 ) D - - - ( 23 )
再有,二次项的系数的意义是,在近轴区域折射面和衍射面各自的折射能力相互抵消而为零。
如以上所说明,本发明的物镜35和35A可通过使以上所述的各条件作为透镜的初始设定、通过配曲调整和非球面系数的最优化而设计。
最后,给出对本发明的物镜35和35A加以具体化的数值例。
图24表示物镜35的数值例的透镜结构。
在该数值例中,折射型透镜35r的玻璃材料使用LAH53。再有,在物镜35与像面(光盘100的记录层)之间设置聚碳酸酯制的保护盖42。
保护盖42的厚度,最好在0.3mm以下。该物镜35的数值例和后述的物镜35A的数值例把保护盖42的厚度设计成0.1mm。这是因为,保护盖42的厚度为0.3mm时将产生很难修正的球面像差,但保护盖42的厚度为0.3mm以下时,则可抑制球面像差的发生。
以下表3中列出了物镜35数值例的各数值。如前所述,其中“ri”表示从光源侧开始数第i个面Si的曲率半径,“di”表示从光源侧开始数第i个面与第i+1个面之间的光轴上的面间距(以下的表5中也如此)。
              表3
ri di 材料
r1=1.417 d1=0.01 树脂
r2=1.417 d2=1.51 LAH53
r3=4.093 d3=0.74
r4=∞ d4=0.10 聚碳酸酯
像面=∞
表4表示物镜35的数值例的复合面即第一面S1(衍射面S1d和折射面S1r)、第二面S2和第三面S3的圆锥常数k和4次项至20次项的非球面系数A至J。表2中的“E”表示以10为底数的指数形式(对后述的同类型的表也适用)。
                                  表4
S1d S1r S2 S3
 K(C1) -3.527E-03 -6.324E-01 -6.324E-01 -16.836
 A(C2) -1.894E-04 +1.267E-02 +1.267E-02 -7.755E-03
 B(C3) -2.090E-04 -6.013E-04 -6.013E-04 -5.502E-03
 C(C4) +3.005E-05 +1.023E-03 +1.023E-03 +3.409E-03
 D(C5) -4.741E-04 -4.741E-04 +2.808E-03
 E(C6) -1.901E-03
 F(C7) -2.970E-04
 G(C8) +3.010E-06
 H(C9) +2.979E-04
I(C10) -8.878E-05
图25A表示所述数值例的球面像差、图25B表示像散像差、图25C表示畸变像差。在各像差图中,实线表示对于405nm波长的值、虚线表示对于403nm波长的值、点划线表示对于407nm波长的值,在表示像散像差的图中,粗线表示弧矢像面的值、细线表示切向像面的值(对后述的同类型的图也适用)。并且,所述数值例的衍射基准波长为405nm、设计次数N为十次、设计波长为405nm(403nm至407nm)、数值孔径为0.85。由图25A至图25C中所示的各像差图可知,所述的数值例中物镜35的色差得到有效的修正。
图26是表示本发明另一例物镜35A的数值例的透镜结构。
在本数值例中,折射型透镜35r的玻璃材料与上述的物镜35同样使用所述的LAH53。并且,在第二透镜L2与像面(光盘100的记录层)之间设置聚碳酸酯制的保护盖42。
以下的表5中列出了物镜35A数值例的各数值。
            表5
ri di 材料
r1=1.454 d1=0.10 树脂
r2=1.454 d2=1.50 LAH53
r3=4.121 d3=0.01 树脂
r4=4.121 d4=0.78
r5=∞ d5=0.10 聚碳酸酯
像面=∞
表6表示物镜35A的数值例的复合面即第一面S1(衍射面S1d和折射面S1r)、第二面S2、第三面S3和复合面即第四面S4(衍射面S4d和折射面S4r)的圆锥常数k和4次项至十次项的非球面系数A至D。
                                         表6
K(C1) A(C2) B(C3) C(C4) D(C5)
S1d -1.638E-03 +3.320E-04 -1.740E-04 +4.250E-05
S1r -6.807E-01 +1.862E-02 -7.617E-04 +2.446E-03 -7.848E-04
S2 -6.807E-01 +1.862E-02 -7.617E-04 +2.446E-03 -7.848E-04
S3 -1.000E+00 +8.237E-02 -1.658E-01 +1.031E-01 -2.372E-02
S4d -6.430E-02 -4.366E-02 +8.789E-02 -5.465E-02 +1.257E-02
S4r -1.000E+00 +8.237E-02 -1.658E-01 +1.031E-01 -2.372E-02
图27A表示所述数值例中的物镜35A的球面像差、图27B表示像散像差、图27C表示畸变像差。衍射基准波长为405nm、第一面衍射面S1d的设计次数N为十次、第四面衍射面S4d的设计次数N为一次、设计波长为405nm(403nm至407nm)、数值孔径(NA)为0.85。由图27A至图27C中所示的各像差图可知,所述的数值例中物镜35A的色差得到有效的修正。
通过上述结构,即使来自激光发光元件37的激光波长变化,本发明的物镜35也可使轴上色差大致为零,并且可在保持必要的数值孔径不变的情况下使工作距离变大,同时由于可抑制基面的曲率变小,因此,容易加工成闪耀形状。
本发明的另一例物镜35A也通过上述结构,在达到上述的物镜35效果的基础上进一步改善像高特性。在另一例的物镜35A中,由于其复合面S4的衍射面S4d的断面形状为阶梯状,因此,具有在复合面S4的外圆周部分其衍射效率也不会下降的优点。
本发明的物镜35和35A,由于可将对+2nm的波长变动产生的色差限于约±0.01μm/nm的范围,因此,光学头和光盘驱动装置,可稳定地进行信息的记录和再现,同时可达到衍射界限地可会聚激光光点直径,因此,足以应对通过使轨道间距变窄来提高信息记录密度规格的光记录介质的要求。
本发明的物镜35和35A中,折射型透镜35r采用了玻璃制单片透镜,可减少零件的数量、实现小型化和轻量化,并简化光学头的装配。
本发明的物镜35和35A,通过在位于最靠近光源侧的面上设置由金属等薄膜构成的开口,不使用透镜外围部,而只限于使用光学特性良好的部分,可抑制组装透镜时的制造误差,使性能稳定化。
在对应今后将成为光盘主流的对应可写入光盘的大激光功率的、即具有变动激光功率而降低激光噪声手段的光学头中,采用本发明的物镜35和35A,可提高对高密度记录信息的再现和记录性能。
还有,对本发明的物镜35、35A中金属模52的复印面52a加工时,通过最佳地控制对应于金属模52材料的坯料53的刀头56的移动,使锯齿结构37形成具有周期大约为1/2基准波长的振幅大约为1/2基准波长的周期结构的同心圆形状,通过锯齿结构67与复合面S1或S4的形状一同复印,在复合面S1或S4的表面上形成比闪耀形状还微细的凹凸形状,因此,尽管金属模52的锯齿结构67被复印,也能使不能研磨的复合面S1或S4的透射率达到90%以上。
通过使用采用本发明物镜的光学头,可提供改善对高密度记录信息的再现和记录性能的光盘驱动装置。
而且,在所述的各实施例中所示的各部分的具体形状和结构,都只不过是实施本发明时所进行的具体化的示例,因此,不会由此理解为对本发明的限定。
工业应用的可能性
如上所述,本发明的物镜、使用该物镜的光学头和光盘驱动装置,通过在以420nm以下为基准的几nm以内的波长范围内有效修正色差,能够达到衍射界限地会聚激光光点直径,因此,可应对通过使轨道间距变窄来提高信息记录密度规格的光记录介质的要求。

Claims (27)

1.一种光学头用物镜,其特征在于:
它由从物侧开始依次设置的有非球面的第一面和非球面的第二面的、且至少其中一个面包含衍射面的树脂层,以及
有所述非球面的第二面和非球面的第三面的玻璃透镜构成;
它具有0.8以上的数值孔径,对基准波长在420nm以下的、所述基准波长的数nm以内的波长范围进行光轴上像面上的色差修正。
2.如权利要求1所述的光学头用物镜,其特征在于:所述第一面含有衍射面。
3.如权利要求1所述的光学头用物镜,其特征在于:所述第二面含有衍射面。
4.如权利要求1所述的光学头用物镜,其特征在于:从所述第三面到像点的工作距离为0.5mm以上。
5.如权利要求4所述的光学头用物镜,其特征在于:含所述衍射面的第一面与第二面中的一个面具有非球面系数的值。
6.如权利要求5所述的光学头用物镜,其特征在于:所述第一面与第二面为具有相同基曲率与非球面系数的非球面。
7.如权利要求6所述的光学头用物镜,其特征在于:以所述第一面或所述第二面作衍射面的树脂层为透射相位型,且所述第一面或所述第二面以闪耀形状构成。
8.如权利要求1所述的光学头用物镜,其特征在于:在所述第一面的外圆周侧设开口。
9.如权利要求1所述的光学头用物镜,其特征在于:所述衍射面的设计次数为二次以上。
10.如权利要求1所述的光学头用物镜,其特征在于:所述树脂层具有0.1mm以下的厚度。
11.如权利要求1所述的光学头用物镜,其特征在于:所述玻璃透镜由对420nm以下的光波长具1.65以上折射率的玻璃材料形成。
12.如权利要求1所述的光学头用物镜,其特征在于:所述玻璃透镜为弯月形。
13.如权利要求1所述的光学头用物镜,其特征在于:在形成所述衍射面的第一面或第二面的表面上,形成具有周期大致为1/2基准波长、振幅大致为1/2基准波长的周期结构的、比所述衍射面的凹凸形状还微细的同心圆状的凹凸形状。
14.如权利要求1所述的光学头用物镜,其特征在于:在所述第三面与像面之间设置厚度0.3mm以下的保护盖,同时修正因所述保护盖引起的球面像差。
15.如权利要求1所述的光学头用物镜,其特征在于:所述物镜还设有包括所述非球面的第三面和非球面的第四面的、且至少其中一个面包含衍射面的树脂层。
16.如权利要求15所述的光学头用物镜,其特征在于:所述第三面包含衍射面。
17.如权利要求15所述的光学头用物镜,其特征在于:所述第四面包含衍射面。
18.如权利要求15所述的光学头用物镜,其特征在于:以所述第三面或所述第四面作衍射面的树脂层为透射相位型,且所述第三面或所述第四面以闪耀形状构成。
19.一种光学头,其中设有:发射激光的激光发光元件;把激光会聚到光记录介质的记录层的物镜;感受激光的感光元件;以及把从所述激光发光元件发射出的激光入射至物镜,同时把在光记录介质的记录层反射并透过物镜的激光入射至感光元件的光学元件;
其特征在于:所述物镜由从物侧开始依次设置的有非球面的第一面和非球面的第二面的、且至少其中一个面包含衍射面的树脂层,以及有所述非球面的第二面和非球面的第三面的玻璃透镜构成;它具有0.8以上的数值孔径,对基准波长在420nm以下的、所述基准波长的数nm以内的波长范围进行光轴上像面上的色差修正。
20.如权利要求19所述的光学头,其特征在于:从所述第三面到像点的工作距离为0.5mm以上。
21.如权利要求19所述的光学头,其特征在于:在所述第三面与像面之间设置厚度为0.3mm以下的保护盖,同时所述物镜修正因所述保护盖引起的球面像差。
22.如权利要求19所述的光学头,其特征在于:所述激光发光元件发射波长设为420nm以下的激光。
23.如权利要求19所述的光学头,其特征在于:所述物镜还设有包括所述非球面的第三面和非球面的第四面的、且至少其中一个面包含衍射面的树脂层。
24.一种光盘驱动装置,它通过设计成在所述光记录介质的半径方向上自由移动的光学头,对旋转的盘状光记录介质进行信息的记录与再现,其特征在于:
所述光学头中设有:发射波长420nm以下的激光的激光发光元件;使激光会聚到光记录介质的记录层的物镜;感受激光的感光元件;以及把从所述激光发光元件发射出的激光入射至物镜,同时把在光记录介质的记录层反射并透过所述物镜的激光入射至感光元件的光学元件;
所述物镜由从物侧开始依次设置的有非球面的第一面和非球面的第二面的、且至少其中一个面包含衍射面的树脂层,以及有所述非球面的第二面和非球面的第三面的玻璃透镜构成;它具有0.8以上的数值孔径,对基准波长在420nm以下的、所述基准波长的数nm以内的波长范围进行光轴上像面上的色差修正。
25.如权利要求24所述的光盘驱动装置,其特征在于:从所述第三面到像点的工作距离为0.5mm以上。
26.如权利要求24所述的光盘驱动装置,其特征在于:在所述第三面与像面之间设置厚度0.3mm以下的保护盖,同时所述物镜修正因所述保护盖引起的球面像差。
27.如权利要求24所述的光盘驱动装置,其特征在于:所述物镜还设有包括所述非球面的第三面和非球面的第四面的、且至少其中一个面包含衍射面的树脂层。
CNB028024249A 2001-05-22 2002-05-22 光学头用物镜、光学头和光盘驱动装置 Expired - Fee Related CN1268959C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001152168 2001-05-22
JP152168/01 2001-05-22
JP152168/2001 2001-05-22
JP2002066804 2002-03-12
JP66804/02 2002-03-12
JP66804/2002 2002-03-12

Publications (2)

Publication Number Publication Date
CN1464985A true CN1464985A (zh) 2003-12-31
CN1268959C CN1268959C (zh) 2006-08-09

Family

ID=26615470

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028024249A Expired - Fee Related CN1268959C (zh) 2001-05-22 2002-05-22 光学头用物镜、光学头和光盘驱动装置

Country Status (5)

Country Link
US (1) US6819491B2 (zh)
JP (1) JPWO2002103430A1 (zh)
KR (1) KR20030020364A (zh)
CN (1) CN1268959C (zh)
WO (1) WO2002103430A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795254B2 (en) * 2001-06-25 2004-09-21 Sony Corporation Objective lens for optical pickup and optical pickup employing this objective lens
WO2003085654A1 (en) * 2002-04-09 2003-10-16 Koninklijke Philips Electronics N.V. Compound objective lens with fold mirror
JP2004296039A (ja) * 2003-03-28 2004-10-21 Teac Corp 光ピックアップ装置
JP2004326868A (ja) * 2003-04-22 2004-11-18 Konica Minolta Opto Inc 対物光学素子及び光ピックアップ装置
US7518804B2 (en) * 2003-04-24 2009-04-14 Bae Systems Information And Electronic Systems Integration Inc. Singlet telescopes with controllable ghosts for laser beam forming
JP4780937B2 (ja) * 2004-06-18 2011-09-28 Hoya株式会社 成形型の設計方法、成形型及び成形型の製造方法
US20060023611A1 (en) * 2004-07-23 2006-02-02 Mika Wachi Compound optical element and optical pickup apparatus
JP2006059517A (ja) * 2004-07-23 2006-03-02 Konica Minolta Opto Inc 複合光学素子及び光ピックアップ装置
JP2006134366A (ja) * 2004-09-15 2006-05-25 Konica Minolta Opto Inc 光ピックアップ装置及び対物光学素子
JP2006106109A (ja) * 2004-09-30 2006-04-20 Nikon Corp 非球面レンズ、該非球面レンズを備えた光学装置
KR100647299B1 (ko) * 2004-12-09 2006-11-23 삼성전기주식회사 대물렌즈 광학계 및 이를 채용한 광픽업장치
DE102005006723B3 (de) * 2005-02-03 2006-06-08 Universität Stuttgart Interferometrisches,konfokales Verfahren und interferometrische, konfokale Anordung für optische Datenspeicher, insbesondere Terabyte-Volumenspeicher
US7626152B2 (en) * 2006-08-16 2009-12-01 Raytheon Company Beam director and control system for a high energy laser within a conformal window
KR100833242B1 (ko) * 2006-09-27 2008-05-28 삼성전자주식회사 고개구수를 가지는 대물렌즈 및 이를 채용한 광픽업장치
ES2326770B1 (es) 2007-07-13 2010-07-26 Universidad Complutense De Madrid Uso de un nuevo aislado de neospora caninum para el desarrollo de pruebas de diagnostico y para la fabricacion de productos para el tratamiento y prevencion de la infenccion causada por neospora.
JP2012048773A (ja) * 2010-08-24 2012-03-08 Sanyo Electric Co Ltd 光ピックアップ用対物レンズおよび光ピックアップ装置
JP2011119022A (ja) * 2011-03-07 2011-06-16 Panasonic Corp 回折光学素子、それを備えた対物光学系、及びそれを備えた光ピックアップ装置
US9235283B2 (en) * 2013-08-06 2016-01-12 Apple Inc. Electronic device including blurred finger image deblurring circuitry and related methods
DE102014219473A1 (de) 2014-09-25 2016-03-31 Inficon Gmbh Folienkammer mit Halteprofil
CN110383114B (zh) * 2017-02-24 2020-12-29 富士胶片株式会社 透镜、变焦镜头及成像镜头

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331887A (ja) * 1993-03-25 1994-12-02 Asahi Optical Co Ltd 複合レンズ
JPH09311271A (ja) * 1996-05-20 1997-12-02 ソニー株式会社 対物レンズ及び光学ピックアップ装置
JP3833754B2 (ja) * 1996-07-02 2006-10-18 オリンパス株式会社 回折型光学素子を有する電子カメラ
JPH10268117A (ja) * 1997-03-27 1998-10-09 Fuji Photo Optical Co Ltd ピックアップ光学系用対物レンズ
JP2000035535A (ja) * 1998-07-21 2000-02-02 Konica Corp ピックアップ用対物レンズ
JP3900693B2 (ja) * 1998-07-17 2007-04-04 ソニー株式会社 レンズ製造方法
JP2001194581A (ja) * 2000-01-14 2001-07-19 Konica Corp 対物レンズ及び光ピックアップ装置
JP2001235678A (ja) * 2000-02-23 2001-08-31 Sony Corp 対物レンズ、光学ピックアップ装置及び光ディスク装置

Also Published As

Publication number Publication date
US20030174416A1 (en) 2003-09-18
JPWO2002103430A1 (ja) 2004-10-07
CN1268959C (zh) 2006-08-09
US6819491B2 (en) 2004-11-16
WO2002103430A1 (fr) 2002-12-27
KR20030020364A (ko) 2003-03-08

Similar Documents

Publication Publication Date Title
CN1268959C (zh) 光学头用物镜、光学头和光盘驱动装置
CN100335935C (zh) 复合物镜、光学头装置、光信息装置、计算机、光盘播放机
CN1136562C (zh) 光学拾取装置的光学系统
CN1182523C (zh) 光盘用光学系统、光盘用光学头装置和光驱动装置
CN1420495A (zh) 可兼容的光拾取器
CN1822142A (zh) 校正波阵面错误的透镜及其光学拾取器和校正方法
CN1223872C (zh) 物镜及其制造误差的校正方法以及使用该物镜的光拾取装置
CN1209763C (zh) 光学拾取装置、复合物镜和球差矫正元件
CN1459785A (zh) 记录再生用光学系统、物镜和拾光装置
CN1906679A (zh) 物镜光学系统、光拾取装置以及光信息记录再生装置
CN1384382A (zh) 物镜、聚光光学系统、光拾取器装置以及记录·再生装置
CN1942946A (zh) 物镜、光拾取装置及光信息记录再生装置
CN1183527C (zh) 光学头装置
CN100350290C (zh) 光拾取装置及光信息存储再生装置
CN1295536C (zh) 光学拾波器用物镜、光学拾波器及光盘装置
CN100343913C (zh) 光拾取装置
CN1910670A (zh) 对物光学元件以及光拾取装置
CN1189878C (zh) 物镜及光拾取器装置
CN1353318A (zh) 拾光装置用的物镜和拾光装置
CN1428623A (zh) 光拾波装置和光学元件
CN1147845C (zh) 光学拾取装置、记录/再现装置以及聚光系统和耦合透镜
CN1420377A (zh) 物镜及拾光装置
CN1619347A (zh) 用于光盘的物镜单元及结合该单元的光头器件
CN1767020A (zh) 对物光学元件及光拾取装置
CN1573403A (zh) 光学系统、拾光装置、光记录再生装置和像差修正元件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060809

Termination date: 20100522