CN1457086A - 基极制作方法 - Google Patents

基极制作方法 Download PDF

Info

Publication number
CN1457086A
CN1457086A CN02156118A CN02156118A CN1457086A CN 1457086 A CN1457086 A CN 1457086A CN 02156118 A CN02156118 A CN 02156118A CN 02156118 A CN02156118 A CN 02156118A CN 1457086 A CN1457086 A CN 1457086A
Authority
CN
China
Prior art keywords
base stage
layer
manufacture method
fast heating
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN02156118A
Other languages
English (en)
Inventor
郑志祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Publication of CN1457086A publication Critical patent/CN1457086A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明是提供一种基极制作方法,包括:提供一种利用一第一含氮的气体快速加热制程(nitrogen-containingRTP,ammonia rapid thermal processing)处理底材,在底材上形成一界面扩散阻障层(interface diffusion barrier layer);将具有高介电常数的介电层沉积在界面扩散阻障层上以改善基极的热稳定性以及化学稳定性;将一阻障层以及一金属基极层依序沉积在介电层上;接着,在一光学微影制程之后,在半导体底材上形成一基极结构;然后,在一基极结构上执行一第二含氮气快速加热制程,在基极结构的侧壁上形成一表面抑制层以改善金属基极层的电阻值以及热稳定性。

Description

基极制作方法
(1)技术领域
本发明有关一种在半导体底材上形成基极的方法,特别是有关于一种降低基极介电常数的方法。
(2)背景技术
传统具有基极以及栅介电材料的半导体元件逐渐缩小尺寸范围,造成半导体元件的尺寸渐渐成为主要的问题;其问题包括基极电阻的增加,栅介电层漏电流的增加以及多晶硅基极消耗的影响等等。为了克服以上的种种问题,是以可选择性的材料取代传统的栅介电材料以及基极材料。
耐火金属或是耐火合金,该金属的氮化物以及金属铝在目前而言是用来做为基极的可选择性材料。这些材料提供了一些优于多晶硅的优点例如低电阻以及可以缩小尺寸以提高金属氧化物半导体的制程技术。在目前来说耐火金属包括了钛(Ti,titanium)、钽(Ta,tantalum)、钨(W,tungsten)、钼(Mo,molybdenum)、锆(Zr,zirconium)以及其他相类似的金属材料。
对于作为基极的可选择性的金属材料有很多因素是须要考虑的。耐火金属材料的特性包括电性、化学特性以及物理特性。可选择性制程更复杂是因为这些特性可随着这些耐火金属材料在不同的热制程步骤中而改变。很不幸的补偿这些加热制程所引起的变化,会影响产率以及半导体元件的可靠度。
一般而言,在底材内形成隔离结构如浅沟渠(STI,shallow trench isolation)或者是区域性氧化(LOCOS,local oxidation)后,是将作为栅介电材料的二氧化硅或是氮化硅形成在半导体底材上。为了要增加发射极/集电极电流(S/D current,source/drain current),栅介电层的厚度必须要减少。然而,二氧化硅或是氮化硅的有效氧化层厚度(EOT,effective oxide thickness)小于17埃(angstrom),这会造成穿隧现象,且基极漏电流会快速的增加。
其他的缺点则是在互补式金属氧化物半导体(CMOS,complementary metaloxide semiconductor)制程中,高介电常数的介电材料如,铪(Hf,hafnium)及锆(Zr,zirconium)沉积在半导体元件上。如铪以及锆此种介电材料的特性是为低电阻及不良的热稳定性以及不佳的化学稳定性。此外,其他的高介电常数的材料例如五氧化二钽(Ta2O5,tantalum pentoxide)以及铅锆钛酸盐(PZT,Lead ZirconiumTitanate)仅能适用于尺寸为100奈米的互补式金属氧化物半导体制程。
(3)发明内容
本发明的第一目的是在互补式金属氧化物半导体(CMOS,complementarymetal oxide semiconductor)制程中,利用含氮的气体快速加热制程(nitrogen-containing RTP,nitrogen-containing rapid thermal process)以增加基极的耦合率(coupling ratio)。
本发明的第二目的是提供其介电常数大于10的可选择性的介电材料形成在半导体底材上,以改善基极的热稳定性以及化学稳定性。
本发明的第三目的是提供一种增加栅介电层以及基极品质的处理方法。
本发明半导体元件制程中,漏电流以及可靠度是为最重要的考虑因素。本发明是提供一种方法以增加基极的耦合率(coupling ratio)。此方法包括:利用含氮的气体快速加热制程(nitrogen-containing RTP,nitrogen-containing rapidthermal process)处理底材以在底材上形成一界面扩散阻障层(interface diffusionbarrier layer)。此界面扩散阻障层的作用是将具有高介电常数的高介电层与底材分开,这是为了要降低两个材料之间相反的相互作用力,其中该介电层的介电常数大于10。接着,利用介电层沉积在界面扩散阻障层上,以改善半导体元件的热稳定性以及化学稳定性。然后,利用在氮气中的沉积后回火处理方法(post-deposition annealing)处理高介电材料,以释放出介电材料的应力以及降低介电材料的界面电荷。根据本发明的方法,可以改善半导体元件的漏电流、可靠度以及品质。
(4)附图说明
图1是根据本发明所揭示的技术,表示在底材上具有一场氧区以及一栅氧化层的示意图;
图2是根据本发明所揭示的技术,表示利用第一含氮的气体快速加热制程(nitrogen-containing RTP,nitrogen-containing rapid thermal process)处理图1的结构的示意图;
图3是根据本发明所揭示的技术,在第一含氮的气体快速加热制程的后在图2的结构上形成一界面扩散阻障层以及一介电层沉积于界面扩散阻障层上;
图4是根据本发明所揭示的技术,表示利用在氮气中沉积后回火处理步骤处理介电层的示意图;
图5是根据本发明所揭示的技术,表示一阻障层以及一金属基极层依序形成在图4的结构中的示意图;
图6是根据本发明所揭示的技术,表示在基极结构形成在底材后,利用一第二含氮的气体快速加热制程处理基极结构的示意图;及
图7是根据本发明所揭示的技术,是表示一表面抑制层(surface inhibitionlayer)形成在基极结构的侧壁上的示意图。
(5)具体实施方式
本发明的一些实施例予以详细描述如下。然而,除了详细描述外,本发明还可以广泛地在其他的实施例施行,且本发明的范围不受其限定,而应以权利要求所限定的范围为准。
参考图1,利用热氧化法将二氧化硅层(未在图中表示)形成在底材10上。接着,一氮化硅层(SiN,silicon nitride)(未在图中表示)利用传统的化学气相沉积法例如低压化学气相沉积法(LPCVD,low pressure chemical vapordeposition method)沉积在二氧化硅层上。接下来,利用一光学微影步骤在底材10上形成主动区域(active area)。接着光阻层保护所有已经形成的主动区域,利用干蚀刻蚀刻氮化硅层,而利用干式或是湿式蚀刻步骤蚀刻二氧化硅层。在二氧化硅层蚀刻之后,并不将光阻层移除,而是将光阻层用来作为双井(two wells)(未在图中表示)以及通道阻绝离子植入步骤(channel-stopimplant step)的遮罩层。通道阻绝层(未在图中表示)是利用传统的离子植入步骤在底材10内形成。
接着,在去除光阻层之后,利用湿式氧化法在底材10上形成场氧化区(field oxide)12。氧化层的成长是在没有氮化层存在的时候,但是在氧化层的边缘一些氧化物会横向地扩散。此种扩散现象会造成氧化层在下方成长且会使氧化层的边缘隆起。因为氧化层在氧化层边缘的形状是尖细的楔形状且会与后续形成的栅氧化层(gate oxide)14合并,而被称为鸟嘴(bird’s beak)。鸟嘴是场氧化区12的侧边延伸至元件的主动区域的一种结构。
接着,参考图2,为了要改善栅介电层以及基极的品质,在本发明的方法中提供利用含氮的气体快速加热制程(nitrogen-containing RTP,nitrogen-containing rapid thermal process)16以处理底材10,在本发明的实施例中,含氮的气体可以是氮气(N2,nitrogen gas)或是氨气(NH3,ammonia gas)。接着,在底材10上形成一界面扩散阻障层(interface diffusion barrierlayer)18,如图3所示。界面扩散阻障层18是将后续形成的介电层与底材10分开,这是为了要降低两个材料之间相反的相互作用力,第一含氮的气体快速加热制程中,第一含氮的气体是与栅氧化层14,底材10反应,界面扩散阻障层18的材质可包括SiONy或SiONx。第一含氮的气体快速加热制程处理的温度在600℃至750℃之间,处理的时间在10至20分钟之间。接着,参考图3及图4,利用传统的化学气相沉积的方法将介电常数大于10的高介电层20沉积在界面扩散阻障层18上。高介电层20的材料可以是二氧化锆(ZrO2,zirconium dioxide)、二氧化铪  (HfO2,hafnium dioxide)、锆硅酸盐((ZrO2)x(SiO2)1-x、zirconium-silicates)以及铪硅酸盐((HfO2)x(SiO2)1-x,hafnium-silicate)。这些介电材料具有高介电常数、低电阻、良好的热稳定性以及化学稳定性。在化学式中下标x其最佳的范围在二十五百分比至三十五百分比之间。
接下来,为了改善沉积的金属氧化物介电层的界面特性以及电性,利用一连续的沉积后处理回火步骤处理介电层。于图4中,一氮气中沉积后回火处理步骤(post-deposition annealing in nitrogen)22处理高介电层20,以释放出高介电层20的剪应力(stress)以及高介电层20的界面电荷(interface charge),这使得栅介电材料的漏电流可以降低。上述氮气中沉积后回火处理步骤22的温度在700℃至900℃之间,处理的时间在20至45分钟之间。
继续参考图5,为了要降低在高温下氧原子对于钽金属层(Ta,tantalum)26的扩散作用,在本发明的方法中,先将作为阻障层(barrier layer)24的氮化钛(TiN,titanium nitride)沉积在高介电层20上,氮化钛沉积的厚度为20至60埃,然后再将作为金属基极层26的钽金属(Ta,tantalum)沉积在阻障层24上。由于钽金属本身的低电阻值、良好的热稳定性以及化学稳定性,所以钽金属广泛的用于金属基极材料。接着参考图6,在金属基极层26上形成一光阻层(未在图中表示),并且利用一蚀刻步骤依序蚀刻一金属基极层26、一阻障层24、一高介电层20以及一界面扩散阻障层18,使得在底材10上形成一基极结构。
接着,利用第二含氮的气体快速加热制程30处理图6中的基极结构,其处理的温度大约为600℃,处理的时间大约为20分钟,使得在基极结构中的金属基极层26表面形成一表面抑制层(surface inhibition layer)40(见图7),此表面抑制层40为氮化钛化合物(TaNx)。由于表面抑制层40形成在金属基极层26的表面,因此,作为金属基极层26的钽金属具有低电阻值以及良好的热稳定,特别地是配合含氮的气体快速加热制程处理步骤。
根据以上的描述,由于高介电层20本身所具有的高介电常数、良好的热稳定性以及化学稳定性,使得基极的品质可以得到改善。此外,作为金属基极层26的钽金属具有低电阻的特性、良好的热稳定性以及化学稳定性,且在含氮的气体快速加热制程步骤的配合下,使得整个基极结构的品质以及可靠度得到改善。
以上所述仅为本发明的较佳实施例而已,并非用以限定本发明的申请专利范围;凡其它未脱离本发明所揭示的精神下所完成的等效改变或替换,均应包括在下述的权利要求书所限定的范围内。

Claims (27)

1.一种基极制作方法,其特征在于,包括:
提供一底材;
形成一界面扩散阻障层于该底材上;
形成一具有一高介电常数的一介电层于该界面扩散阻障层上;
形成一金属基极层于该介电层上;及
除去部份该金属基极层、该介电层及该界面扩散阻障层以形成一基极于该底材上。
2.如权利要求1所述的基极制作方法,其特征在于,所述的界面扩散阻障层的形成步骤包括一第一含氮的气体快速加热制程。
3.如权利要求2所述的基极制作方法,其特征在于,所述第一含氮的气体快速加热制程还包括一氨气快速加热制程。
4.如权利要求2所述的基极制作方法,其特征在于,所述第一含氮的气体快速加热制程处理的温度在600℃至750℃之间。
5.如权利要求2所述的基极制作方法,其特征在于,所述第一含氮的气体快速加热制程处理的时间在10至20分钟之间。
6.如权利要求1所述的基极制作方法,其特征在于,所述在该底材上形成该基极的步骤还包括:
执行一沉积后回火步骤于该介电层;
沉积一阻障层于该介电层上及该金属基极层在该阻障层上;
形成一光阻层在该金属基极层上;及
依序蚀刻该金属基极层、该阻障层、该介电层以及该界面扩散阻障层以形成该基极于该底材上。
7.如权利要求1所述的基极制作方法,其特征在于,所述介电层是由下列材料所选出:二氧化锆、二氧化铪、锆硅酸盐以及铪硅酸盐。
8.如权利要求1所述的基极制作方法,其特征在于,所述介电层的该高介电常数至少为10。
9.如权利要求6所述的基极制作方法,还包括一第二含氮的气体快速加热制程处理该基极。
10.如权利要求9所述的基极制作方法,其特征在于,所述第二含氮的气体快速加热制程还包括一氨气快速加热制程。
11.一种基极制作方法,其特征在于,包括:
提供一底材;
利用一第一含氮的气体快速加热制程处理该底材以形成一界面扩散阻障层于该底材上;
沉积一具有高介电常数的一介电层于该界面扩散阻障层上;
执行一沉积后回火步骤于该介电层上;
形成一阻障层于该介电层上;
形成一金属基极层于该阻障层上;
形成一光阻层于该金属基极层上;
依序蚀刻该金属基极层、阻障层、该介电层及该界面扩散阻障层以形成一基极于该底材上;及
执行一第二含氮的气体快速加热制程于该基极。
12.如权利要求11所述的制作基极方法,其特征在于,所述第一含氮的气体快速加热制程还包括一氨气快速加热制程。
13.如权利要求11所述的基极制作方法,其特征在于,所述的介电层是由下列材料所选出:二氧化锆、二氧化铪、锆硅酸盐以及铪硅酸盐。
14.如权利要求11所述的基极制作方法,其特征在于,所述介电层的该高介电常数至少为10。
15.  如权利要求11所述的基极制作方法,其特征在于,所述沉积后回火步骤包括在一氮气中沉积后回火。
16.如权利要求11所述的基极制作方法,其特征在于,所述阻障层的材料包括氮化钛。
17.如权利要求11所述的基极制作方法,其特征在于,所述金属基极层的材料为钽金属。
18.如权利要求11所述的基极制作方法,其特征在于,所述第二含氮的气体快速加热制程包括一氨气快速加热制程。
19.一种基极制作方法,其特征在于,包括:
提供一底材;
利用一第一氨气快速加热制程处理该底材以形成一界面扩散阻障层于该底材上;
化学气相沉积一具有高介电常数的一介电层于该界面扩散阻障层上,其中,该高介电常数至少为10;
执行一在氮气中沉积后回火处理步骤于该介电层;
化学气相沉积一氮化钛层于该介电层上;
化学气沉积一钽金属层于该氮化钛层上;
形成一光阻层于该钽金属层上;
依序蚀刻该钽金属层、该氮化钛层、该介电层及该界面扩散阻障层以形成一基极于该底材上;及
利用一第二氨气快速加热制程处理该基极以形成一表面抑制层于该基极的一侧壁上。
20.如权利要求19所述的基极制作方法,其特征在于,所述的介电层是由下列材料所选出:二氧化锆、二氧化铪、锆硅酸盐以及铪硅酸盐。
21.如权利要求19所述的基极制作方法,其特征在于,所述第一氨气快速加热制程的处理温度在600℃至750℃之间。
22.如权利要求19所述的基极制作方法,其特征在于,所述第一氨气快速加热制程的处理时间在10至20分钟之间。
23.如权利要求19所述的基极制作方法,其特征在于,所述在该氮气中沉积后回火步骤的处理温度在700℃至900℃之间。
24.如权利要求19所述的基极制作方法,其特征在于,所述在该氮气中沉积后回火步骤的处理时间在20至45分钟之间。
25.如权利要求19所述的基极制作方法,其特征在于,所述第二氨气快速加热制程的处理温度大约为600℃。
26.如权利要求19所述的制作基极方法,其特征在于,所述第二氨气快速加热制程的处理时间大约为20分钟。
27.如权利要求18所述的制作基极的方法,其特征在于,所述表面抑制层包括氮化钛化合物。
CN02156118A 2002-05-10 2002-12-03 基极制作方法 Pending CN1457086A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/141,870 2002-05-10
US10/141,870 US20030211682A1 (en) 2002-05-10 2002-05-10 Method for fabricating a gate electrode

Publications (1)

Publication Number Publication Date
CN1457086A true CN1457086A (zh) 2003-11-19

Family

ID=29399758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02156118A Pending CN1457086A (zh) 2002-05-10 2002-12-03 基极制作方法

Country Status (2)

Country Link
US (2) US20030211682A1 (zh)
CN (1) CN1457086A (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050151166A1 (en) * 2004-01-09 2005-07-14 Chun-Chieh Lin Metal contact structure and method of manufacture
US8178902B2 (en) 2004-06-17 2012-05-15 Infineon Technologies Ag CMOS transistor with dual high-k gate dielectric and method of manufacture thereof
US8399934B2 (en) * 2004-12-20 2013-03-19 Infineon Technologies Ag Transistor device
US20060267113A1 (en) * 2005-05-27 2006-11-30 Tobin Philip J Semiconductor device structure and method therefor
US20060289948A1 (en) * 2005-06-22 2006-12-28 International Business Machines Corporation Method to control flatband/threshold voltage in high-k metal gated stacks and structures thereof
US8188551B2 (en) 2005-09-30 2012-05-29 Infineon Technologies Ag Semiconductor devices and methods of manufacture thereof
US20100244206A1 (en) * 2009-03-31 2010-09-30 International Business Machines Corporation Method and structure for threshold voltage control and drive current improvement for high-k metal gate transistors
CN102563543B (zh) 2011-05-09 2015-01-07 深圳市绎立锐光科技开发有限公司 基于光波长转换产生高亮度单色光的方法及光源
US10688527B2 (en) 2011-09-22 2020-06-23 Delta Electronics, Inc. Phosphor device comprising plural phosphor agents for converting waveband light into plural color lights with different wavelength peaks
TWI448806B (zh) 2011-09-22 2014-08-11 Delta Electronics Inc 螢光劑裝置及其所適用之光源系統及投影設備
US10310363B2 (en) 2011-09-22 2019-06-04 Delta Electronics, Inc. Phosphor device with spectrum of converted light comprising at least a color light
CN103545184B (zh) * 2012-07-13 2017-03-01 中芯国际集成电路制造(上海)有限公司 金属栅极、其形成方法及cmos晶体管
CN103545258B (zh) * 2012-07-13 2017-03-01 中芯国际集成电路制造(上海)有限公司 Cmos晶体管及其形成方法
US9349599B1 (en) * 2014-11-10 2016-05-24 United Microelectronics Corp. Method for fabricating semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834353A (en) * 1997-10-20 1998-11-10 Texas Instruments-Acer Incorporated Method of making deep sub-micron meter MOSFET with a high permitivity gate dielectric
US6251761B1 (en) * 1998-11-24 2001-06-26 Texas Instruments Incorporated Process for polycrystalline silicon gates and high-K dielectric compatibility
US6114735A (en) * 1999-07-02 2000-09-05 Micron Technology, Inc. Field effect transistors and method of forming field effect transistors
US6642131B2 (en) * 2001-06-21 2003-11-04 Matsushita Electric Industrial Co., Ltd. Method of forming a silicon-containing metal-oxide gate dielectric by depositing a high dielectric constant film on a silicon substrate and diffusing silicon from the substrate into the high dielectric constant film

Also Published As

Publication number Publication date
US20030211682A1 (en) 2003-11-13
US6884671B2 (en) 2005-04-26
US20040048457A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP5492842B2 (ja) 半導体素子
US6448127B1 (en) Process for formation of ultra-thin base oxide in high k/oxide stack gate dielectrics of mosfets
JP4002868B2 (ja) デュアルゲート構造およびデュアルゲート構造を有する集積回路の製造方法
EP1028458A2 (en) Chemical vapor deposition of silicate high dielectric constant materials
CN1457086A (zh) 基极制作方法
JP2004134753A (ja) 多重の誘電率と多重の厚さを有するゲート絶縁体層を形成する方法
EP1435649A2 (en) Methods of forming a transistor gate
JPH08172138A (ja) 第1の酸化物層および第2の酸化物層を形成するための方法ならびに集積回路
CN1604278A (zh) 处理栅极结构的方法
CN103094325A (zh) 半导体器件及其制造方法
JP2000058832A (ja) オキシ窒化ジルコニウム及び/又はハフニウム・ゲ―ト誘電体
CN101192528A (zh) 栅极制作方法
KR100543207B1 (ko) 하드마스크를 이용한 반도체 소자의 게이트전극 제조 방법
JP3528151B2 (ja) 半導体素子のゲート酸化膜形成方法
JP2003133235A (ja) 半導体装置の製造方法
US20080135951A1 (en) Semiconductor Device and Method of Forming the Same
US20080026584A1 (en) LPCVD gate hard mask
JP4445484B2 (ja) 半導体装置及びその製造方法
JP4087998B2 (ja) 半導体装置及びその製造方法
CN100524772C (zh) 金属电容结构及其制造方法
KR100529873B1 (ko) 반도체소자의 제조방법
CN102237270B (zh) 金属栅极结构及其制造方法
CN100378922C (zh) 晶片的清洗方法以及栅极结构的制造方法
JPWO2004073072A1 (ja) Mis型半導体装置およびmis型半導体装置の製造方法
US20050272210A1 (en) Method for manufacturing gate electrode of semiconductor device using aluminium nitride film

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication