CN1447890A - 斯特林冷却装置、冷却库及冰箱 - Google Patents

斯特林冷却装置、冷却库及冰箱 Download PDF

Info

Publication number
CN1447890A
CN1447890A CN01814400A CN01814400A CN1447890A CN 1447890 A CN1447890 A CN 1447890A CN 01814400 A CN01814400 A CN 01814400A CN 01814400 A CN01814400 A CN 01814400A CN 1447890 A CN1447890 A CN 1447890A
Authority
CN
China
Prior art keywords
refrigerant
low temperature
refrigerator
temperature side
evaporimeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01814400A
Other languages
English (en)
Inventor
张恒良
陈炜
西本贵志
增田雅昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000256074A external-priority patent/JP2002071237A/ja
Priority claimed from JP2001014357A external-priority patent/JP2002221384A/ja
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN1447890A publication Critical patent/CN1447890A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/025Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures using primary and secondary refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

一种斯特林冷却装置,使冷媒循环于一冷媒循环管路之中,其方式为该冷媒接受源自斯特林冷冻机如潜热的冷量,然后,通过在一蒸发器中蒸发,利用伴随蒸发的气化热冷却一冰箱的内部。作为冷媒,最好使用如二氧化碳的自然冷媒。

Description

斯特林冷却装置、冷却库及冰箱
技术领域
本发明涉及使用斯特林冷冻机的冷却装置、冷却库及冰箱。
背景技术
普遍皆知,CFC及HCFC冷媒是广泛地在冷冻及空调系统中作工作流体用。但CFC冷媒是已完全禁用,HCFC冷媒的使用是受国际保护臭氧层条约的规范。换言之,最近发展的HFC冷媒不会破坏臭氧层,但它是强有力的加温物质,其加温系数高出二氧化碳数百倍至数千倍。因此,其也是成为排放法规的目标。
就此理由,上述的使用冷媒作工作流体的蒸发-压缩冷却循环的替代技术之一,扩大至对斯特林冷冻机的研究,该冷冻机是利用逆斯特林循环产生冷量。
一传统的斯特林冷却装置,是披露于美国专利5,927,079号,参照图7说明之。标号20是一斯特林冷冻机;标号21及22分别是一热量释放部分及一斯特林冷冻机20的散热器;标号23是一给水泵,供冷却水循环而冷却该热量释放部21;标号24是一冷媒冷却部分,供用得自斯特林冷冻机20的冷量冷却二次冷媒;标号25是冷媒管路,用于利用二次冷媒将冷量传送至一冷却库27中;及标号26是一冷媒泵,用于使二次冷媒经该冷媒管路25循环。
在该配置中,当斯特林冷冻机20、给水泵23,及冷媒泵26驱动后,传导至该斯特林冷冻机20的热量释放部分21的高温度废热量是藉水传送至该散热器22,在该处,热量被释放至该散热器的四周。同时,得自该斯特林冷冻机20的冷量是藉该二次冷媒通过该冷媒管路25的流通,传送至该冷却库27的内部。
传送该斯特林冷冻机20产生的冷量至该冷却库27是可利用如乙醇等无相变的二次冷媒的显热量达成。因此,该二次冷媒是在该冷媒冷却器部分24中冷却使其温度因而降低,相反地在该冷却库27中,其吸收热量使其温度上升。该冷媒,于通过该冷媒管路25使其温度上升,而后藉该冷媒泵26的作用流回该冷媒冷却器部分24。该循环重覆进行,结果,在该冷却库27内部冷却使之温度逐渐下降。
在该配置中,因冷量是利用该二次冷媒的显热量传送,故该冷媒管路25中产生温度差,进而导致热量传导效率不良。而且,作二次冷媒用的乙醇闪点低(约12.8℃)及挥发性高,需小心处理。进而,于温度-40至-50℃时,乙醇的粘度是百倍于水在正常温度时的粘度。此一现象会增加该冷媒泵26的负荷,因而降低该斯特林冷却装置的效率。
发明内容
本发明鉴于上述问题,其目的之一是提供一种斯特林冷却装置或冷却库,该冷却装置或冷却库针对使用HCFC及HFC冷媒的规限的同时利用潜热可改善冷却效率。本发明的另一目的在于提供一种大容量、低动力消耗的冰箱,该冰箱可提供良好的热交换效率。
为达成前述的目的,根据本发明,提供一种斯特林冷却装置,包括:一斯特林冷冻机,其具有一当该斯特林冷冻机操作时温度上升的高温部分,及一当该斯特林冷冻机操作时温度下降的低温部分;一蒸发器,该蒸发器可与该斯特林冷冻机一体成型或分开配置;及一冷媒循环管路,该管路是供传送冷的用,即通过一冷媒利用一冷媒循环装置循环于该低温部分与该蒸发器之间方式,传送该低温部分产生的冷至该蒸发器;其特征在于,该冷媒是一天然冷媒,该冷媒是靠该低温部分液化及靠该蒸发器蒸发。
在此构型中,当该斯特林冷冻机驱动时,该低温度部分产生的冷量藉流通于冷媒管路中的冷媒回收潜热。该冷媒而后在该蒸发器中蒸发,吸收气化热量,因而冷却四周的空气。
在此情况下,作为该天然冷媒,价廉及无害于环境与人类的二氧化碳最为适用。但与其他冷媒相比,二氧化碳是具有低临界点(约31℃)及高临界压力(约74巴)。因此,该冷媒循环装置需具有足够的高耐压性及密封性。
该冷媒是藉冷媒循环装置绕该冷媒循环管路循环,进而传送冷量至该蒸发器。如该冷媒未能藉该低温度部分彻底冷却至超冷状态,即该冷媒于通过该冷凝器后的温度是接近该冷媒的沸点时,当该冷媒接受该冷媒循环装置(例如,一泵)驱动之际,部分围绕该动力传送机构的冷媒由于温度升高产生部分冷媒气化的现象(以下该现象简称“气穴”)。
针对于此,在本发明中,该冷媒是藉该低温度部分冷却至一预定的超冷状态。因此,即使围绕该动力传送机构的部分冷媒温度会升高,但不会气化。以此方式,可防止发生气穴。
在根据本发明的斯特林冷却装置中,于该冷媒自该低温度部分流出后,但未流入该冷媒循环装置前的冷媒循环的管路中,可配置一气液分离器,以使该冷媒分离为气相及液相,且只允许液相冷媒供应至该冷媒循环装置中。
在该构型中,自低温度部分以气液混合流出的冷媒是藉气液分离器分离成二相,即气相与液相,而仅液相冷媒流入该冷媒循环装置。此有助于稳定该冷媒循环装置的操作。
在根据本发明斯特林冷却装置中,该冷媒循环装置可具有一气液分离器,该分离器是配置在该冷媒循环管路路径中,该冷媒在自该低温度部分流出后,但未流入该冷媒循环装置前流入该气液分离器中,该气液分离器是位于高于该蒸发器之处,及分离该冷媒为气相及液相,且只允许液相冷媒供应至该冷媒循环装置。在该气液分离器出口处的该液相冷媒的比重与在该蒸发器中冷媒的比重间之差被利用作为循环该冷媒用的动力源。
此构型中,当该斯特林冷冻机驱动,该低温度部分产生的冷量是藉在该冷媒循环管路中循环的冷媒,以潜热方式回收。而后,该冷媒在该蒸发器中蒸发,蒸发时是吸收热量,因而冷却周围的空气。在此情况下,即使无一循环泵,该冷媒可利用冷媒的气液不同相间的比重差,自然循环于该冷媒循环管路中。
当该斯特林冷却装置安装于一冰箱时,该斯特林冷冻机低温度部分产生的冷量是藉在该冷媒循环管路中循环的冷媒传送,这样,即有效地冷却该冰箱的内部。
根据本发明另一方面,提供一种冰箱,其安装有一斯特林冷却装置,其特征在于,包括:一低温侧蒸发器,用于向冰箱内提供冷量,该蒸发器配置在该斯特林冷却装置的作为冷源的低温部分下方;一管路,使一冷媒可于该低温侧蒸发器与该低温部分间循环;及该冷媒是藉吸收该低温部分的冷量的方式液化,而后,利用该低温部分与该低温侧蒸发器间的高度差流向该低温侧蒸发器,然后在该低温侧蒸发器中释放该冷量而气化,而后,以气化状态流回该低温部分。
根据本发明另一方面,提供一种冰箱,其安装有一斯特林冷却装置,其特征在于,包括:一高温侧冷凝器,用于将温热量向冰箱的室外释放,该高温侧冷凝器配置在高于该斯特林却装置的作为温热发生源的高温部分的位置;一使一冷媒可在该高温侧冷凝器与该高温部分间循环的管路;及该冷媒是藉该高温部分中的热量蒸发,而后,以蒸发状态流向该高温侧冷凝器,然后藉释放该热量于该高温侧冷凝器中而液化,而后利用该高温侧冷凝器与该高温部分间的高度差流回至该高温部分。
根据本发明另一方面,提供一种冰箱,其安装有一斯特林冷却装置,其特征在于,包括:一低温侧蒸发器,用于将冷量提供给冰箱室内,该蒸发器配置在该斯特林冷却装置的作为冷源的低温部分下方;一使一第一冷媒可在该低温侧蒸发器与该低温部分间循环的管路;该第一冷媒藉吸收该低温部分的冷量的方式液化的方式液化,而后,利用该低温部分与该低温侧蒸发器间的高度差流向该低温侧蒸发器,然后在该低温侧蒸发器中释放冷量而蒸发,而后,以蒸发状态流回该低温部分;一高温侧冷凝器,供释放热量于一冰箱的室外,该高温侧冷凝器配置在高于该斯特林冷却装置的作为温热源的高温部分的位置;一使一第二冷媒可在该高温侧冷凝器与该高温部分间循环的管路;以及该第二冷媒藉该高温部分中的热量蒸发,而后,以蒸发状态流向该高温侧冷凝器,然后藉在该高温侧冷凝器中释放温热量而液化,而后利用该高温侧冷凝器与该高温部分间的高度差流回至该高温部分。
在前述诸冰箱中,使用藉冷媒蒸发与液化而获得的潜热是比利用显热更具热量传导效率。因此,冷量是有效地传送至该冰箱内,或温热量是有效地释放至该冰箱之外。此有助于提高冰箱的热交换效率。
而且,该冷凝器及该蒸发器是可以设定成任意的尺寸。此可使尺寸受限于逆斯特林循环效率的低温度及高温度部分中的热量有效地传送至低热传导性的空气。此有助于实现大容量的冰箱。
而且,该冷媒是利用高度差循环,毋需使用供循环该冷媒用的专门外部动力。此有助于实现低动力消耗的冰箱。
根据本发明的冰箱中,可配置一气液分离器,此有助于增加该冷媒循环的流速。
在根据本发明的冰箱中,作为冷媒可以使用不易燃、无毒的天然冷媒的二氧化碳或水。此有助于实现对人类及全球环境有利的冰箱。
在根据本发明的冰箱中,该冰箱的高度是可有效地用于配置该低温度及高温度热交换器部分。而且,该冰箱的室内可分成作冷藏室用的上段部分,作保鲜室用之中段部分,及作冷冻室用的下段部分。此可有效地使用该冰箱中的冷空气。
附图说明
图1是显示本发明第一实例的斯特林冷却装置构型的简图;
图2是显示本发明第二实例的斯特林冷却装置构型的简图;
图3是显示本发明第三实例的斯特林冷却装置构型的简图;
图4是显示本发明第四实例的冰箱构型的简图;
图5是本发明第五实例的冰箱的冷却系统的概念图;
图6是说明本发明第六例的冰箱构型的简图;
图7是显示过去的斯特林冷却装置的一例的构型的简图。
具体实例方式
首先参照图1说明本发明的第一实施例。图1是显示该第一实施例的斯特林冷却装置(以下简称“冷冻系统”)构型的简图。在图1中,标号1是一斯特林冷冻机;标号2是一在该斯特林冷冻机1操作时使温度升高的高温度部分;标号3是一在该斯特林冷冻机1操作时产生冷的低温度部分;标号4是一将来自该高温度部分的热量释放至周围空间的高温侧热交换器。而且,接近该斯特林冷冻机1配置一冷却库10。在与冷却库10内部空间相通之一绝热壁的内部配置有一蒸发器7。
与该低温度部分3邻接处配置有一冷凝器5。该冷凝器5、一循环泵6以及该蒸发器7是彼此藉冷媒管8依序连接而构成一冷媒循环管路。在图中,箭头所示是该冷媒流动的方向。在本实施例中,是使用天然冷媒二氧化碳作为冷媒。
该斯特林冷冻机1将作为工作媒体用的氦气或氮气密封于一唧筒内,具有一动力活塞(图中未示出)及一置换器(未示)以平行于共有的一轴线方式配置。当用一线性马达(未示)驱动该动力活塞时,该动力活塞及该置换器是沿在该同一唧筒中的同一轴线以一预定的相位差往复运动。在本实施例中使用的该斯特林冷冻机1非仅限于前述的用一线性马达驱动一动力活塞型的一斯特林冷冻机,但可以是任何其他类型的斯特林冷冻机。
当该线性马达驱动时,以前述的原理,使废热量(以下简称“温热量”)传送至该斯特林冷冻机1的高温度部分2以升高该高温度部分2的温度,同时极低温的冷量在该低温度部分3中产生。并且,在与该高温度部分2接触配置的高温测的热交换器4中,该废热量藉空气或水作热媒体释放于该斯特林冷冻机1之外。
同时,该循环泵6也驱动,这样,该冷媒是以箭头所示方向循环于该冷媒循环管路中。因使用二氧化碳作为冷媒,故该循环泵6的设计可抵抗及密封至少达74巴的压力。在该冷媒循环管路中,该冷媒藉安装于该低温度部分3的冷凝器5凝缩,因此,自该低温度部分3产生的冷量是以潜热型式储存于该冷媒中。
在该冷凝器5内凝缩的低温的液态冷媒,藉该循环泵6的致动,经该冷媒管线8流入该蒸发器7。在该蒸发器7中,该冷媒蒸发。当该冷媒蒸发时,吸收周围的气化热,因而传送冷至该冷却库10内部。在该蒸发器7中气化的气态的冷媒经该冷媒管线8流回该冷凝器5。当该循环泵6一直驱动时,该循环是不断地重复。
如该冷媒在冷媒循环管路中循环时,该循环泵6中产生的如气泡的气穴现象是可腐蚀及退化该循环泵6及使该冷媒的流速不稳定。因此,欲防止气穴现象,适当设定该冷媒的充填量及质量流量极为重要,这样,一预定的超冷状态即可在该冷凝器5达成。特定言之,该冷媒的负荷量是决定于,在操作温度下,该冷媒能以液相完全充满该冷媒循环管路部分内部所需的总容量,即在起自于藉该冷凝器5完全液化该冷媒的点,经该循环泵6,而终止于该蒸发器7进口处的该冷媒管线8内的冷媒总量。
而且,根据该斯特林冷冻机1的冷冻能力控制该冷媒该质量流量,是可在藉该冷凝器5于操作温度下凝缩的该冷媒中达成所需的超冷状态。藉该超冷状态的保持可防止该冷媒蒸发所导致的气穴现象,即该冷媒在该循环泵6中蒸发所导致的气穴现象,即使流经自该冷凝器5出口至该循环泵6出口的冷媒管线8部分中的该冷媒因压力损失或热量吸收发生时也然,因而保持该冷媒的正常循环。
其次参照相关附图说明本发明的第二实施例。图2是示出本实施例斯特林冷却装置的构型的图。在图2中,与图1所示该第一实施例的冷却装置共用的构件标以相同标号,省略其详细说明。
在本实施例中,该冷媒循环管路是藉冷媒管8使一冷凝器5,一气液分离器9,一循环泵6,及一蒸发器7彼此连接而成。在图中,箭头所示是该冷媒流动的方向。在本实施例中,使用二氧化碳作为冷媒。而且,该气液分离器9在冷媒循环管路中配置在该冷凝器5之下游,其位置是低于该冷凝器5,但高于该循环泵6。
在图中,箭头所示是该冷媒流动的方向。在本实施例中,二氧化碳是作为冷媒之用。图2所示该斯特林冷冻机1的构型及操作是相同于前述第一实施例,故不重复说明。
当线性马达(未示)驱动时,以前述说明的原理,将废热量传送至该冷冻机1的高温度部分2,使之成为高温度,同时,低温冷却在该低温度部分3形成。而后,高温侧的热交换器4以接触该高温度部分2方式配置,废热量是利用空气或水作热量载体从高温度部分2向该斯特林冷冻器1之外释放。
同时,该循环泵也驱动,这样,该冷媒以箭头所示方向流通循环于该冷媒循环管路中。因使用二氧化碳作为冷媒,故该循环泵6的设计是可抵抗及密封至少达74巴的压力。在该冷媒循环管路中,该冷媒是藉安装于该低温度部分3的冷凝器5凝缩,因此,自该低温度部分3产生的冷主要是以潜热型式储存于该冷媒中。
在该冷凝器5中凝缩及处于低温的气液混合冷媒,流入配置在该冷凝器5下游的气液分离器9。在该气液分离器9中,该冷媒分离为气相与液相。分离后为液相的冷媒在该循环泵6中被压缩,而经该冷媒管线8流入该蒸发器7。在该蒸发器7中,该冷媒蒸发。当该冷媒蒸发时,吸收周围的热量,因而传送冷至该冷却库10内部。在该蒸发器7中气化及处于气态的该冷经该冷媒管线8流回该冷凝器5。当该循环泵6一直驱动时,该循环是不断地重复。
如该冷媒在冷媒循环管路中循环时,该循环泵6中产生的如气泡的气穴现象可腐蚀及退化该循环泵6及使该冷媒的流速不稳定。因此,在本实施例中,更特别考量该气液分离器9的位置,以防止气穴现象。
也就是说,该气液分离器9是在该冷媒循环管路中配置在该冷凝器5下游,其位置是低于该冷凝器5及高于该循环泵6。由此可使自该气液分离器9内液面至需以液相冷媒充填的该循环泵6进口的部分的冷媒管线8垂直配置。该垂直管路中冷媒的压力可防止该循环泵6的气穴现象,因而确保冷藏库的正常循环。
其次参照相关附图说明本发明的第三实施例。图3是说明本实施例斯特林冷却装置构型的简图。在图3中,与图1所示该第一实施例的冷却装置共用的构件标以相同标号,省略其详细说明。
在本实施例中,该冷媒循环管路是藉冷媒管8a及8b使一冷凝器5、一气液分离器9,及一蒸发器7顺序连接而成。在图中,箭头所示是该冷媒流动的方向。在本实施例中,使用二氧化碳作为冷媒。而且,该气液分离器9在冷媒循环管路中配置在该冷凝器5的下游,其位置是低于该冷凝器5,但高于该蒸发器7。
在图中,箭头所示是该冷媒流动的方向。在本实施例中,使用二氧化碳作为冷媒。图2所示该斯特林冷冻机1的构型及操作是与前述的第一实施例相同,故不重复说明。
当线性马达(未示)驱动时,以前述说明的原理,将废热量传送至该斯特林冷冻机1的高温度部分2,使成为高温度,同时,低温冷却在该低温度部分3形成。而后,在高温度侧的热交换器4以接触该高温度部分2方式配置,废热量是通过空气或水作热量载体自高温度部分2释放于该斯特林冷冻器1之外。
在该冷媒循环管路中,冷媒是藉安装于该低温度部分3的冷凝器5凝缩,因此,自该低温度部分3产生的冷主要是以潜热型式储存于该冷媒中。在该冷凝器5中凝缩及处于低温的气液混合冷媒流入配置在该冷凝器5下游的气液分离器9。在该气液分离器9中,该冷媒分离为气相与液相。
分离后为液相的冷媒经该冷媒管线8a流入该蒸发器7。在该蒸发器7中,该冷媒蒸发。当该冷媒蒸发时,吸收周围的热量,传送冷至该冷却库10内部。在该蒸发器7中气化及处于气态的该冷经该冷媒管线流回该冷凝器5。该循环是不断地重复。
在该构型中,该气液分离器9是在该冷媒循环管路中配置在该冷凝器5下游,其位置是低于该冷凝器5及高于该该蒸发器7。结果,已液化成为液相的该冷媒充填于连接至该蒸发7进口的管线8a中。另一方面,已气化成为气相的该冷媒在自该蒸发器7出口至该冷凝器5的冷媒管线8b内流通。因此,该冷媒是利用液相冷媒与气相冷媒冷媒间密度差自然地在该冷媒循环管路中循环。
以此方式,该构型可省略用于使该冷媒强制循环于冷媒循环管路所需的循环泵6。因此有助于成本的减少及提供节约能源的斯特林冷却装置。
其次参照相关附图说明本发明的第四实施例。图4是本实施例冰箱的截面图。应了解,虽以配置有前述第三实例的斯特林冷却装置的冰箱为例说明,本实施例是也适用用配置有如第一及第二实施例中的用循环泵使冷媒强制循环的斯特林冷却装置的冰箱。
如图4所示,在该冰箱17后上方,一斯特林冷冻机1是以水平放置方式配置,具有一冷凝器5安装于该斯特林冷冻机1的低温度部分3(未示)。而且,一气液分离器9是配置于低于该冷凝器5的位置。在另一方面,在该冰箱17后下方,配有一蒸发器7。该冷凝器5、该气液分离器9及该蒸发器7是藉冷媒管线8a及8b依序连接在一起而形成一冷媒循环管路。
经该气液分离器9分离为液相的冷媒是藉自由落下方式,流经自该气液分离器9出口连接至该蒸发器7的冷媒管线8a,进入该蒸发器7。因此,该液相冷媒是充满该冷媒管线8a。
在另一方面,在该蒸发器7中蒸发后的气相冷媒是流经自该蒸发器7出口连接至该冷凝器5进口的冷媒管线8b。
以此方式,作用在冷媒管线8a中液相冷媒的重力与作用在冷媒管线8b中气相冷媒的重力间的重力差所产生的压力致使在冷媒管线8a中的该冷媒自上向下流动而在冷媒管线8b的该冷媒自下向上流动。因此,即使没有如循环泵等的使冷媒强制循环的装置,该冷媒也可自然地循环于该冷媒循环管路中。
该冷媒藉该冷凝器5释放热量至该斯特林冷冻机1的高温度部分2(未示)而凝缩,及藉在冰箱17内部循环的冷空气吸收热量而蒸发。而后,藉该蒸发器7冷却的冷空气是用一冷空气循环风扇13吹入该冰箱,如箭头所示,因而使该冰箱内部冷却。以此方式,该斯特林冷冰机1产生的冷是藉该冰凝器5、该气液分离器9及该蒸发器7构成的冷媒循环管路传送至该冰箱17。
该冰箱17外部空气是藉一风扇12经一空气吸气导管14引入冰箱17及经一空气排放导管15排至该冰箱17之外。此时,藉空气的通过该空气吸气导管14及该空气排放导管15,使传至斯特林冷冻机1高温度部分2的废热量经高温侧热交换器4释放至冰箱17之外。
循环于冰箱内部的冷空气所含水分在蒸发器7表面上凝聚成水滴。水滴经一排放口16排放及收集于一漏盘(未示)中。其中收集之水从该漏盘定期取出并抛弃。
其次参照相关附图说明本发明的第五实施例。图5是本实施例冰箱的冷冻系统的概念图。在图5中,与图1所示的第一实施例的冷却装置共用的构件标以相同标号,故不重复说明。
该冷冻系统包括一具有一低温度部分3及一高温度部分2的斯特林冷冻机1,一低温侧热交换器部分30,及一高温侧热交换器部分31。该低温侧热交换器部分30是一循环管路,该管路包括:一以一铜管环绕低温度部分3构成的低温侧冷凝器32,一藉铜管33连接至低温侧冷凝器32并且其位置低于低温度部分3的低温侧气液分离器9,一藉铜管33连接该气液分离器9的底部并且其位置在更低处的低温侧蒸发器7,及一将蒸发器7与低温度冷凝器32连接在一起的铜管35。将作为冷媒的二氧化碳密封于该管路中。
在另一方面,高温侧热交换器部分31是一循环管路,该管路包括:一藉一铜管绕高温度部分2而成的高温侧蒸发器36,一藉一铜管37连接至蒸发器36并且配置于高温度部分2上方的位置的高温侧冷凝器38,一藉一铜管39连接至高温侧冷凝器38并且配置在该高温侧冷凝器38下方,但高于该高温度部分2的气液分离器40,及一使气液分离器40底部与蒸发器36连接在一起的铜管41。水作为冷媒用而密封于该管路中。在图中,箭头所示是该冷媒流动的方向。
其次说明低温侧热交换器部分30的操作。低温度部分3产生的冷传送至该低温侧冷凝器32,在该处,大部分冷媒液化。该部分为气态及部分为液态的冷媒是利用低温侧冷凝器32与气液分离器9间的高度差,经该铜管33流入低温度侧的气液分离器9。在该气液分离器9中,将液相冷媒收集于其中。而后,液相冷媒自气液分离器9底部经铜管34流入低温度侧的蒸发器7中。在该低温度侧的蒸发器7中,液相冷媒藉低温度侧的蒸发器7外壳表面,以所载的冷与冰箱内部的空气的热量进行交换。以此方式,在该液相冷媒蒸发时,在该冰箱中产生冷空气。
现已气化的冷媒,利用低温度侧的蒸发器7与低温侧冷凝器32间的高度差及冷媒的气相与液相比重差异所形成的压力,经铜管35流入低温度侧冷凝器32。藉此重复上述动作,即使不用迫使该冷媒循环的外力,也可传送冷至冰箱之内,及因而实现低动力耗用的冰箱。
这样,利用经蒸发与液化该冷媒所得的潜热比利用显热能得更好的热量传送效率,可使低温度部分3的冷有效地传送至低温侧蒸发器7,及因而增强一冰箱的热交换效率。而且,低温侧冷凝器32及低温侧蒸发器7的大小可以任意设定。此可使尺寸受限于逆斯特林循环效率考量的低温度部分3中的冷有效传送至冰箱内热传导性低的空气,有助于实现大容量的冰箱。而且,该冷媒是使用二氧化碳为冷媒,该二氧化碳是不易燃,无毒的天然冷媒。此有助于实现对人类及全球环境有利的冰箱。
其次,说明高温侧热交换器部分31的操作。在该高温度部分2产生的热量传送至高温侧蒸发器36,在该处,使该冷媒气化。而后,该成为气态的冷媒利用该蒸发器36与该高温侧冷凝器38间的高度差经该铜管37流入该高温侧冷凝器38。在该高温侧冷凝器38中,该冷媒液化,即以所载热量藉该高温侧冷凝器38外壳表面与该冰箱外的空气交换而液化。
现在,部分为液态及部分为气态的冷媒,经该铜管39自该高温侧冷凝器38底部流至该高温度侧的气液分离器40,在该处,该冷媒以液相收集。而后,该液相冷媒利用高温侧度气液分离器40与蒸发器36间的高度差,经铜管41流入蒸发器36。藉此重复该循环,即使不用迫使该冷媒循环的外力,也可释放热量至冰箱之外,从而实现低动力耗用的冰箱。
这样,利用经液化与蒸发冷媒所得的潜热是比利用显热能得更好的热量传送效率。可使该高温度部分2的热量有效地传送至高温侧冷凝器38,从而增强冰箱的热交换效率。而且,高温侧蒸发器36及高温侧冷凝器38的尺寸可以任意设定。此可使尺寸受限于逆斯特林循环效率考量的低温度部分2中的热量有效传送至冰箱外部的热传导性低的空气。而且,冷媒是使用二氧化碳作为冷媒,该二氧化碳是不易燃、无毒的天然冷媒。此是有助于实现对人类及全球环境有利的冰箱。
另外,低温侧气液分离器9及高温侧气液分离器40的配置目的在于促进冷媒循环的速度,但也可省略。该冷媒循环速度是藉该低温度部分3与该低温侧蒸发器7间的高度差及该高温度部分2与高温侧冷凝器38间的高度差的最佳化而决定。
该低温侧蒸发器7及该高温侧冷凝器38各呈简单式的箱形。但例如可使之呈一具有鳍片以增加表面面积的管形及因而增强热交换率。
该低温侧冷凝器32及该高温侧蒸发器36可分别以可装拆的方式与该低温度部分3及该高温度部分2接触,或铜焊于其上,或与之成整体成型。另一种方式是该低温度部分3或该高温度部分2呈环形,其中具有一空腔,并使冷媒通过该空腔,这样,即可同时分别作一低温侧冷凝器或一高温侧冷凝器之用。
前述的具有一低温侧热交换器部分30或一高温侧热交换器部分31的冷冻系统是一多用途的冷冻系统,可广泛地应用于多个产业领域,如食物配送、环境测试、医疗、生物技术,及半导体制造,以及家庭用机器及类似者。
其次参照相关附图说明本发明的第六实施例。图6是说明本实例冰箱的简图。应注意,在下述说明中,一内装前述第五实施例的斯特林冷却装置的冰箱是作范例之用。
在该冰箱42的背部中央,配置斯特林冷冻机1;该冰箱42的背部下端,配置低温侧热交换器部分30;而该冰箱42的背部上端,配置高温侧热交换器部分31。该低温侧蒸发器7是配置在冰箱42的室内的一冷空气导管43中,而该高温侧冷凝器38是配置在该冰箱42的室内的一空气排放导管15中。该冰箱42的室内区分为上段的冷藏室44、中段的保鲜室45。及下段的冷冻室46。该冷气导管43与冷藏室44、保鲜室45,及冷冻室46相通。该冷藏室44及该保鲜室45彼此相通。
当斯特林冷冻机1如前述起动后,该高温度部分2所产生的热量经高温侧冷凝器38释放于环绕的空气中。这时,经一风扇12将空气排放导管15中的暖空气排放至冰箱42之外,同时吸入该冰箱42外部的空气,以促进热交换。该风扇12可以省略,该冰箱42的空气排放导管15中的空气与外界空气可自然对流也宜。
在另一方面,如前述,低温度部分3产生的冷是经该低温侧蒸发器7与在冷空气导管43中的空气进行热交换。这时,通过一冷空气循环风扇13将在该冷空气导管43中的冷空气吹送进入该冷冻室46之中,同时将部分该冷空气吹送进入冷藏室44之中。而后,进入冷藏室44的冷空气是流入保鲜室45,然后,流经冷气导管43返回至该蒸发器7的附近处。
当低温侧蒸发器7除霜后,应排放的水是经配置在该冰箱42底端部分的排水口排放至该冰箱42的室外。
以此方式,通过安装该第五实例的冷冻系统于一大型水平式冰箱内,可有效地利用该冰箱的高度,以配置低温侧热交换器部分30及高温侧热交换器部分31。而且,藉该冷冻室46非常接近该低温侧蒸发器7的配置及使该保鲜室45在该冷藏室44下方的配置,可有效地运用该冰箱42的室中的冷空气。
工业应用性说明如下。
如前述,根据本发明,使用藉冷媒蒸发与液化而获得的潜热是比利用显热更具热量传导效率。因此,冷是有效地传送至该冷却库或冰箱内,或热量是有效地释放至该冰箱之外。此有助于提高冰箱的热交换效率。而且,该冷凝器及该蒸发器是可以设定成任意的大小。此可使尺寸受限于逆斯特林循环效率的低温度及高温度部分中的热量有效地传送至低热传导性的空气。有助于实现大容量的冰箱。而且,该冷媒是利用高度差循环,而不需要使用特别供该冷媒循环所准备的外部动力。此有助于实现低动力耗用的冰箱。而且,设有气液分离器可确保冷媒的循环稳定,而不需要迫使该冷媒循环的装置。此有助于减低成本及节约能源。尚且,利用不易燃、无毒的天然冷媒,二氧化碳或水作为冷媒,有助于实现对人类及全球环境有利的冰箱。而且,通过使冰箱分成作冷藏室用的上段部分,作保鲜室用的中段部分,及作冷冻室用的下段部分,可有效地使用该冰箱中的冷空气。而且,与采用一压缩器的传统蒸发-压缩型冷却装置相比较,该斯特林冷却装置的装用有助于实现生产噪音更低、构型更简单,及节省空间的冷却库。

Claims (16)

1.一种斯特林冷却装置,包括:
一斯特林冷冻机,其具有一当该斯特林冷冻机操作时温度上升的高温部分,及一当该斯特林冷冻机操作时温度下降的低温部分;
一蒸发器,该蒸发器可与该斯特林冷冻机一体成型或分开配置;及
一冷媒循环管路,该管路是供传送冷的用,即通过一冷媒利用一冷媒循环装置循环于该低温部分与该蒸发器之间方式,传送该低温部分产生的冷至该蒸发器;
其特征在于,该冷媒是一天然冷媒,该冷媒是靠该低温部分液化及靠该蒸发器蒸发。
2.根据权利要求1的斯特林冷却装置,其特征在于,该天然冷媒是二氧化碳。
3.根据权利要求1的斯特林冷却装置,其特征在于,该冷媒是藉该低温部分冷却至一预定超冷状态。
4.根据权利要求1的斯特林冷却装置,其特征在于,设置有一气液分离器,配置在该循环管路中,用于使该冷媒在从该低温部分离开后,至进入该冷媒循环装置之前,分离成一气相冷媒及一液相冷媒,并且仅允许液相冷媒供应至该冷媒循环装置中。
5.根据权利要求1的斯特林冷却装置,其特征在于,该冷媒循环装置包括:一气液分离器,该气液分离器配置在该冷媒循环管路中,位于该冷媒于离开该低温部分后,且未进入该冷媒循环装置之前,并且该气液分离器是位于该蒸发器上方,用于分离该冷媒成一气相冷媒及一液相冷媒并且仅允许液相冷媒供应至该冷媒循环装置;及
一动力源,该动力源利用在该气液分离器出口处的液相冷媒与在该蒸发器中的冷媒间的比重差来使该冷媒循环。
6.一种冰箱,其安装有一根据权利要求1的斯特林冷却装置。
7.一种冰箱,其安装有一斯特林冷却装置,其特征在于,包括:
一低温侧蒸发器,用于向冰箱内提供冷量,该蒸发器配置在该斯特林冷却装置的作为冷源的低温部分下方;
一管路,使一冷媒可于该低温侧蒸发器与该低温部分间循环;及
该冷媒是藉吸收该低温部分的冷量的方式液化,而后,利用该低温部分与该低温侧蒸发器间的高度差流向该低温侧蒸发器,然后在该低温侧蒸发器中释放该冷量而气化,而后,以气化状态流回该低温部分。
8.根据权利要求7的冰箱,其特征在于,该冷媒是二氧化碳。
9.一种冰箱,其安装有一斯特林冷却装置,其特征在于,包括:
一高温侧冷凝器,用于将温热量向冰箱的室外释放,该高温侧冷凝器配置在高于该斯特林却装置的作为温热发生源的高温部分的位置;
一使一冷媒可在该高温侧冷凝器与该高温部分间循环的管路;及
该冷媒是藉该高温部分中的热量蒸发,而后,以蒸发状态流向该高温侧冷凝器,然后藉释放该热量于该高温侧冷凝器中而液化,而后利用该高温侧冷凝器与该高温部分间的高度差流回至该高温部分。
10.根据权利要求9的冰箱,其特征在于,该冷媒是水。
11.一种冰箱,其安装有一斯特林冷却装置,其特征在于,包括:
一低温侧蒸发器,用于将冷量提供给冰箱室内,该蒸发器配置在该斯特林冷却装置的作为冷源的低温部分下方;
一使一第一冷媒可在该低温侧蒸发器与该低温部分间循环的管路;
该第一冷媒藉吸收该低温部分的冷量的方式液化,而后,利用该低温部分与该低温侧蒸发器间的高度差流向该低温侧蒸发器,然后在该低温侧蒸发器中释放冷量而蒸发,而后,以蒸发状态流回该低温部分;
一高温侧冷凝器,供释放热量于一冰箱的室外,该高温侧冷凝器配置在高于该斯特林冷却装置的作为温热源的高温部分的位置;
一使一第二冷媒可在该高温侧冷凝器与该高温部分间循环的管路;以及
该第二冷媒藉该高温部分中的热量蒸发,而后,以蒸发状态流向该高温侧冷凝器,然后藉在该高温侧冷凝器中释放温热量而液化,而后利用该高温侧冷凝器与该高温部分间的高度差流回至该高温部分。
12.根据权利要求11的冰箱,其特征在于,该第一冷媒是二氧化碳,而该第二冷媒是水。
13.根据权利要求7或11的冰箱,其特征在于,在该冷媒自该低温部分流向该低温侧蒸发器的管路中,配置有用于使该气化冷媒与该液化冷媒分离的低温侧气液分离器。
14.根据权利要求9或11的冰箱,其特征在于,在该冷媒自该高温侧冷凝器流向该高温部分的管路上,配置有用于使该气化冷媒与该液化冷媒分离的高温侧气液分离器。
15.根据权利要求7或9或11的冰箱,其特征在于,该冰箱的室内分成作冷藏室用的上段部分、作保鲜室用的中段部分,及作冷冻室用的下段部分。
16.根据权利要求7或9或11的冰箱,其特征在于,
该冰箱的室内分成作冷藏室用的上段部分、作保鲜室用的中段部分,及作冷冻用的下段部分;及
其中该冰箱引入一冷空气,该冷空气首先进入该冷冻室与该冷藏室,而后该冷藏室的冷空气再引入该保鲜室。
CN01814400A 2000-08-25 2001-08-13 斯特林冷却装置、冷却库及冰箱 Pending CN1447890A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000256074A JP2002071237A (ja) 2000-08-25 2000-08-25 スターリング冷却装置及び冷却庫
JP256074/2000 2000-08-25
JP2001014357A JP2002221384A (ja) 2001-01-23 2001-01-23 冷蔵庫
JP14357/2001 2001-01-23

Publications (1)

Publication Number Publication Date
CN1447890A true CN1447890A (zh) 2003-10-08

Family

ID=26598508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN01814400A Pending CN1447890A (zh) 2000-08-25 2001-08-13 斯特林冷却装置、冷却库及冰箱

Country Status (8)

Country Link
EP (1) EP1312875A4 (zh)
KR (1) KR20030029843A (zh)
CN (1) CN1447890A (zh)
BR (1) BR0113516A (zh)
CA (1) CA2420028A1 (zh)
RU (1) RU2253075C2 (zh)
TW (1) TW514716B (zh)
WO (1) WO2002016836A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104913541A (zh) * 2015-03-09 2015-09-16 浙江大学 斯特林循环和蒸气压缩制冷循环直接耦合的制冷机及方法
CN105546877A (zh) * 2016-01-11 2016-05-04 浙江理工大学 重力场低品位热源转换装置及方法
CN115111843A (zh) * 2022-06-27 2022-09-27 西安交通大学 耦合多温区制冷系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6550255B2 (en) * 2001-03-21 2003-04-22 The Coca-Cola Company Stirling refrigeration system with a thermosiphon heat exchanger
US7487643B2 (en) 2003-07-23 2009-02-10 Sharp Kabushiki Kaisha Loop type thermo syphone, heat radiation system, heat exchange system, and stirling cooling chamber
WO2005024331A1 (ja) * 2003-09-02 2005-03-17 Sharp Kabushiki Kaisha ループ型サーモサイフォン、スターリング冷却庫ならびに冷却装置
ATE369557T1 (de) * 2005-02-25 2007-08-15 Max Planck Gesellschaft Gaschromatographievorrichtung
KR100680143B1 (ko) * 2005-07-19 2007-02-08 쌍용자동차 주식회사 자동차용 에어클리너의 필터구조
KR101968172B1 (ko) 2018-06-28 2019-08-19 (주)팀코스파 퀀텀 에너지를 방사하는 과냉각고
CN116928942A (zh) * 2019-12-27 2023-10-24 青岛海尔智能技术研发有限公司 用于冷藏冷冻装置的控制方法及冷藏冷冻装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL97513C (zh) * 1953-07-02
NL82195C (zh) * 1953-11-05
JPS59165951A (ja) * 1983-03-08 1984-09-19 Aisin Seiki Co Ltd リニアモ−タ−カ−のためのスタ−リングサイクル冷凍機用の冷却装置
JPH0623638B2 (ja) * 1986-09-27 1994-03-30 株式会社東芝 冷蔵庫
EP0454491A3 (en) * 1990-04-26 1992-03-11 Forma Scientific, Inc. Laboratory freezer applicance
US5094083A (en) * 1990-08-14 1992-03-10 Horn Stuart B Stirling cycle air conditioning system
JPH07180921A (ja) * 1993-12-24 1995-07-18 Toshiba Corp スターリング冷蔵庫
JP3281762B2 (ja) * 1995-05-25 2002-05-13 三洋電機株式会社 スタ−リング冷凍装置
US5735131A (en) * 1996-03-26 1998-04-07 Lambright, Jr.; Harley Supplemental refrigerated element
JPH10148411A (ja) * 1996-11-15 1998-06-02 Sanyo Electric Co Ltd スターリング冷凍装置
ATE356961T1 (de) * 1998-11-02 2007-04-15 Sanyo Electric Co Stirling-vorrichtung
JP3629994B2 (ja) * 1998-12-24 2005-03-16 シャープ株式会社 冷凍冷蔵庫
JP3607837B2 (ja) * 1999-07-15 2005-01-05 グローバル クーリング ビー ヴイ 冷蔵庫
JP2002013885A (ja) * 2000-06-28 2002-01-18 Twinbird Corp 冷凍機用サーモサイフォン

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104913541A (zh) * 2015-03-09 2015-09-16 浙江大学 斯特林循环和蒸气压缩制冷循环直接耦合的制冷机及方法
CN104913541B (zh) * 2015-03-09 2017-07-28 浙江大学 斯特林循环和蒸气压缩制冷循环直接耦合的制冷机及方法
CN105546877A (zh) * 2016-01-11 2016-05-04 浙江理工大学 重力场低品位热源转换装置及方法
CN115111843A (zh) * 2022-06-27 2022-09-27 西安交通大学 耦合多温区制冷系统

Also Published As

Publication number Publication date
EP1312875A1 (en) 2003-05-21
WO2002016836A1 (fr) 2002-02-28
EP1312875A4 (en) 2004-05-26
RU2253075C2 (ru) 2005-05-27
TW514716B (en) 2002-12-21
CA2420028A1 (en) 2003-02-18
KR20030029843A (ko) 2003-04-16
BR0113516A (pt) 2003-07-29

Similar Documents

Publication Publication Date Title
CN1317538C (zh) 冰箱
CN1239866C (zh) 除霜器及使用这种除霜器的冰箱
CN1873354A (zh) 冰箱
CN1122794C (zh) 冷冻空调装置
CN1920448A (zh) 具有蒸气注射系统的压缩机
WO2005008160A1 (ja) ループ型サーモサイフォン、放熱システム、熱交換システムおよびスターリング冷却庫
CN1447890A (zh) 斯特林冷却装置、冷却库及冰箱
CN1498333A (zh) 带有滑出式斯特林制冷组件的售卖机
CN104344596B (zh) 设备和方法
CN1809720A (zh) 冰箱
CN1757696A (zh) 一种水合物浆及其制备方法
CN101280974B (zh) 致冷剂循环装置
US20050016184A1 (en) Stirling cooling device, cooling chamber, and refrigerator
JP3910096B2 (ja) スターリング機関用放熱システムおよびそれを備えた冷却庫
KR100666920B1 (ko) 냉동장치의 액열기
CN104697247A (zh) 一种壳管式多功能换热器
JP3751613B2 (ja) 熱交換システムおよびスターリング冷却庫
MXPA05000727A (es) Sistema de refrigeracion.
RU2003107928A (ru) Охладительная установка стирлинга, охладитель и холодильник
JP2024536336A (ja) 温度制御される空間を温度制御するための方法および装置
CN215675977U (zh) 一种基于气体膨胀技术的深冷医药柜
CN104075474A (zh) 涡轮制冷机
CN1554920A (zh) 热管导冷装置及带有该装置的蓄冷体和冷库
CN200952790Y (zh) 风冷吸收式空调机组
KR200336482Y1 (ko) 냉동장치의 액열기

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1059465

Country of ref document: HK

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1059465

Country of ref document: HK