CN1423151A - 光移动装置和光显示系统 - Google Patents

光移动装置和光显示系统 Download PDF

Info

Publication number
CN1423151A
CN1423151A CN02152807A CN02152807A CN1423151A CN 1423151 A CN1423151 A CN 1423151A CN 02152807 A CN02152807 A CN 02152807A CN 02152807 A CN02152807 A CN 02152807A CN 1423151 A CN1423151 A CN 1423151A
Authority
CN
China
Prior art keywords
liquid crystal
light
crystal layer
displacement device
crystal cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02152807A
Other languages
English (en)
Other versions
CN1201180C (zh
Inventor
久米康仁
栗原直
中西浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002155106A external-priority patent/JP2003344871A/ja
Priority claimed from JP2002275922A external-priority patent/JP3973524B2/ja
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN1423151A publication Critical patent/CN1423151A/zh
Application granted granted Critical
Publication of CN1201180C publication Critical patent/CN1201180C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7441Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of liquid crystal cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7441Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of liquid crystal cells
    • H04N2005/745Control circuits therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7475Constructional details of television projection apparatus
    • H04N5/7491Constructional details of television projection apparatus of head mounted projectors

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)

Abstract

一种光移装置包括至少一个移动部分,该移动部分周期性转移入射的线偏振光的光轴。移动部分包括第一和第二液晶单元及双折射元件。每个液晶单元响应施加到液晶单元上的电压,将入射光的偏振方向从第一方向改变到第二方向,或反之亦然。第一和第二方向相互垂直。双折射元件随着入射到其上的光的偏振方向改变其折射系数。第一和第二单元及双折射元件的排列使得入射光按这种顺序透过。第二液晶单元的液晶层补偿入射的线偏振光透过第一液晶单元的液晶层时产生的偏振扰动。

Description

光移动装置和光显示系统
技术领域
本发明涉及一种光移动装置,这种装置可以用于将出现于光输出信号所对准的位置物理上移动、转移或改变到头戴式显示器(HMD)或投射型显示系统(即,投影仪)中的另外位置,本发明也涉及包括这种光移动装置的光显示系统。
背景技术
液晶显示器(LCD)包括一对衬底和夹在衬底之间的液晶层。多个像素电极在两衬底之一上有规则地排列成列和行(即,成矩阵)。代表图像信号的驱动电压施加到每个像素电极上。液晶层的光学性质按照所施加的该电压逐像素地变化。因此,图像,字符等可以在LCD上显示。
为衬底上的各像素电极施加不同驱动电压的方法独立地包括“简单矩阵寻址”方法和“有源矩阵寻址”方法。
在有源矩阵寻址方法中,为衬底上各像素电极提供了多个开关元件。其上包括这些开关元件的衬底通常称为“有源矩阵衬底”。在有源矩阵衬底上,每个上述开关元件选择性地接通或关断以将其相关的像素电极和其相关的信号线电学上连接或断开。金属-绝缘体-金属(MIM)元件或薄膜晶体管(TFT)可以有效地用作这种开关元件。
在其关断状态,开关元件需要具有尽可能高的电阻。但是,如果处于关断状态的开关元件暴露在强辐射中,那么开关元件的电阻减小而产生漏电流。结果,已存储在其相关像素电极中的电荷部分丢失。并且,如果是那样,适当电平的驱动电压不能施加到像素电极上。当然,LCD不能如预期的那样进行显示操作。例如,即使在其黑像显示模式,LCD无意中释放一些光来减小其合成的对比度系数。
透射型LCD中,在有源衬底上或在通过液晶层与有源矩阵衬底相对的反衬底上提供一种不透明层来解决这些问题,这种不透明的层通常称为“黑色基质(black matrix)”。但是,提供了黑色基质时,像素的孔径比(即,总的透射面积与整个显示面积之比)反而减小。为了通过减小黑色基质的总面积以充分地增加精度,开关元件或互连线的尺寸须减小。但是,如果是那样,驱动力可能减小或写入电阻可能增大。此外,考虑到LCD实际制造工艺中的各种限制,目前进一步减小开关元件或互连线的尺寸是困难的。
在美国专利号4,984,091中公开了一种为了增加屏幕分辨率通过利用黑色基质上的非显示区将图像光学上移动或转移一段大约等于像素间距的距离的技术。根据这种技术,当像素移动时,显示的图像也被移动到相应于所移动的像素的位置。因此,像素的表观数量增加,所以,即使是低分辨率显示板也可以显示分辨率与高分辨显示板可以比拟的图像。
美国专利号6,061,103中公开了一种用光移动装置将代表三原色红(R),绿(G)和蓝(B)(在此处将分别称为“R,G和B像素”)的三种像素中的每一组依次进行光学转移,并显示由三类移动的像素所代表的三种图像成分组成的叠加的合成图像的方法。在该方法中,用时间顺序技术将R,G和B像素显示在对应于一个像素的区域。因此,在不降低显示板上像素间距的条件下,表观分辨率可提高到原来的三倍。
美国专利号6,061,103也公开了一种作为用于光学上转移图像的装置的光移动装置,该装置包括液晶盒和双折射元件的组合。双折射元件用将入射光折射到依赖于入射光偏振方向的不同方向上的材料制成。因此,如果液晶盒已经改变了将进入双折射元件的光的偏振方向,那么离开双折射元件的光的光轴(即光的传播方向)可被移动。
图1示出一种已知的光移动装置。如图1所示,这种光移动装置包括在入射光传播方向顺序排列的液晶盒7和双折射元件11。液晶盒7可以从使入射的线偏振光的电矢量平面(在此指“偏振平面”)旋转90的状态切换到原样透过入射的线偏振光而完全不旋转其偏振面的状态,或反之亦然。双折射元件11可以按照入射的线偏振光的偏振平面的方向移动入射光。
在图1所示的实例中,将进入液晶盒7的光的电矢量的方向(即,偏振方向)是从纸面向外。液晶盒7使用了一种具有正折射系数各向异性为Δε的扭曲向列模式的液晶材料(在此指“TN模式液晶材料”)。因此,当电压未施加到液晶盒7的液晶层上时(该状态指“电压-关断状态”),其液晶分子扭曲了90度。由于液晶分子的旋光性质,入射光的偏振平面旋转了90度。另一方面,当等于或高于预定电平的电压施加到液晶盒7的液晶层上时(该状态指“电压-接通状态”),液晶分子的取向方向沿所产生的电场方向对准。因此,入射光从液晶盒7出射时,液晶分子没有旋转其偏振平面。也就是说,出射光的偏振平面仍然与纸面垂直。那么,双折射元件11直接透过偏振平面与纸面垂直的光,但是对于偏振平面与纸面平行的光进行折射,或移动。
在图1所示的光移动装置中,依赖于施加到其上的电压的大小,液晶盒7需要适当地并快速地从通过或透过第一线偏振光的状态切换到允许偏振平面与第一线偏振光的偏振平面垂直的第二线偏振光通过的状态,或反之亦然。
如上所述,由TN模式液晶材料制成的液晶盒中,当电压未施加在TN模式的液晶材料上时,入射的线偏振光从液晶盒出射时仍为线偏振光,但其偏振平面已经旋转了90度。但是,当电压施加在TN模式液晶材料上时,液晶分子的取向方向快速改变来响应所产生的电场。结果,液晶层很快进入不改变入射光偏振方向的状态。如果停止已经施加在TN模式液晶材料上的电压,液晶分子恢复其初始态(即,已弛豫),但响应速度不那么快。
因此,依赖于施加到液晶层上的电压是从低电平(通常为0V)增加到高电平(通常为10V)还是从高电平降低到低电平,液晶分子的取向方向以不同的速度改变。也就是说,液晶分子在这两种情形下具有不同的响应速度。为了估计这种响应速度,一对偏光器可以放置在液晶层的前面和后面,并使它们的轴相互垂直,液晶层的透射率随时间的变化可被测量。图2的曲线说明当施加在液晶层上的电压由低电平增加到高电平预定的时间后,如果施加在那里的电压由高电平降低到低电平,液晶层的透射率如何变化。此处液晶层的透射率由其最大值降到0所需的时间被称为“液晶下降响应时间τd”,而透射率由0增加到最大值所需的时间称为“液晶上升响应时间τr”。如图2所示,液晶上升响应时间τr相对比较短,但液晶下降响应时间τd相对较长。如果液晶下降响应时间τd较长,那时图像不能与显示板上显示的图像成分的切换同步地移动。在完全描述该问题之前,将描述显示板的图像切换速率。
通常,显示板用隔行扫描或逐行扫描技术驱动。在隔行扫描中,奇数标记和偶数标记的行按照逐域(field)的方式交替选择。也就是说,如果选择了奇数标记的行作为图像的一域(或子帧),那么选择偶数标记的行作为图像的下一域。这样,将通过奇数标记域与偶数标记域的相互结合而获得的一幅完整图像(或图片)呈现在显示器上。按照这种方法,每个域通常选为约16.6ms(即,刷新速率约为60Hz)。另一方面在逐行扫描中,无论所选的行是奇数标记的还是偶数标记的,图像的多个行依次按顺序选择。与隔行扫描方法一样,每个域通常也选为约16.6ms(即,刷新速率约为60Hz)。无论采用的扫描方法是隔行的还是逐行的,此处所用的“一个域周期”指图像的一个垂直同步周期。在LCD中,一个域周期相应于包括空白间隔的扫描周期。
按照以上确认的美国专利号6,061,103公开的方法,对于R,G和B像素移动到的三个位置,一个域周期分解为三个子域周期,一幅图像的三个不同成分(此处简单指“图像子域”或“子域”)从而在那三个子域周期中按顺序出现在显示板上。这样,一个子域周期约是5ms。因此,光移动装置需要在约5ms的短时间间隔中光学上转移这些图像成分(或子域)。此外,用光移动装置对子域的移动应该与显示板上相同子域的切换同时(或同步)。因此,一旦显示板上的子域被切换,光移动装置必须改变其状态以响应施加在液晶盒上的电压。
然而实际上,对于目前能获得的任何液晶盒足够快地改变其状态以响应施加在其上的电压是困难的。用TN模式液晶材料制成的液晶盒中,例如,如图2所示,其液晶上升响应时间τr相对比较短,但其液晶下降响应时间τd通常约高于为10+ms,比约5ms的子域周期长的多。
响应时间的这种不同是由以下原因引起的。具体地,如图2中所示,施加于液晶层的电压引起透射率的增加使得在施加外能(即,电压)时液晶分子的取向方向沿一个方向对准。另一方面,停止施加于液晶层的电压引起透射率的减小使得液晶分子自己恢复到其原始取向状态。
如果所采用的液晶材料具有这样长的下降响应时间τd,那么也就不能适当地切换偏振方向。该问题将参照图1来进一步描述。如图1所示,如果施加到液晶盒7的液晶层上的电压是从接通态转变到关断态,那么从液晶盒7出射的光的偏振平面旋转了90度。结果,离开双折射元件11的光的光轴从位置B移动到位置A。这样,如果液晶材料的下降响应时间τd太长,那么在液晶分子下降时线偏振光变成椭圆偏振光。因此,相同的图像成分在位置A和B都显示,在该间隔中将出现鬼像。结果图像的分辨率降低。
同样,如果液晶材料的上升响应时间τr和下降响应时间τd之间存在较大的差别,那么图像从位置光A向位置B的光移动过程中产生的鬼像强度变得与从位置B到位置A的移动中产生的不同。结果,产生了明显感觉到的闪烁。
日本公开出版号1-191123中公开了一种包括右旋和左旋TN模式液晶材料组合的光快门。这种光快门可以相对高的速率激活,但不能用作光移动装置。原因如下。光移动装置需要将多个图像子域之一与显示板上那些子域的切换同步地依次移动,而光快门不能连续显示子域,因为在其工作中光快门暂时机械地阻挡了光路。也就是说,在其子域周期中,光快门暂时地中止那些子域之一的显示。
发明内容
为了解决上述问题,本发明的优选实施例提供了一种光移动装置和包括这种光移动装置的光显示系统,即使液晶材料对取消其上施加电压的响应不是很快,该光移动装置可以基本上消除鬼像。
根据本发明的优选实施例的一种光移动置装优选地包括至少一个移动部分,该移动部分周期性地转移照射到其上的入射线偏振光的光轴。该移动部分优选地包括第一液晶盒,第二液晶盒和双折射元件。第一液晶盒优选地将入射光的偏振方向由第一方向改变到第二方向,或反之亦然,来响应施加到第一液晶盒的液晶层上的第一电压,在此第一和第二方向相互垂直。第二液晶盒优选地将透过第一液晶盒的液晶层的光的偏振方向由第一方向改变到第二方向,或反之亦然来响应施加到第二液晶盒的液晶层上的第二电压。双折射元件优选地移动透过第二液晶盒的光的光轴。第二液晶盒的液晶层优选地补偿入射线偏振光透过第一液晶盒的液晶层时引起的偏振扰动。
根据本发明该优选实施例的光移动装置中,即使由于第一液晶的液晶层的波长色散产生了椭圆偏振成分,第二液晶盒的液晶层改变该偏振状态(包括偏振面的旋转),从而消除了不需要的椭圆偏振成分。这是因为第二液晶盒的液晶层的放置使得其与第一液晶盒的液晶层之间满足适当的关系。也就是说,第一液晶盒中液晶分子的取向方向和第二液晶盒中液晶分子的取向方向之间形成的角度处于预定范围之中。因此,在很宽的可见辐射范围没有椭圆偏振成分的所期望的线偏振光入射到双折射元件上并且没有鬼像产生。
在本发明的一种优选实施例中,第一和第二液晶盒优选地放置使得第一液晶盒的液晶层中间部分的指向矢与第二液晶盒的液晶层中间部分的指向矢相互垂直。
在该具体优选实施例中,第一和第二液晶盒的液晶层可以用具有互为反向的光旋转方向的两种不同类型的TN模式液晶材料制成。
作为选择,第一和第二液晶盒的液晶层可以用ECB模式液晶材料制成。当ECB模式液晶材料的两个液晶层相互平行放置时,这些液晶层中的液晶分子的取向方向(或指向矢)可用所施加电压的电平控制。也就是说,通过选择性地对每个液晶层施加高电压或低电压,入射的线偏振光要么按原样要么在液晶层改变了其偏振态后通过液晶层。
在本发明的另外一种优选实施例中,第一液晶盒的液晶层中间部分的指向矢与第二液晶盒的液晶层中间部分的指向矢之间优选地规定42到45度的角度。将该角度分成两相等部分的平分线优选地与进入第一液晶盒的入射光的偏振方向之间规定约45度的角度。
在该具体优选实施例中,第一和第二液晶盒的两个液晶层中至少有一个优选地用ECB模式液晶材料制成。
更具体地,当电压未施加到液晶层上时,用ECB模式液晶材料制成的至少一个液晶层优选地具有220nm到280nm的滞后。介于220nm到280nm的滞后值大约为可见辐射区中心波长的一半。因此,其上未施加电压时,ECB模式液晶层对于具有该波长(即绿光)的入射光线起半波片的作用。因此,当液晶分子的取向方向(或指向矢)按照本发明优选实施例来确定时,可以适当地旋转入射光的偏振面。
在本发明的再一种优选实施例中,光移动装置可以进一步包括至少再多一个结构和功能与该移动部分相同的移动部分。在这种其中光移动装置包括多个移动部分的优选实施例中,图像(或像素)可被移动到按行排列的三个或更多的位置。并且,如果适当地控制移动部分的移动方向,图像(或像素)也可以在虚拟平面(例如在投射平面)内二维地移动。
根据本发明另一优选实施例的一种光移动装置组件优选地包括:根据上述本发明的任一优选实施例的光移动装置;和分别向第一和第二液晶盒施加第一和第二电压的驱动电路。当这种光移动装置组件和显示板(例如,一种LCD板)结合时,合成的光显示系统可以显示分辨率显著提高的优质图像。
在本发明的一个优选实施例中,驱动电路优选地只将第一和第二电压之一与待移动图像成分的切换同步地从低电平增加到高电平。通过控制待施加在液晶层上的电压与子域的切换同步。
在该具体优选实施例中,当子域切换时,驱动电路优选地将第一和第二电压都增加到高电平,然后在子域期间将第一和第二电压都降低到低电平。
根据本发明再一优选实施例的一种光显示系统优选地包括:在其上显示图像的显示板;和根据上述本发明的任一优选实施例的光移动装置。当图像在显示板上显示时,光移动装置将从显示板出去的光优选地移动。本发明的光显示系统包括本发明的光移动装置,并可以显示分辨率显著提高且几乎不产生任何鬼像的优质图像。
在本发明的一种优选实施例中,光显示系统进一步优选地包括分别向第一和第二液晶盒施加第一和第二电压的驱动电路。
在该具体优选实施例中,驱动电路优选地只将第一和第二电压之一从低电平增加到高电平。
作为选择,驱动电路可以将第一和第二电压都增加到高电平,然后在显示在显示板上的图像切换到另一图像之前将两电压都降低到低电平。
在再一优选实施例中,从显示板出射并进入光移动装置的光优选是线偏振光。如果入射到本发明的光移动装置上的光是椭圆偏振光,即使本发明的光移动装置也不能完全消除鬼像。基于那样的原因,入射到光移动装置上的光是优选在很宽的可见辐射区几乎没有椭圆偏振成分的线偏振光。
在又一优选实施例中,当图像被移动时,用时间分割技术将图像的每个像素优选地分为预定数目的彩色像素,然后优选地将彩色像素按时间顺序依次叠加。按这种方式,全色图像可以作为时间顺序图像显示。
根据本发明的再一优选实施例的另一种光显示系统优选地包括光源,显示板,光控制装置和光学系统。光源优选地发射光。显示板优选地包括多个像素区域,每个区域可以调制照射到其上的光。光控制装置优选地将从光源发射的光会聚到与光波长相关的多个像素区域之一上。光学系统优选地通过将经显示板调制的光投射到投射平面上,在其上形成图像。光显示系统优选进一步包括用于从代表图像帧的数据中产生代表多个子帧的数据并按时间顺序依次在显示板上显示多个子帧的电路。光显示系统优选进一步包括根据上述本发明的任一优选实施例的光移动装置。光移动装置在投影平面上优选地光学上转移显示在显示板上的多个子帧中被选择的子帧。投影平面上相同的区域优选地用落在相互不同波长范围并被显示板的相互不同像素区域调制的光线依次辐照。
本发明的再一优选实施例提供了一种驱动根据本发明上述任一优选实施例的光移动装置的方法。该方法优先包括以下步骤:在将要移动的一对图像成分被待切换时,只将第一和第二电压之一从低电平增加到高电平;在子域切换时,只将第一和第二电压之一从低电平增加到高电平;在另一子域切换时,只将第一和第二电压的另一个从低电平增加到高电平;在子域期间将第一和第二电压都从高电平降低到低电平。
本发明的其它特性,元件,工艺,步骤,特点和优点在以下参照附图对本发明的优选实施例的详述中将更加清晰。
附图说明
图1示意地说明一种包括液晶盒和双折射元件组合的常规光移动装置。
图2的曲线说明当一对偏光器与插入其中的液晶盒如平行的尼科耳棱镜布置时液晶层的透射率如何随时间(或施加电压)而变化。
图3为根据本发明的各种优选实施例中任一个的光移动装置组件的基本结构的横截面图。
图4A到4C示意地说明根据本发明的一种优选实施例的光移动装置中液晶盒的工作。
图5A到5C示意地说明根据本发明的另一种优选实施例的另一种光移动装置中液晶盒的工作。
图6A为根据本发明第一具体优选实施例的光显示系统的基本结构的横截面图。
图6B为根据本发明第一优选实施例的光移动装置的结构的横截面图。
图7A到7D说明第一优选实施例的光移动装置如何工作。
图8A和8B示意地说明图6B中所示的光移动装置如何提高图像的分辨率,其中:
图8A说明光移动装置没有运行时的图像;而
图8B说明光移动装置运行时的图像。
图9示意地说明根据本发明第二具体优选实施例的光显示系统。
图10为说明用于第二优选实施例的LCD板的横截面图。
图11示出根据第二优选实施例的光移动装置的横截面图。
图12示意地说明光学上如何移动图像。
图13为说明本发明第一优选实施例中施加到各液晶盒上的电压波形如何变化的时间图。
图14为说明本发明第二优选实施例中施加到各液晶盒上的电压波形如何变化的时间图。
图15示出根据本发明优选实施例的光移动装置中一对液晶盒的两液晶层的指向矢和入射光的偏振方向之间的关系。
图16示意地说明一种用于本发明优选实施例的具体实例中的光移动装置的结构。
具体实施方式
根据本发明优选实施例的光移动装置包括至少一个移动部分,该部分周期性地转移入射到该移动部分上的入射的线偏振光的光轴。如图3所示,移动部分包括第一液晶盒7,第二液晶盒8和双折射元件11。第一液晶盒7可以将入射光的偏振方向从相互垂直的两个方向中的一个转变到另外一个,转变的方向依赖于驱动电路6施加到第一液晶盒7上的电压是高还是低。正如第一液晶盒7,第二液晶盒8也可以将入射光的偏振方向从相互垂直的两个方向中的一个转变到另外一个,转变的方向依赖于驱动电路6施加到第二液晶盒8上的电压是高还是低。
第一液晶盒7,第二液晶盒8和双折射元件11的排列使得入射光以这种顺序透过。第一和第二液晶盒7和8的放置使得第一液晶盒7的液晶层75a中间部分的指向矢(即代表液晶分子取向方向的矢量)和第二液晶盒8的液晶层75b中间部分的指向矢相互垂直。如此处所用,液晶层“中间部分”指大约位于液晶层厚度中心的部分。
在现有技术中,光移动装置包括一个液晶盒和一个双折射元件。那样,因为液晶盒的液晶层具有波长依赖关系或色散,从液晶盒出射的光既具有水平偏振成分,也具有垂直偏振成分,因此,可能产生鬼像。与之相比,根据本发明的这种优选实施例的光移动装置中,一对其指向矢相互垂直的液晶盒7和8放置在双折射元件11的前面。因此,在两液晶层之一中产生的不需要的偏振成分通过另外一液晶层产生的偏振成分来消除。按这种方式,偏振的这种扰乱可被补偿。结果,可以得到所期望的线偏振光,并且基本上可以消除鬼像。
当驱动电路6施加的电压同时从高电平降到低电平,那些不需要的偏振成分在液晶分子状态转换过程中也可以被消除。
以下,参照图4A到4C及下表1将描述那些不需要的偏振成分被消除的原因。图4A到4C说明右旋TN液晶层75a和左旋TN液晶层75b放置在双折射元件(在图4A到4C中未示出)之前的一种结构。从显示板出射的线偏振光按这种顺序透过两液晶层75a和75b,然后入射到双折射元件(在图4A到4C中未示出)上。
表1
  LC层75a(右旋的)(相差;电压)   LC层75b(左旋的)(相差;电压)   总相差 出射偏振成分
  4A   +π;关   -π;关   0 水平或垂直
  4B   +π;关   0;开   +π 垂直或水平
  4C   0;开   0;开   0 水平或垂直
首先,描述图4A所示的状态。在该状态下,施加在两液晶层75a和75b的电压是低电压,并且两液晶层75a和75b处于关状态。那么,由第一液晶层75a产生的相差是+π,而由第二液晶层75b产生的相差是-π。因此,透过这两个液晶层75a和75b的偏振光的总相差为0。因此,假设从其左侧进入第一液晶层75a的偏振光具有水平偏振平面,刚从第二液晶层75b出射的偏振光也具有水平偏振面。
如此处所用,依赖于液晶层上所施加的电压是高电压还是低电压,穿过液晶层的光可以处于两种相互不同的状态之一(即,处于一种状态的出射光的偏振平面与处于另一种状态的出射光的偏振平面相互垂直)的情况下,被施加高电压并准备输出预定的线偏振光的液晶层(或液晶盒)看作是“处于开状态”。另一方面,如果施加在液晶层上的电压大小(或绝对值)比使液晶层开所需要施加的电压小得多,且如果具有偏振平面与从开状态液晶层出射的偏振光的偏振平面基本上垂直的偏振平面的偏振光从液晶层出射,该液晶层(或液晶盒)此处看作是“处于关状态”。
为将液晶层“关”,施加在液晶层上的低电压可以降到0伏。或者,液晶层也可以通过施加一个非零电压(例如2.5伏)作为补偿电压来“关”。
如此处所用,施加的“高电压”是足够高以使液晶层“开”的电压,而施加的“低电压”是足够低以使液晶层“关”的电压。如果使用具有正的折射系数各向异性Δε的TN模式的液晶材料,那么,当液晶层处于“开状态”时,液晶分子沿电场方向对准,但是当液晶层处于“关状态”时,液晶分子扭曲了90度。另一方面,如果使用具有负的折射系数各向异性Δε的TN模式的液晶材料,那么,当液晶层处于“开状态”时,液晶分子扭曲了90度,但是当液晶层处于“关状态”时,液晶分子沿一个方向对准。在以下的优选实施例中,将用具有正的折射系数各向异性Δε的液晶材料来描述本发明。但是,应该理解,即使使用具有负的折射系数各向异性Δε的液晶材料,本发明也可以实现。
其次,如图4B所示,当施加到第二液晶层75b上的电压从低增加到高时,第二液晶层75b从关状态切换到开状态。如上所述,液晶上升响应时间τ r太短而不会形成不需要的鬼像。这样,由第一液晶层75a产生的相差是+π,但是由第二液晶层75b产生的相差是0。因此,透过这两个液晶层75a和75b的偏振光的总相差是+π。因而,如果从其左侧进入第一液晶层75a的偏振光具有水平偏振面,那么,从第二液晶层75b出射的偏振光具有垂直的偏振面。
其后,当施加到第一液晶层75a的电压从低增加到高时,如图4C所示,第一液晶层75a从关状态转换到开状态。液晶上升响应时间τr也太短而不会形成不需要的鬼像。这样,由第一液晶层75a产生的相差是0,由第二液晶层75b产生的相差也是0。因此,透过这两个液晶层75a和75b的偏振光的总相差是0。因而,如果从其左侧进入第一液晶层75a的偏振光具有水平偏振面,那么,从第二液晶层75b出射的偏振光也具有水平的偏振面
之后,施加到第一和第二液晶层75a和75b的电压都从高降到低。然后,两液晶层75a和75b从图4C所示的状态(即开状态)改变到图4A所示的状态(即,关状态)。这样,这两个液晶层75a和75b之一的液晶分子形成了液晶层75a或75b之中另外一个的镜像。因此,即使从第一液晶层75a出射的偏振光是椭圆偏振光,当其通过第二液晶层75b时椭圆偏振光转变成了线偏振光。换而言之,即使在“液晶分子下降阶段”由第一液晶层75a产生的相差从0相对缓慢变化到π,由第二液晶层75b产生的相差从0到-π变化。结果,由这两个液晶层75a和75b产生的总相差总是为0,偏振状态基本上没有改变。
因此,即使液晶层75a和75b从图4C所示的状态转变到图4A所示的状态所需的时间相对比较长(即,即使液晶下降响应时间τd相当长),在该状态转换过程期间,线偏振光从第二液晶层75b连续出射。也就是说,从第二液晶层75b出射的偏振光的偏振方向完全没有从进入第一液晶层75a的偏振光的偏振方向发生旋转。因此,液晶下降响应时间τd与偏振光的偏振平面的光旋转无关。只有当液晶层75a和75b从图4A所示的状态变到图4B所示的状态和从图4B所示的状态变到图4C所示的状态时,偏振平面旋转90度。这两种状态转换的速度都由液晶的上升响应时间τr确定。
按这种方式,根据该优选实施例,液晶分子从开状态转变到关状态(即,使液晶分子“下落”)而完全没有引起图像的移动,或图像显示在预定的位置,因为这种状态转换通常需要相对较长的时间。也就是说,当液晶分子正在下降时,假定出射光完全没有改变其偏振方向。因此,光移动装置的移动频率可以增加,而完全不受液晶下降响应时间τd的影响。结果,即使液晶下降响应时间τd相对比较长,不会产生鬼像或闪烁。
本发明的前述优选实施例已经对TN模式液晶材料进行了描述。但是,如果本发明用于ECB模式的液晶材料,也可以得到相似的效果。在下文中,参照图5A到5C和下表2将描述使用ECB模式的液晶材料时怎样消除不需要的偏振成分。
表2.
    LC层85a(45度)(相差;电压)   LC层85b(-45度)(相差;电压)   总相差   出射偏振成分
    5A     +π;关   -π;关   0   水平或垂直
    5B     +π;关   0;开   +π   垂直或水平
    5C     0;开   0;开   0   水平或垂直
在图5A到5C所示的实例中,其中ECB模式液晶分子取向45度的第一液晶层85a和其中ECB模式液晶分子取向-45度的第二液晶层85b放置在双折射元件(在图5A到5C中未示出)的前面。这种光移动装置的基本结构和图3所示的一样。
首先,在图5A所示的状态中,施加在两液晶层85a和85b上的电压是低电压,并且液晶层85a和85b处于关状态。那么,由第一液晶层85a产生的相差是+π,而由第二液晶层85b产生的相差是-π。因此,透过两液晶层85a和85b的偏振光的总相差是0。因而,假设从第一液晶层85a左侧进入的偏振光具有水平偏振面,刚从第二液晶层85b出射的偏振光也具有水平的偏振面。
其次,当施加在第二液晶层85b上的电压从低增加到高时,如图5B所示,第二液晶层85b从关状态转换到开状态。如上所述,液晶上升响应时间τr太短而不会形成不需要的鬼像。这样,由第一液晶层85a产生的相差是+π,但是由第二液晶层85b产生的相差是0。因此,透过这两个液晶层85a和85b的偏振光的总相差是+π。因而,如果从其左侧进入第一液晶层85a的偏振光具有水平偏振面,那么,从第二液晶层85b出射的偏振光具有垂直的偏振面。
其后,当施加到第一液晶层85a的电压从低增加到高时,如图5C所示,第一液晶层85a从关状态转换到开状态。液晶上升响应时间τr也太短而不会形成不需要的鬼像。这样,由第一液晶层85a产生的相差是0,由第二液晶层85b产生的相差也是0。因此,透过这两个液晶层85a和85b的偏振光的总相差是0。因而,如果从其左侧进入第一液晶层85a的偏振光具有水平偏振面,那么,从第二液晶层85b出射的偏振光也具有水平偏振面。
之后,施加到第一和第二液晶层85a和85b的电压都从高降到低。那么,两液晶层85a和85b从图5C所示的状态(即开状态)转变到图5A所示的状态(即关状态)。这样,虽然液晶层的下降响应时间τd相对比较长,这两个液晶层85a和85b之一的液晶分子形成液晶层85a和85b之中另外一个的镜像。因此,即使从第一液晶层85a出射的偏振光是椭圆偏振光,当其通过第二液晶层85b时不需要的偏振成分被消除,并且椭圆偏振光转变成线偏振光。换而言之,在“液晶分子下降期间”,由第一液晶层85a产生的相差相对缓慢地从0到+π变化,而由第二液晶层85b产生的相差从0到-π变化。结果,由这两个液晶层85a和85b产生的总相差总是为0,偏振状态基本上没有改变。
因此,即使液晶层85a和85b从图5C所示的状态转变到图5A所示的状态所需的时间相对比较长(即,即使液晶下降响应时间τd相对比较长),在状态转换过程中,线偏振光从第二液晶层85b连续出射。也就是说,从第二液晶层85b出射的偏振光的偏振方向完全没有从进入第一液晶层85a的偏振光的偏振方向发生旋转。因此,液晶的下降响应时间τd与偏振光偏振平面的光旋转无关。
按这种方式,即使用了ECB模式液晶材料,光移动装置的移动频率可以增加,而不受液晶下降响应时间τd的影响。结果,即使液晶下降响应时间τd相对比较长,不会产生鬼像或闪烁。
应该指出在上述两个具体实例中的每一个中,两液晶层都从开切换为关的时间应该优选地恰好在下一次两液晶层之一从关切换为开之前。换而言之,两液晶层之一由关转换为开之前,两液晶层将必须完全地转变为关。而这需要液晶下降响应时间τd来完成这种的状态转换。基于这些原因,在两液晶层都变为开之后,施加在两液晶层上的电压优选地立刻从高降低到低。
也应该指出,在两液晶层从开状态变为关状态时,无图像可以被移动。因此,如果每一次子域切换时需要移动图像,那么,两液晶层从开变为关的转换间隔优选地完全包括在一子域周期中。
下面,将参照附图对根据本发明光显示系统的具体优选实施例进行描述。
实施例1
图6示意地说明根据本发明第一具体优选实施例的一种光显示系统。如图6A所示,光显示系统包括背光1,LCD 2,光移动装置3和观察光学系统4。背光1是照明透射型LCD 2的光源。LCD 2从驱动电路5接收驱动信号和视频信号,并且可以显示具有由视频信号代表的内容的图像。提供观察光学系统4是为了光学上放大显示在LCD 2上的图像。观察者可以通过光移动装置3和观察光学系统4观看显示在LCD 2上的图像。
在图6A所示的具体优选实施例中,使用一种需要背光的透射型液晶显示器。或者,只要图像可以在其上显示,显示器也可以一种反射型液晶显示器或一种自发射显示板,如有机EL显示器或等离子显示板(PDP)。
光移动装置3的工作是由另外一个单独为光学移动装置3提供的驱动电路6来控制。与LCD 2上视频信号的显示同步,驱动电路6为光移动装置3提供一驱动信号。驱动电路6包括为光移动装置3中包括的液晶盒施加具有多电平的电压(即,高和低)的电压施加部分。
在图6A所示的光显示系统中,背光1,LCD 2,观察光学系统4和驱动电路5都与传统的光显示系统的相应部分的结构相同。因此,该优选实施例中的光显示系统的特征在于光移动装置3的结构和工作。
图6B示意地说明光移动装置3的结构。如图6B所示,光移动装置3包括用于纵向移动图像的第一移动部分100和用于横向移动图像的第二移动部分200。
第一移动部分100包括两个液晶盒7和8及一个双折射元件11。同样地,第二移动部分200也包括两个液晶盒9和10及一个双折射元件12。每个液晶盒7,8,9和10包括:液晶层;一对分别提供在液晶层光入射和出射面上的透明电极(未示出);一对将这些部件夹在其中的透明衬底。虽然图6B中所示的液晶盒7和8及双折射元件11在水平方向彼此分开,液晶盒7和8及双折射元件11可以用一种粘接剂粘在一起,例如,使第一移动部分100作为一个整体元件工作。同样的说明适用于第二移动部分200。
在该优选实施例中,每个液晶盒7,8,9和10的液晶层用TN模式的液晶材料制成。因此,依赖于施加到其上的电压是高电压还是低电压,液晶层由将入射光偏振面旋转了90度的第一状态转换到基本上原样传输入射光而不旋转其偏振面的第二状态,反之亦然。
但是,可以用于液晶盒7,8,9,10的液晶材料不限于TN模式的液晶材料。或者,只要当两液晶层都由开状态转换到关状态时,由两液晶层之一产生的不需要的偏振成分被另外一液晶层消除,则可以使用其它任何类型的液晶材料。例如,一种ECB模式的液晶材料可以正常使用。
双折射元件11具有相对于其光入射侧规定预定倾角的“光轴”。在包括入射光传播方向和双折射元件11的光轴的平面(此处指“主平面”)上,双折射元件11可以将入射光分为正常光线和异常光线。因此,如果进入双折射元件11的入射光的偏振方向垂直于主平面,那么,对于双折射元件11入射光是正常光线并直接传播穿过主平面。另一方面,如果进入双折射元件11的入射光的偏振方向平行于主平面,那么,对于双折射元件11入射光是反常光线,在主平面内受到折射。
双折射元件用单轴晶体材料(例如石英)制成。但是,双折射元件11的材料不限于石英,而可以是任何其它的单轴晶体材料。其它优选材料的实例包括铌酸锂,方解石,云母,金红石(TiO2)和钠硝石(NaNO3)。如果显示系统的总重量应该减小到象头戴式显示器(HMD)中的那样,优选使用具有相对较大的折射系数各向异性Δn的铌酸锂或金红石。如果双折射元件11是用这种高Δn材料制成,由厚度减小的双折射元件11实现了最小所需图像移动。因此,这种材料可以用来有效地降低显示系统的总尺寸或重量。
如果施加在液晶盒7和8上的电压发生变化,入射光的偏振方向可以从垂直于双折射元件11的主平面转换到平行于双折射元件11的主平面,反之亦然。按这种方式入射光可以在双折射元件11的主平面内移动。结果,显示在LCD 2上的图像可以垂直于入射光的光轴移动。
第二移动部分200的结构也与第一移动部分100的相同。这两个移动部分100和200之间的唯一不同是,放置第二移动部分200使得其相对于第一移动部分100在入射光的光轴上规定了一旋转90度的角度。因此,第二移动部分200的像素移动方向垂直于第一移动部分100的像素移动方向。使用按这样的位置放置的第一和第二移动部分100和200,在相同的(虚)平面上可以将图像选择性地移动到相互不同的四个位置之一。
此后,参照图7A到7D和下表3将描述根据该优选实施例的光移动装置如何工作。表3
  移动位置     施加电压:高或低
    LC盒7     LC盒8     LC盒9     LC盒10
  A     关     关     关     开
  B     关     开     开→关     开→关
  C     关     开     关     开
  D     开→关     开→关     开→关     开→关
首先,如图7A所示,液晶盒10变为开时,液晶盒7,8和9变为关。这样,出现在显示板上的图像的任意一个像素被认为出现在虚平面上的A位置。
其次,如图7B所示,液晶盒8和9变为开而液晶盒10保持开,以将像素移到位置B。通过将液晶盒8和9的关状态变为开图像移动。因此,这种移动可以与图像子域的切换同步地相对快速地完成。
其后,在当前子域仍在显示时,将液晶盒9和10的开状态变为关状态。液晶材料对于这些液晶盒9和10变为关的响应慢。但是,因为液晶盒9和10分别由右旋和左旋晶体材料制成,进入双折射元件12的偏振光的偏振方向与入射到液晶盒9的初始偏振方向相同。因此,像素位置保持在B。
此后,如图7C所示,液晶盒8保持开而液晶盒10变为开,以将像素移动到位置C。通过将液晶盒10的关状态变为开图像移动。因此,这种移动可以与图像子域的切换同步地相对快速地完成。
之后,如图7D所示,液晶盒7和9变为开而其它的两个液晶盒8和10保持开,以将像素移动到位置D。然后,在当前子域仍在显示时,将液晶盒7,8,9和10的开状态全部变为关。即使如此,进入双折射元件12的偏振光的偏振方向与入射到液晶盒9的偏振光的初始偏振方向相同。因此,像素位置保持在位置D。
随后,通过将液晶盒10的关状态变为开将图像从位置D移动到位置A,这种移动可以与将图像移动到位置B,C,或D一样快速地完成。
图13示出如上所述的施加到液晶盒7,8,9和10上使液晶盒7,8,9和10运行的电压波形。在图13中,子域A,B,C和D分别对应于图7A,7B,7C和7D中的位置A,B,C和D。也就是说,在子域周期A中,像素出现在图7A中的位置A。在下一子域周期B中,像素出现在图7B中的位置B。
如从图13中可以看出,施加在液晶盒7和8上的电压同时由高降到低。同样地,施加在液晶盒9和10上的电压也同时由高降到低。
施加到液晶盒9和10上的电压由高降到低的第一次包括在子域周期B中,恰好在施加到液晶盒10上的电压下一次从低增加到高之前。如果施加在液晶盒9和10上的电压由高电平降到低电平,经过液晶下降响应时间τd后,其液晶层将变到完全关。也就是说,经过液晶下降响应时间τd之前,其液晶层不是完全的关。但是,基于上述原因,图像子域B在该子域周期B期间没有移动,也就不会产生鬼像。
应该指出,根据上述优选实施例的光显示系统的背光可以用一种择向发射的照明光源取代,而观察光学系统可以用投影透镜取代。那样,光显示系统可以作为一种投射型显示系统。即使这样,分辨率仍可以用本发明的光移动装置和上述的HMD来提高。
图8A说明其上没有运行上述移动操作的光移动装置的像素的总体结果的排列,而图8B说明其上运行的移动操作的光移动装置的像素的总体结果的排列。如从图8A和8B中可以看出,通过使用本发明的光移动装置,LCD 2的有效像素的数量可以增加4倍。
实施例2
以下,参照图9将描述根据本发明第二具体优选实施例的光显示系统。
根据该优选实施例的光移动系统中,从光源501发射的光(包括至少R,G和B成分)用抛物柱面镜502反射,使其准直成基本平行的光束,然后入射到复眼透镜503。复眼透镜503用来均匀照明LCD板504。提供一光圈505来选择性地通过从复眼透镜503出射的光束,从而调节入射到LCD板504上的照度的平行度。光圈505具有一矩形开口,其形状的设计使得其与像素形状相匹配。穿过光圈505的光束穿过透镜506,然后用二向色镜507R,507G和507B将其分为R,G和B光线。LCD板504用经透镜506和508基本上准直的光束来照射。但是,光束经二向色镜507R,507G和507B分的R,G和B光线以相互不同的角度入射到LCD板504上。在该优选实施例中,具有768×1024点分辨率的0.9英寸的板用作LCD板504。
图10为说明R,G和B光线如何入射到LCD板504上的横截面图。如图10所示,微透镜阵列509放置在LCD板504的光入射侧。为代表三原色红,绿和蓝的三种像素(即一组R,G和B像素)的每一种提供了微透镜509。R,G和B光线以相互不同的角度入射到每个微透镜509上,然后由微透镜509聚焦到与其相关的像素上。因为这三种像素独立驱动,R,G和B光线独立地受到调制。
返回参照图9,已经透过LCD板504,因而被LCD板504调制的光束穿过光移动装置510,然后入射到投影透镜511。结果,穿过投影透镜511的光束在屏幕(未示出)上形成图像。光移动装置510周期性地移动屏幕上的图像。
其次,参照图11将详细描述根据本发明该第二优选实施例的光移动装置510。如图11所示,光移动装置510包括第一移动部分100和第二移动部分200。第一和第二移动部分100和200的结构与已经描述的第一优选实施例的相同。但是,在该第二优选实施例中,放置第一和第二移动部分100和200使得第一移动部分100的移动方向与第二移动部分200的移动方向平行。在这种的排列中,图像可以移动到包括在与入射光光轴垂直的平面上的排列在相同直线上的三个互不相同的位置A,B,C。
图12示意地说明用图11所示的光移动装置如何纵向移动子帧。用光移动装置510将组成一幅完整图像的多个子帧沿一个方向(即,图12中说明的实例中纵向移动,但是也可以横向移动)逐像素地顺序移动。因此,用时间顺序技术将屏幕上相同的像素区域用代表图像的蓝,绿,红,蓝,绿和红部分等的光线按顺序照射。具有这样排列的光显示系统只用一块LCD板504,但仍能达到几乎与具有三块LCD板的投射型显示系统一样高的分辨率。
其后,参照图11和下表4将描述施加到根据该优选实施例的液晶盒7,8,9和10上的电压。
表4
移动位置 施加电压:高或低
LC盒7  LC盒8  LC盒9  LC盒10
A
B
C 开→关 开→关 开→关 开→关
首先,当液晶盒8变为开时,液晶盒7,9和10变为关。这样,显示在LCD板504上的图像的任意一个像素被认为是出现在如图11所示的位置A。
其次,液晶盒7和9保持关,液晶盒8保持开,而液晶盒10变为开,以将像素移动到位置B。也就是说,该图像移动是通过将关状态液晶盒10变为开来实现。
其后,将液晶盒7和9变为开而其它的两个液晶盒8和10保持开,将像素移动到位置C。也就是说,该图像移动是通过将关状态液晶盒7和9变为开来实现。
之后,在下一次子域切换之前(即,在当前子域仍然显示时),开状态液晶盒7,8,9和10全部变为关。液晶材料对于这些液晶盒7,8,9和10变为关的响应慢。但是,因为每一对液晶盒7,8和9,10分别由右旋和左旋液晶材料制成,进入双折射元件12的偏振光的偏振方向与入射到液晶盒7上的初始偏振方向的相同。因此,像素位置保持在C。
只通过将液晶盒8变为开,图像的位置可以从C移动到A。因此,将图像移动到位置A可以和将图像移动到位置B或C一样快速地实现。
如上所述,根据该优选实施例,只通过与图像子域的切换同步地足够快地将关态液晶盒变为开,可以将像素从位置A移动到位置B,然后移动到位置C。因此,可以显示没有产生鬼像或闪烁的优质图像。
图14示出如上所示的施加到液晶盒7,8,9和10上使液晶盒7,8,9和10工作的电压波形。在图14中,子域A,B和C分别对应于图11中的位置A,B和C。也就是说,在子域周期A中,像素出现在图11中所示的位置A。在下一子域周期B中,像素出现在图11中所示的位置B。
如从图14中可以看出,施加在液晶盒7和8上的电压同时由高降到低。同样地,施加在液晶盒9和10上的电压也同时由高降到低。
施加到液晶盒7,8,9和10上的电压由高降到低的时间包括在子域周期C中,恰好在施加在液晶盒8上的电压下一次从低增加到高之前。如果施加在液晶盒7,8,9和10上的电压由高降到低,在液晶下降响应时间τd过后,液晶层将变为完全的关。也就是说,在经过液晶下降响应时间τd之前,液晶层不是完全的关。但是,基于上述原因,图像子域C在该子域周期C期间没有移动,也就不会产生鬼像。
根据上述第二优选实施例的光显示系统是一种将图像投射到屏幕上的投射型显示系统。但是,如果用观察光学系统取代投影透镜511来获得放大的观察虚象,则本发明也可以在HMD中使用。
在第一优选实施例中像素移动到四个位置,而在第二优选实施例中像素移动到三个位置。但是,本发明绝不限于这些具体优选实施例。作为选择,本发明适用于用其它方式的移动,例如,图像在排列成直线的两个或四个位置之间移动。
在上述第一和第二优选实施例中,每个液晶盒7,8,9和10在其相关的子域周期中切换。但是,依赖于液晶材料的响应速度,液晶盒7,8,9和/或10可以在之前或之后的子域周期中变为开或关以使在其相关的子域周期期间液晶盒7,8,9和10的切换很好地均衡。
实施例3
此后,将描述本发明的第三具体优选实施例。
根据本发明的该第三优选实施例的光移动装置基本具有图3所示的结构,恰好与上述第一优选实施例的光移动装置相似。
参照图15将描述根据该第三优选实施例的光移动装置的更详细结构。
图15示出进入光移动装置的线偏振光的偏振方向平行于X-Y坐标系的X轴的情况。图15中,D1表示第一液晶盒7的液晶层75a中间部分的指向矢。D2表示第二液晶盒8的液晶层75b中间部分的指向矢。θ12表示在液晶层75a和75b上未施加电压时指向矢D1和D2之间限定的夹角。S表示在液晶层75a和75b上未施加电压时将角θ12平分成相等的两部分的平分线。而θs表示平分线S和入射偏振光的偏振方向(即,X轴)之间限定的夹角。在该实施例中,角θ12限定介于42度到45度的范围,而角θs限定在约45度。更优选地,角度θ12介于在42度到44度。如此处所用,“约45度”的角度是介于44度到46度之间。
在该优选实施例中,两液晶盒的两液晶层中至少之一是用ECB(横向对准)模式的液晶材料制成。ECB(横向对准)模式通过限定一对将向列液晶层夹在其中的衬底的对准方向相互平行来实现。当其上未施加电压时,两液晶层的指向矢平行于衬底的对准方向。因此,限定两液晶盒相对于入射光的偏振方向的的位置使得两液晶层的指向矢D1和D2限定如上所述的角度。如果两液晶盒都是用ECB(横向对准)模式的液晶材料制成,液晶层上未施加电压时达到的效果与将两个半波片一个叠加于另一个之上完成的效果相似。
当ECB(横向对准)模式的液晶层按这种方法使用时,每个液晶层优选地具有220nm到280nm的滞后。滞后值约是550nm的一半,550nm基本上是可见辐射范围的中心波长。因此,液晶层上未施加电压时,每个液晶盒对于波长约为550nm的入射的线偏振光的作用就象半波片,因而,旋转了入射光的偏振平面。旋转的角度是入射光的偏振方向和液晶层指向矢之间确定的角度的两倍。
此后,将描述在第一和第二液晶盒7和8的液晶层75a和75b用ECB(横向对准)模式的液晶材料制成,并且其滞后在220nm到280nm范围的情况下,其上电压未施加时,光移动装置如何工作。
这样,当施加到两液晶盒7和8上的电压为关时,为了与平分线S基本对准,第一液晶盒7对图15所示的入射的线偏振光的偏振方向沿逆时针方向旋转了约45度。但严格地说,由于其液晶层引起波长色散,透过第一液晶盒7的光不是完全的线性偏振而是有点椭圆偏振。该现象在下面将进一步详细描述。
假设波长为550nm的光入射到滞后为550nm一半的275nm的液晶层上。这样,第一液晶盒7的指向矢D1与X轴之间限定22.5度的夹角,并且限定入射光(具有550nm的波长)的偏振方向平行于X轴。那么,第一液晶盒7将入射光的偏振方向旋转了45度(=22.5×2)。但是,如果入射光的波长不等于550nm,由于液晶层引起的波长色散,其偏振方向不按这种方式旋转。
假如入射光的波长是λnm,液晶层的滞后是R(λ)nm,并且入射光透过液晶层时引起的相差为φ(λ),则相差φ(λ)由R(λ)/λ给出。应该指出液晶层的滞后R和相差φ是波长λ的函数。
如果波长为550nm的光入射到滞后为275nm的液晶层上,那么,φ(550)=275/550=1/2=0.5。因此,液晶层的作用就象半-波片。但是,如果波长为450nm的光(即,蓝光)入射到液晶层,那么,φ(450)=275/450≈0.61。另一方面,如果波长为650nm的光(即,红光)入射到液晶层,那么,φ(650)=275/650≈0.42。如可以看出,如果蓝光或红光入射,产生相差且液晶层不能起半波片的作用。结果,线偏振光一定程度上转变为椭圆偏振光。
但是,根据这种优选实施例的布置,当光透过第二液晶盒8时,在很宽的波长范围,出射光的偏振方向与垂直于入射的偏振光方向的Y轴对准。原因如下。具体地,两液晶层75a和75b的指向矢D1和D2之间限定的夹角θ12介于42度到45度的范围,进入第二液晶盒8的有点椭圆偏振的光又转变为线偏振光,而波长色散的不需要的效果基本上消除。更具体地,如果波长为450nm或650nm的蓝光或红光入射到第一液晶盒7,一度产生不等于1/2的相差。但是,借助第二液晶盒8相差基本上等于波长为550nm的绿光产生的相差。
因此,如果用根据本发明该优选实施例的光移动装置,无论红,绿和蓝光中的哪一种光入射到光移动装置,能实现分辨率明显增高和几乎不产生任何鬼像的图像移动。
以下,参照附图将描述根据本发明的一种光显示系统的具体优选实施例。
如图6A所示,该第三优选实施例的光显示系统也包括背光1,LCD 2,光移动装置3和观察光学系统4。背光1是照明透射型LCD 2的光源。LCD 2从驱动电路5接收驱动信号和视频信号,并且可以显示由视频信号代表内容的图像。提供观察光学系统4是为了光学上放大显示在LCD 2上的图像。观察者可以通过光移动装置3和观察光学系统4观看显示在LCD 2上的图像。
在图6A所示的具体优选实施例中,使用了一种需要背光的透射型液晶显示器。作为选择,只要图像可以在其上显示,显示器也可以是一种反射型的液晶显示器或自发射显示板,如有机EL显示器或等离子显示板(PDP)。
光移动装置3的工作由单独为其提供的另一驱动电路6来控制。与LCD 2上视频信号的显示同步地驱动电路6为光移动装置3提供一驱动信号。驱动电路6包括为光移动装置3中包括的液晶盒施加具有多电平(即,高和低)的电压的电压施加部分。
在图6A所示的光显示系统中,背光1,LCD 2,观察光学系统4和驱动电路5都具有与传统的光显示系统的相应部分相同的结构。因此,该优选实施例中的光显示系统的特征在于光移动装置3的结构和工作。
该第三优选实施例的光移动装置3与图3所示的结构基本相同。但是在该光移动装置3中,其两个液晶层都用ECB(横向对准)模式的液晶材料制成。其上未施加电压时,两液晶层的每一个具有220nm到280nm的滞后。液晶盒7和8的排列使得其指向矢与入射光偏振方向之间限定如图15所示的夹角。
在该优选实施例中,液晶盒7和8的液晶层用ECB模式的液晶材料制成。但是,只要入射光透过多个液晶层时,入射光的偏振方向或者旋转了大约90度或者完全没有旋转,也可以使用其它类型的液晶材料。
双折射元件11具有限定相对于其光入射侧预定倾角的光轴。在“主平面”上,双折射元件11可以将入射光分为正常光线和异常光线。因此,如果进入双折射元件11的入射光的偏振方向垂直于主平面,那么,对于双折射元件11入射光是正常光线,并直接穿过主平面传播。另一方面,如果进入双折射元件11的入射光的偏振方向平行于主平面,那么,对于双折射元件11入射光是异常光线,在主平面内受到折射。
双折射元件用单轴晶体材料(例如,石英)制成。但是,双折射元件11的材料不限于石英,而可以是任何其它的单轴晶体材料。其它优选材料的实例包括铌酸锂,方解石,云母,金红石(TiO2)和钠硝石(NaNO3)。如果显示系统的总重量应该减小到象头戴式显示器(HMD)中的那样,优选使用具有相对较大的折射系数各向异性Δn的铌酸铌锂或金红石。当双折射元件11是用这种高Δn材料制成时,由厚度减小的双折射元件11实现了最小所需图像移动。因此,这种材料可以用来有效地降低显示系统的总尺寸或总重量。
如果施加在液晶盒7和8的液晶层上的电压发生变化,入射光的偏振方向可以从垂直于双折射元件11的主平面变为平行于双折射元件11的主平面,反之亦然。按这样的方式,入射光可以在双折射元件11的主平面内移动。结果,显示在LCD 2上的图像可以垂直于入射光的光轴移动。
应该指出,根据上述优选实施例的光显示系统的背光可以用一种择向发射的照明光源取代,而观察光学系统可以用投影透镜取代。那么,光显示系统也可以作为一种投射型的显示系统。即使这样,分辨率仍可以用本发明的光移动装置和上述的HMD来提高。
以下将描述本发明第三优选实施例的具体实例和对比实例。
实例
在该具体实例中,用了如图16所示的包括两液晶盒7和8及双折射元件11的光移动装置。每一液晶盒7和是的用ECB(横向对准)模式的液晶材料制造,并且其放置使得液晶盒7和8中的液晶分子的取向方向满足图15所示的关系。石英片用作双折射元件11。
使用具有这种结构的光移动装置,并且施加到液晶盒7和8上的电压的开/关状态受到控制,因而选择性地将出射光从一个像素移动到位置A或位置B。
其上未施加电压时,液晶盒7和8的液晶层具有275nm的滞后。液晶盒7中液晶分子的取向方向(即指向矢D1)与入射的线偏振光的偏振方向限定约为23度,而液晶盒8中液晶分子的取向方向(即指向矢D2)与入射的线偏振光的偏振方向限定成约67度的夹角。
对使用这种光移动装置产生鬼像的百分比做了估计。结果示于下表5中:
表5
  波长(nm)   光到达位置A   光到达位置B
  450   约100%   约0%
  550   约100%   约0%
  650   约100%   约0%
如从表5所示的结果中可以看出,在该具体实例中,几乎没有入射光到达位置B。
对比实例
在该对比实例中,所用光移动装置包括图1所示的液晶盒7和双折射元件11。液晶盒7用TN模式的液晶材料制成,其上未施加电压时,其液晶层具有约480nm的滞后。在液晶盒7的两衬底之一的光入射侧,液晶分子的取向方向基本上平行于入射的线偏振光的偏振方向。
对使用这种光移动装置产生鬼像的百分比做了估计。结果示于下表6中:
表6
    波长(nm)     光到达位置A     光到达位置B
    450     约95%     约5%
    550     约100%     约0%
    650     约95%     约5%
如从表6所示结果中可以看出,在包括一个TN模式液晶盒7的光移动装置中,由于液晶层的波长色散,5%的波长为450nm的入射光到达位置B,并产生鬼像。同样地,5%的波长为650nm的入射光到达位置B,也产生了鬼像。结果,只能得到低分辨率的图像。
根据上述本发明的任一不同的优选实施例的光移动装置基本上可以消除鬼像,而在传统的光显示系统中由于其液晶层的波长色散,常常产生鬼像。因此,包括根据本发明优选实施例的光移动装置的光显示系统可以显示分辨率显著提高的优质图像。
虽然,本发明对其优选实施例进行了描述,但是对于本领域的技术人员来说,很显然所公开包括的本发明在许多方面可以修改,并且可以假设许多不同于上述的优选实施例。因此,通过所附权利要求来覆盖符合本发明实际精神和范围的所有修改。

Claims (19)

1.一种光移动装置,包括至少一个移动部分,该移动部分周期性转移入射到移动部分上的入射的线偏振光的光轴,
其中该移动部分包括:
第一液晶盒,响应施加到第一液晶盒的液晶层上的第一电压,该液晶盒将入射光的偏振方向从第一方向改变到第二方向,或反之亦然,第一和第二方向相互垂直;
第二液晶盒,响应施加到第二液晶盒的液晶层上的第二电压,该液晶盒将透过第一液晶盒液晶层的光的偏振方向从第一方向改变到第二方向,或反之亦然,和
透射透过第二液晶盒的光的双折射元件,
其中第二液晶盒的液晶层补偿入射的线偏振光透过第一液晶盒液晶层时产生的偏振扰动。
2.权利要求1的光移动装置,其中第一和第二液晶盒的放置使得第一液晶盒的液晶层中间部分的指向矢和第二液晶盒的液晶层中间部分的指向矢相互垂直。
3.权利要求2的光移动装置,其中第一和第二液晶盒的液晶层用具有相互相反光旋转方向的TN模式的液晶材料制成。
4.权利要求2的光移动装置,其中第一和第二液晶盒的液晶层用ECB模式的液晶材料制成。
5.权利要求1的光移动装置,其中第一液晶盒的液晶层中间部分的指向矢和第二液晶盒的液晶层的中间部分的指向矢之间确定42度到45度的角度,并且
其中将该角度分成两相等部分的平分线与进入第一液晶盒的入射光的偏振方向确定约45度的角度。
6.权利要求5的光移动装置,其中第一和第二液晶盒的两液晶层中的至少一个是用ECB模式的液晶材料制成。
7.权利要求6的光移动装置,其中至少一个用BCB模式的液晶材料制成的液晶层当其上未施加电压时具有220nm到280nm的滞后。
8.权利要求1的光移动装置,进一步包括至少再多一个具有与上述移动部分相同的结构和功能的移动部分。
9.一种光移动装置组件,包括:
如权利要求1所述的光移动装置;和
分别为第一和第二液晶盒施加第一和第二电压的驱动电路。
10.权利要求9的光移动装置组件,其中驱动电路与子域转换同步地只将第一和第二电压之一从低电平增加到高电平。
11.权利要求10的光移动装置组件,其中当子域被转换时,驱动电路将第一和第二电压都增加到高电平,然后在子域期间将第一和第二电压都降低到低电平。
12.一种光显示系统包括:
在其上显示图像的显示板;和
如权利要求1所述的光移动装置,
其中当图像在显示板上显示时,光移动装置移动从显示板出射的光。
13.权利要求12的光显示系统,进一步包括用于分别为第一和第二液晶盒施加第一和第二电压的驱动电路。
14.权利要求13的光显示系统,其中驱动电路只将第一和第二电压之一从低电平增加到高电平。
15.权利要求13的光显示系统,其中驱动电路将第一和第二电压都增加到高电平,然后在显示在显示板上的图像被切换到另一图像之前将第一和第二电压都降低到低电平。
16.权利要求12的光显示系统,其中从显示板出射然后进入光移动装置的光是线偏振光。
17.权利要求12的光显示系统,其中当图像移动时,图像的每个像素按时间分割技术分为预定数目的彩色像素,然后彩色像素按时间顺序依次叠加。
18.一种光显示系统,包括
发射光的光源;
包括多个像素区域的显示板,每个像素区域可以调制入射到其上的光;
用于将从光源发射的光会聚到与光波长相关的多个像素区域之一上的光控制装置;和
用于将已经过显示板调制的光投射到投射平面上在其上形成图像的光学系统,
其中光显示系统进一步包括:
用于从代表图像一帧的数据中产生代表多个子帧的数据并按时间顺序依次在显示板上显示多个子帧的电路;和
如权利要求1所述的光移动装置,该移动装置用于在投影平面上光学上转移显示在显示板上的多个子帧中被选择的子帧,并且
其中在投影平面上相同的区域用落在互不相同的波长范围内并被显示板的互不相同的像素区域调制的光线连续辐照。
19.一种驱动如权利要求1所述的光移动装置的方法,该方法包括以下步骤:
在子域切换时,只将第一和第二电压之一从低电平增加到高电平;
在另一子域切换时,只将第一和第二电压中的另一个从低电平增加到高电平;
在子域期间将第一和第二电压都从高电平降低到低电平。
CNB021528071A 2001-11-22 2002-11-22 光移动装置和光显示系统 Expired - Fee Related CN1201180C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP358196/2001 2001-11-22
JP2001358196 2001-11-22
JP155106/2002 2002-05-29
JP2002155106A JP2003344871A (ja) 2002-05-29 2002-05-29 画像シフト素子および画像表示装置
JP2002275922A JP3973524B2 (ja) 2001-11-22 2002-09-20 画像シフト素子および画像表示装置
JP275922/2002 2002-09-20

Publications (2)

Publication Number Publication Date
CN1423151A true CN1423151A (zh) 2003-06-11
CN1201180C CN1201180C (zh) 2005-05-11

Family

ID=27347864

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021528071A Expired - Fee Related CN1201180C (zh) 2001-11-22 2002-11-22 光移动装置和光显示系统

Country Status (4)

Country Link
US (1) US7034784B2 (zh)
KR (1) KR100478804B1 (zh)
CN (1) CN1201180C (zh)
TW (1) TWI231379B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957772A (zh) * 2018-07-23 2018-12-07 张家港康得新光电材料有限公司 一种2d/3d切换模组的检测系统及检测方法
CN110209000A (zh) * 2019-05-30 2019-09-06 上海天马微电子有限公司 一种显示面板、显示方法及显示装置
WO2020169088A1 (en) * 2019-02-21 2020-08-27 University Of Central Florida Research Foundation, Inc. Display device and electronic apparatus
CN113950643A (zh) * 2019-07-02 2022-01-18 杜尔利塔斯有限公司 空间光调制

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417230C (zh) 2000-06-16 2008-09-03 夏普公司 投影型图象显示装置
US6972809B2 (en) * 2001-12-20 2005-12-06 Sharp Kabushiki Kaisha Path shifting optical device having polarization correcting section and optical display system including same
JP2003302699A (ja) * 2002-02-05 2003-10-24 Sharp Corp 画像表示装置および画像シフト素子
JP2004145217A (ja) * 2002-10-28 2004-05-20 Sharp Corp 投影型画像表示装置
US20040165266A1 (en) * 2003-02-20 2004-08-26 Photintech Inc. Broadband polarization transformation devices
US8133115B2 (en) 2003-10-22 2012-03-13 Sony Computer Entertainment America Llc System and method for recording and displaying a graphical path in a video game
US7440009B2 (en) * 2004-02-13 2008-10-21 Matsushita Electric Industrial Co., Ltd. High definition imaging method and imaging apparatus having electro-optical polarization element between two birefrigent elements forming alternately on sensor single and overlapping images
US20060071933A1 (en) 2004-10-06 2006-04-06 Sony Computer Entertainment Inc. Application binary interface for multi-pass shaders
US7636126B2 (en) 2005-06-22 2009-12-22 Sony Computer Entertainment Inc. Delay matching in audio/video systems
JP2007192919A (ja) * 2006-01-17 2007-08-02 Olympus Corp 画像表示装置
US7880746B2 (en) 2006-05-04 2011-02-01 Sony Computer Entertainment Inc. Bandwidth management through lighting control of a user environment via a display device
US7965859B2 (en) 2006-05-04 2011-06-21 Sony Computer Entertainment Inc. Lighting control of a user environment via a display device
US20080084521A1 (en) * 2006-10-06 2008-04-10 Stanley Electric Co., Ltd. Field sequentially driven liquid crystal display device
JP2011186334A (ja) * 2010-03-10 2011-09-22 Seiko Epson Corp 液晶装置および液晶メガネ
US9946088B2 (en) * 2010-06-08 2018-04-17 Reald Inc. Stereoscopic liquid crystal display systems
US8184215B2 (en) * 2010-08-17 2012-05-22 Lc-Tec Displays Ab High-speed liquid crystal polarization modulator
US11468639B2 (en) * 2015-02-20 2022-10-11 Microsoft Technology Licensing, Llc Selective occlusion system for augmented reality devices
KR102586874B1 (ko) * 2016-08-18 2023-10-11 삼성전자주식회사 전자 장치 및 전자 장치의 이미지 표시 방법
CN109964171B (zh) * 2016-11-11 2022-03-08 依视路国际公司 相位调制器和光学器件
CN107884940A (zh) * 2017-11-28 2018-04-06 腾讯科技(深圳)有限公司 显示模组、头戴式显示设备及图像立体显示方法
CN115174772B (zh) * 2022-06-27 2024-03-01 台州鲲璇智能科技有限公司 一种可控液晶双折射提升图像分辨率的装置及方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984091A (en) * 1987-05-29 1991-01-08 Olympus Optical Co., Ltd. Apparatus for photographing or projecting an image for a CRT or laser diode array
JPH01191123A (ja) 1988-01-27 1989-08-01 Seiko Epson Corp 液晶光シャッター
JP2622185B2 (ja) * 1990-06-28 1997-06-18 シャープ株式会社 カラー液晶表示装置
US7656504B1 (en) * 1990-08-21 2010-02-02 Nikon Corporation Projection exposure apparatus with luminous flux distribution
JP2939826B2 (ja) * 1990-09-03 1999-08-25 日本電信電話株式会社 投影表示装置
JP3309422B2 (ja) * 1992-04-09 2002-07-29 松下電器産業株式会社 液晶インターレス表示装置
JPH0698267A (ja) * 1992-06-09 1994-04-08 Sony Corp 撮像装置
US5414541A (en) * 1993-06-01 1995-05-09 Bell Communications Research, Inc. Optical switch employing first and second ferroelectric cells with alignment layers having alignment directions offset by 45°
JP3285169B2 (ja) * 1993-07-22 2002-05-27 ソニー株式会社 光学装置
US6061103A (en) * 1995-01-20 2000-05-09 Olympus Optical Co., Ltd. Image display apparatus
JPH08194207A (ja) * 1995-01-20 1996-07-30 Olympus Optical Co Ltd 画像表示装置
JP3590138B2 (ja) * 1995-06-27 2004-11-17 オリンパス株式会社 表示装置
JP3418508B2 (ja) * 1995-11-28 2003-06-23 シャープ株式会社 投影型画像表示装置
KR100208970B1 (ko) * 1995-12-29 1999-07-15 구자홍 액정셀 및 그의 제조방법
JPH10206881A (ja) 1997-01-27 1998-08-07 Matsushita Electric Ind Co Ltd 液晶インターレス表示装置
US6798468B1 (en) * 1997-09-18 2004-09-28 Seiko Epson Corporation Display device with a light-reflective polarizer and electronic apparatus employing the same
US20020030777A1 (en) * 2000-05-22 2002-03-14 Koji Noguchi Liquid crystal device and liquid crystal
JP2002072219A (ja) * 2000-08-30 2002-03-12 Sharp Corp 液晶表示装置
JP4476505B2 (ja) * 2001-02-09 2010-06-09 シャープ株式会社 液晶表示装置
US6914654B2 (en) * 2001-11-09 2005-07-05 Koninklijke Philips Electronics N.V. High contrast fast liquid crystal display system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957772A (zh) * 2018-07-23 2018-12-07 张家港康得新光电材料有限公司 一种2d/3d切换模组的检测系统及检测方法
CN108957772B (zh) * 2018-07-23 2023-03-14 张家港康得新光电材料有限公司 一种2d/3d切换模组的检测系统及检测方法
WO2020169088A1 (en) * 2019-02-21 2020-08-27 University Of Central Florida Research Foundation, Inc. Display device and electronic apparatus
CN110209000A (zh) * 2019-05-30 2019-09-06 上海天马微电子有限公司 一种显示面板、显示方法及显示装置
CN113950643A (zh) * 2019-07-02 2022-01-18 杜尔利塔斯有限公司 空间光调制

Also Published As

Publication number Publication date
US7034784B2 (en) 2006-04-25
CN1201180C (zh) 2005-05-11
US20030095092A1 (en) 2003-05-22
TW200301367A (en) 2003-07-01
KR20030042426A (ko) 2003-05-28
KR100478804B1 (ko) 2005-03-25
TWI231379B (en) 2005-04-21

Similar Documents

Publication Publication Date Title
CN1201180C (zh) 光移动装置和光显示系统
CN1072806C (zh) 液晶装置及其驱动方法
CN100351672C (zh) 光学显示系统和光学移位器
US9046710B2 (en) Stereoscopic image conversion panel and stereoscopic image display apparatus having the same
CN1227639C (zh) 矩阵基底和用该基底的液晶装置及用该装置的显示设备
CN101034228A (zh) 半透射反射型液晶显示器件
CN1143163C (zh) 显示装置及其驱动方法和使用该显示装置的电子仪器
CN1174362C (zh) 显示装置
CN1146746C (zh) 显示屏和投影式显示装置
CN1748179A (zh) 可切换的双折射柱面透镜阵列
CN1860403A (zh) 定向显示设备
CN1320516C (zh) 液晶显示装置
CN1627164A (zh) 液晶显示器及其制造方法
CN1892349A (zh) 透反射液晶显示装置
CN1580881A (zh) 像素结构、电光装置和电子设备
CN1573432A (zh) 液晶面板、液晶显示器、以及电子设备
CN1106932A (zh) 液晶显示装置及其制造方法
US6985198B2 (en) Projection type optical display system
CN1346066A (zh) 光学设备、图象显示装置以及颜色切换方法
CN1993727A (zh) 液晶显示装置
CN1201194C (zh) 液晶显示器
CN1374793A (zh) 显示装置
CN1518681A (zh) 液晶显示装置
US20040085486A1 (en) Optical shifter and projection type optical display system
CN107533262A (zh) 液晶显示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050511

Termination date: 20131122