JP2004145217A - 投影型画像表示装置 - Google Patents

投影型画像表示装置 Download PDF

Info

Publication number
JP2004145217A
JP2004145217A JP2002312717A JP2002312717A JP2004145217A JP 2004145217 A JP2004145217 A JP 2004145217A JP 2002312717 A JP2002312717 A JP 2002312717A JP 2002312717 A JP2002312717 A JP 2002312717A JP 2004145217 A JP2004145217 A JP 2004145217A
Authority
JP
Japan
Prior art keywords
light
image display
display device
display panel
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002312717A
Other languages
English (en)
Inventor
Hiromi Kato
加藤 浩巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002312717A priority Critical patent/JP2004145217A/ja
Priority to US10/692,758 priority patent/US6817718B2/en
Publication of JP2004145217A publication Critical patent/JP2004145217A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3117Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing two or more colours simultaneously, e.g. by creating scrolling colour bands

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

【課題】被投影面の画面内に、周期的なドット状の模様などのない高品位の画像を投影することのできる投影型画像表示装置を提供する。
【解決手段】光源1と、光を変調するための画素領域を有する画像表示パネル8と、光源1からの光を複数の波長域の光に分離し、分離された波長域の光を画素領域に集光させる光制御手段4〜7と、画像表示パネル8で変調された光を投影する光学系11と、各フレーム画像のデータから複数のサブフレーム画像のデータを生成し、画像表示パネルに時分割で表示させる回路14と、サブフレーム画像を被投影面上でシフトさせる光学シフト素子10とを備え、光学シフト素子10が、画像表示パネル8から出射する前記分離された複数の波長域の光のうち、人間に対して最も視感度の高い波長領域の光を被投影面上において画像表示パネル8の画素ピッチの整数倍だけシフトするよう、光学シフト素子10が視感度の高い波長領域の光に対して最適化されている投影型画像表示装置。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、画像表示装置に関し、特にカラーフィルタを用いずに1枚の画像表示パネルを用いてカラー表示を行うことができる単板式投影型画像表示装置に関している。本発明は、コンパクトな投影型カラー液晶テレビジョンシステムや情報表示システムに好適に用いられ得る。
【0002】
【従来の技術】
画像表示装置として、液晶表示パネルを用いた投影型画像表示装置が従来より知られている。液晶表示パネルを用いた投影型画像表示装置では、液晶表示パネル自体が発光しないため、別に光源を設ける必要がある。しかし、CRTを用いた投影型画像表示装置と比較すると、色再現範囲が広い、小型、軽量、コンバージェンス調整が不用などの非常に優れた特徴を持っている。
【0003】
液晶表示パネルを用いた投影型画像表示装置によってフルカラー表示を行うには、3原色に応じて液晶表示パネルを3枚用いる3板式と、1枚のみを用いる単板式がある。
【0004】
3板式の投影型画像表示装置では、白色光を赤(R)、緑(G)、および青(B)の3原色それぞれに分割する光学系と、R、G、およびB色の光をそれぞれ変調して画像を形成する3枚の液晶表示パネルとを用い、R、G、およびB色の各々の画像を光学的に重畳することによってフルカラーの表示を実現している。
【0005】
3板式の投影型画像表示装置では、白色光源から放射される光を有効に利用できるが、光学系が繁雑で部品点数が多くなってしまうため、一般に、コストおよびサイズの観点で単板式の投影型画像表示装置よりも不利である。
【0006】
単板式の投影型画像表示装置は、モザイク状またはストライプ状に配列した3原色のカラーフィルタを備えた1枚の液晶表示パネルを用いる。そして、液晶表示パネルで表示したフルカラー画像を投影光学系によってスクリーンなどの被投影面に投影する。このような単板式の投影型画像表示装置は、例えば特許文献1に記載されている。単板式の場合、1枚の液晶表示パネルを用いるので、光学系も3板式の場合に比較して単純な構成で済み、小型の投影型画像表示装置を低コストで提供するのに適している。
【0007】
しかし、カラーフィルタを用いる単板式の場合、カラーフィルタでの光吸収が発生するため、同等の光源を用いた3板式の場合と比較して画像の明るさが約1/3に低下してしまう。また、液晶表示パネルのR、G、Bに対応する3つの画素領域が1組となって1画素の表示を行う必要があるため、画像の解像度も3板式の解像度の1/3に低下してしまう。
【0008】
光源を明るくすることは明るさ低下に対する1つの解決法であるが、民生用として使用する場合、消費電力の大きな光源を用いることは好ましくない。また、吸収タイプのカラーフィルタを用いる場合、カラーフィルタに吸収された光のエネルギーは熱に変わるため、いたずらに光源を明るくすると、液晶表示パネルの温度上昇を引き起こすだけでなく、カラーフィルタの退色が加速される。従って、与えられた光をいかに有効に利用するかが、投影型画像表示装置の利用価値を向上させる上で重要な課題である。
【0009】
単板式投影型画像表示装置による画像の明るさを向上させるため、カラーフィルタを用いずにフルカラー表示を行う液晶表示装置がたとえば特許文献2に開示されている。この液晶表示装置では、光源から放射された白色光をダイクロイックミラーのような誘電体ミラーによってR、G、Bの各光束に分割し、液晶表示パネルの光源側に配置されたマイクロレンズアレイに異なった角度で入射させる。マイクロレンズに入射した各光束は、マイクロレンズを透過することによって、入射角に応じて対応する画素領域に集光される。このため、分離されたR、G、Bの各光束は、別々の画素領域で変調され、フルカラー表示に用いられる。
【0010】
上記の誘電体ミラーを用いる代わりに、R、G、B光に対応する透過型のホログラム素子を用いて光利用率向上を図った表示装置が特許文献3に開示され、画素ピッチに対応した周期的構造を透過型ホログラム素子に持たせ、誘電体ミラーおよびマイクロレンズの機能を与えた装置が特許文献4に開示されている。
【0011】
単板式のもう1つの課題である解像度については、フィールド順次方式を採用することによって1枚の液晶表示パネルで3板式と同等の解像度を得ることができる。フィールド順次方式では、人間の視覚で分解できない速さで光源の色の切り替えを行うことにより、時分割表示される各画像の色が加法混色によって構成される現象(継続加法混色)を利用する。
【0012】
フィールド順次方式でフルカラー表示を行う投影型画像表示装置は、例えば、図15に示す構成を有している。この表示装置では、R、G、Bのカラーフィルタから構成された円盤を液晶表示パネルの垂直走査周期に合わせて高速に回転させ、カラーフィルタの色に対応した画像信号を液晶表示パネルの駆動回路に順次入力する。人間の目には、各色に対する画像の合成像が認識される。
【0013】
このようなフィールド順次方式の表示装置によれば、単板方式と異なり、液晶表示パネルの各画素でR、G、B画像を時分割で表示するため、その解像度は3板式と同等レベルになる。
【0014】
フィールド順次方式の他の表示装置として、R、G、Bの各々の光束で液晶表示パネルの異なる領域を照射する投影型画像表示装置が非特許文献1に開示されている。この表示装置では、光源から放射された白色光を誘電体ミラーによってR、G、Bの光束に分離し、R、G、Bの各々の光束で液晶表示パネルの異なる領域を照射する。液晶表示パネルに対するR、G、Bの光照射位置は、キューブ状のプリズムを回転させることによって順次切り替えられる。
【0015】
しかしながら、特許文献2、特許文献3および特許文献4等に記載されている装置によれば、確かに明るさは改善されるが、解像度は3板式の1/3のままである。その理由は、1つの画素(ドット)を表示するのに空間的に分離されたR、G、およびB用の3つ画素を1組として用いるためである。
【0016】
これに対して、通常のフィールド順次方式の場合は解像度が3板式の解像度と同等レベルに改善される。しかし、画像の明るさに関しては、カラーフィルタを用いるため、従来の単板式と同様の問題を有している。
【0017】
一方、非特許文献1に記載されている上記の表示装置の場合、R、G、Bの光照射位置を相互に重複させないようにする必要があるが、そのためには平行度が非常に優れた照明光を必要とする。従って、照明光の平行度の規制によって光の利用効率が低下してしまうことになる。
【0018】
以上のように、上述した従来技術では、何れも、単板式の課題である明るさおよび解像度の両方を改善させることは実現していない。
【0019】
これに対して、出願人は、特許文献5および6に示す単板式の投影型画像表示装置を提案している。
【0020】
特許文献5に記載されている投影型画像表示装置では、特許文献2に記載されている液晶表示装置と同様の液晶表示装置を用い、同様の方法で白色光を色毎の光束に分割し、各光束を異なった角度で画素領域に入射させている。この投影型画像表示装置では、光利用効率の向上と高解像度化の両立を実現するために、各フレーム画像を複数のサブフレーム画像に時分割し、液晶表示パネルの垂直走査周期に同期させて光束の入射角度を周期的に切り替えている。
【0021】
また、特許文献6に示す投影型画像表示装置では、ダイクロイックミラー用いて白色光をR、G、Bの光束に分割し、マイクロレンズアレイを用いて各光束を異なった角度で画像表示パネルの異なる画素領域に入射させる。画像表示パネルには、画像を構成する各フレーム画像のデータから生成された複数のサブフレーム画像のデータを時分割で表示させる。そして、これらのサブフレーム画像を被投影面上で順次シフトさせることによりが画像表示パネルの異なる画素領域で変調された異なる波長域に属する光(R、G、B光)で被投影面上の同一領域を順次照射する。
【0022】
これらの投影型画像表示装置によれば、カラーフィルタを用いないため、高い光の利用効率が達成することができ、また、高解像度の画像を表示させることができる。
【0023】
【特許文献1】
特開昭59−230383号公報
【特許文献2】
特開平4−60538号公報
【特許文献3】
特開平5−249318号公報
【特許文献4】
特開平6−222361号公報
【特許文献5】
特開平9−214997号公報
【特許文献6】
国際公開第JP01/05041号パンフレット
【非特許文献1】
第6回インターナショナルディスプレーワークショップ(IDW)予稿集、1999年12月、P989〜P992
【0024】
【発明が解決しようとする課題】
上述の特許文献5および6に開示された画像表示装置のうち、特許文献6の画像表示装置では、画像表示パネルへ入射するR、G、Bの光束の入射角が異なり、画像表示パネルにより変調されたR、G、Bの光束も異なった角度で画像表示パネルから出射する。このような出射角度の差異にかかわらず、画像表示パネルにより変調されたR、G、Bの光束を被投影面上において同じ割合でシフトさせることにより、異なる画素領域で変調されたR、G、B光を被投影面上の同一領域を順次照射させる必要がある。
【0025】
変調されたR、G、B光が被投影面上において完全に重ならない場合、被投影面の画面内に、周期的なドット状の模様が現れ、投影された画像の画質を損なう。
【0026】
本発明は、上記課題を解決するためになされたものであり、その目的は、明るく高解像度で均一かつ高品質な表示を実現し、小型化および低コスト化に適した投影型画像表示装置を提供することにある。
【0027】
【課題を解決するための手段】
本発明の投影型画像表示装置は、光源と、各々が光を変調することができる複数の画素領域を有する画像表示パネルと、前記光源からの光を複数の波長域の光に分離し、前記分離された波長域の光をその波長域に応じて前記複数の画素領域のうちの対応する画素領域に集光させる光制御手段と、前記画像表示パネルで変調された光によって被投影面上に画像を形成する光学系と、前記画像を構成する各フレーム画像のデータから複数のサブフレーム画像のデータを生成し、前記画像表示パネルによって前記複数のサブフレーム画像を時分割で表示させる回路と、前記画像表示パネルによって表示される前記複数のサブフレーム画像のうち選択されたサブフレーム画像を前記被投影面上でシフトさせる光学シフト素子とを備え、前記光学シフト素子が、前記画像表示パネルから出射する前記分離された複数の波長域の光のうち、人間に対して最も視感度の高い波長領域の光を被投影面上において前記画像表示パネルの画素ピッチの整数倍だけシフトさせるよう、前記光学シフト素子が前記視感度の高い波長領域の光に対して最適化されている。
【0028】
ある好ましい実施形態において、前記光学シフト素子は、光の偏向方向を変調する液晶層、および、光の偏向方向により屈折率の異なる複屈折板をそれぞれ有する第1および第2の光学シフト部を含み、前記第1および第2の光学シフト部の複屈折板の光学軸の入射面の法線に対する角度および前記複屈折板の厚さが、前記視感度の高い光に対して最適化されている。
【0029】
ある好ましい実施形態において、前記視感度の高い波長領域の光は、波長550nmの光を含む。
【0030】
ある好ましい実施形態において、前記複屈折板の光学軸は、前記光学シフト素子の複屈折板の入射面の法線に対して角度θをなしており、前記角度θは、40〜50度の範囲にある。
【0031】
ある好ましい実施形態において、前記視感度の高い波長領域の光は、前記第1の光学シフト部の複屈折板の入射面の法線に対して角度αをなすよう前記複屈折板の入射面に入射し、前記視感度の高い波長領域の光の入射角は前記複屈折板の光学軸に対して角度θ+αをなしている。
【0032】
ある好ましい実施形態において、前記複屈折板は水晶板である。
【0033】
ある好ましい実施形態において、前記光制御手段は、前記光源から放射される白色光を前記複数の波長域の光に分離するための複数のダイクロイックミラーと、前記ダイクロイックミラーにより、分離された光を前記画像表示パネルの対応する画素領域へ集光するために、前画像表示パネルに設けられたマイクロレンズアレイとを含む。
【0034】
【発明の実施の形態】
本発明の投影型画像表示装置では、特許文献6に開示されているように、光源から出射する白色光を、ダイクロイックミラーなどの光制御手段を用いて、赤(R)、緑(G)、青(B)の波長領域にその成分を持つ光に分離する。分離されたR、G、B光は、マイクロレンズアレイを用いて画像表示パネルの異なる画素領域に異なった角度で入射される。分離されたR、G、B光は、時間の経過にかかわらず、同一の画層領域には、同じ色の光が照射される。
【0035】
画像表示パネルには、画像を構成する各フレーム画像のデータから生成された複数のサブフレーム画像のデータを時分割で表示させる。たとえば、各フレーム画像は、3つのサブフレーム画像に分割され、3つのサブフレーム画像は、画像表示パネル上において、1画素分ずつシフトして表示される。この時、あるフレーム画像を構成する1つの画素に注目すると、この画素は、R、G、B光がそれぞれ照射されている画像表示パネル上の画素領域に対応する。
【0036】
画像表示パネルに異なった角度で入射したR、G、Bの光は互いに異なった角度で画像表示パネルから出射する。出射するR、G、Bの光は、サブフレーム画像のデータを用いて画像表示パネルにより変調されるため、サブフレーム画像となる。
【0037】
これらの複数のサブフレーム画像のうち、選択されたサブフレーム画像は、光学シフト素子によって、被投影面上においてその位置がシフトされて表示される。
【0038】
この方式においては、被投影面上で同じ位置に投影されるべき各色画素の表示位置にズレが生じていると、投影された画像は、スクリーン全体においてドット模様を含み、画質劣化につながる。このため、光学シフト素子のシフト量を正確に制御することが重要である。
【0039】
本発明では、光学シフト素子として、入射光の偏光方向によって異なる屈折率を示す副屈折素子と、副屈折素子に入射する光の偏光方向を変調するための偏光方向切替素子とを用いる。光学シフト素子によるシフト量は、副屈折素子へ入射する光の光軸の方向および複屈折素子の厚さに依存する。光学シフト素子へ入射するR、G、Bの光の入射角の違いが、上述した被投影面上におけるシフト量に影響を与え、投影された画像の画質の劣化を引き起こす。
【0040】
本発明では、上述した投影型画像表示装置におけるこのシフト量をできるだけ小さくし、高品位の画像を表示しうる投影型画像表示装置を提供する。なお、本発明の適用範囲は投影型画像表示装置に限定されず、ビュワーやヘッド・マウント・ディスプレイなどの直視型画像表示装置にも好適に適用されるが、以下においては、投影型の画像表示装置を例にとり、本発明の好ましい実施形態を説明する。
【0041】
まず、図1から図3を参照しながら本実施形態の投影型画像表示装置の構造を概略的に説明する。
【0042】
本実施形態の投影型画像表示装置は、光源1と、液晶表示パネル8と、光源1からの光を波長域に応じて液晶表示パネル8の対応する画素領域に集光させる光制御手段と、液晶表示パネル8によって変調された光を被投影面上に投射する投影光学系とを備えている。
【0043】
この投影型画像表示装置は、更に、光源1から後方に出た光(白色光)を前方に反射する球面鏡2と、光源1および球面鏡2からの光を平行光束にするコンデンサーレンズ3と、この光束を波長域に応じて複数の光束に分離するダイクロイックミラー4〜6を備えている。ダイクロイックミラー4〜6によって反射された光は、波長域に応じて異なる角度でマイクロレンズアレイ7に入射する。マイクロレンズアレイ7は液晶表示パネル8の光源側基板に取りつけられており、異なる角度でマイクロレンズ7に入射した光は、それぞれ異なる位置の対応する画素領域に集められる。
【0044】
本投影型画像表示装置の投影光学系は、フィールドレンズ9および投影レンズ11から構成されており、液晶表示パネル8を透過した光束12をスクリーン(被投影面)13に投射する。本実施形態では、フィールドレンズ9と投影レンズ11との間に、光学シフト素子10が配置されている。図1には、光学シフト素子10によって被投影面に平行な方向にシフトされた光束12a、12bが示されている。光束のシフトを行うには、光学シフト素子10は液晶表示パネル8とスクリーン13との間の何れかの位置に挿入されていればよく、投影レンズ11とスクリーン13との間に配置されていても良い。
【0045】
次に、本投影型画像表示装置の各構成要素を順番に説明する。
【0046】
本実施形態においては、光源1として、光出力150W、アーク長5mm、アーク径2.2mmのメタルハライドランプを用い、このランプをアーク長方向が図面の紙面と平行となるように配置している。光源1としては、メタルハライドランプ以外に、ハロゲンランプ、超高圧水銀ランプ、またはキセノンランプ等を用いても良い。本実施形態で使用する光源1は、三原色に対応する3つの波長域の光を含む白色光を放射する。
【0047】
光源1の背面には球面鏡2が配置され、光源1の前面には口径80mmφ、焦点距離60mmのコンデンサーレンズ3が配置されている。球面鏡2は、その中心が光源1の発光部の中心と一致するように配置されており、コンデンサーレンズ3は、その焦点が光源1の中心と一致するように配置されている。
【0048】
このような配置構成により、光源1から出射された光は、コンデンサーレンズ3によって平行化され、液晶表示パネル8を照らすことになる。コンデンサーレンズ3を通過した光の平行度は、例えば、アーク長方向(図1の紙面に平行な方向)に約2.2°、アーク径方向に約1°となる。
【0049】
本実施形態で使用する液晶表示パネル8は、光源側の透明基板上にマイクロレンズアレイ7が配置された透過型液晶表示素子である。液晶の種類や動作モードは任意であるが、高速動作し得るものであることが好ましい。本実施形態ではTN(ツイステッド・ネマティック)モードで動作する。液晶表示パネル8には、光を変調するための複数の画素領域が設けられているが、本願明細書における「画素領域」とは、画像表示パネルにおいて空間的に分離された個々の光変調部を意味する。液晶表示パネル8の場合は、個々の画素領域に対応する画素電極によって液晶層の対応部分に電圧が印加され、その部分の光学特性が変化することによって光の変調が行われる。
【0050】
この液晶表示パネル8では、例えば768(H)×1024(V)の走査線がノンインターレースで駆動される。液晶表示パネル8の画素領域は透明基板上に二次元的に配列されており、本実施形態の場合、画素領域のピッチは水平方向に沿って測定した値も垂直方向に沿って計測した値も26μmである。図2は、図1に示す液晶表示パネル8近傍の構造を拡大して示している。図2に示すように本実施形態の場合、R用、G用、B用画素領域8R、8G、8Bは、それぞれ、画面の水平方向(図2では紙面に垂直な方向)に沿ってストライプ状に配列され、各マイクロレンズ7aが3つの画素領域(R用、G用、B用画素領域8R、8G、8B)からなるセットに割り当てられている。
【0051】
本実施形態においては、R用、G用、B用画素領域8R、8G、8Bは、それぞれ、画面の水平方向(図2では紙面に垂直な方向)に沿ってストライプ状に配列されているが、各マイクロレンズ7aが3つの画素領域(R用、G用、B用画素領域8R、8G、8B)からなるセットに割り当てられてさえいれば、R用、G用、B用画素領域8R、8G、8Bはモザイク状に配列されていても良い。
【0052】
液晶表示パネル8を照射するR、G、およびB光は、図1に示すように、光源1から放射された白色光をダイクロイックミラー4、5、および6によって分離したものであり、液晶表示パネル8上のマイクロレンズアレイ7へ異なる角度で入射する。R、G、およびB光の入射角度を適切に設定することにより、図2に示すように、マイクロレンズ7によって各波長域に対応する画素領域へ適切に振り分けられる。本実施形態では、マイクロレンズ7の焦点距離を120μmとし、各光束がなす角度が10.02°になるように設計している。より詳細には、R光は液晶表示パネル8に対して垂直に入射し、B光およびG光は、それぞれ、R光に対して10.02°の角度で入射する。
【0053】
ダイクロイックミラー4、5、および6は、図3に示すような分光特性を有しており、それぞれ、緑色(G)、赤色(R)、および青色(B)の光を選択的に反射する。G光の波長域は520〜580nm、R光の波長域は600〜650nm、B光の波長域は420〜480nmである。
【0054】
本実施形態では、3原色の光を対応する画素領域に集めるためにダイクロイックミラー4〜6およびマイクロレンズアレイ7を用いているが、他の光学的な手段(例えば、光の回折・分光機能を付与された透過型ホログラム)を用いても良い。
【0055】
上述したように液晶表示パネル8はノンインターレースで駆動されるため、1秒間に60フレームの画像が表示され、各フレームに割り当てられる時間(フレーム期間)Tは1/60秒、すなわち、T=1/60(秒)≒16.6(ミリ秒)となる。なお、インターレースで駆動される場合は、画面内の走査線を偶数ラインと奇数ラインに分け、交互に表示していくため、T=1/30(秒)≒33.3(ミリ秒)となる。また、各フレームを構成する偶数フィールドおよび奇数フィールドの各々に割り当てられた時間(1フィールド期間)は、1/60≒16.6(ミリ秒)となる。
【0056】
本実施形態の投影型画像表示装置は、各フレーム画像の情報(データ)からなる画像データを受け取り、各フレーム画像のデータを逐次フレームメモリに蓄え、そのフレームメモリから選択的に読み出した情報に基づいて複数のサブフレーム画像を順次形成し、サブフレーム画像を画像表示パネル8に時分割で表示させるサブフレーム画像生成回路14を備える。以下、サブフレーム画像生成回路14におけるサブフレーム画像の形成方法を詳細に説明する。
【0057】
例えば、あるフレームの画像(フレーム画像)が図4(a)に示すような画像であるとする。このフレーム画像はカラー表示されるべきものであり、各画素の色は、上記フレーム画像を規定するデータに基づいて決定される。なお、インターレース駆動の場合は、或るフィールドの画像が本願明細書における「フレーム画像」と同様に取り扱われ得る。
【0058】
まず、図4(a)に示すカラー表示用のフレームデータから各画素についてR、G、およびB光用のデータを分離し、図4(b)、(c)、および(d)に示すように、R画像用フレーム、G画像用フレーム、およびB画像用フレームの各データを生成する。これらのデータは図5の左側に示すように、R、G、およびB用フレームメモリにそれぞれ格納される。
【0059】
図5の右側部分には、表示サブフレーム1〜3が示されている。本実施形態によれば、あるフレームの最初の3分の1の期間(第1サブフレーム期間)において、被投影面上には表示サブフレーム1の画像が被投影面上に表示される。そして、次の3分の1の期間(第2サブフレーム期間)には、表示サブフレーム2の画像が表示され、最後の3分の1の期間(第3サブフレーム期間)には、表示サブフレーム3の画像が表示される。本実施形態では、これら3つのサブフレーム画像が図6に示すようにシフトし、時間的にずれながら合成される結果、人間の目には図4(a)に示すような原画像が認識されることになる。
【0060】
次に、表示サブフレーム1を例にとり、サブフレーム画像のデータ構成を詳細に説明する。まず、表示サブフレーム1の第1行画素領域用データは、図6に示すように、R用フレームメモリに記憶されている第1行目画素(R1)に関するデータから形成される。表示サブフレーム1の第2行画素領域用データは、G用フレームメモリに記憶されている第2行目画素(G2)に関するデータから形成される。表示サブフレーム1の第3行画素領域用データは、B用フレームメモリに記憶されている第3行目画素(B3)に関するデータから形成される。表示サブフレーム1の第4行画素領域用データは、R用フレームメモリに記憶されている第4行目画素(R4)に関するデータから形成される。以下、同様の手順で表示サブフレーム1のデータが構成される。
【0061】
表示サブフレーム2および3のデータも、表示サブフレーム1の場合と同様にして構成される。例えば表示サブフレーム2の場合、第0行画素領域用データは、B用フレームメモリに記憶されている第1行目画素(B1)に関するデータから形成され、表示サブフレーム2の第1行画素領域用データはR用フレームメモリに記憶されている第2行目画素(R2)に関するデータから形成される。表示サブフレーム2の第2行画素領域用データはG用フレームメモリに記憶されている第3行目画素(G3)に関するデータから形成され、表示サブフレーム2の第3行画素領域用データはB用フレームメモリに記憶されている第4行目画素(B4)に関するデータから形成される。
【0062】
このようにしてR、G、およびB用フレームメモリの各々から読み出したデータを予め設定された順序で組み合わせることによって、時分割表示されるサブフレームの各々のデータが生成される。この結果、サブフレーム用データの各々は、R、G、およびBの全ての色に関する情報を含んでいるが、R、G、およびBのそれぞれについて、空間的には全体の3分の1の領域に関する情報を有しているだけである。より詳細に述べれば、図5から明らかにように、表示サブフレーム1は、R画像フレームの第1、4、7、10…行の画素に関するデータと、G画像フレームの第2、5、8、11…行の画素に関するデータと、B画像フレームの第3、6、9、12…行の画素に関するデータとを含む。表示サブフレーム2は、B画像フレームの第1、4、7、10…行の画素に関するデータと、R画像フレームの第2、5、8、11…行の画素に関するデータと、G画像フレームの第3、6、9、12…行の画素に関するデータとを含む。また、表示サブフレーム3は、G画像フレームの第1、4、7、10…行の画素に関するデータと、B画像フレームの第2、5、8、11…行の画素に関するデータと、R画像フレームの第3、6、9、12…行の画素に関するデータとを含む。なお、図5からわかるように、画像表示パネルの画素領域の全行数は、1つのサブフレーム画像を構成する画素の全行数よりも2行だけ多い。この2行は光学シフトのマージンとして機能する。
【0063】
原画像フレームを再現するためには、R画像フレームの第1行、B画像フレームの第1行およびG画像フレームの第1行を合成しなければならない。図6に示すように、これらの情報は、表示サブフレーム1、2および3において、1行目、0行目および−1行目に割り当てられる。したがって、これらのサブフレーム画像を被投影面上において、表示サブフレーム1に対して、表示サブフレーム2は1画素分、シフトさせて表示し、表示サブフレーム1に対して、表示サブフレーム3は2画素分シフトさせて表示する。つまり、投影面上の各画素では、3つの表示サブフレームが順次シフトして表示される。この各サブフレーム間における画像のシフトは光学シフト素子10によって行われる。
【0064】
なお、サブフレームの生成方法および生成したサブフレームの時分割表示方法は、上述した一例に限定されるものではない。特許文献6に開示されているように、3以上のサブフレームを用いて時分割表示をおこなってもよい。
【0065】
次に、光学シフト素子10およびサブフレーム画像のシフト方法を説明する。
【0066】
図7および図8は、光学シフト素子10に用いられる光学シフト部10’を模式的に示している。光学シフト部10’は、光の偏向方向を直交する2つの方向の間で切り換えることにより、画像表示パネル8(図1)によって変調されたサブフレーム画像の偏光方向を変調する第1の素子(液晶素子)g1と、光の偏光方向によって異なる屈折率を有する物質をからなる第2の素子(水晶板)g2とを有している。本実施形態では、第1の素子は液晶層を含む液晶素子であり、第2の素子は水晶板である。本明細書において、「偏光方向」とは、光の電場ベクトルの振動方向を意味する。偏光方向は、光の伝搬方向に垂直である。また、電場ベクトルと光の伝搬方向の両方を含む平面を「振動面」または「偏光面」と称することとする。
【0067】
図7および図8に示されている例では、画像表示パネル8を出た光は水平方向に偏光しているとする。つまり偏光方向は図において水平方向である。液晶素子g1の液晶層に電圧を印加しない場合には、図7に示すように、画像表示パネルを出た光の偏光方向は液晶層によって90°だけ回転させられるこれに対し、液晶素子g1の液晶層に適切なレベル電圧を印加している場合は、図8に示すように、画像表示パネルを出た光の偏光面は、光が液晶素子g1を透過する過程で回転しない。なお、ここでは、回転角度が90°である場合を例示しているが、液晶層の設計によっては、回転角度を任意に設定することが可能である。
【0068】
水晶板g2は、単軸結晶(正結晶)であり、複屈折性を持つため、入射光の偏光方向によって異なる屈折率を示す。水晶板g2は、その光入射面f2が入射光の光軸k0と垂直になるように配置されている。水晶板g2の光学軸k2は、図7および図8において、垂直な面内に含まれているが、水晶板g2の光入射面f2からは傾斜している。ここで、「光軸」とは、光の回転対称軸をいい、「光学軸」とは、複屈折性結晶において複屈折の起きない方向の軸をいう。このため、図7に示すように、偏光方向が垂直な光が水晶板g2に入射すると、光は光軸k0と水晶の光学軸k2とがなす角θに応じて、光学軸k2を含む面内で屈折し、光は垂直方向にΔdだけ平行にシフトする。入射する光の光軸と出射する光の光軸とは平行になっている。この場合、水晶板g2の光学軸k2と入射光の光軸k0の両方を含む平面(以下、「主断面」と称する。)が入射光の偏光面と平行な関係にある。このように偏光面が主断面に平行な入射光は、水晶板g2にとって「異常光」である。ここで、角θは90度以下の値である。
【0069】
一方、図8に示すように、偏光面が水平方向の光が水晶板g2に入射すると、偏光面が水晶板g2の光学軸k2(または主断面)と直交するため、光は屈折せず、光のシフトも生じない。したがって、水晶いたg2から出射する光の光軸は入射光の光軸と一致する。この場合、水晶板g2に入射する光は、水晶板g2にとって「常光」である。
【0070】
このように、液晶素子g1に電圧を印加するか否かによって、水晶板g2に入射する光の偏光方向を制御し、また、偏光方向の異なる光を水晶板g2に入射させることにより、水晶板g2から出射する光のシフトを調節することができる。なお、本実施形態では液晶素子g1に水平方向に偏光した光を入射させて、水晶板g2において光を垂直方向にシフトさせているが、垂直方向に偏光した光を液晶素子g1に入射させ、水晶板g2において光を水平方向にシフトさせてもよい。
【0071】
ここで、図9に示すように、水晶板g2の厚さをtとし、水晶板g2の異常光線屈折率および常光線屈折率をそれぞれ、nおよびnとする。また、光学軸k2が主断面内において入射面f2の法線からθ°傾斜している場合、水晶板g2に対して垂直に入射する光Lに対する出射光L’のシフト量Δdは以下の式で表される。
【0072】
【数1】
Figure 2004145217
【0073】
Δd:シフト量
: 異常光線屈折率
: 常光線屈折率
θ: 入射面の法線と光学軸k2とがなす角度
t: 水晶板の厚み
【0074】
水晶板g2に対して斜めから入射する光に対する出射光のシフト量Δdは、式(1)に対して、媒質中での入射する光の光軸と水晶の光学軸とのなす角をθとし、水晶板g2とそれに接する媒質との間の計算にはスネルの公式を適用して、求めることができる。
【0075】
この式から、光束のシフト量Δdと水晶板g2の厚さtとは比例し、光学軸の方向θによってもシフト量が変化することがわかる。したがって、水晶板g2の厚さt、および、光軸方向θを調節することによって、サブフレーム画像のシフト量を任意の値に設定することができる。
【0076】
本実施形態の光学シフト部10’では、液晶層を一対の透明電極で挟み込み、それによって適切な電圧を液晶層の全体に一括的に印加することができるようにしている。また、本実施形態では、屈折率異方性Δεが正のTN液晶を用い、電圧を印加したときに、電界の向きに液晶分子を配向させることによって、入射光の偏光方向を回転させず、電圧を印加しないときに、液晶分子を90°ねじれた配向を行わせることによって入射光の偏光方向を90°回転させる。しかし、屈折率異方性Δεが負のTN液晶を用い、液晶層に電圧を印加したとき、入射光の偏光方向を90°回転させ、電圧を印加しないときに入射光の偏光方向を回転させないようにしてもよい。
【0077】
本実施形態では、光学シフト部10’において、適切な電圧を液晶層の全体に一括的に印加することができるようにしているが、部分的に印加しても良く、さらに、画像表示パネルの走査に同期して、順次対応する液晶層の領域に電圧を印加するとなお良い。
【0078】
上述したように、光学シフト部10’は、図7に示す状態、または、第8に示す状態をとることによって、画像をΔdだけシフトさせことができる。つまり、2つの異なる位置を選択することができる。しかし、図4から図6を参照して説明したように、R、G、Bの光を被投影面上で重ねあわせるためには、画像パネルにより変調されたサブフレーム画像を1画素分および2画素分、被投影面上でシフトさせる必要があり、したがって、光学シフト素子10は、少なくとも3つの異なる位置を選択できなければならない。
【0079】
このため、本実施形態の光学シフト素子10は、図7(または図8)に示されるような光学シフト部10’を2つ含んでおり、この2つの光学シフト部10’を光路上に直列的に配置することにより、最大で4つの異なる位置を選択できるよう画像をシフトさせることができる。この光学シフト素子10によれば、光路上の光入射側に位置する光学シフト部10’の液晶層および光出射側に位置する光学シフト部10’の液晶層への電圧印加状態にしたがって、被投影面上における4つの異なる位置を選択することができる。
【0080】
4つの位置を選択するには、たとえば図10に示すように、第1の光学シフト部10’aを透過した光が第2の光学シフト部10’bを透過するよう、入射側に厚さ2tの水晶板g2を有する第1の光学シフト部10’aを配置し、出射側に厚さtの水晶板g2を有する第2の光学シフト部10’bを配置する。式(1)より、シフト量Δdは水晶板g2の厚みtに比例するので、第1の光学シフト部10’aで2ピッチシフトさせ、第2の光学シフト部10’bで1ピッチシフトさせることができる。入射側と出射側の光学シフト部10’は入れ替えてもよい。また、3つの位置を選択するには、入射側および出射側の光学シフト部10’の水晶板g2の厚さを等しくし、同じピッチだけシフトするようにすればよい。選択される4つ(3つ)の異なる位置は、第1の光学シフト部10’aの液晶素子g1(光入射側)に対する電圧印加状態(ON/OFF)および第2の光学シフト部10’bの液晶素子g1(光出射側)に対する電圧印加状態(ON/OFF)の組み合わせ、すなわち、それぞれの液晶層における正常光か異常光かの選択によって決定される。
【0081】
図10に示すように、第1の光学シフト部10’aの液晶素子g1に印加する電圧によって、入射光は2つの位置をとることができ、そのそれぞれ光に対し、第2の光学シフト部10’bの液晶素子g1に印加する電圧によって、さらに2つの位置をとることができる。ここで、第1の光学シフト部10’aの水晶板g2および第2の光学シフト部10’bの第2の光学シフト部10’bの光学軸k2はいずれも紙面に水平な面内にあるが、傾きは入射光に対して反対になっている。このため、第1の光学シフト部10’aにより異常光が屈折する方向と第2の光学シフト部10’により異常光が屈折する方向は逆である。また、第1の光学シフト部10’aを透過した後の光は異常光と正常光とで偏向方向が90°ずれている。このため、この異常光および正常光が第2の光学シフト部10’を透過するとき、光がシフトする条件は、異常光と正常光とで逆になる。
【0082】
次に、光学シフト素子に用いる水晶板g2の設計方法を説明する。水晶板g2におけるシフト量を決めるためには、光学軸k2の方向とその厚さを決める必要がある。まず、光学軸k2について説明する。
【0083】
上述したように本発明では、画像表示パネルに異なった角度で入射したR、G、Bの光は互いに異なった角度で画像表示パネルから出射する。このため、光学シフト素子の水晶板g2に入射するR、G、B光の入射角も異なっている。本実施形態においては,図11に示すように、R光に対してG光およびB光がそれぞれ10.02°の角度αをなして水晶板g2に入射する。この角度αは、スネルの法則により、水晶板g2内で6.47°になる。R光を挟んでB光およびG光がなす角は2αであり、この角度を色分離角と呼ぶ。
【0084】
式(1)に示す入射面の法線と水晶板g2の光学軸k2とがなす角度θとシフト量との関係をグラフに示すと図12のようになる。図12から明らかなように、角度θが45度であるとき、シフト量は最大となる。また、R光に対してG光およびB光は角度αだけ傾いているため、光学軸k2の傾きがある角度θになっていても、R光、G光、B光のシフト量は異なる。図12に示すように、角度θが45度付近では、R光、G光、B光に対するシフト量の差は小さく、角度θが45度より大きくなるか、または小さくなるにつれてR光、G光、B光に対するシフト量の差は大きくなる。つまり、色分離角に対するシフト量の差が大きくなる。
【0085】
図11および図12から明らかなように、R光に対してG光およびB光が角度αだけ傾いているため、R光のシフト量を基準として、R光のシフト量に対するにG光およびB光に対するシフト量差を考えれば、基準とした光のシフト量に対する他の2つの光のシフト量誤差は小さくなる。しかし、本願発明者は、R光を基準とするよりも、人間に対して視感度の高いG光を基準とし、G光が最適シフト量をとるときのR光およびB光のシフト量差をシフト誤差として評価し、このシフト誤差を所定の値以下にすることによって、投影された画像の品質を高いものに保つことができることを見出した。つまり、視感度の高いG光に対して光学シフト素子を最適化することによって、全体として、投影された画像の品質を高いもにすることができる。
【0086】
一般に人間は波長550nmの光に対して、最も視感度が高い。本実施形態では、R光、G光、B光がそれぞれ上述した波長領域の光を含むため、これらの光の中で波長550nmの光を含むG光を基準としているが、他の分離した波長域の光を用いる場合には、分離した複数の波長域の光のうち、最も人間に対する視感度が最も高い波長域の光を選択して基準とすればよい。
【0087】
図13は、G光を基準とし、G光シフト量に対するR光およびB光のシフト量差およびこれらの平均をシフト誤差として示している。図13に示すように、光学軸k2の傾きが約45度(厳密には44.8度)においてシフト誤差が少なく、光学軸k2の傾きに対する入射光の角度依存性が最も小さくなるといえる。本実施形態では、光学軸k2の傾きが37〜50度であればシフト誤差はおおむね10%以内に抑えることができ、傾きが40〜48度であればシフト誤差はおおむね5%以内に抑えることができることが分かる。つまり、光学軸k2の傾きは、37〜50度であることが好ましく、40〜48度であることがより好ましい。
【0088】
次に、水晶板g2の厚さについて説明する。上述したように、光学軸の傾きを45度とし、R光を基準としてR光が1画素分シフトするときの水晶板g2の厚さを式(1)から求める。本実施形態では第1の光学シフト部10’a(入射側)および第2の光学シフト部10’b(出射側)の水晶板g2の厚さをそれぞれ、7.15mmおよび3.57mmとする。このとき、G光およびB光の正しいシフト位置からの誤差を百分率で表1に示す。表においてシフト位置A〜Dは図10で示す光線に対応している。また、図10に示すように、光学軸k2と入射面f2の法線とを含む平面上において、R光を入射面f2に対して垂直に入射させ、G光およびB光は光学軸k2に対してθ+αおよびθ−αの角度をなすように液晶素子g1および水晶板g2に入射させる。つまり、入射面f2の法線に対して、G光を光学軸k2の方向と逆向き入射させ、B光は光学軸k2の方向と同じ向きに入射させる。
【0089】
【表1】
Figure 2004145217
【0090】
表1に示すように、この場合、最大でシフト誤差は3.0%(G光の位置Aにたいする誤差)であり、また、全体の平均は約0.9%となる。特に視感度の高い、G光の誤差が大きいため、投影された画像の画質が劣化して感じられる可能性がある。
【0091】
次に、G光を基準としてG光が1画素分シフトするように、G光に対して第1の光学シフト部10’a(入射側)および第2の光学シフト部10’b(出射側)の水晶板g2の厚さを最適化する。具体的には、G光が水晶板g2に対して斜めに入射するので、上述したように、スネルの公式を用いて換算した角度θを用い、水晶板g2の厚さを求める。本実施形態では、第1の光学シフト部10’a(入射側)および第2の光学シフト部10’b(出射側)の水晶板g2の厚さをそれぞれ、7.26mmおよび3.61mmとする。表2は、このときのR光およびB光の正しいシフト位置からの誤差を示す。
【0092】
【表2】
Figure 2004145217
【0093】
表2に示すように、視感度の高いG光に対する誤差がゼロとなるだけでなく、全体のシフト誤差の平均は約0.6%となる。つまり、G光を基準としてG光が1画素分シフトするように、設計することによって高品位の画像を投影することができる。
【0094】
さらに、図14に示すように、上述の場合とG光およびB光の入射方向を逆にし、G光およびB光を光学軸k2に対してθ−αおよびθ+αの角度をなすように第1の光学シフト部10’aの液晶素子g1および水晶板g2に入射させる場合のシフト誤差を表3に示す。つまり、第1の光学シフト部10’aの液晶素子g1の入射面f2の法線に対して、G光を光学軸k2の方向と同じ向きに入射させ、B光は光学軸k2の方向と逆向きに入射させる。
【0095】
【表3】
Figure 2004145217
【0096】
この場合、表3から明らかなように、各シフト位置において、いずれの波長の光もシフト誤差が2.2%を越えることはなくなる。また、全体のシフト誤差の平均も約0.5%となり、さらにシフト誤差を低減させることができる。
【0097】
なお、G光が1画素分シフトするように、G光に対して最適化された水晶板g2の厚さは、式(1)から求められる値から多少ずれていてもよく、式(1)から求められる値から±1%以内の値であれば、投影される画像に品位の劣化はほとんど認識されない。つまり、G光に対して最適化された水晶板g2の厚さとは、式(1)から求められる値から±1%の範囲にある数値をいう。
【0098】
以上、液晶表示素子を画像表示パネルとして用いる投影型画像表示装置について本発明を説明したが、本発明はこれに限定されるものではない。本発明は液晶表示素子以外の表示素子、たとえば、デジタルミラーデバイス(DMD)などを画像表示パネルに用いる投影型画像表示装置にも適用することができる。また、ヘッド・マウント・ディスプレイなどの直視型画像表示装置に本発明を適用する場合には、目の網膜が画像の被投影面として機能する。
【0099】
【発明の効果】
本発明によれば、被投影面の画面内に、周期的なドット状の模様などがない、高品位の画像を投影することのできる投影型画像表示装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の投影型画像表示装置を示す模式図である。
【図2】図1に示す投影型画像表示装置の液晶表示パネル付近を拡大して示す断面図である。
【図3】図1に示す投影型画像表示装置のダイクロイックミラーの分光特性を示すグラフである。
【図4】現画像フレームから色別画像フレームを生成する方法を説明する図である。
【図5】色別画像フレームから3つの表示サブフレームを生成する方法を説明する図である。
【図6】表示サブフレームのシフトの態様を示す図である。
【図7】光学シフト素子の光学シフト部の構成および動作を説明する模式図である。
【図8】光学シフト素子の光学シフト部の構成および動作を説明する他の模式図である。
【図9】光学シフト部に用いられる水晶板の光学軸と透過する光の光軸のシフト方向との関係を示す図である。
【図10】光学シフト素子を示す模式図である。
【図11】る水晶板に入射するR、G、B光の入射角を説明する図である。
【図12】水晶板の光学軸と光軸のシフト量との関係を示すグラフである。
【図13】水晶板の光学軸と入射する光の波長領域によるシフト量の差との関係を示すグラフである。
【図14】光学シフト素子の他の例を示す模式図である。
【図15】従来のフィールド順次投影型画像表示装置を示す図である。
【符号の説明】
1 光源
2 球面鏡
3 コンデンサーレンズ
4 、5、6 ダイクロイックミラー
7 マイクロレンズアレイ
8 液晶表示パネル
9 フィールドレンズ
10 光学シフト素子
10’ 光学シフト部
10’a 第1の光学シフト部
10’b 第2の光学シフト部
g1 液晶素子
g2 水晶板
k2 光学軸

Claims (7)

  1. 光源と、
    各々が光を変調することができる複数の画素領域を有する画像表示パネルと、
    前記光源からの光を複数の波長域の光に分離し、前記分離された波長域の光をその波長域に応じて前記複数の画素領域のうちの対応する画素領域に集光させる光制御手段と、
    前記画像表示パネルで変調された光によって被投影面上に画像を形成する光学系と、
    前記画像を構成する各フレーム画像のデータから複数のサブフレーム画像のデータを生成し、前記画像表示パネルによって前記複数のサブフレーム画像を時分割で表示させる回路と、
    前記画像表示パネルによって表示される前記複数のサブフレーム画像のうち選択されたサブフレーム画像を前記被投影面上でシフトさせる光学シフト素子と、を備えた投影型画像表示装置であって、
    前記光学シフト素子が、前記画像表示パネルから出射する前記分離された複数の波長域の光のうち、人間に対して最も視感度の高い波長領域の光を被投影面上において前記画像表示パネルの画素ピッチの整数倍だけシフトさせるよう、前記光学シフト素子が前記視感度の高い波長領域の光に対して最適化されている投影型画像表示装置。
  2. 前記光学シフト素子は、光の偏向方向を変調する液晶層、および、光の偏向方向により屈折率の異なる複屈折板をそれぞれ有する第1および第2の光学シフト部を含み、前記第1および第2の光学シフト部の複屈折板の光学軸の入射面の法線に対する角度および前記複屈折板の厚さが、前記視感度の高い光に対して最適化されている請求項1に記載の投影型画像表示装置。
  3. 前記視感度の高い波長領域の光は、波長550nmの光を含む請求項2に記載の投影型画像表示装置。
  4. 前記複屈折板の光学軸は、前記光学シフト素子の複屈折板の入射面の法線に対して角度θをなしており、前記角度θは、40〜50度の範囲にある請求項3に記載の投影型画像表示装置。
  5. 前記視感度の高い波長領域の光は、前記第1の光学シフト部の複屈折板の入射面の法線に対して角度αをなすよう前記複屈折板の入射面に入射し、前記視感度の高い波長領域の光の入射角は前記複屈折板の光学軸に対して角度θ+αをなしている請求項4に記載の投影型画像表示装置。
  6. 前記複屈折板は水晶板である請求項5に記載の投影型画像表示装置。
  7. 前記光制御手段は、前記光源から放射される白色光を前記複数の波長域の光に分離するための複数のダイクロイックミラーと、前記ダイクロイックミラーにより、分離された光を前記画像表示パネルの対応する画素領域へ集光するために、前画像表示パネルに設けられたマイクロレンズアレイとを含む請求項1に記載の投影型画像表示装置。
JP2002312717A 2002-10-28 2002-10-28 投影型画像表示装置 Pending JP2004145217A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002312717A JP2004145217A (ja) 2002-10-28 2002-10-28 投影型画像表示装置
US10/692,758 US6817718B2 (en) 2002-10-28 2003-10-27 Projection type optical display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312717A JP2004145217A (ja) 2002-10-28 2002-10-28 投影型画像表示装置

Publications (1)

Publication Number Publication Date
JP2004145217A true JP2004145217A (ja) 2004-05-20

Family

ID=32171145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312717A Pending JP2004145217A (ja) 2002-10-28 2002-10-28 投影型画像表示装置

Country Status (2)

Country Link
US (1) US6817718B2 (ja)
JP (1) JP2004145217A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871016B1 (ko) 2006-03-24 2008-11-27 캐논 가부시끼가이샤 조명장치, 당해 조명장치를 구비한 노광장치 및 디바이스제조방법
JP2019040165A (ja) * 2017-08-29 2019-03-14 国立大学法人 奈良先端科学技術大学院大学 ディスプレイ装置
JP2023505276A (ja) * 2019-12-05 2023-02-08 テッセランド・エルエルシー 仮想及び複合現実のための小型レンズ基準の超高解像度の光学系

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727905B1 (ko) * 2000-06-26 2007-06-14 삼성전자주식회사 화상투사장치
JP3854826B2 (ja) * 2001-08-08 2006-12-06 キヤノン株式会社 撮像装置
US7030894B2 (en) * 2002-08-07 2006-04-18 Hewlett-Packard Development Company, L.P. Image display system and method
US7034811B2 (en) * 2002-08-07 2006-04-25 Hewlett-Packard Development Company, L.P. Image display system and method
US6984040B2 (en) * 2004-01-20 2006-01-10 Hewlett-Packard Development Company, L.P. Synchronizing periodic variation of a plurality of colors of light and projection of a plurality of sub-frame images
US20060187222A1 (en) * 2005-02-23 2006-08-24 Childers Winthrop D Changing states of elements
US7661828B2 (en) * 2005-06-10 2010-02-16 Hewlett-Packard Development Company, L.P. Adjusting light intensity
JP2007298804A (ja) * 2006-05-01 2007-11-15 Seiko Epson Corp プロジェクタ
US7834939B2 (en) * 2006-06-05 2010-11-16 Hewlett-Packard Development Company, L.P. Continuous use display system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230383A (ja) 1983-06-14 1984-12-24 Seiko Epson Corp プロジエクシヨンテレビシステム
JP2622185B2 (ja) * 1990-06-28 1997-06-18 シャープ株式会社 カラー液晶表示装置
JPH05249318A (ja) 1992-03-03 1993-09-28 Shimadzu Corp カラー液晶表示装置
US5506701A (en) * 1993-01-28 1996-04-09 Dai Nippon Printing Co., Ltd. Hologram color filter, liquid crystal display device using the same, and fabrication process of hologram color filter
US5748164A (en) * 1994-12-22 1998-05-05 Displaytech, Inc. Active matrix liquid crystal image generator
US6061103A (en) * 1995-01-20 2000-05-09 Olympus Optical Co., Ltd. Image display apparatus
US6707516B1 (en) * 1995-05-23 2004-03-16 Colorlink, Inc. Single-panel field-sequential color display systems
JP3418508B2 (ja) * 1995-11-28 2003-06-23 シャープ株式会社 投影型画像表示装置
CN100417230C (zh) * 2000-06-16 2008-09-03 夏普公司 投影型图象显示装置
US7034784B2 (en) * 2001-11-22 2006-04-25 Sharp Kabushiki Kaisha Optical shifter and optical display system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871016B1 (ko) 2006-03-24 2008-11-27 캐논 가부시끼가이샤 조명장치, 당해 조명장치를 구비한 노광장치 및 디바이스제조방법
JP2019040165A (ja) * 2017-08-29 2019-03-14 国立大学法人 奈良先端科学技術大学院大学 ディスプレイ装置
JP2023505276A (ja) * 2019-12-05 2023-02-08 テッセランド・エルエルシー 仮想及び複合現実のための小型レンズ基準の超高解像度の光学系
JP7417735B2 (ja) 2019-12-05 2024-01-18 テッセランド・エルエルシー 仮想及び複合現実のための小型レンズ基準の超高解像度の光学系

Also Published As

Publication number Publication date
US20040085636A1 (en) 2004-05-06
US6817718B2 (en) 2004-11-16

Similar Documents

Publication Publication Date Title
KR100533611B1 (ko) 투영형 화상표시장치
KR100536924B1 (ko) 광학표시시스템 및 광학시프트소자
JP2011203460A (ja) 画像表示装置および画像表示方法
JP3784279B2 (ja) 投影型画像表示装置
JP2004151139A (ja) 光学シフト素子および投影型画像表示装置
JP3722205B2 (ja) 投影型画像表示装置
JP3722204B2 (ja) 投影型画像表示装置
JP2004145217A (ja) 投影型画像表示装置
JPH10293545A (ja) 投射型表示装置
JP2006058588A (ja) 光学デバイス、光学装置、表示装置及び立体画像表示装置
JP2003029238A (ja) 投射型液晶表示装置
JP2008139700A (ja) 画像表示装置
JP2004117388A (ja) 映像投射装置
JP2004252273A (ja) 表示装置およびそれに用いられる回路装置
JP4020709B2 (ja) 映像拡大装置
JP4966997B2 (ja) 照明装置及び投写型映像表示装置
JP4147902B2 (ja) プロジェクタ
JP2006065334A (ja) 投影型画像表示装置
JP2005115179A (ja) 画像表示装置
JP2006235145A (ja) 光学デバイス、光学装置、表示装置及び立体画像表示装置
JP2004157223A (ja) 光学シフト素子および投影型画像表示装置
JP4572358B2 (ja) プロジェクタ
JP2007264245A (ja) プロジェクタ
JP2005215602A (ja) 光学シフト素子および投影型画像表示装置
JP2005301139A (ja) 映像拡大装置