JP4020709B2 - 映像拡大装置 - Google Patents

映像拡大装置 Download PDF

Info

Publication number
JP4020709B2
JP4020709B2 JP2002181445A JP2002181445A JP4020709B2 JP 4020709 B2 JP4020709 B2 JP 4020709B2 JP 2002181445 A JP2002181445 A JP 2002181445A JP 2002181445 A JP2002181445 A JP 2002181445A JP 4020709 B2 JP4020709 B2 JP 4020709B2
Authority
JP
Japan
Prior art keywords
light
color
illumination light
spectral
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002181445A
Other languages
English (en)
Other versions
JP2004029122A (ja
Inventor
幾雄 加藤
康之 滝口
淳 高浦
一也 宮垣
敬信 逢坂
健司 亀山
健史 浪江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002181445A priority Critical patent/JP4020709B2/ja
Publication of JP2004029122A publication Critical patent/JP2004029122A/ja
Application granted granted Critical
Publication of JP4020709B2 publication Critical patent/JP4020709B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Projection Apparatus (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、映像拡大装置に関する。
【0002】
【従来の技術】
従来、照明された照明光を、例えば、液晶パネル等の空間光変調器によって映像情報に応じた映像光に光変調して、スクリーン等に拡大して表示する映像拡大装置がある。このような映像拡大装置では、1つの空間光変調器を用いた単板式と呼ばれる映像拡大装置や、3つの空間光変調器を用いた3板式と呼ばれる映像拡大装置等が実用化されている。
【0003】
単板式の映像拡大装置には、白色の照明光が入射される空間光変調器をRed,Green,Blueの各色の画素の配列により構成し、空間光変調器における各画素の光変調状態を対応する色の映像情報に応じて動作させることで、Red,Green,Blueの各色を含む映像光をスクリーン等に投射する方式と、映像情報をRed,Green,Blue(または、Red,Green,Blue,White)の各色に応じて分割した複数のサブフィールド単位で空間光変調器の光変調状態を切り換えるとともに、この光変調状態の切り換えにタイミングを合わせて対応するRed,Green,Blue(または、Red,Green,Blue,White)に分光された分光照明光を空間光変調器に照明してRed,Green,Blueの各色の映像光をそれぞれスクリーン等に投射する方式とがある。単板式の映像拡大装置では、単一の空間光変調器しか使用しないので、3板式と比較して製造コストを抑えることが可能である。特に、前者の方式を採用した単板式の映像拡大装置は、単一の照明装置を用いるとともに該照明装置の構造の単純化を図ることができるので、部品代を抑えて低コスト化を図るとともに製造の容易化を図ることができる。
【0004】
しかしながら、単板式の映像拡大装置は、製造の容易化や低コスト化を図ることができるが、3板式と比較して、照明光の光利用効率と解像度とが約1/3となり、画像品質が大きく低下してしまい、高い画像品質を要求される50型以上の大型の拡大表示装置には不向きである。また、単板式の映像拡大装置のように、空間光変調器の数が分光数よりも少ない映像拡大装置では、表示する画像や視線等が大きく移動するような場合に表示画像が色分光して視認されるカラーブレイクが生じ易い。
【0005】
これに対し、3板式の映像拡大装置は、Red,Green,Blueに分光した各色の分光照明光に対応させて3つの空間光変調器を備えており、Red,Green,Blueの各色の画像光をそれぞれ対応する空間光変調器によって独立に光変調した後に、ダイクロイックプリズム等を用いて合成し投射レンズで拡大像を形成するため、単板式の映像拡大装置と比較して照明光学系が複雑化したり高コスト化であったりするが、高い光利用効率と解像度とを実現することができる。
【0006】
このような3板式の映像拡大装置には、入射光を光変調して反射する反射型空間光変調器を用いたものがあり、反射型空間光変調器に対して、例えば、偏光分離板(Polarization Beam Spriter:以降、PBS)とダイクロイックプリズムとを1つずつ用いて分光照明光を入射させたり、2つまたは4つのPBSと色選択性偏光板(カラーリンク社製、商品名:セレクト)とを用いて分光照明光を入射させたり、単一のダイクロイックプリズムを用いて分光照明光を入射させたり等、反射型空間光変調器に対して分光照明光を入射させる各種構成がある。
【0007】
しかしながら、3板式の映像拡大装置では3つの空間光変調器を用いるので、例えば、実効反射率等の光変調特性が空間光変調器毎にばらついていると、空間光変調器の違いによって光利用効率にばらつきを生じ、特定色の映像光量が低下することがある。このような場合、スクリーン等に投射される表示画像に輝度ムラや色ムラが発生してしまう。
【0008】
また、単一の空間光変調器であっても、光変調面を構成する各画素の反射角度が不均一であると、光変調された映像光量が単一の光変調面内でばらついて、映像光量が部分的に低下することがある。これにより、色毎に光量が低下する位置がばらついてしまい、スクリーン等に投射される表示画像色毎にスクリーン等に投射される表示画像に輝度ムラや色ムラが発生してしまう。
【0009】
このような不具合は、透過型の空間光変調器であっても同様に発生する。
【0010】
この対策として、ルックアップテーブル式に個々の空間光変調器の光変調特性を電気的に補正するようにした技術もあるが、この補正により空間光変調器が元々有していた階調性が犠牲となったり、余計な演算処理を行なうために電気部品や回路が増加したりすることに加えて、高解像度の画像等のように、フレームレートが高速である場合画像の切り換えに対応にしにくいという問題を抱えている。
【0011】
ところで、空間光変調器を用いた映像拡大装置としては、単板式、3板式の他に、空間光変調器として2枚の反射型空間光変調器を用いた2板式の映像拡大装置が考案されている(Symposium of International Display 2001 DIGEST、p.1084-p.1087/カラーリンク社)。この映像拡大装置は、偏光をアクティブに選択できる色選択性偏光板(カラーリンク社/米国、商品名=カラースイッチ)と1つのPBSとを組み合わせ、このアクティブな色選択性偏光板とPBSとによって白色の照明光をRed+Greenとなる照明光とRed+Blueとなる照明光との2種類の分光照明光に時分割で分光し、各分光照明光の偏光方向を調整することでさらにRedとGreenおよびRedとBlueとに分光した光を、対応する空間光変調器にそれぞれ入射させて光変調することにより映像光を生成し、生成した映像光をPBSによってRed+GreenまたはRed+Blueに合成してスクリーンに拡大表示する。
【0012】
特開2001−228455公報に開示された技術も、同様に、照明光をRed+Blue(マゼンタ)とRed+Green(シアン)とに分光し、分光した各照明光を2枚の空間光変調器(液晶パネル)に交互に入射させることにより生成し映像光を合成してスクリーンに拡大表示するようにしている。
【0013】
このような方式によれば、通常の単板式よりも光利用効率を向上させるとともに、空間光変調器の数が3板式よりも少なく、かつ、照明光学系をより単純化しているため、単板式よりも明るく、かつ、3板式よりも低コストの映像拡大装置を提供することができる。
【0014】
しかしながら、この方式であっても、原理的に3板式より光利用効率が低い。また、上述した技術によれば、Redの映像光は単一の空間光変調器により形成されているので、別の空間光変調器による他の色となるBlueやGreenの画像との輝度ムラや色ムラを完全に解消することはできない。
【0015】
これに対し、例えば、特開2001−188214公報には、照明光をRed,Green,Blue,Whiteの各色に時分割して分光させ、偏光方向を調整することで各分光照明光を2枚の透過型空間光変調器に入射し、透過型空間光変調器による分光照明光の光変調により得られる映像光を偏光合成して、スクリーンに投射するようにした映像拡大が開示されている。同公報に開示された技術によれば、照明光を偏光分光した後に偏光合成することにより、通常の偏光変換装置を用いる場合と比較して、光利用効率を単板式の約1.3倍に高めることが可能になり(偏光変換装置のない照明装置の場合との比較すると約2倍)、また、White光の照明光を利用することにより、色再現範囲とのトレードオフではあるが、光利用効率を少なくとも1.2倍以上に高めることが可能になるため、結果として1.5倍以上の光利用効率の増加を実現できる。
【0016】
他にも、例えば、特開2001−83461公報に開示されているように、2板式を2倍の数の4板式とすることで空間光変調器の偏光依存性による光利用効率の低減を改善するようにした技術が開示されている。
【0017】
特開2001−83461公報には、Red+GreenおよびBlue+Greenに時分割で周期的に色分割した照明光を、さらにRedとGreenおよびBlueとGreenに偏光分光し、それぞれの分光特性と偏光方向に対応した4枚の透過型空間光変調器に入射させ、透過型空間光変調器による分光照明光の光変調により得られる映像光を偏光合成して、スクリーンに投射するようにした映像拡大が開示されている。同公報に開示された技術では、Red光とBlue光とは2枚の透過型空間光変調器を交互に照明するため、この2枚の透過型空間光変調器間でのばらつきが均一化される。同公報に開示された技術によれば、通常の偏光変換装置を用いた照明装置の場合の単板式の約1.3倍の光利用効率の増加を実現できる(偏光変換装置のない照明装置の場合との比較では約2倍)。
【0018】
【発明が解決しようとする課題】
上述したように、単板式の映像拡大装置では、単一の空間光変調器を用いるので空間光変調器間の光変調特性が色毎にばらつくことはないが、光利用効率が低下してしまうため、多板式の映像拡大装置を用いると、単一の空間光変調器の各画素間の光変調特性にばらつきを生じている場合、単一の空間光変調器により光変調された画像光であっても面内での輝度ムラや色ムラが生じてしまう。
【0019】
また、多板式の映像拡大装置であっても、Red,Green,Blueの3つに分光した照明光により映像光を生成する2板式の映像拡大装置のように、空間光変調器の数が分光数よりも少ない映像拡大装置では、各色の映像光を時間に応じて切り換え表示するために時間的なばらつきを生じ、表示する画像や視線等が大きく移動するような場合に表示画像が色分光して視認されるカラーブレイクが生じ易い。
【0020】
これに対し、Red,Green,Blueの3つに分光した照明光をそれぞれ対応する空間光変調器によって映像光とする3板式の映像拡大装置のように、空間光変調器の数が分光数と同等以上である映像拡大装置では、高い光利用効率を得ることができるが、空間光変調器間の光変調特性のばらつきによって生じる輝度のばらつきにより特定色の画像光の輝度が低下し、スクリーン等に投射される表示画像に輝度ムラや色ムラが発生してしまう。
【0021】
また、特開2001−188214公報に開示された技術のような2板式の映像拡大装置では、2枚の透過型空間光変調器のそれぞれに対して、通常の単板式と同様に、色時分割した分光照明光を同じタイミングで順次照明することで、空間光変調器の偏光依存性による光利用効率の低減を改善するようにしているために、単板式を2倍にした2板式の映像拡大装置と原理的に同じであり、表示画像の時間的な均一性を改善することができず、画像品質の向上が困難であり、カラーブレイクが生じやすい。
【0022】
さらに、特開2001−83461公報に開示された技術では、Red光とBlue光とは2枚の透過型空間光変調器を交互に照明するため、この2枚の透過型空間光変調器間での光利用効率のばらつきが均一化されるが、Green光は特定の空間光変調器のみを照射するため、この2つの空間光変調器に基づく画素単位での光利用効率の不均一さを何ら低減することができないので、分光数よりも多い4つの透過型空間光変調器を用いるにも拘わらず、残りの2つの空間光変調器による他の色となるRやBの画像との間に生じる輝度ムラや色ムラを低減することはできない。
【0023】
本発明の目的は、多板式の映像拡大装置で、空間光変調手段間の光学特性のばらつきによる輝度ムラや色ムラの発生を低減することである。
【0024】
本発明の目的は、空間光変調手段数が分光数よりも少ない多板式の映像拡大装置で、表示画像におけるカラーブレイクの発生を低減することである。
【0025】
【課題を解決するための手段】
請求項1記載の発明の映像拡大装置は、照明光を出射する照明光学手段と、前記照明光学手段が出射する照明光を分光特性に応じて複数の分光照明光に分光する照明光分光手段と、複数のシャッタ素子を有して前記照明光分光手段が分光した分光照明光のそれぞれを、前記照明光分光手段が分光する分光照明光に応じて分割した映像情報に応じた映像光に光変調する複数の空間光変調手段と、前記照明光分光手段が分光した複数の分光照明光によって複数の前記空間光変調手段を同時に照明するとともに、照明に用いる分光照明光を少なくとも2つの前記空間光変調手段の間で単一のフレームを構成する複数のサブフレーム単位で周期的にスイッチングさせるスイッチング手段と、前記各空間光変調手段が光変調した映像光を拡大して被照射体に投射する像形成光学手段と、を具備する。
【0026】
したがって、照明光学手段によって出射された照明光は、照明光分光手段によって分光特性に応じた複数の分光照明光に分光されて複数の空間光変調手段に照明され、複数の空間光変調手段によって照明光分光手段が分光する分光照明光に応じて分割した映像情報に応じた映像光に光変調される。このとき、スイッチング手段によって、複数の空間光変調手段が複数の分光照明光によって同時に照明されるとともに、照明に用いる分光照明光は少なくとも2つの空間光変調手段の間で単一のフレームを構成する複数のサブフレーム単位で周期的にスイッチングされるため、同一の分光特性を有する分光照明光が2つ以上の空間光変調手段によって映像光に光変調される。これにより、同一の分光特性を有する分光照明光によって得られる映像光の光利用効率を、スイッチングに関わる空間光変調手段間で平均化することが可能になる。
【0027】
請求項2記載の発明は、請求項1記載の映像拡大装置において、前記空間光変調手段を2つ備え、前記照明光分光手段は照明光を3つの分光照明光に分光し、前記スイッチング手段は3つの分光照明光を2つの前記空間光変調手段の間で周期的にスイッチングさせる。
【0028】
したがって、3つに分光された分光照明光のうち2つの分光照明光が空間光変調手段の間で周期的にスイッチングされるため、同一の分光特性を有する分光照明光によって得られる映像光のうち2/3の映像光の光利用効率をスイッチングに関わる空間光変調手段間で平均化することが可能になる。
【0029】
請求項3記載の発明は、請求項1記載の映像拡大装置において、前記空間光変調手段を3つ以上備え、前記照明光分光手段は照明光を3つ以上の分光照明光に分光し、前記スイッチング手段は2つの分光照明光を前記空間光変調手段の間で周期的にスイッチングさせる。
【0030】
したがって、3つに分光された全ての分光照明光が映像光とされ、このうち2つの分光照明光が周期的にスイッチングされるため、同一の分光特性を有する分光照明光によって得られる2つの映像光の光利用効率をスイッチングに関わる空間光変調手段間で平均化するとともに、全ての照明光を映像光として単一の表示画像中に投射させることが可能になる。
【0031】
請求項4記載の発明は、請求項3記載の映像拡大装置において、前記空間光変調手段によって得られる複数の映像光を合成する分光照明光合成手段を具備して、前記像形成光学手段は、前記分光照明光合成手段が合成した映像光を拡大した拡大像光を被照射体に投射する。
【0032】
したがって、像形成光学手段の前段に分光照明光合成手段を設けることで、空間光変調手段に照明されるまでに経由する光路による映像光の偏光状態に拘わらず映像光を被照射体に拡大して投射することが可能になる。
【0033】
請求項5記載の発明は、請求項1記載の映像拡大装置において、前記空間光変調手段を3つ以上備え、前記照明光分光手段は照明光を3つ以上の分光照明光に分光し、前記スイッチング手段は全ての分光照明光によって前記空間光変調手段をそれぞれ同時に照明するとともに、この分光照明光によって照明される前記空間光変調手段の間で分光照明光を周期的にスイッチングさせる。
【0034】
したがって、3つ以上に分光された全ての分光照明光が映像光とされ、分光照明光に照明される全ての空間光変調手段間で分光照明光が周期的にスイッチングされるため、同一の分光特性を有する分光照明光によって得られる全ての映像光の光利用効率をスイッチングに関わる空間光変調手段間で平均化するとともに、各空間光変調手段の有する階調性を犠牲にすることなく、全ての照明光を映像光として単一の表示画像中に投射させることが可能になる。
【0035】
請求項6記載の発明は、請求項1ないし5のいずれか一に記載の映像拡大装置において、前記空間光変調手段は、前記分光照明光を映像情報に応じて反射する反射型空間光変調手段である。
【0036】
したがって、反射型空間光変調手段を用いた映像拡大装置で、請求項1ないし5のいずれか一に記載の発明の作用を得ることができる。
【0037】
請求項7記載の発明は、請求項1ないし5のいずれか一に記載の映像拡大装置において、前記空間光変調手段は、前記分光照明光を映像情報に応じて反射する反射型空間光変調手段である。
【0038】
したがって、透過型空間光変調手段を用いた映像拡大装置で、請求項1ないし5のいずれか一に記載の発明の作用を得ることができる。
【0039】
請求項8記載の発明は、請求項1ないし7のいずれか一に記載の映像拡大装置において、前記空間光変調手段は、強誘電性液晶を用いた空間光変調手段である。
【0040】
したがって、従来の強誘電性液晶を用いた場合に基板間の狭セルギャップが不均一であるために問題となっている単一の空間光変調手段における各画素間の性能のばらつきによる輝度ムラや色ムラの発生を低減することが可能になる。
【0041】
請求項9記載の発明は、請求項1ないし8のいずれか一に記載の映像拡大装置において、前記空間光変調素子と像形成光学手段との間に設けられて光軸をシフトする光軸シフト手段を具備する。
【0042】
したがって、光軸シフトにより表示画像の高解像度化を図るようにした従来の映像拡大装置で問題となっている隣接画素間の輝度ムラや色ムラの発生を低減することが可能になる。
【0043】
【発明の実施の形態】
本発明の第一の実施の形態について図1および図2を参照して説明する。本実施の形態は、3つの反射型のライトバルブ(Light Valve:以降、LV)に対して、1つのPBS(Polarization Beam Spriter)と1つのダイクロイックプリズムを有する3板式の映像拡大装置への適用例を示す。
【0044】
図1は、本実施の形態の映像拡大装置全体の光学系構成を示す概略図である。映像拡大装置1は、高圧水銀ランプ2およびガラス放物面鏡3によって実現される照明光学手段、色フィルタ4を備えている。高圧水銀ランプ2はRed,Green,Blueの3色を含む白色光を放出し、ガラス放物面鏡3は高圧水銀ランプ2が放出した白色光を平行化し、色フィルタ3は平行化した白色光から不要波長領域を除去する。ガラス放物面鏡3には、図示しない誘電体層反射コーティングが施されている。色フィルタ4には、熱、紫外線、およびオレンジ領域の不要波長領域の光を除去する図示しない複数の誘電体反射コーティングが施してある。
【0045】
また、映像拡大装置1は、第1および第2フライアイレンズ5a,5bとコンデンサレンズ8とによって構成されるホモジナイザ、第1および第2フライアイレンズ5a,5bとPBSアレイ6とによって構成される偏光変換素子、照明光と画像光とを分離するPBS9、色分解合成用のダイクロイックプリズム10を有している。ホモジナイザは、照明光学手段から出射される照明光から不要波長領域を除去した白色光の面積的な光強度分布を均一化し、偏光変換素子は作像用のPBS9へのS偏光照明の光の光利用効率を約1.5とする。
【0046】
本実施の形態のダイクロイックプリズム10は、特定の波長域を通過させ他の波長域を反射させるような対角面を2つ有しており、各対角面はそれぞれ異なる波長領域を反射させる。本実施の形態ではRed,Green,Blueの3色を含む白色光から、Green光を透過させRed光を反射させる誘電体多層膜コーティングが施された対角面と、Green光を透過させBlue光を反射させる誘電体多層膜コーティングが施された対角面との2つの対角面を有している。
【0047】
ダイクロイックプリズム10は、回転ステージ11上に搭載され、回転ステージ11の回転によって、1/60秒毎に1/4回転ずつステップ的に回転する。本実施の形態のダイクロイックプリズム10は、線対称であるため1/2回転周期となる。
【0048】
さらに、映像拡大装置1は、空間光変調手段(反射型空間光変調手段)としての3つの反射型LV12a,12b,12cを有している。公知の技術であるため説明を省略するが、本実施の形態の反射型LV12a,12b,12cは、電子回路を予め焼き付けたシリコンウェハに、ミラーを形成し、このシリコンウェハとガラスとの間に液晶を挟んだLCOS(Liquid Crystal on Silicon)である。各反射型LV12a,12b,12cは、フレームを2つに分割したサブフレーム単位で、入射光を光変調して映像光を生成する。本実施の形態では、各サブフレーム期間は1/60秒に設定されている。このため、2つのサブフレームによって構成されるフレーム期間は1/30秒に設定される(図2参照)。
【0049】
特に図示しないが、映像拡大装置1は、演算手段とメモリー手段とを有し、フレームの画像データをサブフレームに応じて分割する図示しない電気計算回路を備えている。反射型LV12a,12b,12cは、分割されたサブフレーム情報にしたがって、照明光をサブフレーム単位で光変調する。
【0050】
加えて、映像拡大装置1は、スクリーン13上に映像を拡大表示する拡大用の投射レンズ14、映像が拡大されるスクリーン13である。本実施の形態では、投射レンズ14によって像形成光学手段が実現されている。特に図示していないが、映像拡大装置は、コントラスト確保のためのクリーナ偏光子を、作像系のPBS9の後段に有している。
【0051】
このような構成において、高圧水銀ランプ2から放出した光を、放物鏡3により平行化した後、色フィルタ4により不要波長領域を除去した光とする。その後、ホモジナイザによって面積的な光強度分布を均一化し、偏光変換素子によって作像系のPBS9へのS偏光照明の光の光利用効率を約1.5とした照明光を、PBS9を介してダイクロイックプリズム10に入射する。
【0052】
ダイクロイックプリズム10は、入射された照明光を、反射型LV12aに向けて反射する分光照明光Aと、反射型LV12bに向けて透過する分光照明光Bと、反射型LV12cに向けて反射する分光照明光Cとの3つの分光照明光に分光する。各反射型LV12a,12b,12cに入射する分光照明光A,B,Cは、それぞれ対応する反射型LV12a,12b,12cによって、分光照明光A,B,Cの色に応じた映像光に光変調され、投射レンズ14を介して、スクリーン13上に拡大投射される。
【0053】
このように、3板式とすることで、Red,Green,Blueの3つに分光された全ての分光照明光を映像光に光変調して1サブフレーム中に表示させることができるため、光利用効率を向上させるとともに、特定の色の分光照明光の輝度を低下させることなく、各分光照明光間の輝度および発色性を均一化した高精細な表示画像を得ることができる。
【0054】
ここで、ダイクロイックプリズム10の一方の対角面はRed光を反射し、他方の対角面はBlue光を反射するため、回転ステージ11を矢印方向にステップ的に回転させて、ダイクロイックプリズム10を1/4回転ずつ回転させることにより、ダイクロイックプリズム10の2つの対角面は、反射型LV12aおよびPBS9に対向する位置(図1中左上から右下への対角面)と、反射型LV12bおよびPBS9に対向する位置(図1中右上から左下への対角面)とに交互に入れ替わる。これにより、ダイクロイックプリズム10で反射されて反射型LV12aを照明する分光照明光Aと、ダイクロイックプリズム10で反射されて反射型LV12bを照明する分光照明光Cとを、図2に示すように、Red光とBlue光とに交互に入れ替え、反射型LV12aと反射型LV12cとをRed光とBlue光とによって交互に照明することができる。以降、反射型LV12a,12cを照明する分光照明光A,CをRed光とBlue光とに入れ替える動作をスイッチングとする。ここに、スイッチング手段が実現されている。
【0055】
このとき、反射型LV12a,12b,12cは、ダイクロイックプリズム10の回転による分光照明光A,Cのスイッチングと同じ1/60秒の周期で入射される分光照明光A,B,Cをサブフレーム単位で映像光に光変調する。本実施の形態の、ダイクロイックプリズム10は1/2回転周期を有しているため、回転ステージ11の回転によりダイクロイックプリズム10を1回転させると、2フレーム分の画像を光変調することができる。
【0056】
ところで、3つの反射型LVと、1つのPBSと1つのダイクロイプリズムとを用いた従来の3板式の映像拡大装置では、それぞれの反射型LVに対してRed,Green,Blueの3色のうちのいずれか1色をそれぞれ対応させて照明させるため、3つの反射型LVの実効反射率の違いにより光利用効率にばらつきを生じ、輝度や発色性が色毎にばらついて、スクリーンに投射される表示画像に輝度ムラや色ムラを発生させてしまう。また、単一の反射型LVであっても、反射型LVを構成する各画素の光変調面内での反射角度が不均一であると、輝度や発色性が単一の光変調面内でばらついて、スクリーンに投射される表示画像に輝度ムラや色ムラを発生させてしまう。
【0057】
これに対し、本実施の形態では、ダイクロイックプリズム10を回転させることで、反射型LV12aと反射型LV12cとをRed光とBlue光とによって交互に照明することができるので、2つの反射型LV12a,12cによって得られるRedおよびBlueの映像光の光利用効率を2つの反射型LV12a,12c間で平均化することができる。
【0058】
これにより、各色の分光照明光を単一の反射型LVでそれぞれ光変調する場合と比較して、反射型LV12aと反射型LV12cとの間の光利用効率のばらつきや、個々の反射型LV12a,12cにおける各画素の光変調面内での反射角度のばらつきによって、スクリーンに投射される表示画像に輝度ムラや色ムラが発生することを低減し、表示画像品質の面内均一性の向上を図ることができる。
【0059】
ここで、ダイクロイックプリズム10の対角面はいずれもGreen光を透過させるため、反射型LV12bには、常にGreen光が入射されるが、3つの反射型LV12a,12b,12cのうちRedおよびBlueの2つの分光照明光を平均化することで、Green光による輝度ばらつきや色ムラは実用上無視できるようになり、輝度ムラや色ムラが生じる割合を1/3程度に低減することができる。
【0060】
なお、反射型LV12a,12b,12cにおけるサブフレーム光変調、および、ダイクロイックプリズム10の回転に際しては、機械的な高速応答が要求されるため、反射型LV12a,12b,12cを小型化し、小型の反射型LV12a,12b,12cに対して小型のダイクロイックプリズム10を用いることが好ましい。このとき、ダイクロイック板や回折格子等を利用することで、反射型LV12a,12b,12cおよびダイクロイックプリズム10の小型化を図ることも効果的である。
【0061】
次に、本発明の第二の実施の形態について図3および図4を参照して説明する。本実施の形態は、2つの反射型LVを有する2板式の映像拡大装置への適用例を示す。なお、第一の実施の形態と同一部分は同一符号で示し、説明も省略する。以下、同様とする。
【0062】
図3は、本実施の形態の映像拡大装置全体の光学系構成を示す概略図である。本実施の形態の映像拡大装置20は、コンデンサレンズ8と投射レンズ14との間に、空間光変調手段(反射型空間光変調手段)としての2つの反射型LV21a,21bと、PBS22と、色選択性偏光板23と、を有している。本実施の形態では、PBS22と色選択性偏光板23とによって照明光分光手段が実現されている。
【0063】
反射型LV21a,21bは、フレームを3つに分割したサブフレーム単位で、入射光を光変調して映像光を生成する。本実施の形態では、各サブフレーム期間は1/60秒に設定されている。このため、3つのサブフレームによって構成されるフレーム期間は1/20秒に設定される。
【0064】
PBS23は、P偏光(図3中紙面表裏方向)を反射し、S偏光(図3中紙面平行方向)を透過する偏光面を有している。
【0065】
色選択性偏光板23は、特定波長領域の偏光をそのまま透過し、別の特定波長領域の偏光を選択的に回転させ、また別の特定波長領域の光を選択的に消光(吸収)する光学特性を有する消光する。これにより、コンデンサレンズ8を介して出射される白色光に含まれるRed,Green,Blueの各色のうち、1つの色の分光照明光を選択的に偏光回転させずに透過させ、別の色の1つの色の照明光を選択的に偏光回転させて透過させ、残りの1つの色の照明光を選択的に消光(吸収)することが可能になる。
【0066】
本実施の形態の色選択性偏光板23の光学特性は、図示しない制御回路による偏光方向の制御によって切り換えることが可能である。以降、光学特性の切り換えが可能な色選択性偏光板23を、本実施の形態では、アクティブな色選択性偏光板23とする。また、アクティブな色選択性偏光板23が、選択的に偏光回転して透過させる光、選択的に偏光回転せずに透過させる光、選択的に消光(吸収)させる光を切り換える動作をスイッチングとする。本実施の形態では、色選択性偏光板23による光学特性のスイッチング周期が、1/60秒に設定されている。
【0067】
色選択性偏光板23は、例えば、複数枚の位相差板と液晶セル(いずれも図示せず)とを組み合わせることにより構成することが可能である。詳細な図示を省略するが、本実施の形態では、特定の波長領域の照明光を選択的に偏光回転するλ/4波長板として作用させるカラーセレクト(商品名:カラーリンク社/米国)を位相差板とし、表面安定化した強誘電性液晶を液晶セルとする色選択性偏光板23を用いることにより構成されている。
【0068】
なお、色選択性偏光板23は、これに限るものではなく、例えば、液晶セルにネマチック液晶のπセルを用いたカラースイッチ(商品名:カラーリンク社/米国)によって代用することも可能である。
【0069】
また、色選択性偏光板23は、複数枚の位相差板と液晶セルとに加えて、通常の偏光子を組み合わせてさらに多段で構成することも可能である。
【0070】
加えて、色選択性偏光板23は、公知の回転フィルタを用いたものや、液晶を用いて回折格子を実現するものであってもよい。
【0071】
このような構成において、高圧水銀ランプ2から放出してガラス放物面鏡3により平行化し、色フィルタ4により不要波長領域を除去された光を、ホモジナイザによって面積的光強度分布を均一化し、偏光変換素子によってS偏光照明の光の光利用効率を約1.5にした状態で、色選択性偏光板23に入射する。
【0072】
色選択性偏光板23は、入射された照明光のうち、1つの色の照明光を選択的に消光(吸収)するとともに、残り2色の分光照明光のうち一方をP偏光に回転させて色選択性偏光板23を透過させ、PBS22に入射する。PBS22は、入射された分光照明光のうち、P偏光に回転された分光照明光を反射型LV21aに向けて反射し、偏光回転されないS偏光の分光照明光を反射型LV21aに向けて透過する。各反射型LV21a,21bに入射する分光照明光は、それぞれ対応する反射型LV21a,21bによって、分光照明光の色に応じた映像光に光変調され、投射レンズ14を介してスクリーン13上に拡大投射される。
【0073】
ここで、色選択性偏光板23の光選択性を図4に示すように周期的にスイッチングさせることにより、PBS22で反射する分光照明光とPBS22で透過する分光照明光とを周期的に入れ替え、反射型LV21aと反射型LV21bとを照明する分光照明光を、Red,Green,Blueの各色に周期的にスイッチングすることができる。ここに、スイッチング手段としての機能が実現されている。
【0074】
例えば、図4に示すように、フレーム1のサブフレーム1における色選択性偏光板23のスイッチング状態が、Red光の偏光をP偏光に回転させ、Green光をS偏光のままとして、Blue光を消去させるような状態である場合、P偏光に回転されたRed光は反射型LV21aに入射され、S偏光のままのGreen光が反射型LV21bに入射される。
【0075】
この状態から、Red光を消去させ、Green光の偏光をP偏光に回転し、Blue光をS偏光のままとするように色選択性偏光板23をスイッチングさせると、P偏光に回転されたGreen光が反射型LV21aに入射され、偏光されずに透過されたBlue光が反射型LV21bに入射される。
【0076】
続いて、Red光をS偏光のままととし、Green光を消去させ、Blue光の偏光をP偏光に回転するように色選択性偏光板23をスイッチングさせると、P偏光に回転されたBlue光が反射型LV21aに入射され、偏光されずに透過されたRed光が反射型LV21bに入射される。
【0077】
本実施の形態では、照明光をRed,Green,Blueの3つの分光照明光に分光しているため、上述の状態から色選択性偏光板23をまたさらにスイッチングさせることにより、図4中フレーム1のサブフレーム1に示す初期状態に戻り、Red光の偏光をP偏光に回転させ、Green光をS偏光のままとして、Blue光を消去させるようになる。
【0078】
なお、図4では、色選択性偏光板23の作用によって偏光回転されずに透過される光を図4中上下方向の矢印で示し、色選択性偏光板23の作用によって偏光回転されて透過される光を「・」で示し、色選択性偏光板23の作用によって消光される光を「×」で示す。図4中フレーム1のサブフレーム1は、図3で示す偏光状態を示している。
【0079】
このように、色選択性偏光板23の光学特性を周期的にスイッチングさせることで、反射型LV21aと反射型LV21bとを照明する分光照明光を、Red,Green,Blueの各色に周期的にスイッチングすることができるので、2つの反射型LV21a,21bによって得られるRed,Green,Blueの各色の映像光の光利用効率を2つの反射型LV21a,21b間でそれぞれ平均化することができる。
【0080】
これにより、反射型LV21a,21b間の光利用効率のばらつきや、個々の反射型LV21a,21bにおける各画素の光変調面内での反射角度のばらつきによって、スクリーンに投射される表示画像に輝度ムラや色ムラが発生することをRed,Green,Blueの各色に関して低減し、表示画像品質の面内均一性の向上を図ることができる。
【0081】
また、スクリーンに投射される表示画像には、Red,Green,Blueの3つに分光した分光照明光のうち、光利用効率を平均化した2つの分光照明光が含まれているため、単板式の映像拡大装置と比較して、光利用効率の向上および高解像度化を図るとともに、時間的な均一性を改善してカラーブレイクの発生を抑制することができる。
【0082】
ところで、サブフレームの切り換えに際して、サブフレーム間に生じる映像光のクロストークを減じるためには、反射型LV21a,21bの液晶における応答速度を100μsec以下にすることが好ましいとされるが、実際には、色選択性偏光板23が有する液晶の応答速度を100μsec以下にした場合にも、サブフレーム周波数によっては若干のサブフレーム間のクロストークが生じる場合がある。
【0083】
これに対し、サブフレームの切り換え光変調に際して、フレーム内での色バランスが均一になるように、クロストークが生じる期間である液晶の応答時間中に、反射型LV21aまたは21bの全面を黒表示状態とするタイミングを設けることにより、サブフレーム間のクロストークを低減することができる。
【0084】
この黒表示のタイミングは、数フレーム間に亘って変化させて混在させてもよいし、サブフレーム自体をさらに小さなサブフレームに分割し、この小さなサブフレームの順序を変化させて間に黒表示画像を表示させるようにしてもよい。これにより、周期的な画像情報の変化によって生じる、フリッカ、カラーブレイク、擬的動画像等の不具合をより減少させることができる。
【0085】
また、本実施の形態では、照明光をRed,Green,Blueの3色に分光させたが、これに限るものではなく、照明光をRed,Green,Blue,Whiteの4色に分光させ、Red,Green,Blue,Whiteを1周期として、色選択性偏光板23の光学特性をスイッチングさせるようにしてもよい。これにより、色再現性が若干低下するが、光利用効率を大きく向上させることができる。なお、照明光をRed,Green,Blue,Whiteの4色に分光させる場合、1フレームを4つのサブフレームによって構成する。
【0086】
次に、本発明の第三の実施の形態について図5および図6を参照して説明する。本実施の形態は、映像拡大装置への適用例を示す。3つの反射型LVを有する3板式の映像拡大装置への適用例を示す。
【0087】
図5は、本実施の形態の映像拡大装置全体の光学系構成を示す概略図である。本実施の形態の映像拡大装置30は、コンデンサレンズ8と投射レンズ14との間に、空間光変調手段(反射型空間光変調手段)としての3つの反射型LV31a,31b,31cと、4つのPBS32a,32b,32c,32dと、3つのアクティブな色選択性偏光板33a,33b,33cとを有する。本実施の形態では、PBS32a,32b,32cと色選択性偏光板33a,33bとによって照明光分光手段が実現されている。
【0088】
本実施の形態の演算手段とメモリー手段とは、図示しない電気計算回路によってフレームの画像データを2つまたは3つのサブフレームに分割する。このため、反射型LV31a,31b,31cは、サブフレームの分割数にしたがって、入射光を光変調して映像光を生成する。各サブフレーム周期は、1/60秒に設定されている。
【0089】
PBS32a,32b,32c,32dは、それぞれ、P偏光(図5中紙面表裏方向)を反射し、S偏光(図5中紙面平行方向)を透過する偏光面を有している。
【0090】
色選択性偏光板33a,33b,33cは、上述と同様に、複数枚の位相差板と液晶セルとを組み合わせることによって構成されており、入射される光の分光特性に応じて特定波長領域の偏光を選択的に回転する。これにより、Red,Green,Blueのうちのいずれか1色の偏光を回転することが可能になる。色選択性偏光板33a,33b,33cの光学特性は、図示しない制御回路による偏光方向の制御により、周期的にスイッチングさせることが可能である。本実施の形態では、色選択性偏光板33a,33b,33cのスイッチング周期は、1/60秒に設定されている。
【0091】
このような構成において、高圧水銀ランプ2より放出してガラス放物面鏡3により平行化し、色フィルタ4により不要波長領域を除去した光を、ホモジナイザによって面積的強度分布を均一化し、偏光変換素子によってS偏光照明の光利用効率を1.5にした状態で、色選択性偏光板33aに入射する。
【0092】
色選択性偏光板33aは、入射された照明光のうち、1つの色の分光照明光の偏光をS偏光からP偏光に選択的に回転させて、PBS32aに入射する。PBS32aは、入射された照明光のうち、P偏光に回転された分光照明光をPBS32cに向けて反射し、偏光回転されないS偏光の分光照明光を色選択性偏光板33bに向けて透過する。PBS32cに入射した分光照明光は、P偏光であるため、PBS32cで反射型LV31aに向けて反射され、反射型LV31aによって分光照明光の色に応じた映像光に光変調される。光変調された映像光は、S偏光であるため、PBS32c,33dを透過して、投射レンズ14を介してスクリーン13上に拡大投射される。
【0093】
色選択性偏光板33bに入射した分光照明光は、色選択性偏光板33bにより一方の偏光がP偏光に回転されて、PBS32bに入射する。PBS32bは、入射された分光照明光のうち、P偏光に回転された分光照明光を反射型LV31bに向けて反射し、偏光回転されないS偏光の分光照明光を反射型LV31cに向けて透過する。反射型LV31b,31cに入射する分光照明光は、それぞれ対応する反射型LV31b,31cによって、分光照明光の色に応じた映像光に光変調されて、色選択性偏光板33cに入射される。色選択性偏光板33cに入射された分光照明光は、S偏光をP偏光に回転されてPBS32dに入射される。PBS32dは入射されたP偏光は、偏光面で反射され、投射レンズ14を介してスクリーン13上に拡大投射される。
【0094】
ここで、制御回路の動作によって2つの色選択性偏光板33a,33bの光学特性を図6に示すようにスイッチングすることにより、3つの反射型LV31a,31b,31cを照明する分光照明光をRed,Green,Blueの各色に周期的にスイッチングすることができる。ここに、スイッチング手段としての機能が実現されている。このとき、2つの色選択性偏光板33a,33bのスイッチング動作に合わせて、図6に示すように、色選択性偏光板33cの光学特性をスイッチングさせることにより、色選択性偏光板33cを介してPBS32dに入射する光を全てP偏光として、PBS32dの偏光面で反射して投射レンズ14へ入射させることができる。
【0095】
このように、3板式とすることで、Red,Green,Blueの3つに分光された全ての分光照明光を映像光に光変調して1サブフレーム中に表示させることができるため、光利用効率を向上させるとともに、特定の色の分光照明光の輝度を低下させることなく、各分光照明光間の輝度および発色性を均一化した高精細な表示画像を得ることができる。
【0096】
また、2つの反射型LV31b,31cに関しては、光路を重複させることが可能になるため、表示画像品質の面内均一性の向上を図るとともに、各色に対してそれぞれ独立した光路を設ける構造の従来の3板式の映像拡大装置と比較して、部品点数を低減し、低コスト化を図ることができる。
【0097】
ところで、本実施の形態では、1フレームを2つのサブフレームによって構成するか、3つのサブフレームによって構成するかによって、色選択性偏光板の光学特性を、図6(a),(b)に示すように、2パターンに調整することが可能である。例えば、1フレームを2つのサブフレームによって構成する場合、色選択性偏光板33a,33b,33cの光学特性を図6(a)に示すようにスイッチングさせることにより、反射型LV31a,31b,31cを照明する分光照明光を、Red,Green,Blueの各色に周期的にスイッチングすることができる。
【0098】
このように、色選択性偏光板33a,33b,33cの光学特性をスイッチングさせることで、反射型LV31a,31b,31cを照明する分光照明光をRed,Green,Blueの各色に周期的にスイッチングさせることができるので、3つの反射型LV31a,31b,31cによって得られるRed,Green,Blueの各色の映像光の光利用効率を3つの反射型LV31a,31b,31c間でそれぞれ平均化することができる。
【0099】
これにより、3板式とすることで光利用効率の向上を図るとともに、3つの反射型LV31a,31b,31c間の光利用効率のばらつきや、個々の反射型LV31a,31b,31cにおける各画素の光変調面内での反射角度のばらつきによってスクリーンに投射される表示画像に輝度ムラや色ムラが発生することをRed,Green,Blueの全ての分光照明光に関して低減し、表示画像品質の面内均一性の向上を図ることができる。
【0100】
また、例えば、1フレームを3つのサブフレームによって構成する場合、色選択性偏光板33a,33b,33cの光学特性を図6(b)に示すようにスイッチングさせる。このとき、色選択性偏光板33aは実質的には動作しないので、3つの反射型LV31b,31cを照明する分光照明光を、Green,Blueの2つの分光照明光によって交互にスイッチングすることができる。
【0101】
このように、色選択性偏光板33a,33b,33cの光学特性をスイッチングさせることで、反射型LV31b,31cを照明する分光照明光をGreen,Blueの2色に交互にスイッチングさせることができるので、3つの反射型LV31a,31b,31cによって得られるRed,Green,Blueの各色の映像光うち、Green,Blueの2色映像光の光利用効率を2つの反射型LV31b,31c間で平均化することができる。
【0102】
これにより、3板式とすることで光利用効率の向上を図るとともに、2つの反射型LV31b,31c間の光利用効率のばらつきや、個々の反射型LV31b,31cにおける各画素の光変調面内での反射角度のばらつきによってスクリーンに投射される表示画像に輝度ムラや色ムラが発生することをGreen,Blueの2色の分光照明光に関して低減し、輝度の面内ばらつきや色ムラが発生する比率を1/3に低減して表示画像品質の面内均一性の向上を図ることができる。
【0103】
なお、色選択性偏光板33a,33b,33cの光学特性を図6(b)に示すようにスイッチングさせる場合、色選択性偏光板33aは実質的に動作しないので、色選択性偏光板33aを上述したカラーセレクトに交換することが可能である。これによって、映像拡大装置の低コスト化を図ることができる。
【0104】
加えて、図6(b)では、サブフレーム数を3から2に減少できるので、サブフレームの切り換え時に生じるコントラストの低下、または、これを黒表示とした場合の全白輝度の低減等を改善することができる。
【0105】
なお、図5に示す構成を有する映像拡大装置では、サブフレームの切り換えを図6(a)または(b)のいずれか一方に限るものではなく、構成上は、色選択性偏光板33a,33b,33cを全てアクティブとし、図6(a)に示す動作モードと(b)に示す動作モードとを切り換える手段を設けるようにしてもよい。これにより、図6(b)に示す動作モードでは、サブフレーム数を3から2に減少できるので、サブフレームの切り換え時に生じるコントラストの低下を抑制することができる。また、図6(b)に示す動作モードでは、サブフレームの切り換えに際しての映像光のクロストークを低減するために、サブフレームの切り換えに際して反射型LV31a,31b,31c全面を黒表示とするタイミングを設ける場合にも、全白輝度の低下を抑制することができる。
【0106】
なお、PBSは、グリッドワイヤ格子を用いた反射型偏光板を用いてもよい、また、作像系以外のPBSであれば、より軽量で低コストの立方体型ではない平板型の偏光分光板を用いてもよい。
【0107】
次に、本発明の第四の実施の形態について図7および図8を参照して説明する。本実施の形態の映像拡大装置は、3つの反射型LVを有する3板式の映像拡大装置への適用例を示す。
【0108】
図7は、本実施の形態の映像拡大装置全体の光学系構成を示す概略図である。本実施の形態の映像拡大装置40は、コンデンサレンズ8と投射レンズ14との間に、空間光変調手段(反射型空間光変調手段)としての3つの反射型LV41a,41b,41cと、3つのPBS42a,42b,42cと、2つの色選択性偏光板43a,43bと、分光照明光合成手段としての複合機能プリズム(ダイクロイックプリズム兼PBS)44と、リレーレンズ44と、偏光分光板45a,45bと、誘電体反射ミラー46とが設けられている。本実施の形態では、PBS42a,42b,42cと色選択性偏光板43a,43bと偏光分光板45a,45bとによって照明光分光手段が実現されている。
【0109】
反射型LV41a,41b,41cは、フレームを3つに分割したサブフレーム単位で入射光を光変調して映像光を生成する。本実施の形態では、各サブフレーム期間は、1/60秒に設定されている。このため、3つのサブフレームによって構成されるフレーム期間は1/20秒に設定される。
【0110】
PBS42a,42b,42は、P偏光(図7中紙面表裏方向)を反射し、S偏光(図7中紙面平行方向)を透過する偏光面を有している。
【0111】
色選択性偏光板43a,43bは、上述と同様に、複数枚の位相差板と液晶セルとを組み合わせることによって構成されており、入射される光の分光特性に応じて特定波長領域の偏光を選択的に回転する。これにより、Red,Green,Blueのうちのいずれか2色の偏光を回転することが可能になる。色選択性偏光板43a,43bの光学特性は、図示しない制御回路による偏光方向の制御により、周期的にスイッチングさせることが可能である。本実施の形態では、色選択性偏光板43a,43bのスイッチング周期は、1/60秒に設定されている。
【0112】
複合機能プリズム44は、Red光を反射しGreen光,Blue光を透過する誘電体多層膜を一方の対角面に有し、偏光方向に応じて透過/反射により入射光を分光する偏光分光膜を他方の対角面に有しており、ダイクロイックプリズムとしての機能とPBSとしての機能とを有する。これにより、複合機能プリズム44に入射された光は、投射レンズ14へ向けて出射される。
【0113】
リレーレンズ44は、正のパワーのレンズ44a,44bを組み合わせて構成されている。
【0114】
加えて、偏光分光板45a,45bは、P偏光(図7中紙面表裏方向)を反射し、S偏光(図7中紙面平行方向)を透過する。
【0115】
このような構成において、高圧水銀ランプ2から放出してガラス放物面鏡3により平行化を、色フィルタ4により不要波長を除去した光を、ホモジナイザによって面積的光強度分布を均一化し、偏光変換素子によってS偏光照明の光利用効率を1.5にした状態で、色選択性偏光板43aに入射する。
【0116】
色選択性偏光板43aは、入射された照明光のうち、2つの色の分光照明光の偏光をS偏光からP偏光に選択的に回転させて透過する。これにより、色選択性偏光板43aを透過した照明光は、偏光分光板45aによって偏光分光され、偏光回転されないS偏光の分光照明光が、誘電体反射ミラー46、リレーレンズ44を介して、PBS42cに入射される。PBS42cは、入射されたS偏光の光を反射型LV31aに向けて透過する。反射型LV31aに入射したS偏光は、反射型LV31aで分光照明光の色に応じた映像光に光変調される。
【0117】
色選択性偏光板43aによって反射された光は、色選択性偏光板43bによって一方をS偏光に回転して偏光分光板45bに入射することにより、PBS42bに向けて反射する分光照明光と、PBS42cに向けて透過する光とに分光される。PBS42bに入射した分光照明光は、P偏光であるため、PBS42bで反射型LV41bに向けて反射され、反射型LV41bによって分光照明光の色に応じた映像光に光変調される。また、PBS42cに入射した分光照明光は、S偏光であるため、PBS42cで反射型LV41cに向けて反射され、反射型LV41cによって分光照明光の色に応じた映像光に光変調される。
【0118】
反射型LV41a,41b,41cで光変調された映像光は、いずれも複合機能プリズム44に入射し、複合機能プリズム44で複合されて投射レンズ14を介してスクリーン13上に拡大投射される。
【0119】
ここで、制御回路の動作によって2つの色選択性偏光板43a,43bの光学特性を図8に示すようにスイッチングすることにより、3つの反射型LV41a,41b,41cを照明する分光照明光を、Red,Green,Blueの各色に周期的にスイッチングすることができる。ここに、スイッチング手段としての機能が実現されている。
【0120】
本実施の形態では、色選択性偏光板43aは実質的に動作しないので、3つの反射型LV41a,41b,41cのうち2つの反射型LV41b,41cを照明する分光照明光を、Green,Blueの2色で交互にスイッチングすることができる。
【0121】
このように、3板式とすることで、Red,Green,Blueの3つに分光された全ての分光照明光を映像光に光変調して1サブフレーム中に表示させることができるため、光利用効率を向上させるとともに、特定の色の分光照明光の輝度を低下させることなく、各分光照明光間の輝度および発色性を均一化した高精細な表示画像を得ることができる。
【0122】
また、色選択性偏光板43bの光学特性をスイッチングさせることで、反射型LV41b,41cを照明する分光照明光をGreen,Blueの2色で交互にスイッチングさせることができるので、3つの反射型LV41a,41b,41cによって得られるRed,Green,Blueの各色の映像光のうち、Green,Blueの2色の分光照明光を2つの反射型LV41b,41c間で平均化することができる。
【0123】
これにより、3板式とすることで光利用効率の向上を図るとともに、3つの反射型LV41a,41b,41c間の光利用効率のばらつきや、個々の反射型LV41a,41b,41cにおける各画素の光変調面内での反射角度のばらつきによってスクリーンに投射される表示画像に輝度ムラや色ムラが発生することをGreen,Blueの2色の分光照明光に関して低減し、輝度の面内ばらつきや色ムラが発生する比率を1/3に低減して表示画像品質の面内均一性の向上を図ることができる。
【0124】
本実施の形態では、反射型LV41a,41b,41cの後段に、Red光を反射しGreen光,Blue光を透過する誘電体多層膜を一方の対角面に有し、偏光方向に応じて透過/反射により入射光を分光する偏光分光膜を他方の対角面に有する複合機能プリズム44を設けたので、Green,Blueの2色の映像光の偏光方向に拘わらず、Redの映像光を投射レンズ14に向けて常に反射するとともにGreen,Blueの2色の映像光を投射レンズ14に向けて照射することができる。
【0125】
なお、本実施の形態では、照明系部分である偏光分光板45a,45bに平面型の偏光分光板を用いるようにしたが、これに限るものではなく、例えば、立方体型のPBSを用いてもよいし、ワイヤグリッド偏光子を用いても良い。
【0126】
また、照明光にレーザやLEDまたは狭帯域フィルタ用いた放電ランプのような各色の波長帯域の狭いものを用いた場合、ダイクロイックプリズムとしての機能とPBSとしての機能とを有する複合機能プリズム44に代えて、PBSの多層膜をこれらに最適に設計してクロスのPBSにしても、良好な効率で投射レンズに取り入れることができる。
【0127】
加えて、本実施の形態では、43aにアクティブな色選択性偏光板を用いるようにしたが、これに限るものではなく、本実施の形態のように固定的な動作を行なう場合には、単なるカラーセレクトを用いても良い。
【0128】
また、本実施の形態では、図8に示すように、Red色の照明光によって反射型LV41を常に照明するようにしたが、これにより、比視感度の高いG色と色差感度の高い青色の2色の組の照明光を2つの反射型LV41aに時間的に分散平均化することが可能になるので、3色の分光照明光のうちの2色を交互にスイッチングした場合にも、色ムラと輝度ばらつきを効果的に抑制できる。
【0129】
なお、反射型LV41aを常に照明する照明光はRed色に限るものではなく、例えば、映像情報の種類によって、Blue色またはGreen色のどちらかによって反射型LV41aを常に照明するよう方が効果的な場合もある。
【0130】
次に、本発明の第五の実施の形態について図9および図10を参照して説明する。本実施の形態は、4つの反射型LVを有する4板式の映像拡大装置への適用例を示す。
【0131】
図9は、本実施の形態の映像拡大装置全体の光学系構成を示す概略図である。本実施の形態の映像拡大装置50は、コンデンサレンズ8と投射レンズ14との間に、空間光変調手段(反射型空間光変調手段)としての4つの反射型LV51a,51b,51c,51dと、4つのPBS52a,52b,52c,52dと5つのアクティブな色選択性偏光板53a,53b、53c、53d,53eとを有している。本実施の形態では、PBS52a,52b,52cと色選択性偏光板53a,53b,53dとによって照明光分光手段が実現されている。
【0132】
反射型LV51a,51b,51c,51dは、フレームを4つに分割したサブフレーム単位で、入射光を光変調して映像光を生成する。各サブフレーム期間は1/60秒に設定されている。このため、4つのサブフレームによって構成されるフレーム期間は1/15秒に設定される。フレーム期間は、反射型LV51a,51b,51c,51dの設計、周辺電気回路の設計により、1/4倍以上の1/60秒以下とすることは、比較的容易であり、好ましい。
【0133】
本実施の形態の映像拡大装置は、1フレームを4つのサブフレームによって構成しているため、1フレーム周期が長い。このため、比較的暗い室内でスクリーン輝度を小さくして使用する方がフリッカの発生を抑制できるので好ましい。
【0134】
PBS52a,52b,52c,52dは、P偏光(図9中紙面表裏方向)を反射し、S偏光(図9中紙面平行方向)を透過する偏光面を有している。PBS52dは、映像光合成用のPBSである。
【0135】
色選択性偏光板53a,53b、53c、53d,53eは、上述と同様に、複数枚の位相差板と液晶セルとを組み合わせることによって構成されており、入射される光の分光特性に応じて特定波長領域の偏光を選択的に回転する。これにより、Red,Green,Blueのうちの特定色の偏光を回転することが可能になる。色選択性偏光板53a,53b、53c、53d,53eの光学特性は、図示しない制御回路による偏光方向の制御により、周期的にスイッチングさせることが可能である。本実施の形態では、色選択性偏光板53a,53b、53c、53d,53eのスイッチング周期は、1/60秒に設定されている。
【0136】
このような構成において、高圧水銀ランプ2から放出してガラス放物面鏡3により平行化を、色フィルタ4により不要波長を除去した光を、ホモジナイザによって面積的光強度分布を均一化し、偏光変換素子によってS偏光照明の光利用効率を1.5にした状態で、色選択性偏光板53aに入射する。
【0137】
色選択性偏光板53aは、入射された照明光のうち、1つの色の分光照明光の偏光をS偏光からP偏光に選択的に回転させて透過して、PBS52bに入射する。PBS52bは、入射された照明光のうち、P偏光に回転された分光照明光は、色選択性偏光板53d、PBS52cを介して、反射型LV51aに入射し、反射型LV51aによって分光照明光の色に応じた映像光に光変調され、色選択性偏光板53e、PBS51d、投射レンズ14を介してスクリーン13上に拡大投射される。
【0138】
一方、PBS52bは、入射された照明光のうち、偏光回転されないS偏光の分光照明光を透過させて、色選択性偏光板53bに入射する。色選択性偏光板53bは、入射された分光照明光の一方の偏光をP偏光に回転して、PBS52bに入射する。PBS52bは、入射された分光照明光のうち、P偏光に回転された分光照明光を反射型LV51bに向けて反射し、偏光回転されないS偏光の分光照明光を反射型LV51cに向けて透過する。反射型LV51b,51cに入射する分光照明光は、それぞれ対応する反射型LV51b,51cによって、分光照明光の色に応じた映像光に光変調されて、色選択性偏光板53cに入射される。色選択性偏光板53cに入射された分光照明光は、S偏光をP偏光に回転されてPBS52dに入射される。PBS52dに入射されたP偏光は、偏光面で反射され、投射レンズ14を介してスクリーン13上に拡大投射される。
【0139】
ここで、制御回路の動作によって5つの色選択性偏光板53a,53b、53c、53d,53eの光学特性を図10に示すようにスイッチングさせることにより、4つの反射型LV51a,51b,51c,51dを照明する分光照明光をRed,Green,Blueの各色に周期的にスイッチングすることができる。ここに、スイッチング手段としての機能が実現されている。
【0140】
このように、4板式とすることで、Red,Green,Blueの3つに分光された全ての分光照明光を映像光に光変調して1サブフレーム中に表示させることができるため、光利用効率を向上させるとともに、特定の色の分光照明光の輝度を低下させることなく、各分光照明光間の輝度および発色性を均一化した高精細な表示画像を得ることができる。
【0141】
また、色選択性偏光板53a,53b、53c、53d,53eの光学特性を周期的にスイッチングさせることで、反射型LV51a,51b,51c,51dを照明する分光照明光を、Red,Green,Blueの各色に周期的にスイッチングすることができるので、4つの反射型LV51a,51b,51c,51dによって得られるRed,Green,Blueの各色の映像光の光利用効率を4つの反射型LV51a,51b,51c,51d間でそれぞれ平均化することができる。
【0142】
これにより、より多くの反射型LV51a,51b,51c,51dによって映像光の光利用効率を平均化することができるので、反射型LV51a,51b,51c,51d間の光利用効率のばらつきや、個々の反射型LV51a,51b,51c,51dにおける各画素の光変調面内での反射角度のばらつきによって、スクリーンに投射される表示画像に輝度ムラや色ムラが発生することをRed,Green,Blueの各色に関して一層低減し、表示画像品質の面内均一性の向上を効果的に図ることができる。
【0143】
本実施の形態の映像拡大装置では、反射型LV51aにRed,反射型LV51bにGreen、反射型LV51cにBlue色の分光照明光を入射させ、反射型LV51dは無照明の状態としたが、反射型LV51a,51bおよび反射型LV51c,51dはそれぞれ対称的な位置関係にあるため、色選択性偏光板53a,53b、53c、53d,53eの光学特性を対称的にスイッチングさせて偏光特性を反対にすることにより、例えば、AにGreen、BにRed、Cに無照明、DはBlueの状態にすることもできる。
【0144】
これ以外にも、それぞれ適切に偏光回転させる色と偏光回転させない色を、3つの色選択性偏光板の条件を変化させるだけで、自由にA,B,C,Dの間で選択することもできる。
【0145】
これを利用して、反射型LV51a,51b,51c,51dを照明するRed,Green,Blueの分光照明光および無照明の状態で周期的にスイッチングすることにより、4つの反射型LV51a,51b,51c,51dのうちのいずれの反射型LV51a,51b,51c,51dをいずれの色の分光照明光によって照明した場合にも、光利用効率を平均化した全ての映像光をスクリーン上に重ねあわせて拡大投射することができる。
【0146】
また、2フレームを使用して、フレーム1のサブフレーム1でRed色照明光をAに照明し、フレーム2のサブフレーム1で、フレーム1と異ならせてRed色照明光をDに照明することで、R照明光を4つの反射型LV51a,51b,51c,51dに照明することもでき、これらの動作は他の色でも同様に2フレーム単位で動作できる。このため、4つの反射型LV51a,51b,51c,51dを用いて光変調を行なっていることになるので、個々の反射型LV51a,51b,51c,51dの面内および反射型LV51a,51b,51c,51d間での光利用効率つまりは実効反射率、さらにこの角度特性の不均一さに起因する、輝度の面内ばらつき、色ムラを、4つのうちの4つ全ての反射型LV51a,51b,51c,51dで平均化することで完全に解消することができる。
【0147】
また、図9において、図示はしていないが、色選択性偏光板53d,53eと映像光合成用のPBS52dとの間に、通常の偏光子をクリーナとして挿入することにより、コントラストの増加を図ることができる。
【0148】
次に、本発明の第六の実施の形態について図11および図12を参照して説明する。本実施の形態は、2つの透過型LVを有する2板式の映像拡大装置への適用例を示す。
【0149】
図11は、本実施の形態の映像拡大装置全体の光学系構成を示す概略図である。本実施の形態の映像拡大装置60は、コンデンサレンズ8と投射レンズ14との間に、空間光変調手段(透過型空間光変調手段)としての2つの透過型LV61a、61bと、PBS62と、アクティブな色選択性偏光板63と、偏光分光板64と、誘電体反射ミラー65a,65bとを有している。本実施の形態では、色選択性偏光板63と偏光分光板64とによって照明光分光手段が実現されている。
【0150】
透過型LV61a、61bは、高温ポリシリコンTFTによるTN液晶方式の透過型LVである。透過型LV61a、61bは、フレームを2つに分割したサブフレーム単位で、入射光を光変調して映像光を生成する。サブフレーム期間は1/60秒に設定されており、このため1フレーム期間は1/20秒に設定される。
【0151】
PBS62は、P偏光(図11中紙面表裏方向)を反射し、S偏光(図11中紙面平行方向)を透過する偏光面を有している。
【0152】
偏光分光板64は、P偏光(図11中紙面表裏方向)を反射し、S偏光(図11中紙面平行方向)を透過する。
【0153】
このような構成において、高圧水銀ランプ2から放出した光を、ガラス放物面鏡3により平行化した後、色フィルタ4により不要波長領域を除去した光とする。その後、ホモジナイザによって面積的な光強度分布を均一化し、偏光変換素子によって作像系のPBS9へのS偏光照明の光の光利用効率を約1.5とした照明光を、色選択性偏光板63に入射する。
【0154】
色選択性偏光板63は、入射された照明光のうち、1つの色の照明光を選択的に消光(吸収)するとともに、残り2色の分光照明光のうち一方をP偏光に回転させて色選択性偏光板23を透過して、偏光分光板64に入射する。偏光分光板64は、入射された分光照明光のうち、P偏光に回転された分光照明光を誘電体反射ミラー65bを介して透過型LV61aに向けて反射し、偏光回転されないS偏光の分光照明光を誘電体反射ミラー65aを介して透過型LV61bに向けて透過する。
【0155】
各透過型LV61a,61bに入射する分光照明光は、各透過型LV61a,61bを透過する際にそれぞれ対応する透過型LV61a,61bによって、分光照明光の色に応じた映像光に光変調され、PBS62、投射レンズ14を介してスクリーン13上に拡大投射される。
【0156】
ここで、色選択性偏光板63の光選択性を図12に示すように周期的にスイッチングさせることにより、偏光分光板64で反射する分光照明光と偏光分光板64で透過する分光照明光とを周期的に入れ替え、透過型LV61aと透過型LV61bとを照明する分光照明光を、Red,Green,Blueの各色に周期的にスイッチングすることができる。ここに、スイッチング手段としての機能が実現されている。
【0157】
このように、色選択性偏光板63の光選択性を周期的にスイッチングさせることで、透過型LV61aと透過型LV61bとを照明する分光照明光を、Red,Green,Blueの各色に周期的にスイッチングすることができるので、2つの透過型LV61a,61bによって得られるRedおよびBlueの映像光の光利用効率を2つの透過型LV61a,61b間で平均化することができる。
【0158】
これにより、各色の分光照明光を単一の反射型LVでそれぞれ光変調する場合と比較して、透過型LV61aと透過型LV61bとの間の光利用効率のばらつきや、個々の透過型LV61a,61cにおける各画素の光変調面内での透過率のばらつきによって、スクリーンに投射される表示画像に輝度ムラや色ムラが発生することを低減し、表示画像品質の面内均一性の向上を図ることができる。
【0159】
なお、照明光を色に応じて偏光分光するアクティブな色選択性偏光板63として、ホログラフィック回折格子を有する高分子分散型液晶(HPDLC)素子を多段で用いても、同様に、2つの透過型LVに対して周期的にすべての照明光を照射することができる。
【0160】
次に、本発明の第七の実施の形態について図13および図14を参照して説明する。本実施の形態は、3つの透過型LVを有する3板式の映像拡大装置への適用例を示す。
【0161】
図13は、本実施の形態の映像拡大装置全体の光学系構成を示す概略図である。本実施の形態の映像拡大装置70は、コンデンサレンズ8と投射レンズ14との間に、空間光変調手段(透過型空間光変調手段)としての3つの透過型LV71a,71b,71cと、分光照明光合成手段としての複合機能プリズム72と、アクティブな色選択性偏光板73と、偏光分光板74と、誘電体反射ミラー75a,75b,75cと、ダイクロイックミラー76とを有している。本実施の形態では、色選択性偏光板73と偏光分光板74とによって照明光分光手段が実現されている。
【0162】
透過型LV71a,71b,71cは、フレームを2つに分割したサブフレーム単位で、入射光を光変調して映像光を生成する。各サブフレーム期間は1/60秒に設定されており、このためフレーム期間は1/30秒に設定される。
【0163】
複合機能プリズム72は、Red光を反射しGreen光,Blue光を透過する誘電体多層膜を一方の対角面に有し、偏光方向に応じて透過/反射により入射光を分光する偏光分光膜を他方の対角面に有しており、ダイクロイックプリズムとしての機能とPBSとしての機能とを有する。これにより、複合機能プリズム72に入射された光は、投射レンズ14へ向けて出射される。
【0164】
色選択性偏光板73は、Red,Green,Blue3色の照明光うちの1つの色の照明光を選択的に偏光を回転させずに透過させ、残りの2つの色を含む照明光を選択的に偏光を回転させて透過させる。色選択性偏光板73の光学特性は、図示しない制御回路の制御によってスイッチングすることが可能である。
【0165】
ダイクロイックミラー76は、特定波長領域の光を透過し、この特定波長領域以外の光を反射する。本実施の形態では、ダイクロイックミラー76は、Red光の分光照明光を透過する。
【0166】
加えて、ダイクロイックミラー76の後段には、ダイクロイックミラー76を透過した照明光の光路上に、3つの分光照明光間で光路長差による問題が生じないように調整光路長を調整する図示しないリレーレンズが設けられている。
【0167】
このような構成において、高圧水銀ランプ2から放出してガラス放物面鏡3により平行化し、色フィルタ4により不要波長を除去した光を、ホモジナイザによって面積的光強度分布を均一化し、偏光変換素子によってS偏光照明の光利用効率を1.5にした状態で、色選択性偏光板73に入射する。
【0168】
色選択性偏光板73は、入射された照明光のうち、2つの色の分光照明光の偏光をS偏光からP偏光に選択的に回転させて透過する。これにより、色選択性偏光板73を透過した照明光は、偏光分光板74によって偏光分光され、偏光回転されないS偏光の分光照明光が、誘電体反射ミラー75aを介して、透過型LV71cに入射する。透過型LV71cは、入射されたS偏光を分光照明光の色に応じたP偏光の映像光に光変調して透過する。
【0169】
偏光分光板74によって反射された照明光は、ダイクロイックミラー76により、反射されて透過型LV71bに向けて入射する分光照明光と、透過されて誘電体反射ミラー75b,75cを介して透過型LV71aに入射する分光照明光とに分光される。透過型LV71a,71bは、入射された各分光照明光を分光照明光の色に応じた映像光に光変調して透過する。
【0170】
透過型LV71a,71b,71cで光変調されて透過された映像光は、いずれも複合機能プリズム72に入射し、複合機能プリズム72で複合されて投射レンズ14を介してスクリーン13上に拡大投射される。
【0171】
ここで、制御回路の動作によって2つの色選択性偏光板73の光学特性を図14に示すようにスイッチングすることにより、3つの透過型LV71a,71b,71cを照明する分光照明光のうち、透過型LV71b,71cを照明する分光照明光をGreen,Blueの2色で交互にスイッチングすることができる。ここに、スイッチング手段としての機能が実現されている。
【0172】
このように、色選択性偏光板43bの光学特性をスイッチングさせることで、透過型LV71b,71cを照明する分光照明光をGreen,Blueの2色で交互にスイッチングさせることができるので、3つの透過型LV71a,71b,71cによって得られるRed,Green,Blueの各色の映像光のうち、Green,Blueの2色の分光照明光を2つの透過型LV71b,71c間で平均化することができる。
【0173】
このように、3板式とすることで、Red,Green,Blueの3つに分光された全ての分光照明光を映像光に光変調して1サブフレーム中に表示させることができるため、光利用効率を向上させることができる。
【0174】
また、3板式とすることで光利用効率の向上を図るとともに、3つの透過型LV71a,71b,71c間の光利用効率のばらつきや、個々の透過型LV71a,71b,71cにおける各画素の光変調面内での光透過率のばらつきによってスクリーンに投射される表示画像に輝度ムラや色ムラが発生することをGreen,Blueの2色の分光照明光に関して低減し、輝度の面内ばらつきや色ムラが発生する比率を1/3に低減して表示画像品質の面内均一性の向上を図ることができる。
【0175】
次に、本発明の第八の実施の形態について図15および図16を参照して説明する。本実施の形態は、2つの透過型LVを備える2板式の映像拡大装置への適用例を示す。
【0176】
図15は、本実施の形態の映像拡大装置全体の光学系構成を示す概略図である。本実施の形態の映像拡大装置80は、コンデンサレンズ8と投射レンズ14との間に、空間光変調手段(透過型空間光変調手段)としての2つの透過型LV81a、81bと、PBS82と、色選択性偏光板83と、誘電体反射ミラー84a,84bと、色スクロール素子85a,85bと、2色スクロール元照明光形成光学素子86とを有している。本実施の形態では、色選択性偏光板83と2色スクロール元照明光形成光学素子86とによって照明光分光手段が実現されている。
【0177】
2色スクロール元照明光形成光学素子86は、2枚の偏光分光板87a,87bと、2枚の偏光分光板87a,87b間に設けられた2枚の色回転偏光板88a,88bとを有している。2枚の色回転偏光板88a,88bには、偏光分光板87a,87bに対向する側に、誘電体多層膜コーティングによって形成された偏光分光板89a,89bが設けられている。各色回転偏光板88a,88bは、同一の部材によって形成されて互いに異なる光学特性を有する2つの色回転偏光板によって形成されており、もとの有効口径の約2倍紙面に平行な方向の有効口径を有し、元の有効口径の大きさで2分されるような2種類の領域を有し、ほぼ同一平面にあるように形成されている。2色スクロール元照明光形成光学素子86の光学特性は、図示しない制御回路の制御により、周期的にスイッチングすることが可能である。
【0178】
色スクロール素子85a,85bは、角柱形状を有しており、透過型LV81a、81bによるサブフレーム単位での映像光の切り換えのフレーム周波数と同期して回転される。色スクロール素子85a,85bは、光軸方向における回転中心の位置が、透過型LV81a、81bの中心と等しくなるように配設されている。
【0179】
このような構成において、高圧水銀ランプ2から放出してガラス放物面鏡3により平行化し、色フィルタ4により不要波長を除去した光を、ホモジナイザによって面積的光強度分布を均一化し、偏光変換素子によってS偏光照明の光利用効率を1.5にした状態で、色選択性偏光板83に入射する。
【0180】
色選択性偏光板83は、入射されたRed,Green,Blueを含む白色照明光のうち、Red色の分光照明光の偏光方向を45度回転して、紙面に垂直な方向のS偏光と紙面に平行な方向のP偏光との2種類に分光する。また、特に図示しないが、同じサブフレームで照明に利用するGreenとBlueとの分光照明光は、色選択性偏光板83により偏光回転を受けない状態とする。
【0181】
これにより、偏光分光板87aに入射するRed,Green,Blue光からなる白色照明光のうち、Red色の1/2が偏光分光板87aによって反射されて、Red色の残りの1/2とGreen,Blueの分光照明光とが透過する。
【0182】
色回転偏光板88aは、偏光分光板87aを透過したRed,Green,Blue3色の分光照明光を、全て90度偏光回転させる。
【0183】
色回転偏光板88bは、色回転偏光板88aにより偏光回転されたRed,Green,Blue色からなる照明光のうち、Red色のみを選択的に偏光回転してP偏光とし、偏光分光板87bに入射させる。
【0184】
偏光分光板87bは、偏光回転して入射されたP偏光のRed色の照明光を透過し、S偏光のままである他の2色のGreenとBlueとの分光照明光を反射する。偏光分光板87bで反射された2色の照明光は、再び色回転偏光板80bに入射し偏光回転されずに色回転偏光板80aに入射する。
【0185】
色回転偏光板80aは、2色の色の1つの色のみを偏光回転して透過し、偏光分光板87aに入射する。本実施の形態では、Greenの照明光が偏光回転され、Blueの照明光はそのままとなる。
【0186】
偏光分光板87aは、入射された分光照明光のうち、S偏光のままのBlueの分光照明光を反射し、P偏光となるGreenの分光照明光を透過する。反射されたBlueの分光照明光は、色回転偏光板80bで回転されてP偏光となり、偏光分光板87bを透過する。なお、偏光分光板87aで反射されたBlueの分光照明光が入射する色回転偏光板80bは、周期的に色選択の状態を変化させる必要がないので、広い帯域の1/2波長板をそのまま用いてもよいし、もれ光を減少するために、アクティブな色選択性偏光板を用いてもよい。
【0187】
これにより、Red,Green,Blue光を含む白色光は、Red色が2つ、GreenとBlue色はそれぞれ1つずつの合計4本の照明光に分割されて、2つの透過型LV81a,81bに2つづつ組となって入射する。このとき、透過型LV81a,81bにおける各色の映像光は、透過型LV81a,81bの単一の光変調面内で面積的にシェアし合う状態で入射される。これにより、単一の光変調面内に、異なる色の2つの分光照明光を照射することがきる。すなわち、透過型LV81aにRedとGreenの色の分光照明光を入射し、透過型LV81bにRedとBlueの色の分光照明光を入射することができる。
【0188】
ここで、2色スクロール元照明光形成光学素子86の光学特性は、任意に変更することができるため、2色スクロール元照明光形成光学素子86の光学特性をスイッチングさせることにより、図16に示すように、Red/GreenおよびBlue/Redによって照明されていた透過型LV81a,81bを、Blue/RedおよびGreen/Blueにスイッチングさせ、さらに、Green/BlueとRed/Greenとなるよう周期的にスイッチングさせることができる。ここに、スイッチング手段としての機能が実現されている。
【0189】
これにより、2板式でありながら、常にRed,Green,Blueの3色を表示に使用することができるので、フリッカの少ない光利用効率の高い映像拡大装置を実現するとともに、それぞれの透過型LV81a,81bをRed,Green,Blueの3色の分光照明光によって周期的に照明しているので、Red,Green,Blueの3色の分光照明光のそれぞれを2つの透過型LV81a,81b間で平均化することができるので、2つの透過型LV81a,81b間の光利用効率のばらつきや、個々の透過型LV81a,81bにおける各画素の光変調面内での光透過率のばらつきによってスクリーンに投射される表示画像に輝度ムラや色ムラが発生することをRed,Green,Blueの各色の分光照明光に関して低減し、輝度の面内ばらつきや色ムラが発生する比率を1/3に低減して表示画像品質の面内均一性の向上を図ることができる。
【0190】
また、複数のフレームに亘って、サブフレームの組み合わせ状態を変化させることにより、フリッカの少ない画像を得ることができる。
【0191】
なお、本実施の形態では、スクロールのようにブロック単位でRed,Green,Blueからなる3色の照明領域を複数に分割しているが、これらは均等な面積に分割する必要はなく、2色形成される領域を小さくしたりしてもよい。さらには、このブロック単位での照明領域の大きさは、複数または1つの走査線単位でもよく、また画素単位でもよい。
【0192】
このとき、それぞれの透過型LV71a,71bへの光路の途中に角柱形状のスクロール変換素子を挿入し、これをフレーム周波数と同期させて回転させることにより、透過型LV71a,71b上を同一方向にスクロールすることができる。2色に対応して、それぞれのスクロールの中心がLVの中心になるように2つの角柱形状の光学ブロックでスクロールすることが好ましい。
【0193】
斜入射の色選択性偏光板は、レーザ光のような波長領域の少ない場合には、比較的に波長と入射角度のずれの許容値が大きいために作製しやすい。波長領域が広いRed,Green,Blue色を有する照明光の場合には、色純度を低減させないよに最適化することが好ましい。
【0194】
次に、本発明の第九の実施の形態について図17を参照して説明する。本実施の形態は、2つの透過型LVを備える2板式の映像拡大装置への適用例を示す。
【0195】
図17は、本実施の形態の映像拡大装置全体の光学系構成を示す概略図である。本実施の形態の映像拡大装置90は、図16に示す映像拡大装置に対して、2色スクロール元照明光形成光学素子86に代えて、ステップ上に素子を形成した元照明光形成光学素子91を備えており、その他の基本的な構成は図16に示す映像拡大装置と同様である。
【0196】
元照明光形成光学素子91は、2枚の偏光分光板97a,97bと、2枚の偏光分光板97a,97b間に設けられた広い帯域の1/2波長板92a、92bと、通常と同様の色選択性偏光板93a,93bとを有する。本実施の形態では、色選択性偏光板83と元照明光形成光学素子91とによって照明光分光手段としての機能が実現されている。
【0197】
このような構成とすることにより、Red,Green,Blue各色の波長領域をより広くするとともに、照明のNAをより大きくすることができる。
【0198】
次に、本発明の第十の実施の形態について図18を参照して説明する。本実施の形態は、強誘電性液晶による反射型LVを3枚備える3板式の映像拡大装置への適用例を示す。
【0199】
図18は、本実施の形態の映像拡大装置全体の光学系構成を示す概略図である。本実施の形態の映像拡大装置100の基本的な構成は、図5に示す映像拡大装置30と同様であるが、空間光変調手段(反射型空間光変調手段)としての反射型LV101a,101b,101cは、表面安定化した強誘電性液晶によって構成されている。本実施の形態では、色選択偏光板33a,33b,33cとPBS102a,102b,102cとによって照明光分光手段が実現されている。
【0200】
また、映像拡大装置100は、PBS102dの後段に、色選択性偏光板103と、光軸シフト手段としての光軸シフト素子104とを有している。公知の技術であるため、詳細な図示および説明を省略するが、光軸シフト素子104は、表面安定化した2枚の強誘電性液晶素子とリチウムナイオベートとからなる2枚の複屈折板とによって構成されており、色選択性偏光板103から出射される映像光の光路をシフトさせる。
【0201】
一般的に、表面安定化した強誘電性液晶によって構成される反射型LVを複数用いて分光照明光の空間光変調を行なう場合、ネマチック液晶を用いる空間光変調素子とは異なり、良好な表示画像を得るためには基板間のギャップを1μm以下で制御する必要があるが、実際には、反射型LV101a,101b,101c間の光利用効率のばらつきや、個々の反射型LV101a,101b,101cにおける各画素の光変調面内での反射率のばらつきが大きく、スクリーンに投射される表示画像の輝度ムラや色ムラの発生を抑制することは、非常に困難である。
【0202】
しかしながら、反射型LVを時分割で駆動して、光軸シフト素子を組み合わせることで実効画素数を増加させることにより表示画像の高精細化を図る場合、従来よりも高速なフレーム速度が必要となり、この高速化に対応することができるのは、表面安定化した強誘電性液晶が適しているため、分光照明光の空間光変調は表面安定化した強誘電性液晶によって構成される反射型LVによって行なうことが好ましい。
【0203】
例えば、画素数を4倍に増加する場合、光軸シフト素子における1画素を4倍にして用いる必要があるが、1つの画素の光利用効率または反射率に不良が生じている場合、この不良が4倍の4画素分の影響を及ぼすため、画素を小さくして高解像度化を図っているにもかかわらず、1つの画素に不良が生じている場合でも不良画素の大きさは元の画素の4倍の大きさとして視認される。このため、不良が容易に発見されやすく、不良が目立つようになる。
【0204】
これに対して、本実施の形態の映像拡大装置100は、分光特性に応じてRed,Green,Blueの3色に分光した分光照明光のそれぞれを、反射型LV101a,101b,101cによって、分光照明光に応じて分割した映像情報に応じた映像光に光変調するとともに、光変調した映像光のそれぞれの光路を光軸シフト素子104によってシフトさせることで実効画素数を増加させ、表示画像の高精細化を図るとともに、複数の強誘電性液晶を用いた反射型LV101a,101b,101cに照明する分光照明光を複数色で周期的にスイッチングすることにより、分光照明光のスイッチングに関わる反射型LV101a,101b,101c間で平均化することができるので、スイッチングに関わる反射型LV101a,101b,101c間の光利用効率のばらつきや、個々の反射型LV101a,101b,101cにおける各画素の光変調面内での光透過率のばらつきによってスクリーンに投射される表示画像に輝度ムラや色ムラが発生することをスイッチングに関わる各色の分光照明光に関して低減し、輝度の面内ばらつきや色ムラの発生を実用上支障のないレベルまで低減して、表示画像品質の面内均一性の向上を図ることができる。
【0205】
【発明の効果】
請求項1記載の発明の映像拡大装置によれば、照明光学手段によって出射した照明光を分光特性に応じて複数に分光した分光照明光を複数の空間光変調手段に照明して、分光照明光のそれぞれを、分光照明光に応じて分割した映像情報に応じた映像光に複数の空間光変調手段によって光変調することで、複数の分光照明光を映像光に利用することができるので光利用効率の向上を図ることができ、また、複数の分光照明光を映像光として単一の表示画像中に投射することができるので表示画像の高精細化を図ることができる。このとき、複数の空間光変調手段を複数の分光照明光によって同時に照明するとともに、照明に用いる分光照明光を少なくとも2つの空間光変調手段の間で単一のフレームを構成する複数のサブフレーム単位で周期的にスイッチングさせて、同一の分光特性を有する分光照明光を2つ以上の空間光変調手段によって映像光に光変調することにより、同一の分光特性を有する分光照明光によって得られる映像光の光利用効率を、スイッチングに関わる空間光変調手段間で平均化し、多板式の映像拡大装置で、空間光変調手段間の光学特性のばらつきによる輝度ムラや色ムラの発生を低減することができる。これによって、画像品質の向上を図ることができる。
【0206】
請求項2記載の発明は、請求項1記載の映像拡大装置において、3つに分光した分光照明光のうち2つの分光照明光を空間光変調手段の間で周期的にスイッチングさせて、同一の分光特性を有する分光照明光によって得られる映像光のうち2/3の映像光の光利用効率をスイッチングに関わる空間光変調手段間で平均化することで、従来の2板式の映像拡大装置と比較して、単一の空間光変調手段における各画素間の光学特性のばらつきによる輝度ムラや色ムラの発生を1/3まで低減するとともに、カラーブレイクの発生を低減することができる。
【0207】
請求項3記載の発明によれば、請求項1記載の映像拡大装置において、3つに分光した全ての分光照明光を映像光に利用することができるので光利用効率を向上させカラーブレイクの発生を抑制するとともに省エネルギー化を図ることができる。また、全ての分光照明光を映像光として単一の表示画像中に投射するとともに、そのうちの2/3の映像光の光利用効率をスイッチングに関わる空間光変調手段間で平均化するので、多板式の映像拡大装置で、空間光変調手段間の性能のばらつきや単一の空間光変調手段における各画素間の光学特性のばらつきによる輝度ムラや色ムラの発生を低減することができる。また、各分光照明光にそれぞれ独立した光路を設ける従来の3板式の映像拡大装置と比較して、低コスト化を図ることができる。
【0208】
請求項4記載の発明によれば、請求項3記載の映像拡大装置において、像形成光学手段の前段に分光照明光合成手段を設けることで、空間光変調手段に照明されるまでに経由する光路による映像光の偏光状態に拘わらず映像光を被照射体に拡大して投射することができる。
【0209】
請求項5記載の発明によれば、請求項1記載の映像拡大装置において、3つ以上に分光された全ての分光照明光を映像光とし、分光照明光に照明される全ての空間光変調手段間で分光照明光を周期的にスイッチングさせて、同一の分光特性を有する分光照明光によって得られる全ての映像光の光利用効率をスイッチングに関わる空間光変調手段間で平均化することで、光利用効率を平均化した全ての照明光を映像光として単一の表示画像中に投射させることが可能になるので、空間光変調手段間の光学特性のばらつきや単一の空間光変調手段における各画素間の光学特性のばらつきによる輝度ムラや色ムラの発生を全ての分光照明光に亘って低減し、表示画像の一層の高解像度化を図ることができる。また、各分光照明光にそれぞれ独立した光路を設ける従来の3板式の映像拡大装置と比較して、低コスト化を図ることができる。
【0210】
請求項6記載の発明によれば、請求項1ないし5のいずれか一に記載の映像拡大装置において、反射型空間光変調手段を用いた映像拡大装置で、請求項1ないし5のいずれか一に記載の発明の効果を得ることができる。
【0211】
請求項7記載の発明によれば、請求項1ないし5のいずれか一に記載の映像拡大装置において、透過型空間光変調手段を用いた映像拡大装置で、請求項1ないし5のいずれか一に記載の発明の効果を得ることができる。
【0212】
請求項8記載の発明によれば、請求項1ないし7のいずれか一に記載の映像拡大装置において、従来の強誘電性液晶を用いた場合に基板間の狭セルギャップが不均一であるために問題となっている単一の空間光変調手段における各画素間の性能のばらつきによる輝度ムラや色ムラの発生を低減し、表示画像の高精細化を図ることができる。
【0213】
請求項9記載の発明によれば、請求項1ないし8のいずれか一に記載の映像拡大装置において、光軸シフトにより表示画像の高解像度化を図るようにした従来の映像拡大装置で問題となっている隣接画素間の輝度ムラや色ムラの発生を低減し、高品質な表示画像の高精細化を図ることができる。
【図面の簡単な説明】
【図1】本発明の第一の実施の形態の映像拡大装置全体の光学系構成を示す概略図である。
【図2】ダイクロイックプリズムの回転により反射型LVに照明される分光照明光のスイッチング状態の変化を示す説明図である。
【図3】本発明の第二の実施の形態の映像拡大装置全体の光学系構成を示す概略図である。
【図4】色選択偏光板の偏光状態のスイッチングにより反射型LVに照明される分光照明光のスイッチング状態の変化を示す説明図である。
【図5】本発明の第三の実施の形態の映像拡大装置全体の光学系構成を示す概略図である。
【図6】色選択偏光板の偏光状態のスイッチングにより反射型LVに照明される分光照明光のスイッチング状態の変化を示す説明図である。
【図7】本発明の第四の実施の形態の映像拡大装置全体の光学系構成を示す概略図である。
【図8】色選択偏光板の偏光状態のスイッチングにより反射型LVに照明される分光照明光のスイッチング状態の変化を示す説明図である。
【図9】本発明の第五の実施の形態の映像拡大装置全体の光学系構成を示す概略図である。
【図10】色選択偏光板の偏光状態のスイッチングにより反射型LVに照明される分光照明光のスイッチング状態の変化を示す説明図である。
【図11】本発明の第六の実施の形態の映像拡大装置全体の光学系構成を示す概略図である。
【図12】色選択偏光板の偏光状態のスイッチングにより反射型LVに照明される分光照明光のスイッチング状態の変化を示す説明図である。
【図13】本発明の第七の実施の形態の映像拡大装置全体の光学系構成を示す概略図である。
【図14】色選択偏光板の偏光状態のスイッチングにより反射型LVに照明される分光照明光のスイッチング状態の変化を示す説明図である。
【図15】本発明の第八の実施の形態の映像拡大装置全体の光学系構成を示す概略図である。
【図16】色選択偏光板の偏光状態のスイッチングにより反射型LVに照明される分光照明光のスイッチング状態の変化および反射型LVの走査状態を示す説明図である。
【図17】本発明の第九の実施の形態の映像拡大装置全体の光学系構成を示す概略図である。
【図18】本発明の第十の実施の形態の映像拡大装置全体の光学系構成を示す概略図である。
【符号の説明】
1 映像拡大装置
2,3 照明光学手段
10 照明光分光手段
12a,12b,12c 空間光変調手段(反射型空間光変調手段)
20 映像拡大装置
21a,21b 空間光変調手段(反射型空間光変調手段)
30 映像拡大装置
31a,31b,31c 空間光変調手段(反射型空間光変調手段)
40 映像拡大装置
41a,41b,41c 空間光変調手段(反射型空間光変調手段)
44 分光照明光合成手段
50 映像拡大装置
51a,51b,51c 空間光変調手段(透過型空間光変調手段)
60 映像拡大装置
61a,61b 空間光変調手段(透過型空間光変調手段)
70 映像拡大装置
71a,71b,71c 空間光変調手段(透過型空間光変調手段)
72 分光照明光合成手段 80 映像拡大装置
81a,81b 空間光変調手段(透過型空間光変調手段)
90 映像拡大装置
100 映像拡大装置
101a,101b,101c 空間光変調手段(透過型空間光変調手段)

Claims (9)

  1. 照明光を出射する照明光学手段と、
    前記照明光学手段が出射する照明光を分光特性に応じて複数の分光照明光に分光する照明光分光手段と、
    複数のシャッタ素子を有して前記照明光分光手段が分光した分光照明光のそれぞれを、前記照明光分光手段が分光する分光照明光に応じて分割した映像情報に応じた映像光に光変調する複数の空間光変調手段と、
    前記照明光分光手段が分光した複数の分光照明光によって複数の前記空間光変調手段を同時に照明するとともに、照明に用いる分光照明光を少なくとも2つの前記空間光変調手段の間で単一のフレームを構成する複数のサブフレーム単位で周期的にスイッチングさせるスイッチング手段と、
    前記各空間光変調手段が光変調した映像光を拡大して被照射体に投射する像形成光学手段と、
    を具備する映像拡大装置。
  2. 前記空間光変調手段を2つ備え、前記照明光分光手段は照明光を3つの分光照明光に分光し、前記スイッチング手段は3つの分光照明光を2つの前記空間光変調手段の間で周期的にスイッチングさせる請求項1記載の映像拡大装置。
  3. 前記空間光変調手段を3つ以上備え、前記照明光分光手段は照明光を3つ以上の分光照明光に分光し、前記スイッチング手段は2つの分光照明光を前記空間光変調手段の間で周期的にスイッチングさせる請求項1記載の映像拡大装置。
  4. 前記空間光変調手段によって得られる複数の映像光を合成する分光照明光合成手段を具備して、
    前記像形成光学手段は、前記分光照明光合成手段が合成した映像光を拡大した拡大像光を被照射体に投射する請求項3記載の映像拡大装置。
  5. 前記空間光変調手段を3つ以上備え、前記照明光分光手段は照明光を3つ以上の分光照明光に分光し、前記スイッチング手段は全ての分光照明光によって前記空間光変調手段をそれぞれ同時に照明するとともに、この分光照明光によって照明される前記空間光変調手段の間で分光照明光を周期的にスイッチングさせる請求項1記載の映像拡大装置。
  6. 前記空間光変調手段は、前記分光照明光を映像情報に応じて反射する反射型空間光変調手段である請求項1ないし5のいずれか一に記載の映像拡大装置。
  7. 前記空間光変調手段は、前記分光照明光を映像情報に応じて透過する透過型空間光変調手段である請求項1ないし5のいずれか一に記載の映像拡大装置。
  8. 前記空間光変調手段は、強誘電性液晶を用いた空間光変調手段であることを特徴とする請求項1ないし7のいずれか一に記載の映像拡大装置。
  9. 前記空間光変調素子と像形成光学手段との間に設けられて光軸をシフトする光軸シフト手段を具備する請求項1ないし10のいずれか一に記載の映像拡大装置。
JP2002181445A 2002-06-21 2002-06-21 映像拡大装置 Expired - Fee Related JP4020709B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181445A JP4020709B2 (ja) 2002-06-21 2002-06-21 映像拡大装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181445A JP4020709B2 (ja) 2002-06-21 2002-06-21 映像拡大装置

Publications (2)

Publication Number Publication Date
JP2004029122A JP2004029122A (ja) 2004-01-29
JP4020709B2 true JP4020709B2 (ja) 2007-12-12

Family

ID=31178279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181445A Expired - Fee Related JP4020709B2 (ja) 2002-06-21 2002-06-21 映像拡大装置

Country Status (1)

Country Link
JP (1) JP4020709B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511218B2 (ja) * 2004-03-03 2010-07-28 ルネサスエレクトロニクス株式会社 ディスプレイパネル駆動方法,ドライバ,及びディスプレイパネル駆動用プログラム
JP2008537784A (ja) * 2005-03-04 2008-09-25 カラーリンク・インコーポレイテッド 4パネル表示システム
JP2010072321A (ja) * 2008-09-18 2010-04-02 Sanyo Electric Co Ltd 照明装置及び投写型映像表示装置
JP2013044831A (ja) * 2011-08-23 2013-03-04 Seiko Epson Corp プロジェクター
WO2013145084A1 (ja) * 2012-03-26 2013-10-03 Necディスプレイソリューションズ株式会社 投射型表示装置

Also Published As

Publication number Publication date
JP2004029122A (ja) 2004-01-29

Similar Documents

Publication Publication Date Title
KR101405026B1 (ko) 고 동적 범위 투사 시스템
US7042535B2 (en) Optical display system and optical shifter
KR100533611B1 (ko) 투영형 화상표시장치
JP3941167B2 (ja) 映像表示装置及び映像表示方法
JP4052282B2 (ja) プロジェクタ
US20040246389A1 (en) High brightness wide gamut display
JP2004163817A (ja) プロジェクタ
KR20070074596A (ko) 화상 표시 장치 및 화상 투사 장치
JP2006154798A (ja) 画像表示装置及び画像投影装置
JP3784279B2 (ja) 投影型画像表示装置
JP4751619B2 (ja) 中間結像光学系、それを用いた画像表示装置、および中間結像光学系に用いられる電圧印加方法
US7106389B2 (en) Optical shifter and projection type optical display system
JP3722205B2 (ja) 投影型画像表示装置
KR100822505B1 (ko) 화상 표시 장치 및 프로젝터
JP3722204B2 (ja) 投影型画像表示装置
JP3890926B2 (ja) 投射型液晶表示装置
JP4020709B2 (ja) 映像拡大装置
JP2007065677A (ja) 映像表示装置
JP2004117388A (ja) 映像投射装置
JP2004145217A (ja) 投影型画像表示装置
JP2002207192A (ja) 映像表示装置及び駆動回路
JP4147902B2 (ja) プロジェクタ
JP2001174775A (ja) プロジェクタ装置
US7004587B2 (en) Projection display apparatus with two reflective light panels
JP4141813B2 (ja) 投射型表示装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050325

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees