CN1395336A - 锂电池及其制备方法 - Google Patents

锂电池及其制备方法 Download PDF

Info

Publication number
CN1395336A
CN1395336A CN02140526A CN02140526A CN1395336A CN 1395336 A CN1395336 A CN 1395336A CN 02140526 A CN02140526 A CN 02140526A CN 02140526 A CN02140526 A CN 02140526A CN 1395336 A CN1395336 A CN 1395336A
Authority
CN
China
Prior art keywords
battery
gel
polymer
electrolyte
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02140526A
Other languages
English (en)
Other versions
CN1225812C (zh
Inventor
卢权善
任铜俊
李存夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK On Co Ltd
Original Assignee
SKC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SKC Co Ltd filed Critical SKC Co Ltd
Publication of CN1395336A publication Critical patent/CN1395336A/zh
Application granted granted Critical
Publication of CN1225812C publication Critical patent/CN1225812C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种性能改善的并且无电解质渗漏危险的锂电池,其中的电解质包含一种液体电解质和一种凝胶型电解质。

Description

锂电池及其制备方法
                        发明领域
本发明涉及一种锂电池,这种锂电池含有一种液体电解质和一种凝胶型电解质,所述电池具有改善了的性能,并且无电解质渗漏危险。
                        发明背景
锂二次电池的常见结构特征包括阴极、阳极、有机电解质及设置在电极之间的锂离子能透过的分离器。在电极上发生的氧化还原反应产生电能。根据所使用的电解质的种类,这种锂二次电池通常有两种类型:使用液体电解质的锂离子电池;以及含有固体聚合物电解质的锂离子聚合物电池。
锂离子聚合物电池的优点在于它没有电解质渗漏问题,并且可以制造成多种形状,如角状。
然而锂离子聚合物电池尽管有这些优点,但同锂离子电池相比,它的离子电导率通常较低,并且其性能通常不能令人满意。
因此,最近的有关聚合物电池的研究主要集中于凝胶型聚合物电解质,同固体聚合物电解质相比,这类电解质能够提供改善了的离子电导率。凝胶型聚合物电解质通常为一种溶液,溶液中含有形成凝胶的聚合物及离子盐,其中离子的移动性得到强化。在US 5,639,573和US 5,665,265及JP 99-283672和JP 99-283673中公开了多种含有凝胶型聚合物电解质的锂聚合物电池。
但这类凝胶型聚合物电解质可能会堵塞电极和分离器板上的孔,因此同液体电解质相比,其实际性能仍然不能令人满意。
                    发明概述
因此,本发明的目的是提供一种性能特性有所改善并且无电解质渗漏危险的锂电池。
按照本发明的一个方面,提供了一种锂电池,该电池包括电池壳、密封在电池壳内的液体电解质、凝胶型电解质和电极组,该电极组由阴极、阳极以及插在阴极和阳极之间的分离器组成,其中液体电解质基本上被限制在电极组的内部,而凝胶型电解质基本上在电极组的外部。
                    附图简要说明
由下面结合附图对本发明所进行的描述中,本发明的上述及其它目的及特征将更清楚,各附图分别为:
图1:按照本发明的一种实施方案制备的锂电池的示意图,该图显示了凝胶聚合物分布在电极组的外部;
图2:作为放电速率(C)的函数,在实施例及比较例中得到的电池的常规放电容量(%)随放电速率的变化;
图3:作为降低的容量(%)的函数,在实施例及比较例中得到的电池在-10℃及1C的放电速率时,电压值(V)随降低的容量的变化;
图4:作为周期数的函数,在实施例及比较例中得到的电池的常规放电容量(%)随周期数的变化;
                   发明的详细说明
本发明的电池的特征在于液体电解质基本上位于电极组的内部,而凝胶型电解质基本上填充在电极组的外部,电极组作为一个屏障阻止液体电解质渗透通过。
电极组通常由阴极、阳极以及位于阴极和阳极之间的分离器组成,其中各部件的尺寸是不同的,即分离器(如:宽59mm)>阳极(如:宽57mm)>阴极(如:宽55mm)。在本说明书中,术语“电极组的内部”指的是一个区域,在这个区域内阴极和阳极相对放置,进行充电/放电。另外,术语“电极组的外部”指的是一个区域,该区域指的是除去上文所定义的内部区域后的部分,即电池组开放的上下端部,具体为从阴极两端延伸的阳极部位(对应于如上下端各1mm)及分离器部位(对应于如上下端各2mm)。
这类电极组是缠绕或折叠式的,用于制备本发明的电池,所采用的制备方法包括:将电极组装入一个有入口的壳中;将壳清空并向其中引入液体电解质;引入含有聚合物或可原位聚合的单体的凝胶型电解质;视情况进行单体的原位聚合反应;密封入口。
用于本发明的液体电解质可以含有有机溶剂和锂盐;凝胶型电解质可以含有有机溶剂、锂盐和聚合物。这里,聚合物可以是在电池壳内进行单体的原位聚合反应得到的聚合物。
可用于本发明的锂盐的例子有LiClO4、LiBF4、LiPF6、LiCF3SO3、LiN(CF3SO2)2以及它们的混合物。锂盐在液体及凝胶型电解质中的浓度范围可以为0.5-2.0M。当盐的浓度低于0.5M时,容量可能很小;而当盐的浓度高于2.0M时,周期寿命可能又很短。
可用于本发明的有机溶剂的代表性例子包括碳酸亚丙酯、碳酸亚乙酯、碳酸二乙酯、碳酸二甲酯、碳酸乙甲酯、碳酸二丙酯、二甲基亚砜、乙腈、二甲氧基乙烷、二乙氧基乙烷、碳酸亚乙烯酯、γ-丁内酯、亚硫酸亚乙酯(ethylene sulfite)、亚硫酸亚丙酯、及四氢呋喃。
可用于本发明的可原位聚合的单体可以是能够通过聚合反应形成凝胶聚合物的任何类型的单体。代表性的例子包括环氧基单体和丙烯酰基单体,其中本发明优选使用3,4-环氧基环己基甲基-3′,4′-环氧基环己基羧酸酯、丁二醇二环氧甘油醚、亚丙基乙二醇二环氧甘油醚、三亚乙基乙二醇二甲基丙烯酸酯及亚乙基乙二醇二甲基丙烯酸酯。
可用于本发明的聚合物可以是能够溶解于所使用的溶剂中形成凝胶的任何类型的聚合物。代表性的例子包括聚偏二氟乙烯、聚环氧乙烷、聚(偏二氟乙烯/六氟丙烯)、聚丙烯腈、聚甲基丙烯酸甲酯、聚苯乙烯、聚四氟乙烯、环氧基树脂及丙烯酰基树脂。
本发明的凝胶型电解质可以含有这种聚合物的量的范围为6-30wt%。当聚合物的量少于6wt%时,不能获得足够的凝胶量;而当多于30wt%时,凝胶型电解质会变得太粘。
按照本发明,液体电解质与凝胶型电解质的体积比范围为1∶0.1~2,优选为1∶0.5~1.5。当这一比值小于0.1时,电解质渗漏的危险性很大;而当该值大于2时,离子的电导率变得很低。
在液体和凝胶型电解质按特定方式充电后,可以密封电池壳,在使用可聚合的单体的情况下,可以在30-100℃的温度下进行原位聚合反应1-48小时。
由所述的本发明方法制备的锂电池,在电极组的内部含有作为主要组分的液体电解质,从而具有改善了的性能特性,包括高的离子电导率,还在电极组的外部含有凝胶型电解质,以防止液体电解质渗漏出去。图1中给出了按照本发明一种实施方案制备的锂电池的示意图,该图确认了凝胶型电解质主要分布在电极组的上下端部。
通常,可以将阴极组合物即阴极活性材料、导电介质、粘结剂和溶剂组成的混合物直接涂覆在铝电流接收器上,或者以膜的形式层压在铝电流接收器上,形成阴极板。
阴极活性材料可以是含锂的金属氧化物,如LiCoO2、LiMnxO2x及LiNixMn2-xO4(其中x为1或2)。导电介质可以是炭黑;粘结剂可以是偏二氟乙烯/六氟丙烯共聚物、聚偏二氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯或聚四氟乙烯;溶剂可以是N-甲基吡咯烷酮或丙酮。以100重量份的阴极活性材料为基准,导电介质、粘结剂及溶剂的用量范围可以分别为1-10重量份、2-10重量份及30-100重量份。
另外,也可以将阳极组合物即阳极活性材料、导电介质、粘结剂和溶剂组成的混合物直接涂覆在铜电流接收器上,或者以膜的形式层压在铜电流接收器上,形成阳极板。
阳极活性材料代表性的例子可以包括锂金属、锂合金、碳材及石墨。导电介质、粘结剂及溶剂可以与阴极组合物中所使用的相同,以100重量份的阳极活性材料为基准,它们的用量范围分别为少于10重量份、2-10重量份及30-100重量份。如果必须的话,可以另外向所述的阴极及阳极组合物中添加增塑剂,形成多孔电极板。
另外,插在阴极板和阳极板之间的分离器可以是由聚合物材料如聚乙烯和聚丙烯制成的微孔板。
下列实施例及比较例仅是针对解释本发明的目的而给出的,并不意味着要限制本发明的范围。
                      实施例1
将88g LiCoO2、6.8g碳黑、5.2g聚偏二氟乙烯和52.5g N-甲基吡咯烷酮混合在一起,形成阴极组合物,将该组合物涂覆到铝箔上并干燥,以制备阴极板。
93.76g石墨、6.24g聚偏二氟乙烯和57.5g N-甲基吡咯烷酮混合在一起,形成阳极组合物。将该阳极组合物涂覆到铜箔上并干燥,以制备阳极板。
将聚丙烯分离器板设置在阴极板和阳极板之间,形成电极组。将电极组缠绕成果冻卷的形式,放置在由层压铝膜制成的容器中,然后用密封机器密封。
将100g由LiPF6在体积比为1∶1∶1的碳酸亚乙酯、碳酸二甲酯和碳酸二乙酯(EC/DMC/DEC)的混合物中形成的1M溶液用作液体电解质。将10g 3,4-环氧基环己基甲基-3′,4′-环氧基环己基羧酸酯溶于90g由LiPF6在体积比为1∶1∶1的EC/DMC/DECd混合物中形成的1M溶液中,形成凝胶型电解质。
通过入口对密封后的罐子清空,将1.5cc液体电解质注入其中,然后将1.5cc凝胶型电解质注入到罐子中,罐子保持在环境压力下。通过球焊封闭入口,并在65℃下加热4小时,使聚合物前体进行聚合反应,得到锂电池。
                      实施例2
重复实施例1的步骤,只是液体和凝胶型电解质的用量分别为1.0cc和2.0cc,得到锂电池。
                     比较例1和2
重复实施例1的步骤,只是只使用液体电解质,它们的用量分别为3.0cc和2.2cc,得到两个用于比较的传统锂离子电池。
                      比较例3
重复实施例1的步骤,只是只使用凝胶型电解质,其用量为3.0cc,得到传统的锂离子聚合物电池。
                      比较例4
重复实施例1的步骤,只是在环境压力下注入液体电解质和凝胶型电解质,得到锂电池。在热聚合反应过程中,液体电解质和凝胶型电解质混合在一起,并均匀分布在电极组中,这样由于可聚合的单体的稀释作用,凝胶型电解质不会发生凝胶。
                     电池性能特性
对实施例和比较例中得到的各个锂电池进行开封,并将500kgf的压力施加到电极组上,检测是否有渗出的电解质漏出来。比较例1和2的比较电池有渗漏,而比较例3或实施例1和2中得到的电池则观察不到渗漏现象。
对于实施例和比较例中得到的电池,测量了其常规放电容量(%)随放电速率(C)的变化、电压值(在-10℃及1C的放电速率下)随降低的容量(%)的变化、以及常规放电容量(%)随周期数的变化,结果分别示于图2、3和4中。
从自放电、平均电压特性及周期性寿命的角度来看,同比较例1和2中得到的传统锂离子电池相比,实施例1和2中得到的电池具有改善了的性能。
因此,本发明提供了一种制备锂电池的简单方法,所制备的锂电池具有改善了的性能特性,并且没有电解质渗漏的危险。
尽管已经针对上述特定的实施方案描述了本发明,但应该意识到的是,对本领域的熟练技术人员来说,可以进行各种改进及变化,而这些改进和变化也包括在由所附的权利要求书所限定的本发明的范围内。

Claims (11)

1.一种锂电池,包括电池壳、密封在电池壳内的液体电解质、凝胶型电解质和电极组,所述的电极组由阴极、阳极以及插在阴极和阳极之间的分离器组成,其中液体电解质基本上被限制在电极组的内部,而凝胶型电解质基本上在电极组的外部。
2.权利要求1的电池,其中液体电解质含有有机溶剂和锂盐。
3.权利要求1的电池,其中凝胶型电解质含有有机溶剂、锂盐和聚合物。
4.权利要求2或3的电池,其中锂盐选自LiClO4、LiBF4、LiPF6、LiCF3SO3及LiN(CF3SO2)2
5.权利要求2或3的电池,其中有机溶剂选自碳酸亚丙酯、碳酸亚乙酯、碳酸二乙酯、碳酸二甲酯、碳酸乙甲酯、碳酸二丙酯、二甲亚砜、乙腈、二甲氧基乙烷、二乙氧基乙烷、碳酸亚乙烯酯、γ-丁内酯、亚硫酸亚乙酯、亚硫酸亚丙酯及四氢呋喃。
6.权利要求3的电池,其中聚合物是通过环氧基单体或丙烯酰基单体的原位聚合反应得到的聚合物。
7.权利要求6的电池,其中原位聚合反应在30-100℃的温度下进行1-48小时。
8.权利要求3的电池,其中聚合物选自聚偏二氟乙烯、聚环氧乙烷、聚(偏二氟乙烯/六氟丙烯)、聚丙烯腈、聚甲基丙烯酸甲酯、聚苯乙烯、聚四氟乙烯、环氧基树脂及丙烯酰基树脂。
9.权利要求3的电池,其中以凝胶型电解质为基准,聚合物的用量范围为6-30wt%。
10.权利要求1的电池,其中液体和凝胶型电解质的体积比范围为1∶0.1~2。
11.权利要求1的锂电池的制备方法,包括:将电极组装入一个有入口的壳中;将壳清空并向其中引入液体电解质;引入含有聚合物或可原位聚合的单体的凝胶型电解质;视情况进行单体的原位聚合反应;密封入口。
CNB021405263A 2001-06-30 2002-07-01 锂电池及其制备方法 Expired - Lifetime CN1225812C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR38809/2001 2001-06-30
KR1020010038809A KR100558843B1 (ko) 2001-06-30 2001-06-30 리튬 전지 및 그의 제조방법

Publications (2)

Publication Number Publication Date
CN1395336A true CN1395336A (zh) 2003-02-05
CN1225812C CN1225812C (zh) 2005-11-02

Family

ID=19711629

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021405263A Expired - Lifetime CN1225812C (zh) 2001-06-30 2002-07-01 锂电池及其制备方法

Country Status (3)

Country Link
US (1) US20030003367A1 (zh)
KR (1) KR100558843B1 (zh)
CN (1) CN1225812C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361096A (zh) * 2011-08-04 2012-02-22 西北工业大学 一种基于两嵌段聚甲基丙烯酸甲酯-聚苯乙烯共聚物的锂离子凝胶电解质及其制备方法
CN103247821A (zh) * 2012-02-10 2013-08-14 联想(北京)有限公司 一种电池及其充电、放电方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560208B1 (ko) * 2002-03-12 2006-03-10 에스케이씨 주식회사 상온에서 겔화가능한 겔 고분자 전해질용 조성물
WO2006131992A1 (en) * 2005-06-10 2006-12-14 Nippon Chemi-Con Corporation Method for producing electrode for electrochemical element and method for producing electrochemical element with the electrode
JP2007273445A (ja) * 2006-03-09 2007-10-18 Nec Tokin Corp ポリマーゲル電解質およびそれを用いたポリマー二次電池
KR100771180B1 (ko) * 2006-03-17 2007-10-29 제일모직주식회사 리튬 트리플루오로메탄-술폰이미드를 포함하는 리튬2차전지용 비수성 전해액
KR100931117B1 (ko) * 2007-12-13 2009-12-10 현대자동차주식회사 연료전지용 고분자 전해질막의 제조방법 및 그로부터제조된 고분자 전해질 막
CN102800889B (zh) * 2011-05-26 2015-06-24 比亚迪股份有限公司 一种锂离子电池及其制备方法
KR101905077B1 (ko) * 2012-01-19 2018-10-05 삼성에스디아이 주식회사 배터리 셀용 보강물 및 배터리 셀
KR102596721B1 (ko) * 2017-05-26 2023-10-31 베이징사범대학교 플렉시플 전고체 리튬 이온 2 차 전지 및 이의 제조방법
CN107910568B (zh) * 2017-11-15 2020-04-24 厦门大学 一种锂原电池
CN111916841A (zh) * 2020-09-24 2020-11-10 昆山宝创新能源科技有限公司 提升锂电池电解液浸润效果及减少隔膜褶皱的方法和锂电池
CN113258132B (zh) * 2021-05-11 2022-09-06 合肥工业大学 固态电解质及其制备方法以及固态电池
KR20230045576A (ko) 2021-09-28 2023-04-04 주식회사 엘지에너지솔루션 전지셀, 배터리 모듈, 및 전지셀을 제조하는 방법
CN117441247A (zh) * 2021-12-24 2024-01-23 宁德时代新能源科技股份有限公司 电极组件及其制备方法、二次电池、电池模块、电池包和用电装置
WO2023167486A1 (ko) 2022-03-02 2023-09-07 주식회사 엘지에너지솔루션 전지셀, 배터리 모듈, 및 전지셀을 제조하는 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658685A (en) * 1995-08-24 1997-08-19 Motorola, Inc. Blended polymer gel electrolytes
US6299653B1 (en) * 1996-06-13 2001-10-09 Asahi Kasei Kabushiki Kaisha Hybrid electrolyte, method for manufacturing the same, and method for manufacturing electrochemical element using the same
JP4218183B2 (ja) * 1999-07-21 2009-02-04 株式会社ジーエス・ユアサコーポレーション リチウム電池
KR20010057940A (ko) * 1999-12-23 2001-07-05 박종섭 반도체장치의 정전기 방지회로
KR100357952B1 (ko) * 2000-03-06 2002-10-25 삼성에스디아이 주식회사 리튬 2차전지
US6420071B1 (en) * 2000-03-21 2002-07-16 Midwest Research Institute Method for improving the durability of ion insertion materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361096A (zh) * 2011-08-04 2012-02-22 西北工业大学 一种基于两嵌段聚甲基丙烯酸甲酯-聚苯乙烯共聚物的锂离子凝胶电解质及其制备方法
CN103247821A (zh) * 2012-02-10 2013-08-14 联想(北京)有限公司 一种电池及其充电、放电方法

Also Published As

Publication number Publication date
KR20030002072A (ko) 2003-01-08
US20030003367A1 (en) 2003-01-02
CN1225812C (zh) 2005-11-02
KR100558843B1 (ko) 2006-03-10

Similar Documents

Publication Publication Date Title
CN1126185C (zh) 非水电解质电池用电极
EP3261164B1 (en) Gel polymer electrolyte, method for preparing same, and electrochemical device comprising same
KR101430615B1 (ko) 캐소드 및 이를 채용한 리튬 전지
CN1161855C (zh) 非液体电解质电池
US7582388B2 (en) Non-aqueous solvent secondary battery
CN1225812C (zh) 锂电池及其制备方法
CN1274052C (zh) 锂离子二次电池的制造方法
CN1427495A (zh) 电极,采用该电极的锂电池和其制造方法
KR20160140211A (ko) 리튬 전지용 전해질, 및 이를 포함하는 음극 및 리튬 전지
CN1229889C (zh) 锂电池
CN102206420B (zh) 一种电池隔膜用组合物、一种电池隔膜和一种锂离子二次电池
US5707760A (en) Additives for inhibiting decomposition of lithium salts and electrolytes containing said additives
KR20050083533A (ko) 겔 폴리머 전해질 및 리튬 이차 전지
KR20030017945A (ko) 겔 형태의 고분자 전해질 및 이를 채용한 리튬 전지
CN1182618C (zh) 聚合物锂离子电池及其制备方法
CN1295809C (zh) 制备锂离子聚合物电池的方法以及由该方法制得的电池
CN1237652C (zh) 阻抗改善的聚合物电解质母体
KR100599599B1 (ko) 겔 폴리머 전해질 및 리튬 이차 전지
CN1929165A (zh) 电池负极以及含有该负极的锂二次电池
KR102663587B1 (ko) 바이폴라 리튬 이차전지
CN1447996A (zh) 引入多孔薄膜的电池
KR102477833B1 (ko) 양극활물질 조성물, 이로부터 제조된 양극 및 이를 채용한 이차전지
CN1189514C (zh) 用于锂离子电池的聚合物电解质及其制备方法
CN1262039C (zh) 锂离子聚合物电池的制造方法
CN1805178A (zh) 一种锂电池电极极片的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SDS BIOTECH CO., LTD.

Free format text: FORMER OWNER: SKC CO., LTD.

Effective date: 20070427

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20070427

Address after: Chungnam, South Korea

Patentee after: SK Mobile Energy Co.,Ltd.

Address before: Gyeonggi Do, South Korea

Patentee before: SKC Ltd.

ASS Succession or assignment of patent right

Owner name: SK RESOURCE CO., LTD.

Free format text: FORMER OWNER: SDS BIOTECH CO., LTD.

Effective date: 20081114

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20081114

Address after: Seoul, South Kerean

Patentee after: SK ENERGY Co.,Ltd.

Address before: Chungnam, South Korea

Patentee before: SK Mobile Energy Co.,Ltd.

C56 Change in the name or address of the patentee

Owner name: SK ENERGY CO., LTD.

Free format text: FORMER NAME: SK CORP.

CP01 Change in the name or title of a patent holder

Address after: Seoul, South Kerean

Patentee after: SK INNOVATION Co.,Ltd.

Address before: Seoul, South Kerean

Patentee before: SK ENERGY Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220629

Address after: Seoul, South Kerean

Patentee after: Sk new energy Co.,Ltd.

Address before: Seoul, South Kerean

Patentee before: SK INNOVATION Co.,Ltd.

CX01 Expiry of patent term

Granted publication date: 20051102

CX01 Expiry of patent term