CN1391697A - X射线变焦镜头 - Google Patents

X射线变焦镜头 Download PDF

Info

Publication number
CN1391697A
CN1391697A CN00816088A CN00816088A CN1391697A CN 1391697 A CN1391697 A CN 1391697A CN 00816088 A CN00816088 A CN 00816088A CN 00816088 A CN00816088 A CN 00816088A CN 1391697 A CN1391697 A CN 1391697A
Authority
CN
China
Prior art keywords
ray
optical array
stereotyped
dull
opacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00816088A
Other languages
English (en)
Inventor
A·G·米彻特
P·D·普雷维特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTG International Ltd
Original Assignee
British Technology Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9927631.3A external-priority patent/GB9927631D0/en
Priority claimed from GB0018332A external-priority patent/GB0018332D0/en
Application filed by British Technology Group Ltd filed Critical British Technology Group Ltd
Publication of CN1391697A publication Critical patent/CN1391697A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种用于聚焦X射线的光学阵列,包含一个平板,例如,由硅制成的平板,该平板上蚀刻了一系列同心圆缝隙,从而形成通过该平板的通道,当X射线入射到该平板上时,将从通道内被反射到一个焦点上。该平板最好可以弯曲以增加放大率。

Description

X射线变焦镜头
技术领域
本发明涉及一种X射线光学部件,尤其涉及一种光学装置,它可以聚焦X射线频率范围内的电磁辐射。
背景技术
聚焦后的X射线可以有广泛的应用,例如X射线光刻技术可用于制造微芯片和微机械加工,还广泛应用于空间解析X射线荧光分析,次细胞研究,X射线显微技术,以及应用于科学仪器的制造。在这些应用中,都要求有强烈的X射线源,如果可以聚焦X射线就可以增加可用的X射线源的强度。
已知的聚焦X射线的方法包括使用衍射光学组件(波带片zone plate)或多层镜。尽管波带片可以形成高分辨率图象,但是,和多层镜一样,它们都存在一些缺点,例如效率比较低、需要单色照明和小波带片孔径。
切线入射(grazing incidence)反射光学部件广泛应用于各个领域,但是因为像差的原因,还没有应用于高分辨率成像系统。现在主要用于硬X射线应用的系统有Kirkpatrick-Baez光学部件、Wolter光学部件、微毛细管(microcapillary)光学部件、多毛细管(polycapillary)光学部件和微通道板阵列。
在多毛细管光学部件中(描述该部件的文章见于MA Kumakov 1998 Proc.SPIE 3444 pps.424-429和HN Chapman,KA Nugent,SW Wikins 1991 Rev.Sci.Insrum.62 1542-1561),使用了一系列很小的(10-6m)弯曲通道,X射线沿着通道传导,并使用切线入射反射来聚焦X射线。尽管多毛细管光学部件具有大孔径、大带通和高传输效率,但是由于需要克服很多限制,使其难以设计和制造,这些限制包括通道宽度、横截面形状和曲率的限制,这样沿着每个通道只有很少的反射(理想情况下是两个),因为有了两个以上的反射,对象和图象共扼(conjugate)点之间的对应关系可能会失去,所以需要沿着通道的长度改变通道宽度、形状和曲率。在光学部件入口处通道的开口面积将占整个面积的很大比例(80%),但是,大开口面积使光学部件变得易碎,而且由于表面粗糙度的原因使反射、吸收率、散射发生变化,这些都是不利因素。
发明内容
我们已经设计出一种基于微结构光学阵列(MOA)的X射线光学系统,它克服了现有系统的很多缺陷。另外,最重要的是,它可以用作X射线变焦镜头,可以改变放大率和控制焦距。
本发明提供了一种光学阵列,包括一个平板,其表面由很多X射线透明区域形成,这些透明区域被X射线不透明带(opaque band)隔开,这些X射线不透明带具有一定厚度,这样当来自X射线源的X射线光束投射到该平板上时,至少有一些X射线被反射出所述不透明带最外侧壁,还有一个控制平板形状的装置,使其形成曲面以便聚焦通过该平板的X射线。
另一个方面,本发明提供一种光学阵列,包括多个由X射线透明区域隔开的X射线不透明带,X射线不透明带具有一定尺寸,这样当来自X射线源的X射线光束投射到该阵列上时,至少有一些X射线被反射出所述不透明带的壁外,该阵列可以变形以便动态改变所述X射线的反射角。
还提供了一种使用本发明中的光学阵列来聚焦X射线束的方法。
X射线不透明带的厚度是指从不透明带底部到顶部的距离,即相邻X射线透明区域之上的高度。
该区域最好为环状,其结构为包含多个由X射线不透明壁隔开的X射线透明通道。平板上的环可以是同心圆形式,也可以是椭圆、卵形等。
这些壁最好具有一定高度,这样在每个通道中至少有一个反射,并且在一个薄平板中,通道外壁上的X射线入射角很小的改变可以用于一对一成像,但是通道直径必须很小,以便减小由于未反射的X射线造成的损失。但是,如果通道直径太小,某些X射线可能会从通道的两个壁反射两次,从而造成丢失。如果平板稍厚一点,可引起像差,因为入射角会沿着通道改变,但是,通过的X射线也更少。
平板的尺寸将取决于实际应用。
通道的宽度最好成放射状向外增加,以便可以增大入射角,而且通道的宽度最好大于通道之间的X射线不透明区域的宽度。通道宽度将取决于实际应用。
平板可以通过直接在由X射线不透明材料形成的基底上进行蚀刻而形成,这样就形成了通过平板的X射线透明通道,或者通过在板状或薄膜状基底上沉积环状X射线不透明材料来构成本发明的结构。
在平板或薄膜上构造该结构之后,可以通过熔模铸造过程(lost mouldprocess)来处理。在此过程中,光学阵列的尺寸和形状结构可以用一种可通过融化来去除的材料制造,模具按照此结构形成,材料被去除。该模具可用于形成本发明的光学阵列。
可用于形成该阵列的材料包括金属(例如镍),如有必要,这些材料可以在基底上使用。通道壁必须光滑以避免损失反射。典型的粗糙度必须小于波长的一小部分,这可以通过电镀镍的方法获得。
其他可用于形成平板的材料包括硅、碳化硅,该平板可以由Virginia半导体有限公司(Virginia semiconductors Inc.)生产的商用单硅晶片形成。这种硅晶片可以进行设计以形成本发明的结构,例如通过各向同性等离子体蚀刻、光刻技术等。
为了聚焦穿过平板的X射线,要将平板进行弯曲,弯曲程度越大,阵列的焦距越短。曲率可以为球形、抛物线形等。弯曲程度根据X射线的波长、X射线源与平板的距离、聚焦X射线束的目的等而改变。曲率度和因此可获得的放大率受到平板材料在弯曲应力下的弹性和稳定性的限制。曲率可变从而可以获得X射线变焦镜头。
平板可以通过任何适当的方法进行弯曲,既可以在本发明结构形成之前进行,也可以在形成之后进行。例如,用硅制造平板时,形成平板曲率的一种方法是在其成型之后在硅晶片上沉积一个预先施加应力的层,以提供形变(biomorph)应力诱导曲率。例如在硅的径向加强筋上镀一层金属薄膜,冷却时它将处于压应力状态。通过使用小型加热器等方法进行局部加热来改变特定点的温度,从而改变曲率度,进而改变本结构的焦距。
另一种弯曲平板的方法是在整个平板上施加差压,这样平板就被弯曲了。例如本发明的结构是在硅晶片上形成,将平板安装在可以传播X射线的充满氦气的密封舱中,然后通过光刻技术,在平板的一侧或两侧,通过改变差压来改变平板的曲率。
可选的弯曲平板的方法是将压电材料镀在平板上,这样施加到该压电材料上的电流的改变将改变平板的曲率。
无论使用哪种方法,这种能够改变曲率的能力使人们可以获得X射线变焦镜头,并且可以聚焦X射线来提供集中程度可控的X射线集中光束。这使本发明的MOA可以在现有应用或者潜在应用方面提供增强性能,例如在X射线光刻技术,空间解析X射线荧光分析,次细胞研究,X射线显微技术以及科学仪器的制造,X射线显微技术成像,空间解析荧光显微技术,光电效应显微技术和天文学等方面。
本发明没有给出特定的波长,可以使用硬X射线和软X射线的波长范围,包括常用的远红外(EUV)的波长范围。
附图说明
本发明结合如下附图进行说明:
附图1:平面MOA的侧面示意图。
附图2:弯曲MOA的侧面示意图。
附图3:附图2的主视图。
附图4:显示应用形变(biomorph)时的主视图。
附图5:通过压力来弯曲MOA的示意图。
具体实施方式
在附图中只显示了一个反射,但是实际上有很多。
参见附图1,在由硅晶片形成的平板(1)的表面上,通过各向同性等离子体蚀刻形成了多个缝隙(3),这样就形成一系列同心的硅X射线不透明带(2)和X射线透明缝隙(4)。缝隙(3)比不透明带(2)宽以提供一个开口的网状(空腹)结构。实际上,要比图示的不透明带多的多。平板还可以通过在基底(1)上沉积不透明带(2)来制造。
当来自X射线源A的X射线照射在平板(1)上时,X射线被反射出(2)的内表面以聚焦在B点,如图所示。
参见附图2,平板(5)如图所示被弯曲,这样来自X射线源A的X射线被聚焦在(B)点,从而使X射线被集中起来。
参见附图4,为了弯曲平板(7),用一种金属材料(例如镍)形成径向加强筋(6),这样当金属冷却时,产生形变诱导应力,使平板弯曲,形成如图2所示的形状。
如果在加强筋上镀一层压电材料,则可以通过改变电镀电流来电控制曲率。
另外,还可以通过局部加热的方法来弯曲平板。
参见附图5,平板(8)被放置在密封的压力舱(9)中,这样平板(8)将密封舱隔成两个区域(9a)和(9b)。密封舱通过压力密封帽(10)和(11)实现密封,区域(9a)和(9b)中充满氦气。相对(9b)中的压力PB,增加(9a)中的压力PA,使平板(8)弯曲成如图所示的形状。(9a)和(9b)之一可以设置为大气压力。
上述各种方法都可以实现改变曲率,从而改变来自X射线源A的X射线的焦点B,使该平板可以用作一种X射线变焦镜头。缩短可以增加放大率。

Claims (18)

1.一种光学阵列,包括一个平板,其表面由多个X射线透明区域形成,这些透明区域由X射线不透明带隔开,X射线不透明带具有一定厚度,当来自X射线源的X射线束投射在平板上时,至少一些X射线可以被反射到所述不透明带最外侧壁外面,还有一个控制装置,可以控制平板的形状以形成弯曲表面,从而可以聚焦通过该平板的X射线。
2.如权利要求1所述的光学阵列,其特征在于:X射线透明区域的形状为环形,其结构包括多个X射线透明通道,这些透明通道由X射线不透明墙隔开
3.如权利要求2所述的光学阵列,其特征在于:平板上的环的形状为同心圆或椭圆。
4.如权利要求1至3所述的光学阵列,其特征在于:X射线不透明带具有一定厚度,这样在每个通道中至少有一个反射。
5.如上述任一权利要求所述的光学阵列,其特征在于:考虑到逐渐增加的入射光线的入射角,通道的宽度向外放射性增加。
6.如上述任一权利要求所述的光学阵列,其特征在于:通道的宽度大于通道之间的X射线不透明区域的宽度。
7.如上述任一权利要求所述的光学阵列,其特征在于:制造平板的材料为硅。
8.如上述任一权利要求所述的光学阵列,其特征在于:平板通过电镀镍制得。
9.一种包含上述权利要求1-8之一所述的阵列的光学阵列,它是一种X射线变焦镜头,其特征在于:可以通过一个控制装置来改变平板的曲率,并形成X射线镜头,该镜头的焦距可以通过该控制装置来控制。
10.如权利要求9所述的光学阵列,其特征在于:控制装置包含由硅或金属材料形成的放射状加强筋,这些加强筋附加在平板上或者形成平板的一部分,这样当硅或金属加强筋冷却时,它们将处于压应力状态,从而使平板形成弯曲的形状。
11.如权利要求9所述的光学阵列,其特征在于:控制装置包含对平板施加差压的装置。
12.如权利要求9所述的光学阵列,其特征在于:控制装置包含一种压电材料,这种压电材料与平板接触或者形成平板的一部分,这样改变施加到该压电材料上的电流将改变平板的曲率。
13.如权利要求12所述的光学阵列,其特征在于:控制装置包含局部加热装置。
14.一种包含上述权利要求1-13之一所述的阵列的光学阵列,它是一种X射线变焦镜头,其特征在于:控制该控制装置可以改变平板的曲率,并形成X射线镜头,该镜头焦距由控制装置控制。
15.将X射线与上述任一权利要求所述的阵列结合起来使用的设备。
16.如权利要求15所述的设备,其特征在于:该设备选自用于X射线光刻技术、空间解析X射线荧光分析、次细胞研究、X射线显微技术、X射线显微成像技术,空间解析荧光显微技术、光电效应显微技术和天文学的设备。
17.包含多个X射线不透明带的光学阵列,这些不透明带由X透明区域隔开,X射线不透明带具有一定尺寸,这样当来自X射线源的X射线束投射到该阵列上时,至少一些X射线可以反射到所述不透明带的壁的外面,该阵列是可变形的以动态改变所述X射线的反射角。
18.聚焦X射线束的方法,其特征在于:按照上述权利要求1-14或17中任一权利要求所述的光学阵列被放置在所述X射线的路径上。
CN00816088A 1999-11-24 2000-11-24 X射线变焦镜头 Pending CN1391697A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9927631.3 1999-11-24
GBGB9927631.3A GB9927631D0 (en) 1999-11-24 1999-11-24 X-ray imaging
GB0018332A GB0018332D0 (en) 2000-07-26 2000-07-26 X ray zoom
GB0018332.7 2000-07-26

Publications (1)

Publication Number Publication Date
CN1391697A true CN1391697A (zh) 2003-01-15

Family

ID=26244727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00816088A Pending CN1391697A (zh) 1999-11-24 2000-11-24 X射线变焦镜头

Country Status (7)

Country Link
EP (1) EP1243002A1 (zh)
JP (1) JP2003515728A (zh)
CN (1) CN1391697A (zh)
AU (1) AU1536901A (zh)
CA (1) CA2392378A1 (zh)
HK (1) HK1052793A1 (zh)
WO (1) WO2001039210A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0201295L (sv) * 2002-04-30 2003-07-22 Arcoma Ab Rasterhållaranordning, samt röntgendiagnostiksystem innefattande sådan
WO2007003359A1 (de) * 2005-07-01 2007-01-11 Carl Zeiss Smt Ag Kollektoreinheit für ein beleuchtungssystem mit wellenlängen ≤ 193 nm
JP4814782B2 (ja) * 2006-12-28 2011-11-16 株式会社ジェイテック 位相回復法を用いたx線集光方法及びその装置
JP5540305B2 (ja) * 2008-10-01 2014-07-02 独立行政法人 宇宙航空研究開発機構 X線反射装置及びその製造方法
JP6172433B2 (ja) * 2013-01-29 2017-08-02 国立研究開発法人産業技術総合研究所 X線反射装置及びその製造方法
US10859518B2 (en) * 2017-01-03 2020-12-08 Kla-Tencor Corporation X-ray zoom lens for small angle x-ray scatterometry

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017730A (en) * 1974-05-01 1977-04-12 Raytheon Company Radiographic imaging system for high energy radiation
NL8800679A (nl) * 1988-03-18 1989-10-16 Philips Nv Roentgenonderzoekapparaat met een strooistralenrooster met antivignetterende werking.
US5004319A (en) * 1988-12-29 1991-04-02 The United States Of America As Represented By The Department Of Energy Crystal diffraction lens with variable focal length
DE4119729C2 (de) * 1991-06-14 1994-08-18 Max Planck Gesellschaft Einrichtung zum Erzeugen kurzwelliger elektromagnetischer Strahlung
US5291539A (en) * 1992-10-19 1994-03-01 General Electric Company Variable focussed X-ray grid
JPH06258497A (ja) * 1993-03-08 1994-09-16 Aloka Co Ltd 曲率可変湾曲結晶モノクロメータ
JPH11162807A (ja) * 1997-11-25 1999-06-18 Nec Corp X線露光装置の倍率補正方法及びその装置

Also Published As

Publication number Publication date
AU1536901A (en) 2001-06-04
HK1052793A1 (zh) 2003-09-26
JP2003515728A (ja) 2003-05-07
CA2392378A1 (en) 2001-05-31
EP1243002A1 (en) 2002-09-25
WO2001039210A1 (en) 2001-05-31

Similar Documents

Publication Publication Date Title
US7365918B1 (en) Fast x-ray lenses and fabrication method therefor
US20190049632A1 (en) Planar metalens and cover glass including the same
JP4731178B2 (ja) 光学反射素子、その製造方法、及びその素子を具備する光学機器
Snigirev et al. High energy X-ray micro-optics
US20090135486A1 (en) Use of a focusing vortex lens as the objective in spiral phase contrast microscopy
JPS6098399A (ja) ポイントソースx線集束装置
CA2060217C (en) Water window imaging x-ray microscope
EP3667376B1 (en) Flat metalens and cover glass comprising same
CN1391697A (zh) X射线变焦镜头
Jark et al. Focusing X-rays with simple arrays of prism-like structures
Arndt et al. Focusing mirrors for use with microfocus X-ray tubes
Lider Kirkpatrick–Baez and Wolter X-ray focusing optics
Tamura et al. Development of a multilayer Fresnel zone plate for high-energy synchrotron radiation X-rays by DC sputtering deposition
Underwood et al. X-ray and extreme ultraviolet imaging using layered synthetic microstructures
Heilmann et al. Fabrication and performance of blazed transmission gratings for x-ray astronomy
Aoki et al. Imaging X-ray fluorescence microscope with a Wolter-type grazing-incidence mirror
Hudec et al. Lobster-eye x-ray telescopes: recent progress
Prewett et al. MOXI: a novel microfabricated zoom lens for x-ray imaging
Basov et al. Two-dimensional focusing of hard X-rays by a phase circular Bragg-Fresnel lens in the case of Bragg backscattering
US20050041779A1 (en) X-ray zoom lens
Shealy et al. Design of a normal incidence multilayer imaging x-ray microscope
US5745286A (en) Forming aspheric optics by controlled deposition
Michette et al. Active microstructured arrays for x-ray optics
Lider Grazing-incidence focusing optics for x-ray telescopes
Idir et al. 2D focusing with an off-axis elliptical Bragg-Fresnel multilayer lens and application to X-ray imaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1052793

Country of ref document: HK