CN1355672A - 增加植物中类黄酮和酚类成分含量的方法 - Google Patents

增加植物中类黄酮和酚类成分含量的方法 Download PDF

Info

Publication number
CN1355672A
CN1355672A CN00809039A CN00809039A CN1355672A CN 1355672 A CN1355672 A CN 1355672A CN 00809039 A CN00809039 A CN 00809039A CN 00809039 A CN00809039 A CN 00809039A CN 1355672 A CN1355672 A CN 1355672A
Authority
CN
China
Prior art keywords
plant
grape
flavonoids
composition
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00809039A
Other languages
English (en)
Other versions
CN100387126C (zh
Inventor
W·拉德梅克尔
K·克拉默
J·施维登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN1355672A publication Critical patent/CN1355672A/zh
Application granted granted Critical
Publication of CN100387126C publication Critical patent/CN100387126C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/42Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing within the same carbon skeleton a carboxylic group or a thio analogue, or a derivative thereof, and a carbon atom having only two bonds to hetero atoms with at the most one bond to halogen, e.g. keto-carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Biochemistry (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Toxicology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cosmetics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cultivation Of Plants (AREA)

Abstract

在用于增加植物中类黄酮含量的方法中,用式I的生长调节性酰基环己烷二酮处理这些植物。

Description

增加植物中类黄酮和酚类成分含量的方法
本发明涉及增加植物中类黄酮和酚类成分含量的方法,其中用具有式I的生长调节性酰基环己烷二酮及这些化合物的适合盐类处理这些植物,其中R尤其是氢、C1-C6烷基、C1-C6卤代烷基、C2-C10烷基硫基烷基或苯基(取代的或未取代的),R’是氢、C1-C6烷基、C3-C6环烷基、苯甲基(取代或未取代的)、苯基乙基、苯氧基乙基、2-噻吩基甲基、烷氧基甲基或烷基硫基甲基。
尤其优选其中采用酰基环己烷二酮例如环己酮酸钙(II)和/或抗倒酯(III)进行处理以引起所述增加的方法。
本发明还涉及通过本发明方法采用式I的酰基环己烷二酮,尤其是环己酮酸钙或抗倒酯处理过的植物、或这些植物的部分、或利用它们制备的产物(汁液、浸液、提取物、发酵产物和发酵残余物),在制备用于人和动物的治疗性组合物、健康促进组合物或补品,及化妆品中的应用。
本发明还涉及通过根据本发明的方法制备的组合物,其中对如下红葡萄树的葡萄进行收获和加工,该红葡萄树的花色素苷产生由于酰基环己烷二酮例如环己酮酸钙或抗倒酯的处理而受到完全或部分地抑制,并且该植物由此因类黄酮和其它酚类成分含量的定性和定量增加而著称。
植物中发现有多种酚类物质(phenylpropanoid),例如咖啡酸、阿魏酸、绿原酸、五倍子酸、丁子香酚、木聚素、香豆素、木质素、芪(虎杖苷、白藜芦醇)、类黄酮(黄酮、儿荼素、黄烷酮、花色素、异黄酮)、多聚甲氧基化黄酮。因此,在大量植物来源的食品和刺激物中酚也是一种普通成分。某些酚类物质尤其重要,因为当随着食物一起消化后它们可以在人和动物的代谢中起到抗氧化作用(Baum,B.O.;Perun,A.L.,抗氧化效力与结构(Antioxidant efficiency versus structure),Soc.Plast.Engrs Trans 2:250-257(1962);Gardner,P.T.;McPhail,D.B.;Duthie,G.G.,电子自旋共振光谱评估水和有机介质中浸液的抗氧化潜能(Electron spin resonance spectroscopic assessment of theantioxidant potential of infusions in aqueous and organic media),J.Sci.Food Agric.76:257-262,(1997);Rice-Evans,C.A.;Miller,N.J.;Pananga,G.,类黄酮和酚酸的结构和抗氧化活性的关系(Structure-antioxidant activity relationship of flavonoids andphenolic acids),Free Radic.Biol.Med.20:933-956,(1996);Salah,N.;Miller,N.J.;Paganga,G.;Tijburg,L.;Bolwell,G.P.;Rice-Evans,C.,作为水相自由基清除剂和链断裂抗氧化剂的多酚类黄酮(Polyphenolic flavonoids as scavenger of aqueous phase radicalsand as chain-breaking antioxidants),Arch Biochem Biophys 322:339-346,(1995);Stryer,L.Biochemistry S.Francisco:Freeman,(1975);Vieira,O.;Escargueil-Blanc,I.;Meilhac,O.;Basile,J.P.;Laranjinha,J.;Almeida,L.;Salvayre,R.;Negre-Salvayre,A.,食物中酚类化合物对氧化LDL所诱导的培养人内皮细胞的细胞凋亡的影响(Effect of dietary phenolic compounds on apoptosis of bumancultured endothelial cells induced by oxidized LDL)Br J Pharmacol123:565-573,(1998))。此外,多酚也对细胞代谢具有多种影响。尤其是,调节信号转导酶例如蛋白激酶C、酪氨酸蛋白激酶和磷脂酰肌醇3-激酶(Agullo,G.;Gamet-payrastre,L.;Manenti,S.;Viala,C.;Remesy,C.;Chap,H.;Payrastre,B.,类黄酮结构和磷脂酰肌醇3-激酶的抑制之间的关系:酪氨酸激酶和蛋白激酶C抑制的比较(Relationship between flavonoid structure and inhibition ofphosphatidylinositol 3-kinase:a comparison with tyrosine kinaseand protein kinase C inhibition),Biochem Pharmacol 53:1649-1657,(1997);Ferriola,P.C.;Cody,V.;Middleton,E.植物类黄酮对蛋白激酶C的抑制,动力学机制和结构-活性的关系(Protein kinase Cinhibition by plant flavonoids.Kinetic mechanisms and structureactivity relationship),Biochem Pharmacol 38:1617-1624,(1989);Cushman,M.;Nagarathman,D.;Burg,D.L.;Geahlen,R.L.类黄酮类似物的合成和对酪氨酸蛋白激酶的一致性活性(Synthesis andprotein-tyrosine kinase inhibitory activity of flavonoidsanalogues),J Meed Chem 34:798-806,(1991);Hagiwara,M.;Inoue,S.;Tanaka,T.;Nunoki,K.;Ito,M.;Hidaka,H.类黄酮作为酪氨酸蛋白激酶和丝氨酸/苏氨酸蛋白激酶的抑制剂的不同效果(Differential effects of flavonoids as inhibitors of tyrosineprotein kinases and serine/threonin protein kinases),BiochemPharmacol 37:2987-2992,(1988)),而这下调了诱导型NO合成酶(Kobuchi,H.;Droy-Lefaix,M.T.;Christen,Y.;Packer,L.Ginkgobiloba的提取物(EGb761):对巨噬细胞系RAW 264.7中一氧化氮产生的抑制(Ginkgo biloba extract (EGb761):inhibitory effect on nitricoxide production in the macrophage cell line RAW 264.7.),BiochemPharmacol 53:897-903,(1997)),并且下调了例如白介素和粘着分子(ICAM-1、VCAM-1)的基因表达(Kobuchi,H.;Droy-Lefaix,M.T.;Christen,Y.;Packer,L.Ginkgo biloba的提取物(EGb761):对巨噬细胞系RAW 264.7中一氧化氮产生的抑制(Ginkgo biloba extract(EGb761):inhibitory effect on nitric oxide production in themacrophage cell line RAW 264.7.),Biochem Pharmacol 53:897-903,(1997);Wolle,J.;Hill,R.R.;Ferguson,E.;Devall,L.J.;Trivedi,B.K.;Newton,R.S.;Saxena,U.一种新类黄酮对肿瘤坏死因子诱导的血管细胞粘着分子-1基因表达的选择性抑制,不对转录因子NF-κB产生影响(Selective inhibition of tumor necrosis factor-inducedvascular cell adhesion molecule-1 gene expression by a novelflavonoid.Lack of effect on transcriptional factor NF-kB),Atherioscler Thromb Vasc Biol 16:1501-1508,(1996))。已证明,这些影响对防止心血管疾病、糖尿病、各种肿瘤和其它慢性疾病具有积极作用(Bertuglia,S.;Malandrino,S.;Colantuoni,A.天然类黄酮飞燕草苷元对糖尿病性徽血管病变的作用(Effects of the naturalflavonoid delphinidin on diabetic microangiopathy),Arznei-Forsch/Drug Res 45:481-485,(1995);Griffiths,K.;Adlercreutz,H.;Boyle,P.;Denis,L.;Nicholson,R.I.;Morton,M.S.Nutritionand Cancer Oxford:Isis Medical Media,(1996);Hertog,M.G.L.;Fesrens,E.J.M.;Hollman,P.C.K.;Katan,M.B.;Kromhout,D.食物抗氧化类黄酮和冠心病的危险性:Zutphen老年人研究(Dietaryantioxidant flavonoids and risk of coronary heart disease:theZutphen elderly study),The Lancet 342:1007-1011,(1993);Kapiotis,S.;Hermann,M.;Held,I.;Seelos,C.;Ehringer,H.;Gmeiner,B.M.食物来源的血管生成抑制剂染料木黄酮抑制LDL氧化和防止导致动脉粥样化的LDL对内皮细胞的破坏(Genistein,the dietary-derivedangiogenesis inhibitor,prevents LDL oxidation and protectsendothelial cells from damage by atherogenic LDL),ArteriosclerThromb Vasc Biol 17:2868-74,(1997);Stampfer,M.J.;Hennekens,C.H.;Manson,J.E.;Colditz,G.A.;Rosner,B.;Willet,W.C.妇女中维生素E的消耗和冠心病的危险性(Vitamin E consumption andthe risk of coronary disease in women),New Engl J Med328:1444-1449,(1993);Tijburg,L.B.M.;Mattern,T.;Folts,J.D.;Weisgerber,U.M.;Katan,M.B.茶叶类黄酮和心血管疾病:综述(Tea flavonoids and cardiovascular diseases:a review),Crit RevFood Sci Nutr 37:771-785,(1997);Kirk,E.A.;Sutherland,P.;Wang,S.A.;Chait,A.;LeBoeuf,R.C.食物异黄酮降低57BL/6小鼠而非LDL受体缺陷型小鼠中的血清胆固醇和动脉粥样硬化(Dietaryisoflavones reduce plasma cholesterol and atherosclerosis inC57BL/6 mice but not LDL receptor-deficient mice),J Nutr 128:954-9,(1998))。由此已经从适合的植物中获得一系列其作用基于其酚类物质含量的治疗性组合物、健康促进组合物或补品(Gerritsen,M.E.;Carley,W.W.;Ranges,G.E.;Shen,C.P.;Phan,S.A.;Ligon,G.F.;Perry,C.A.类黄酮抑制细胞因子诱导的内皮细胞粘着蛋白基因的表达(Flavonoids inhibit cytokine-induced endothelial celladhesion protein gene expression),Am J Pathol 147:278-292,(1995);Lin,J.K.;Chen,Y.C.;Huang,Y.T.;Lin-Shiau,S.Y.芹菜配基和姜黄色素化学防止癌症的可能分子机制是对蛋白激酶C和细胞核癌基因表达的抑制(Suppression of protein kinase C and nuclearoncogene expression as possible molecular mechanisms of cancerchemoprevention by apigenin and curcumin),J Cell Biochem Suppl28-29:39-48,1997;Zi,X.;Mukhtar,H.;Agarval,R.类黄酮抗氧化剂水飞蓟素的新癌症化学防止效果:抑制内源性肿瘤启动子TNFα的mRNA表达(Novel cancer chemopreventive effects of a flavonoidantioxidant silymarin:inhibition of mRNA expression of anendogenous tumor promoter TNF alpha),Biochem Biophys Res Comm239:334-339,1997)。还已知某些植物来源的食品或从它们制备的刺激物对各种疾病具有积极影响。例如,白酒尤其是红酒中(除了其它成分外)存在的白藜芦醇具有抗心血管疾病和癌症的活性(Gehm,B.D.;McAndrews,J.M.;Chien,P.-Y.;Jameson,J.L.葡萄和酒中发现的一种多酚化合物,白藜芦醇,是雌激素受体的激动剂(Resveratrol,apolyphenolic compound found in grapes and wine,is an agonist forestrogen receptor),Proc Natl Acad Sci USA 94:14138-14143,(1997);Jang,M.;Cai,L.;Udeani,G.O.;Slowing,K.V.;Thomas,C.F.;Beecher,C.W.W.;Fong,H.H.S;Farnsworth,N.R.;Kinghorn,A.D.;Mehtha,R.G.;Moon,R.C.,Pezzuto,J.M.一种来源于葡萄的天然产物,白藜芦醇,的癌症化学防止活性(Cancer chemopreventiveactivity of resveratrol,a natural product derived from grapes),Science 275:218-220,(1997))。在存在于茶树(Camellia sinenesis)叶中的儿茶素、表儿荼素-3-五倍子酸盐、表焙儿茶素和表焙儿茶素-3-五倍子酸盐等物质中,也发现有类似效果。饮料,尤其是用未发酵的茶树叶制备的那些饮料(绿茶),是有益于健康的(Hu,G.;Han,C.;Chen,J.绿茶和(-)-表焙儿茶素五倍子酸盐对小鼠中癌基因表达的抑制(Inhibition of oncogene expression by green tea and (-)-epigallocatechin gallate in mice),Nutr Cancer 24:203-209;(1995);Scholz,E;Bertram,B.Camellia sinensis(L.)O.Kuntze,DerTeestrauch[the tea shrub].Z.Phytotherapie 17:235-250,(1995);Yu,R.;Jiao,J.J.;Duh,J.L.;Gudehithlu,K.;Tan,T.H.;Kong,A.N.绿茶中多酚对有丝分裂原激活的蛋白激酶的激活:抗氧化剂应答元件介导的II期酶基因表达的调节中潜在的信号传导途径(Activationof mitogen-activated protein kinases by green tea polyphenols:potential signaling pathways in the regulation of antioxidantresponsive elements-mediated phase II enzyme gene expression),Carcinigenesis 18:451-456,(1997);Jankun,J.;Selman,S.H.;Swiercz,R.为什么绿茶饮料能够防止癌症(Why drinking green teacould prevent cancer),Nature 387:561,(1997))。此外,来自柑橘类植物果实的多聚甲氧基化黄酮也具有潜在的抗肿瘤作用(Chem,J.;Montanari,A.M.;Widmer,W.W.从dancy陈皮油固体中分离的两种新多甲氧基化黄酮,一类具有潜在抗癌活性的化合物(Two newpeel oil solids),J Agric Food Chem 45:364-368,(1997))。
酰基环己烷二酮例如环己酮酸钙和抗倒酯(原名:cimectacarb)被作为生物调节剂用于抑制植物的纵向生长。它们的生物调节作用是基于它们对促进纵向生长的赤霉素生物合成的阻断。由于它们与2-酮戊二酸的结构相关性,它们可抑制某些需要2-酮戊二酸作为共底物的双加氧酶(Rademacher,W,植物生长延缓剂的生物化学作用,《植物生物化学调节剂》(Biochemical effects of plant growth retardants,in:PlantBiochemical Regulators),Gausman,HW(编),Marcel Dekker公司,NewYork,第169-200页(1991))。已知这些化合物还参与酚的代谢,因此能够在各种植物中引起对花色素苷产生的抑制(Rademacher,W等,酰基环己烷二酮的作用模式-一种新型生长延缓剂,《植物生物调节进程》(Themode of action of acylcyclohexanediones-a new type of growthretardant,in:Progress in Plant Growth Regulation),Karssen,CM,van Loon,LC,Vreugdenhil,D(编),Kluwer Academic Publishers,Dordrecht(1992))。对酚类成分平衡的这些影响被认为是火烧病中环己酮酸钙的副作用原因(Rademacher,W等,环己酮酸Ca-一种用于苹果的具有有趣生化特性的新植物生长调节剂(prohexadione-Ca-a newplant growth regulator for apple with interesting biochemicalfeatures),美国植物生长调节学会的第25届年会上Poster的报告,7月7-10,1998,Chicago)。A.Lux-Endrich(在Weihenstephan的TechnicalUniversity Munich的PhD论文,1998)在她的研究中发现环己酮酸钙对抗火烧病的作用机制,即在苹果的细胞培养物中,环己酮酸钙导致酚类物质含量的几倍增加,并发现本来本不存在的一些酚。在该研究中她还发现暴露于环己酮酸钙会引起该苹果的茎组织中出现相对大量的luteoliflavan和圣草酚。通常在苹果组织中并没有luteoliflavan,而且仅有小量作为类黄酮代谢中间物的圣草酚。然而,在该处理的组织中不能检测到预期的类黄酮儿茶素和花青素,或是仅发现有显著减少的量(S.Rmmelt等,第8届国际火烧病讨论会的报道(paperpresented at the 8th International Workshop on Fire Blight),现有显著减少的量(S.Rmmelt等,第8届国际火烧病讨论会的报道(paper presented at the 8th International Workshop on FireBlight),Kusadasi,Turkey,10月12-15,1998)。
以下可以认为是正确的,即环己酮酸钙、抗倒酯和其它酰基环己烷二酮抑制酚类物质代谢中重要的2-酮戊二酸依赖性羟化酶。这些羟化酶主要是查耳酮合成酶(CHS)和黄烷酮3-羟化酶(F3H)(W.Heller和G.Forkmann,生物合成,《类黄酮》,Harborne,JB(编),Chapman和Hall,纽约,1988)。然而,不能排除,酰基环己烷二酮也可抑制未知的其它2-酮戊二酸依赖性羟化酶。而且,明显地,植物显示出缺少儿茶素、花青素或类黄酮合成的其它终产物,并且反馈机制可增加关键酶苯丙氨酸铵裂解酶(PAL)的活性。然而,由于CHS和F3H仍然受到抑制,故不能形成这些类黄酮终产物,并且导致luteoliflavan、圣草酚和其它酚的产生增加(图1)。
本发明的目标是提供一种经济简单的用于增加植物中类黄酮和酚类化合物含量的方法,和提高它们的健康促进性质。
我们已经发现,令人惊奇的是,通过用酰基环己烷二酮(I)类生长调节性化合物,尤其是用化合物环己酮酸钙(II)和抗倒酯(III)处理植物可以实现此目标
Figure A0080903900111
用式(I)的酰基环己烷二酮,即原己二酮(II)和抗倒酯(III)处理植物可以使C3原子被氢取代的类黄酮圣草酚、原花色素,例如luteoforol、luteoliflavan、apigeniflavan和tricetiflavan、以及上述结构相关物质的同种和异种寡聚物和多聚物,以更大的量形成。
在给植物施用式(I)的酰基环己烷二酮化合物,即原己二酮(II)-钙和抗倒酯(III)后,可以鉴定出羟基桂皮酸(对羟基桂皮酸、阿魏酸、芥子酸)、水杨酸或伞形酮,包括它们形成的同种和异种寡聚物和多聚物在内,的酚类物质浓度的增加。
用式(I)的酰基环己烷二酮,即环己酮酸钙(II)和抗倒酯(III)处理植物,还可增加植物中类黄酮糖苷、酚类化合物、查耳酮、芪的浓度。
而且,环己酮酸钙、抗倒酯和相关的化合物还参与了至今仅可以认为2-酮戊二酸酯依赖性双加氧酶参与的其它代谢反应。
从高等植物中获得具有提高的治疗性、健康促进性或滋补作用的制品的另一个额外的积极效应是,由于环己酮酸钙、抗倒酯或相关酰基环己烷二酮的生长调节作用,将在生物学物质中产生该有关成分的浓度效应。
根据本发明通过采用式(I)的酰基环己烷二酮类化合物,尤其是环己酮酸钙(II)或抗倒酯(III)处理植物,以增加类黄酮和酚类成分含量的方法,可以成功地应用于以下植物,但也可以成功地用于处理未提及的植物:葡萄树、樱桃、李子、黑刺李、越桔、草莓、柑橘类水果(例如橙、柚子)、木瓜、红环甘蓝、硬花甘蓝、抱子甘蓝、羽衣甘蓝、胡萝卜、欧芹、芹菜/块根芹、洋葱、大蒜、茶、咖啡、可可、马黛、忽布、大豆、油籽芸苔、燕麦、小麦、黑麦、Aronia melanocarpa和白果。
为了增加类黄酮和酚类化合物的含量,用酰基环己烷二酮类化合物,尤其是环己酮酸钙或抗倒酯处理过的植物,或这些植物的部分或从它们制备的产物(汁液、浸液、提取物、发酵产品和发酵残余物)可以用于制备人和动物用治疗性组合物、健康促进组合物或补品,和化妆品。
还可以从根据本发明处理的植物中制备组合物,其中收获并加工如下红葡萄树的葡萄,该红葡萄藤的花青素产生由于酰基环己烷二酮例如环己酮酸钙或抗倒酯的处理而被完全或部分地抑制,而且该植物由此因类黄酮和其它酚类成分含量的定性和定量增加而著称。
令人惊奇的是,已经发现,用式I的酰基环己烷二酮,即环己酮酸钙或抗倒酯,进行处理的植物、这些植物的部分或从它们制备的产物(浸液、提取物、发酵产品、汁液等)的作用下:
(1)提高体外抗氧化能力(电子自旋共振(ESR)、LDL氧化、总的抗氧化能力、NO清除);
(2)观察到对酶,尤其是信号转导酶(蛋白激酶C、酪氨酸蛋白质激酶、磷脂酰肌醇3-激酶)的调节作用;
(3)在内皮细胞、淋巴细胞和平滑肌细胞中诱导对氧化还原敏感性转录因子(NF-κB、AP-1)的调节;
(4)调节参与炎症发病机理的靶基因(细胞因子IL-1和IL-8、巨噬细胞化学引诱物蛋白质1(MCP-1)、粘着因子ICAM-1和VCAM-1)的基因表达调控;
(5)诱导抗聚集作用;
(6)抑制肝细胞中胆固醇的合成;
(7)观察到抗增殖/抗肿瘤性转化效应。
实施例1环己酮酸钙处理后幼苹果叶中圣草酚和luteoliflavan含量的增加
在受控环境条件下培养苹果植物栽培品种“Weirouge”,并用250ppm环己酮酸钙(配制成BAS 125 10 W=可湿性颗粒,浓度10%)处理达到滴液滴。在处理后的不同时间点上,从每个枝条上收获最幼小的完全发育叶片。采用研杵和研钵研碎这些冻干叶片后,用甲醇抽提。通过HPLC分析该浓缩提取物中的类黄酮和相关化合物。在250×4mm柱上采用Hypersil ODS(颗粒大小3μm)进行分离。以每分钟0.5ml的流速进行洗涤,并采用了比例逐步从95∶5增加至10∶90(v/v)的甲酸(5%水溶液)和甲醇混合物。在280nm检测酚酸和黄酮醇。通过用对-二甲基氨基肉桂醛进行柱后衍生化,在640nm测定黄烷-3-醇。对于方法的细节,见Treutter等(1994),层析杂志(Journal of Chromatography)A 667,290-297。
结果显示在下表中:
用环己酮酸钙处理过的叶片在12和21天后表现出显著增加的圣草酚浓度。
处理        圣草酚(g/kg干物质)       luteoliflavan(g/kg干物质)
处理后12天 处理后21天 处理后12天 处理后21天
对照     0     1     0     70
250ppm环己酮酸钙     17     27     0     34
实施例2从处理和未处理的Dornfelder葡萄中制备样品材料
在不同的时间点上用含有环己酮酸钙的制剂BAS 125 10W处理葡萄栽培品种“Dornfelder”两次。每次处理每公倾施用含有1000g环己酮酸钙的1000l喷洒混合物。
第1次施用在浆果出现颜色前发育阶段73时进行,第2次施用在此之后10天进行。
收获时,该未处理和处理的葡萄表现出相似的成熟程度。未处理对照:69°Oechsle,酸:7.3g/l;处理对照:67°Oechsle,酸:7.4g/l。
在该处理过的葡萄中色素沉着较不明显。关于味道,没有观察到不同。
通过常规方法将这些葡萄制成红酒,即必需将果肉持续放置一段时间以提高色素的提取。
将无暗晦的酒冻干后,从100ml未处理的酒中获得大约2.5g糖浆样残余物,从用环己酮酸钙处理过的那些葡萄制成的酒中获得大约2.1g糖浆样残余物。实施例3环己酮酸钙处理的Dornfelder酒对原代大鼠肝细胞培养物中胆固醇生物合成的抑制贮存液的配制
精确称重10mg-20mg量的该未处理和处理过的Dornfelder酒的冻干物,并用一定量的DMSO处理,获得含有10mM总类黄酮的贮存液。在试验即将开始之前采用这些贮存液在培养基中配制稀释液。这些稀释按10倍稀释步骤从10-4至10-8M进行。肝细胞培养物的制备
通过胶原酶灌流(Gebhardt等,Arzneimittel-Forschung/Drug Res.41:800-804(1991)1990),从Sprague-Dawley大鼠(240-290g)肝中获得原代肝细胞。将它们培养在含有补加了10%小牛血清的Williaas培养基E的胶原蛋白包被培养皿(6孔板,Greiner,Nurtingen)中,细胞密度为125,000个细胞/cm2。更详细的信息,尤其是关于该培养基的信息,参见Gebhardt等,Cell Biol.Toxicol.6:369-372(1990);和Mewes等,Cancer Res.53:5135-5142(1993)。2小时后,将这些培养物转移至补加了0.1μM胰岛素的无血清培养基中。再20个小时后,将它们用于试验。在2-3只大鼠的3个独立培养物中对每一种测试物质进行试验。肝细胞培养物与测试物质的孵育
为了阐明测试物质影响了胆固醇的生物合成,维持该肝细胞培养物总共22个小时。然后,在补加了14C-乙酸盐(仅示踪量)的无血清Williams培养基E中将它们与指定浓度的测试物质一起孵育2小时。每个试验系列均包括一个对照。该方法详细描述于Gebhardt(1991)和Gebhardt,脂类(Lipids)28:613-619(1993)。该示踪量的14C乙酸盐快速地与细胞内乙酰CoA库发生交换,由此使得14C乙酸盐可以掺入其中>90%组成胆固醇的固醇组分中,以致可以在不受干扰的情况下对其进行检测(Gebhardt,1993)。分析对胆固醇生物合成的影响
采用Gebhardt(1991)的方法测定14C-乙酸盐在固醇组分(不能水解的脂)中的掺入。如果采用Extrelut柱(Merck,Darmstadt)进行该提取,则将除去大于95%的14C-乙酸盐(和由此形成的其它微量低分子量代谢物)。该试验能够提供在测试物质影响下胆固醇和前体固醇相对合成速率的比较信息(Gebhardt,1993)。肝细胞培养物的目视微生物质量检查
在该试验孵育前和后,在显微镜下目视检查所使用的所有培养物的微生物感染情况和细胞单层完整性情况。在所有的样品中均没有观察到细胞形态的显著改变(尤其是在较高浓度时)。这很大程度上排除了该测试结果受到测试物质细胞毒效应的影响这一可能性。
在所有培养物中常规进行的此无菌试验提示没有任何微生物感染。结果
该未处理的Dornfelder酒表现出对胆固醇的生物合成无任何影响。相反,来源于经环己酮酸钙处理的葡萄的酒样品显著地抑制该胆固醇合成。在10-5M浓度时,该抑制作用为大约60%,而在10-4M时几乎为100%。
实施例4环己酮酸钙处理的酒提取物(P-Ca)对肿瘤细胞的破坏作用
将汇合的鼠白血病细胞(RAW 264.7)和来自大鼠腹膜的正常巨噬细胞培养在补加了胎牛血清的DMEM培养基中。在该培养基中加入高达200μg/ml剂量的未处理和环己酮酸钙处理酒的提取物。在平行实验中,10、25和50μg/ml酒提取物与100μM H2O2一起孵育。高达200μg/ml剂量的环己酮酸钙处理过的酒提取物本身对测试的细胞培养物无细胞毒作用。然而,加入H2O2后,环己酮酸钙处理的提取物以剂量依赖性方式增加肿瘤细胞(RAW 264.7)的细胞死亡。图2中通过该培养基中胞质酶乳酸脱氢酶(LDH)的增加对此进行了阐明。在非转化巨噬细胞中,H2O2的细胞毒作用没有出现增加。在该肿瘤细胞系中,在细胞质中来自肿瘤抑制基因p53的蛋白质出现积累,见图3。
环己酮酸处理的酒提取物增加了H2O2诱导的对白血病细胞的细胞毒性,但在正常巨噬细胞中无效。在通过增加的氧化压力(例如anthracycline)起作用的细胞抑制情况下,也观察到此肿瘤细胞特异性作用。该环己酮酸钙处理的酒提取物的机制是p53依赖性的。
实施例5环己酮酸钙处理的酒提取物对内皮细胞中NF-κB激活的影响
该实验采用了巨噬细胞(RAW 264.7)和内皮细胞(ECV 304)的共培养物。将该内皮细胞的培养基与人LDL(低密度脂蛋白)及静息或γ-干扰素(IFN-γ)(10 U/ml)激活的巨噬细胞混合在一起。孵育16个小时后,分离出细胞核蛋白组分,并在电泳迁移率变动分析中测量该氧化还原敏感性转录因子NF-κB的DNA结合(激活)。
典型地该静息内皮细胞中的基础含量低,见图4。加入LDL导致NF-κB的激活,这在激活的巨噬细胞中比在静息巨噬细胞中更高。这与动脉粥样硬化形成过程中LDL的生理学氧化是相对应的。在所有的情况下,与环己酮酸钙处理的酒提取物一起孵育导致NF-κB激活的增加。
所用的该细胞培养物模型十分适合于描述动脉粥样硬化形成早期中的病理生理学/炎症情况。该环己酮酸钙处理的酒提取物增强了NF-κB的激活。这相当于生物应答调节物的作用;即,在积极的意义上增强了对病理生理学信号的细胞应答。

Claims (6)

1.增加植物中类黄酮和酚类成分含量的方法,其中用式I的生长调节性酰基环己烷二酮和这些化合物的适合盐类处理这些植物,
Figure A0080903900021
其中R尤其是氢、C1-C6烷基、C1-C6卤代烷基、C2-C10烷基硫基烷基或苯基(取代的或未取代的),R’是氢、C1-C6烷基、C3-C6环烷基、苯甲基(取代或未取代的)、苯基乙基、苯氧基乙基、2-噻吩基甲基、烷氧基甲基或烷基硫基甲基。
2.根据权利要求1的方法,其中该增加是由酰基环己烷二酮例如环己酮酸钙(II)和/或抗倒酯(III)的处理引起的,
Figure A0080903900022
3.根据权利要求1或2的方法,其中该植物是葡萄树、樱桃、李子、黑刺李、越桔、草莓、柑橘类水果(例如橙、柚子)、木瓜、红环甘蓝、硬花甘蓝、抱子甘蓝、羽衣甘蓝、胡萝卜、欧芹、芹菜/块根芹、洋葱、大蒜、茶、咖啡、可可、马黛、忽布、大豆、油籽芸苔、燕麦、小麦、黑麦、Aronia melanocarpa和白果。
4.根据权利要求3的植物、或这些植物的部分、或采用它们制备的产物(汁液、浸液、提取物、发酵产品和发酵残余物),在制备用于人和动物的治疗性组合物、健康促进组合物或滋补品,及化妆品中的应用。
5.通过根据权利要求1-3至之任一项的方法制备的组合物,其中对以下红葡萄树的葡萄进行收获和加工,该红葡萄藤的花色素苷产生由于酰基环己烷二酮例如环己酮酸钙或抗倒酯的处理而受到完全或部分地抑制,并且该植物由此因类黄酮和其它酚类成分含量的定性和定量增加而著称。
6.根据权利要求5的组合物,该组合物是葡萄或葡萄的部分,或由所述葡萄获得的汁液、酒或挤压残余物,或上述葡萄、葡萄的部分或葡萄产物的提取物。
CNB008090394A 1999-06-17 2000-06-07 增加植物中类黄酮和酚类成分含量的方法 Expired - Fee Related CN100387126C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19927571A DE19927571A1 (de) 1999-06-17 1999-06-17 Verfahren zur Herstellung von Pflanzen mit erhöhtem Gehalt an Flavonoiden und phenolischen Inhaltsstoffen
DE19927571.8 1999-06-17

Publications (2)

Publication Number Publication Date
CN1355672A true CN1355672A (zh) 2002-06-26
CN100387126C CN100387126C (zh) 2008-05-14

Family

ID=7911496

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008090394A Expired - Fee Related CN100387126C (zh) 1999-06-17 2000-06-07 增加植物中类黄酮和酚类成分含量的方法

Country Status (26)

Country Link
US (1) US8105980B1 (zh)
EP (1) EP1185175B1 (zh)
JP (2) JP2003502346A (zh)
KR (1) KR100697738B1 (zh)
CN (1) CN100387126C (zh)
AR (1) AR024575A1 (zh)
AT (1) ATE237932T1 (zh)
AU (1) AU775511B2 (zh)
BG (1) BG106202A (zh)
BR (1) BR0011664A (zh)
CA (1) CA2371896C (zh)
CO (1) CO5190657A1 (zh)
DE (2) DE19927571A1 (zh)
DK (1) DK1185175T3 (zh)
EA (1) EA200200001A1 (zh)
ES (1) ES2198317T3 (zh)
HR (1) HRP20020042A2 (zh)
HU (1) HUP0201526A3 (zh)
IL (2) IL146792A0 (zh)
MX (1) MXPA01012611A (zh)
NZ (1) NZ516188A (zh)
PL (1) PL354402A1 (zh)
PT (1) PT1185175E (zh)
TR (1) TR200103634T2 (zh)
WO (1) WO2000078143A1 (zh)
ZA (1) ZA200200334B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107624757A (zh) * 2017-08-18 2018-01-26 浙江禾田化工有限公司 一种草莓控旺药剂

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7040349B2 (en) 2002-03-27 2006-05-09 Viking Technologies, L.C. Piezo-electric actuated multi-valve manifold
US20060216248A1 (en) * 2003-04-30 2006-09-28 Asahi Breweries, Ltd. Material for inhibiting enamel decalcification
KR100549494B1 (ko) * 2004-04-28 2006-02-08 학교법인 건국대학교 이소플라본 강화 발아 콩 및 그 제조방법
KR100553522B1 (ko) * 2004-02-06 2006-02-20 학교법인 건국대학교 이소플라본 강화 발아 녹두 및 그 제조방법
JP2007520230A (ja) * 2004-02-06 2007-07-26 コンク ユニヴァーシティ インダストリアル コーペレーション コープ 高濃度イソフラボンを含む発芽豆及びその製造方法
DE202004005959U1 (de) * 2004-04-13 2004-07-08 Greifenstein, Peter Arzneimittel
EP1671535A1 (en) 2004-12-16 2006-06-21 Stiftung Caesar Center of Advanced European Studies and Research Methods for altering levels of phenolic compounds in plant cells
JP2007269728A (ja) * 2006-03-31 2007-10-18 Sun Chlorella Corp 飲食組成物
JP5404995B2 (ja) 2006-08-10 2014-02-05 コスモ石油株式会社 植物のポリフェノール増量剤
CA2711721C (en) 2008-01-08 2020-02-11 David Rubin Method and compositions for preserving wine
WO2010034813A2 (de) * 2008-09-26 2010-04-01 Basf Se Verwendung von acylcyclohexandioncarbonsäuren oder deren salzen in kombination mit acylcyclohexandioncarbonsäureestern zur verbesserung der entwicklung von gramineen
AU2009337191B2 (en) * 2008-12-24 2013-09-12 Comvita New Zealand Limited Plant manipulation
WO2011012561A1 (en) * 2009-07-31 2011-02-03 Basf Se Treatment of hop plants with bioregulators
WO2013086621A1 (en) 2011-12-16 2013-06-20 CENTRE DE RECHERCHE INDUSTRIELLE DU QUéBEC Method for extracting anthocyanin derivatives from a plant source
JP2014150744A (ja) * 2013-02-06 2014-08-25 Yamanashi Prefecture バラ科作物の果実の結実促進方法
JP6691537B2 (ja) 2015-05-15 2020-04-28 サントリーホールディングス株式会社 ホップペレット
CN108713558B (zh) * 2018-05-12 2020-09-01 湖南科技学院 一种提升银杏叶中总黄酮含量的促生制剂
KR102139804B1 (ko) * 2018-07-30 2020-07-31 재단법인 전남생물산업진흥원 폴리페놀 및 플라보노이드 함량이 증가된 붉은 배추 추출물 제조방법
CN112056108A (zh) * 2020-09-03 2020-12-11 仲恺农业工程学院 一种提高金柚幼果中黄酮类化合物产量的方法
CN117582450B (zh) * 2024-01-19 2024-05-28 华医华药(山东)生物医药科技有限公司 一种防治动脉硬化、冠心病及痛风的药物组合物及制剂

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2495936A1 (fr) * 1980-12-11 1982-06-18 Cervelle Claude Composition pharmaceutique a usage topique a base d'un extrait total d'hedysarum fructescens willd
JPS59196840A (ja) * 1983-04-22 1984-11-08 Kumiai Chem Ind Co Ltd シクロヘキサン誘導体および植物生長調節剤
JP2673211B2 (ja) * 1988-05-19 1997-11-05 クミアイ化学工業株式会社 植物生長調節組成物
JP3266674B2 (ja) * 1992-11-19 2002-03-18 クミアイ化学工業株式会社 植物成長調整剤組成物
FR2727533B1 (fr) 1994-11-28 1997-01-17 Seb Sa Dispositif de detection et de securite pour appareil de cuisson
US6238673B1 (en) * 1996-09-20 2001-05-29 The Howard Foundation Method of producing high flavonol content polyphenol compositions
SK35599A3 (en) * 1996-09-20 1999-08-06 Howard Foundation Dry composition with flavonol content, a beverage containing such composition and its use
US6022831A (en) * 1997-07-15 2000-02-08 Basf Corporation Control of Erwinia amylovora in plants
FR2767533B1 (fr) * 1997-08-22 1999-11-26 Pasquale Gerard Di Procede et dispositif de preparation d'une boisson riche en composes polyphenoliques, et boisson obtenue

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107624757A (zh) * 2017-08-18 2018-01-26 浙江禾田化工有限公司 一种草莓控旺药剂
CN107624757B (zh) * 2017-08-18 2020-06-09 浙江禾田化工有限公司 一种草莓控旺药剂

Also Published As

Publication number Publication date
MXPA01012611A (es) 2002-06-21
KR20020035490A (ko) 2002-05-11
TR200103634T2 (tr) 2002-04-22
ATE237932T1 (de) 2003-05-15
HUP0201526A3 (en) 2010-01-28
CN100387126C (zh) 2008-05-14
EA200200001A1 (ru) 2002-06-27
CO5190657A1 (es) 2002-08-29
ZA200200334B (en) 2003-06-25
BR0011664A (pt) 2002-03-26
ES2198317T3 (es) 2004-02-01
DK1185175T3 (da) 2003-06-23
JP2003502346A (ja) 2003-01-21
NZ516188A (en) 2004-07-30
DE50001879D1 (de) 2003-05-28
KR100697738B1 (ko) 2007-03-22
CA2371896A1 (en) 2000-12-28
AU5220300A (en) 2001-01-09
CA2371896C (en) 2008-04-01
PT1185175E (pt) 2003-09-30
IL146792A (en) 2006-08-20
HRP20020042A2 (en) 2004-02-29
PL354402A1 (en) 2004-01-12
EP1185175B1 (de) 2003-04-23
AU775511B2 (en) 2004-08-05
US8105980B1 (en) 2012-01-31
HUP0201526A2 (en) 2002-08-28
IL146792A0 (en) 2002-07-25
JP2006052217A (ja) 2006-02-23
EP1185175A1 (de) 2002-03-13
DE19927571A1 (de) 2000-12-21
BG106202A (en) 2002-06-28
AR024575A1 (es) 2002-10-16
WO2000078143A1 (de) 2000-12-28

Similar Documents

Publication Publication Date Title
CN100387126C (zh) 增加植物中类黄酮和酚类成分含量的方法
Afolabi et al. Oxidative stress and inflammation following sub-lethal oral exposure of cypermethrin in rats: Mitigating potential of epicatechin
Vekiari et al. Extraction and determination of ellagic acid contentin chestnut bark and fruit
Doshi et al. Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L) byproducts
Ayaz et al. Separation, characterization, and quantitation of phenolic acids in a little-known blueberry (Vaccinium arctostaphylos L.) fruit by HPLC-MS
Imeh et al. Distribution of conjugated and free phenols in fruits: antioxidant activity and cultivar variations
Jayaprakasha et al. Volatile constituents from Cinnamomum zeylanicum fruit stalks and their antioxidant activities
Chinnici et al. Radical scavenging activities of peels and pulps from cv. Golden Delicious apples as related to their phenolic composition
Ben Farhat et al. Variations in essential oil, phenolic compounds, and antioxidant activity of tunisian cultivated Salvia officinalis L.
Betta et al. Phenolic compounds determined by LC-MS/MS and in vitro antioxidant capacity of Brazilian fruits in two edible ripening stages
Sun et al. Bioactive aromatic compounds from leaves and stems of Vanilla fragrans
Zupan et al. Comparison of phenolic composition of healthy apple tissues and tissues affected by bitter pit
Dej-adisai et al. Determination of phytochemical compounds, and tyrosinase inhibitory and antimicrobial activities of bioactive compounds from Streblus ilicifolius (S Vidal) Corner
Saha et al. Formulation and chemical characterization of Clerodendrum infortunatum leaf extract in relation to anti-fungal activity
Flores et al. Increasing nutritional value of broccoli with seaweed extract and trilinolein
Gong et al. Evaluation of the structure and biological activities of condensed tannins from Acanthus ilicifolius Linn and their effect on fresh-cut Fuji apples
StankoviĆ et al. Tyrosinase inhibitory and antioxidant activity of wild Prunus spinosa L. fruit extracts as natural source of bioactive compounds
Choi et al. Benzaldehyde as a new class plant growth regulator on Brassica campestris
Doulah et al. Antibacterial, antifungal and antioxidant activity of four species from Arnebia genus growing wild in Iran
Jirovsky et al. HPLC analysis of rosmarinic acid in feed enriched with aerial parts of Prunella vulgaris and its metabolites in pig plasma using dual-channel coulometric detection
Zehfus et al. Phenolic profiles and antioxidant activities of Saskatchewan (Canada) bred haskap (Lonicera caerulea) berries
Topdemir et al. Determination of antioxidant activity and phenolic and flavonoid content of Ocimum basilicum L. callus cultures obtained by different plant growth regulators
León et al. Phenolic compounds, antioxidant activity and ultrastructural study from Protea hybrid ‘Susara’
Uysal et al. Physiological properties and phytochemical composition of endemic Origanum boissieri
Anter et al. Biological and health-promoting activity of vinification byproducts produced in Spanish vineyards

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080514

Termination date: 20120607