CN1337871A - 牙齿修复组合物用的乳白色填料 - Google Patents

牙齿修复组合物用的乳白色填料 Download PDF

Info

Publication number
CN1337871A
CN1337871A CN00802209A CN00802209A CN1337871A CN 1337871 A CN1337871 A CN 1337871A CN 00802209 A CN00802209 A CN 00802209A CN 00802209 A CN00802209 A CN 00802209A CN 1337871 A CN1337871 A CN 1337871A
Authority
CN
China
Prior art keywords
filler
micron
repairing composite
tooth
tooth repairing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00802209A
Other languages
English (en)
Inventor
阿尔文·I·科巴希加瓦
克里斯托·安格莱特克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kerr Corp
Original Assignee
Kerr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kerr Corp filed Critical Kerr Corp
Publication of CN1337871A publication Critical patent/CN1337871A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/71Fillers
    • A61K6/76Fillers comprising silicon-containing compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Dental Preparations (AREA)

Abstract

本发明提供了一种包含树脂的牙齿修复复合物,包括分散相的、增强用的半透明填料,所述填料中约25—80%体积的填料颗粒的粒径范围从约0.2—0.6微米,其中所述复合物具有自乳白的特性。在不添加赋予乳白色的颜料的情况下,所提供的牙齿修复复合物,对于肉眼来说,将显示出乳白色,这将使得修复具有有生命、天然牙齿的外观。优选的是,所述树脂和半透明填料的屈光指数相同或基本相同,有利的是,两者均在1.45—1.60的范围内。另外,为了防止乳白效应被掩盖,有利的是所述牙齿修复复合物包含少于0.0021%重量的黄色调颜料,以使该复合物是相对无色的。

Description

牙齿修复组合物用的乳白色填料
发明领域
本发明概括地涉及一种用于牙齿修复的复合树脂材料,更准确地说,涉及一种通用的复合树脂材料,该材料包括有自乳白(self-opalescing)半透明填料,并适用于所有的牙齿修复。
发明背景
在牙科学中,行医者使用各种修复材料来产生牙冠、镶盖、直接填充料、镶嵌物、高嵌体和夹板。牙科修复的主要目标之一在于产生与天然牙齿的美观相匹配的修复。在二十世纪四十年代,利用丙烯酸树脂和硅酸盐胶料,首次将高度美观的牙齿色调的修复引入牙科学中。所述的这些修复是直接填充料修复,所述填充料具有牙齿的颜色并且像天然牙齿一样在可见光下是半透明的。当置于口腔中时,填充料不易与牙齿本身区别。在二十世纪五十年代,引入了牙瓷料,这提供了各种色调和半透明性,从而进一步改善了修复物的美观。这些牙瓷料用于修复物中,如熔化至金属牙冠和桥中的瓷料,或用于镶嵌物、高嵌体和镶盖中。带有瓷料修复物的牙齿色调已经是高度成功的并且已成为现今工业中的现有技术。在二十世纪七十年代,荧光被引入牙瓷料中,这进一步改善了牙齿修复物的美观,并且使之更具天然外观,尤其是在荧光条件下。近年来,在二十世纪九十年代,乳白光引入了牙瓷料中,从而产生了存在于天然牙齿中的天然“乳白效应”。
半透明性、色调、荧光和乳白光均为赋予天然牙齿以其生命外观的光学性能。半透明性和色调对于牙齿的总活力具有最大的影响,这是因为它们是最容易观察的。牙质和牙釉质均为半透明的,但牙釉质半透明性更强,几乎是透明和无色的。牙齿的颜色或色调主要来自于牙质并通过牙釉质层传输至牙齿的表面。牙釉质是高度矿化的结晶结构,由成数百万的釉质柱或釉柱组成。当光线传送通过牙釉质时,釉质柱散射并将光线传输至牙齿的表面,更像一纤维光学系统。尽管是高度透明的,但牙釉质不会像透明玻璃窗一样传输光线。相反,牙釉质将使光线漫射,从而使牙釉质变得乳白。
荧光和乳白光是更为微妙的光学性能,将进一步增强牙齿的天然神色、生命状外观或“活力”。荧光定义为:由某些形式的能量流入发射体所致的电磁辐射的发射,当激发停止时,发射将骤然停止。在天然牙齿中,包括羟磷灰石的牙釉质组成在长波紫外光下将发荧光,发射白色可见光。这种现象在天然日光中是细微的,但仍然将加至各种牙齿上。相反,在某些光照条件下,在修复材料中没有荧光可能会使人惊恐。在“黑光”条件下,如在迪斯科夜总会常使用的条件下,如果修复物不发荧光,牙齿和修复物之间的反差可能大至牙齿实际上可能会看不见。
乳白光定义为:当用可见光进行照射时,浓厚的透明介质或胶体体系产生乳状、虹彩的外观。最好是由矿物乳白玻璃来说明,它是天然水合形式的硅石。“乳白效应”是半透明材料的光散射现象,该现象将在反射光中产生蓝色效果,这是由于短波长光的散射所致的;并在传输光线中产生橙色效果。这种效果不同于半透明材料中的简单反射光,并且将在天然牙齿中产生乳状、虹彩效果。不是乳白色的修复物没有天然牙齿本身的生命外观。
不被理论束服,牙釉质的化学性和结构可能是“乳白效应”的原因。在化学上,牙齿的牙釉质是高度矿化的结晶结构,它包含90%至92%体积的羟磷灰石。在结构上,它由成千上万的牙釉质柱或牙釉柱组成,它们与牙质釉质界垂直排列并延伸至牙齿的表面。牙釉质柱的直径约4-8微米,在柱表面处的头或身体部分的宽度约为5微米。微晶以不同的图案或取向被紧密包裹着,这将赋予牙釉柱以强度、硬度和结构一致性。牙釉柱的粒度和结晶取向可能是产生光散射“乳白效应”的原因。
尽管乳白光已引入牙瓷料中,但在牙齿修复技术中目前的趋势是使用修复用的复合树脂,而不是牙瓷料。复合树脂是一种修复材料,该材料是增强剂如矿物填料颗粒在树脂基质中的悬浮液。这些材料可以是分散体增强的、颗粒增强的、或混合的复合物。
分散体增强的复合物包括例如煅制二氧化硅的增强填料,其平均粒径约为0.05微米或更小,其中填料载荷量约为30%-45%体积。由于所述填料的小粒径和高表面积,载入树脂中的填料受树脂湿润填料的能力限制。因此,填料的载荷量约为45%体积。由于低的载荷量,填料颗粒相互基本上不接触。因此,所述分散体增强复合物的主要增强机理是在填料周围的基质中裂隙的脱位。在分散体增强的材料中,树脂基质的强度明显地对复合物的总强度起作用。在牙科学中,分散体增强的复合树脂或微填充料,由于其保留表面光泽的能力,通常用于美容修复。通常,这些微填充料树脂使用可游离基聚合的树脂,如甲基丙烯酸酯单体,在聚合之后,它们将比分散的填料弱得多。尽管分散体具有增强作用,但微填充料树脂在结构上是弱的,这将限制其于降低应力的修复。
分散体增加复合物的一个例子是HELIOMOLAR,它是包括有煅制二氧化硅颗粒和稀土氟化物颗粒的牙齿复合物;其中所述二氧化硅颗粒的平均粒径约0.05微米,所述氟化物颗粒的粒径小于0.2微米。HELIOMOLAR是不透射线的微填料型复合物,得自于Vivadent。稀土氟化物颗粒不仅对挠曲强度而且对射线不透性均作贡献。
颗粒增强的复合物通常包括增强填料,其平均粒径大于约0.6微米,并且填料载荷量约为60%体积。在这些高填料载荷量时,填料颗粒彼此开始接触并对增强机理有明显的贡献,这是由于颗粒之间的相互作用和颗粒本身对裂隙的阻断所致。这些颗粒增强的复合树脂强于微填料树脂。正如分散体增强的复合物一样,该树脂基质通常包括有甲基丙烯酸单体。然而,颗粒增强的复合物中的填料,对于复合物总强度的影响将更大。因此,颗粒增强的复合物通常用于承受应力的修复。
称之为混合复合物的另一类牙齿复合物包括分散体增强和颗粒增强的特征和优点。混合复合物树脂包含填料和微填料,其中填料的平均粒径为0.6微米或更大,微填料的平均粒径约为0.05微米或更小。HERCULITEXRV(Kerr公司)是其中的一个例子。HERCULITE被许多人认为是混合复合物的工业标准。其平均粒径为0.84微米,填料载荷量为57.5%体积。所述填料是通过产生细颗粒的湿磨法生产的,所述细颗粒基本不含杂质。约10%体积的这种填料,其平均粒径超过1.50微米。在临床应用中,随着时间的推移,HERCULITE的表面将变成半玻璃状、表面粗糙的外观。由于这个原因,当干燥时修复物可能变得可与正常牙齿结构区分,这对于美容修复是不希望的。
另一类复合物,即可流动的复合物,其结构填料的体积份数为约10%至约30%体积。这些可流动的复合物主要用于低粘度应用中,以便取得良好的适应作用并防止在空洞填充期间形成缝隙。
各种形成亚微颗粒的方法,如沉淀法或溶胶凝胶法,均可用来生产用于混合复合物的颗粒增强填料。研磨法的粉碎也可以用来形成亚微颗粒。主要类型的研磨方法是干研磨法和湿研磨法。在干研磨法中,用空气或惰性气体使颗粒保持悬浮。然而,细颗粒往往因范德华力而发生附聚,这限制了干研磨法的能力。湿研磨法使用液体如水或醇来控制细颗粒的附聚。因此,湿研磨通常用于亚微米大小颗粒的粉碎。与通常通过溶胶凝胶法生产的球形颗粒完全不同的是,研磨颗粒是非球形的,它将对树脂与结构填料提供增加的粘结力,并由此进一步增强复合物的总强度。
在共同待批的美国专利申请09/270,999(标题为“最佳颗粒大小的混合复合物”,C.Angeletakis等人,1999年3月17日申请,并在此将整个内容引入作为参考)中,披露了一种含树脂的牙齿复合物,其包括研磨颗粒的半透明结构填料,所述颗粒的平均粒径在约0.05微米和约0.5微米之间,并且具有承受载荷修复所需的高强度,而且还能在临床应用中保持美容修复所需的玻璃状外观。具体地说,由于结构填料的尺寸小于可见光的波长,即使在通过刷牙使复合物磨损之后,牙齿修复物的表面也将在某些方向反射比其它方向更多的光线。可见光波基本上不会与突出于复合物表面的结构填料颗粒相互作用,因此,即使在大量刷牙之后,也将减少模糊并保持表面的光泽。这种应用在混合复合物技术中表现出了明显的优点,但根据所述共同待批的美国专利申请的教导生产的某些复合物将缺乏天然牙齿本身的生命外观。
正如由牙齿修复材料领域的多个专利可以看清楚的那样,开发用于牙齿修复物的复合树脂极为困难,人们试图平衡物理性能和光学性能,以便生产出总体上优异的产物。在复合树脂中对“乳白效应”的追求主要集中在少量添加“乳白剂”或颜料,如微细二氧化钛、氧化铝或氧化锆,以取得乳白色。例如,EP 533,434描述了将少于2%重量的微细二氧化钛添加至混合的或微填料的可冷聚合的牙齿复合物配方中,以取得乳白色。
在可热聚合和冷聚合的牙齿复合物树脂中取得乳白色是人们所希望的,特别是描述于共同待批的美国专利申请09/270,999中所述的复合物。尽管乳白色可以通过利用少量乳白剂或颜料对复合物配方进行改性而取得,但本发明致力于开发自乳白的复合物树脂。
发明概要
本发明提供一种含树脂的牙齿复合物,包括分散相的、增强用的、半透明的填料,所述填料占填料颗粒的体积约15-80%,粒径范围在约0.2微米和约0.6微米之间,其中该复合物具有自乳白的特性。不添加赋予乳白色的颜料,本发明的牙齿修复复合物对于肉眼显示出乳白色,这将能够对有生命的天然牙齿的外观提供修复。为此,并根据本发明的原理,通过向树脂基质中掺入半透明填料,其载荷量优选在所述复合物重量的约20-86%重量之间,取得了在此由至少约9的平均ΔC*坐标定义的乳白色,其中所述填料组分中约15-80%体积、优选约25-80%体积的颗粒,其粒径范围在约0.2-0.6微米。
本发明的另一特征在于,树脂和半透明填料的屈光指数相同或基本相同,两者均在1.45-1.60的范围内。更准确地说,优选填料的屈光指数在树脂屈光指数的+/-0.04的范围内。本发明的再一特征在于,为防止由本发明取得的乳白色效果被掩盖,所述牙齿修复复合物包含低于0.0021%重量的黄色调颜料,以使复合物配方是相对无色的,更像人的牙釉质。
在本发明的优选实施方案中,通常通过搅拌器或振动研磨,将填料研磨至优选的粒径范围。与已知溶胶-凝胶法形成的颗粒相反,对填料的研磨将造成非球形的颗粒,由于其不规则形状所致,这些颗粒将与聚合树脂更大程度地相互作用,从而增加树脂与填料的粘结力,并借此增加复合物的总强度。
根据本发明的另一方面,可以添加平均粒径小于约0.05微米的微填料颗粒,其添加量优选在复合物重量的约1%重量和约15%重量之间,以便形成混合的复合物。微填料颗粒将对分散体增强作用作出贡献,填充降低隔断体积的大结构颗粒之间的裂缝,并提供被树脂湿润的大表面积,以便增加强度。微填料颗粒也对未固化树脂的流动性能作贡献。发明详细说明
在优选的实施方式中,本发明是包括半透明填料的牙齿修复复合物,所述填料具有足够的、粒径范围在约0.2微米和约0.6微米之间的颗粒,其中该复合物是自乳白的。由半透明的增强填料产生的乳白色与通过添加赋予乳白色的颜料而产生的乳白色相比是不太明显的。因此,为在复合物中产生足够的乳白色,所述半透明填料必须以相对大的载荷量存在。更准确地说,本发明的复合物应当包含约20-86%重量的半透明填料,其中15-80%体积、优选25-80%体积的该填料组分,其粒径范围在0.2-0.6微米。单独颗粒的粒径可以通过任何已知的方法来测量,如如下所述的激光散射。本发明的复合物可以是混合型的,另外在可固化树脂,优选为包含甲基丙烯酸单体的可光聚合的树脂中,还包含有平均粒径小于约0.05微米的微填料。所述甲基丙烯酸单体树脂当暴露于可见光时将发生固化。所述牙齿修复复合物由牙科医生施加至牙齿上,并暴露于可见光源,从而使树脂固化。本发明的固化复合物显示出类似于天然牙齿的乳白色。
在复合材料,如牙齿颜色的牙齿修复物中,树脂基质和填料应当在其屈光指数方面相匹配,从而取得类似于牙齿结构的透明性,这与透明或不透明的材料不同。此外,这种透明性对于利用可见光引发聚合而固化的材料而言是必需的。由于屈光指数范围从约1.45-约1.60的树脂易于从市场上得到,因此,对于调节树脂的屈光指数而言,配制师有相当大的选择余地。尽管玻璃填料的配制是极为复杂的,但可以将微米大小的颗粒填料制成具有1.45-1.60的屈光指数。此外,当填料在树脂中分散时,由于降至低ppm值的少量杂质将显示出十分显著的作用,玻璃填料的纯度应当非常高。因此,根据本发明的原理,聚合树脂的屈光指数与填料的屈光指数相同或类似。更具体地说,优选屈光指数在+/-0.04内。
适用于本发明的半透明填料包括但不局限于硼硅酸盐玻璃、硅铝酸钡镁玻璃、硅铝酸钡玻璃、非晶形二氧化硅、硅酸锆、硅酸钛、氧化钡、石英、氧化铝和其它无机氧化物颗粒。
在本发明的一个实施方案中,本发明的半透明填料的平均粒径为约0.1微米至约1.0微米,其中15-80%体积的该填料的粒径落入0.2-0.6微米的范围内。在本发明的另一实施方案中,半透明填料是描述于共同待批的美国专利申请09/270,999中的填料,但其中15-80%体积的该填料的粒径落入0.2-0.6微米的范围内。含有平均粒径为0.05-0.5微米的填料、且15-80%体积的该填料的粒径落入0.2-0.6微米范围内的复合物,将提供承受载荷的修复所需的高强度,在临床应用中将保持玻璃状外观,并将具有生命的、乳白色的、半透明的外观。
为提供足量的、粒径范围从0.2-0.6微米的半透明填料,可以用化学溶胶-凝胶法来制备所述填料,或优选的是,可以通过扩展粉碎步骤将填料研磨至的所需粒径范围。粉碎优选在搅拌磨或振动磨中通过湿研磨进行。通过使颗粒由团块中分离,粉碎将使填料颗粒解聚,降低填料颗粒的大小,通过破碎而消除大颗粒,并通过产生大量的细颗粒而增加填料颗粒的比表面积。
乳白程度可以由简单的比色法测量,所述方法类似于EP533,434中披露的方法,在此将其全文引入作为参考。其中描述的方法使用CIELAB标度的b*色坐标,如Billmeyer & Saltzman的Principles of ColorTechnology(色技术原理),第二版,第62-65页(1981)中所述;并就1毫米厚的复合材料试样,将乳白色描述为Δb*值(即透射b*色坐标减去反射b*色坐标)。Δb*值测量CIELAB标度中蓝-黄b*坐标之差,借此估测复合材料的乳白色。将大于9的Δb*值描述为乳白色的。
将透射光中的乳白色描述为橙色效应,它也包含红色成份。因此,对于测量乳白色的、在本发明中使用的方法,使用色度差-ΔC*。除Δb*以外,ΔC*还包括红-绿色度差Δa*。在这种情况下,Δa*是Δb*的红-绿等同物。ΔC*是一标量,并且通过取Δa*2和Δb*2之和的平方根来测量。在ΔC*值小于4时,将观察不到乳白色。对于与有生命力的天然牙齿相匹配的牙齿修复复合物,ΔC*坐标有利地至少约为9。在ΔC*值于4和9之间时,可以观察到一些乳白色,但通过肉眼只可观察到细微的区别。在修复时,这种低乳白程度不会产生与天然牙齿类似的生命外观。在ΔC*值至少约为9时,这种乳白效应通过肉眼可明显地观察到,恰似与天然牙齿一起可观察到的效果。ΔC*值越高,乳白色效果将越明显。
实施例
在制备掺入复合物膏体的填料时,通过激光散射测量所述填料的平均粒径。激光散射是通过检测散射光的平均相对角强度来测量平均粒径的一种方法。将带均匀波阵面的单色光束对着试样,光线由于颗粒而衍射或散射,并用检测器来测量不同角度时散射光的相对平均强度。然后根据相对平均强度,计算出平均粒径和颗粒分布曲线。一种所述激光散射装置披露于US5,610,712(Schmitz等人)中,在此全文引入作为参考。对于本实施例,使用Horiba LA-90型激光散射平均粒径分析仪。测量每种填料的粒径分布和平均粒径,并根据粒径分布曲线计算出以0.2-0.6微米粒径范围分布的填料颗粒的累积体积百分数。
在本发明的复合物中使用的填料优选是硅烷化物(silanated)。对于下面的实施例,利用γ-甲基丙烯酰氧基丙基三甲氧基硅烷的20%水解水溶液,在V型捏合机中进行喷雾,由此使填料硅烷化,并制备疏水性的填料粉末。填料中硅烷的载荷量为2.5%重量。
如果需要,可以将适当大小的半透明填料与胶体大小的颗粒混合,所述胶体大小的颗粒例如是二氧化硅类、氧化铝类和硅酸盐类,例如二氧化硅氧化锆或二氧化硅氧化钛,它们是平均粒径小于0.05微米的颗粒,以形成混合的复合物。通常,煅制的疏水性二氧化硅的用量为最终组合物的1-15%重量。
然后,将半透明填料、和任选的胶体填料与可光固化的树脂基料混合,所述树脂基料包括含甲基丙烯酸酯基团的市售单体。表1和2列出了将在随后实施例中使用的树脂的组分。
                   表1:树脂组合物A
                  组分     %重量
BisGMA(双酚A二缩水甘油醚二甲基丙烯酸酯)     3.0
三甘醇二甲基丙烯酸酯     24.7
乙氧基化的双酚A二甲基丙烯酸酯     71.1
2-乙基己基-4-(二甲氨基)苯甲酸酯     0.49
樟脑醌(Camphoroquinone)     0.17
2-羟基-4-甲氧基二苯酮     0.49
(BHT)丁基化羟基甲苯     0.05
                     表2:树脂组合物B
                      组分   %重量
UDMA(7,7,9-三甲基-4,13-二氧-3,14-二氧杂-5,12-二氮杂十六烷-1,16-二甲基丙烯酸酯)     42.7
己二醇二甲基丙烯酸酯     43.9
乙氧基化双酚A二甲基丙烯酸酯     13.0
2-乙基己基-4-(二甲氨基)苯甲酸酯     0.25
樟脑醌     0.15
其它单体可以用于本发明的树脂组合物中,如二甘醇二甲基丙烯酸酯、三甘醇二甲基丙烯酸酯、四甘醇二甲基丙烯酸酯、1,6-己二醇二甲基丙烯酸酯、1,12-十二烷二醇二甲基丙烯酸酯、二氨基甲酸乙酯二甲基丙烯酸酯(Rohamere 6661-0,Huls America,Somerset,NJ)、三羟甲基丙烷三甲基丙烯酸酯、二甲基丙烯酸甘油酯、和新戊基二醇二甲基丙烯酸酯。
将树脂组合物引入恒温在50℃的行星式混合器中。然后,开启行星式混合器并经3小时的时间慢慢添加填料。然后,再对复合物混合一小时,并在变稀薄的氧压下进行脱气。
然后,于夹在玻璃片之间的不锈钢模具中制备1毫米厚×2英寸直径的试样。在Cure Plus固化光(Jeneric Pentron Inc.)中使试样光固化10分钟,并在Belleglass固化装置(Kerr公司)中,于135℃另外热固化10分钟。利用TCS Plus色度计(BYK Gardner Inc.),对于透射和反射方式下的每个固化盘,测量标准日光条件下的色坐标。实施例1
利用经硅烷处理的硼硅酸盐玻璃作为半透明填料,如上所述制备对照试样1和2、以及测试试样1-3,不同之处仅在于平均粒径和粒径分布。对照试样2也包含0.1%重量的二氧化钛(P25型,得自Degussa公司,Ridgefield Park,N.J.),一种已知的赋予乳白色的颜料。硼硅酸盐玻璃的屈光指数约为1.48。将各半透明填料与如表2提供的树脂组合物B混合,其中半透明填料的载荷量为总组合物重量的74%。树脂组合物B的屈光指数为1.478,因此填料和树脂的屈光指数彼此在0.002内。表3提供了粒径范围在0.2-0.6微米的半透明填料的累积体积百分数和最终的ΔC*值。
                          表3:硼硅酸盐玻璃的乳白色
    试样#   平均粒径(微米)  0.2-0.6微米范围填料的累积体积%     ΔC*(标准偏差)
  对照试样#1     10.0     1.3   5.19(0.05)
对照试样#2w/乳白色添加剂     1.0     40.4   21.12(0.22)
  测试试样#1     1.0     40.4   15.89(0.10)
  测试试样#2     0.55     ----   14.10(0.39)
  测试试样#3     0.4     78.3   15.32(0.21)
正如表3所表明的,当平均粒径大并且低百分比的颗粒在0.2-0.6微米范围内分布时,如对照试样1所示,复合物将显示出低的乳白色,该乳白色将低于模拟天然牙齿所需的颜色,并且低于肉眼可见的“乳白效应”所需的颜色。低乳白色据信是由于光线弱的扩散作用所致,以致使只有少量的光线散射。相反,测试试样1-3具有明显的乳白色,ΔC*值明显高于9。尽管乳白色并不象对照试样2那样惊人,对照试样2包含赋予乳白色的颜料,但它对于肉眼来说明显可看清楚,并且由这些测试组合物制得的修复物显示出类似于天然牙齿的生命力。
实施例2
利用经硅烷处理的硅铝酸钡玻璃作为半透明填料,如上所述制备对照试样3、以及测试试样4和5,不同之处仅在于平均粒径和粒径分布。硅铝酸钡玻璃的屈光指数约为1.54,并且包含重金属钡,以便将X-射线不透性赋予修复物。将各半透明填料与如表1提供的树脂组合物A混合,其中半透明填料的载荷量为总组合物重量的78%。树脂组合物A的屈光指数为1.518,因此填料和树脂的屈光指数彼此在0.022内。表4提供了粒径范围在0.2-0.6微米的半透明填料的累积体积百分数和最终的ΔC*值。
                      表4:硅铝酸钡玻璃的乳白色
    试样#   平均粒径(微米)  0.2-0.6微米范围填料的累积体积%     ΔC*(标准偏差)
  对照试样#3     10.0     4.0   7.98(0.44)
  测试试样#4     1.0     31.4   15.80(0.11)
  测试试样#5     0.4     67.7   15.58(0.42)
正如表4所表明的,与对照试样1的硼硅酸盐玻璃相比,在0.2-0.6微米范围内分布的硅铝酸钡半透明填料稍高载荷量的对照试样3具有某些程度的乳白色,该乳白色稍稍地可由肉眼看清楚,但是,当平均粒径降低且更大量的颗粒落入0.2-0.6微米范围时,乳白色程度将明显增加,并且可由肉眼更为清楚地看清。
实施例3
利用不同平均粒径和填料载荷量的不同的半透明填料,如上所述制备测试试样6-9。在测试试样6和7中使用的二氧化硅(OX-50,得自Degussa公司),其屈光指数约为1.45。半透明二氧化硅填料与表2中提供的树脂组合物B混合,其中半透明填料的载荷量如表5所示。树脂组合物B的屈光指数为1.478,因此二氧化硅填料与树脂的屈光指数彼此在0.028内。测试试样8的硅酸钛填料(得自Tokuyama,Japan)与树脂组合物B混合,而测试试样9的硅酸锆填料(得自Tokuyama,Japan)与树脂组合物A混合。这些硅酸盐填料包含由溶胶-凝胶法生产的毫微颗粒,而屈光指数没有测量。表5提供了复合配方的总填料载荷量,粒径范围落入0.2-0.6微米的透明填料的累积体积百分比和最终的ΔC*值。
                        表5:其它类填料的乳白色
  试样#  平均粒径(微米) 填料载荷量(重量%)    0.2-0.6微米范围填料的累积体积%     ΔC*(标准偏差)
测试试样#6     0.04     20     15.9  9.52(0.73)
测试试样#7     0.4     40     60.8  24.58(0.94)
测试试样#8     0.2     74     54.5  18.96(0.37)
测试试样#9     0.2     74     64.4  11.71(0.40)
正如表5所表明的那样,二氧化硅填料将产生在相对于肉眼不同的角度可辨别的乳白色,其中乳白色程度取决于平均粒径和载荷量。当填料载荷量仅为20%重量,其中15.9%体积的该填料的粒径范围在0.2-0.6微米时,0.04微米的二氧化硅填料将产生9.52的ΔC*值。尽管这种程度的乳白色是肉眼可见的,但是,具有40%重量更高载荷量、其中更大量填料的粒径范围在0.2-0.6微米时,0.4微米的附聚二氧化硅填料将产生乳白程度强得多的乳白色,以ΔC*值表示时该值为24.58。具有甚至更高载荷量(74%重量)、其中大量填料的粒径范围在0.2-0.6微米时,硅酸钛和硅酸锆配方也将显示出相当高程度的乳白色。
根据上述实施例,显而易见的是,大量分布低于0.2微米或高于0.6微米的半透明填料颗粒,将造成低的乳白色。这据信是由于这些颗粒与光线没有足够强的相互作用以便产生光散射所致,所述光散射将产生“乳白效应”。粒径范围在0.2-0.6微米的颗粒具有对光线强烈的扩散作用。如果在复合物中存在足够量,那么,这些颗粒将产生肉眼可见的高度的乳白色,赋予由该复合物制得的牙齿修复物以生命外观。
实施例4
利用经硅烷处理的、0.4微米的硅铝酸钡玻璃,如上所述制备测试试样10-13,不同之处仅在于色调或色泽。得自表4的测试试样5是无色调的复合物膏体,这意味着所述膏体不含任何有色颜料,以便使复合物带色泽。测试试样10-13包含黄色调颜料,以与天然牙齿的固化复合物的颜色相匹配。使用两种不同的市售黄色调颜料,即得自WarnerJenkinson,Inc.的FDC#6和得自Pfizer Inc.的YO1987。根据牙科业中使用的用于匹配天然牙齿的已知的色泽体系,在测试试样10的复合物膏体中使用的填料包含:50%重量的无色调的填料和50%重量用黄色调颜料着色的填料,以便产生Vita Shade A3的颜色。测试试样11、12和13的复合物膏体中使用的填料分别包含75%、90%和100%重量的着色填料。将每一种半透明填料与如表1提供的树脂组合物A混合,其中半透明填料的载荷量为总组合物重量的78%,而粒径范围在0.2-0.6微米内的半透明填料的累积体积百分比为67%。表6提供了在复合物膏体中使用的黄色颜料的重量百分比和最终的ΔC*值。
                      表6:着色硅铝酸钡玻璃的乳白色
  试样#          填料   FDC#6(重量%)   YO1987(重量%)   膏体中总颜料(重量%)     ΔC*(标准偏差)
测试试样#5  100%0.4微米未着色     0     0       0  12.45(0.08)
测试试样#10  50%0.4微米未着色/50%0.4微米着色的 0.0002  0.001   0.0012  11.37(0.15)
测试试样#11  25%0.4微米未着色/75%0.4微米着色的 0.0003  0.0015   0.0018  10.17(0.33)
测试试样#12  10%0.4微米未着色/90%0.4微米着色的 0.00036  0.0018   0.00216  8.82(0.16)
测试试样#13  100%0.4微米着色的 0.0004  0.002   0.0024  7.43(0.15)
表6表明了彩色颜料对乳白色的作用。在牙齿和修复材料中观察到的乳白色是受其它更为主要的光学性能影响的敏感效应。例如,乳白色可以被色彩或色泽明显影响或掩盖。特别是,如果存在足够量的色品,由于色素沉着,在黄色和蓝色范围内的色调,据信将明显影响乳白色。对复合物树脂配方进行调色,以便与天然牙齿中存在的黄色调相匹配,例如Vita Shade A3配方,由于b*坐标中强的黄色色品,所述配方可能会掩盖乳白色。除了在测试试样10-13中添加不同量的黄色调色素以外,测试试样5和10-13具有相同的组份。正如表6所表明的那样,乳白色将随复合物膏体色度的增加而减弱。未着色的复合物的ΔC*值为12.45,可清楚地辨别出乳白色。测试试样10和11包含少量颜料,其量低于约总组合物重量的0.0021%,并且ΔC*值分别为11.37和10.17。其乳白色也能用肉眼清楚地辨别出,但乳白色程度没有未着色复合物那样高。测试试样12包含较高量的颜料,其量为总组合物重量的0.00216%,并且ΔC*值为8.82,其乳白色用肉眼仅仅是边界可见的。测试试样13具有相对高用量的颜料,将使ΔC*值仅为7.43,该值低于用肉眼可清楚地看到乳白色所需的值。不被理论束服,当将颜料添加至复合物配方中以产生VitaA3色度时,黄-棕色调将占优势,并且再也不能辨别出乳白色。这可以解释为什么在牙齿修复复合物中,在没有添加赋予乳白色的颜料的情况下,先前观察不到乳白色的原因。为了由增强半透明填料使乳白效应最大化,据信修复复合物配方应当是相对无色的,更像人的牙釉质。为此,添加至复合物配方中的黄色调色素的量应当有利地保持在约0.0021%重量的水平或更低。为了以另一种方式表达,组合物的A3色泽应当低于90%。
实施例5
除提供乳白色以外,本发明的复合物也是半透明的。由%T测量的半透明性与14-80%T的天然牙齿结构相匹配。%T是用1毫米厚的固化试样由Gardner XL10色差计(BYK Gardner Inc.)测量的。表7提供了本发明未着色测试试样的%T值。
                          表7:修复组合物的半透明性
 测试试样#     膏体组份  填料的屈光指数   树脂的屈光指数  填料载荷量(重量%)   %T
  1,2,3   硼硅酸盐玻璃,于树脂B中     1.48   1.478     74.0  25-35
    4,5     硅铝酸钡,于树脂A中     1.54   1.518     78.0  26-33
    6,7     二氧化硅,于树脂B中     1.45-1.48   1.478     20-40  73-84
    8     硅酸钛,于树脂B中     *   1.478     74.0  73
    9     硅酸锆,于树脂A中     *   1.518     74.0  23
*屈光指数不可测量。
正如表7所表明的那样,本发明的测试试样具有与天然牙齿相同或基本相同的半透明性。
因此,本发明的牙齿复合物提供了半透明的修复,所述修复具有用肉眼可清楚地辨别出的高程度的乳白色。由于本发明的修复复合物是自乳白的,因此无需添加乳白剂来提供天然牙齿的生命外观。
尽管通过不同的实施方案已阐明了本发明,而且这些实施方案已相当详细地进行了描述,但申请人并不打算以此将所附权利要求书的范围限制或限定在所述细节中。另外的优点和改进对于本领域熟练技术人员来说是显而易见的。广义地说,本发明并不局限于所示出的和所述的具体细节和代表性的组合物。这就是本发明的说明,以及根据本发明的优选组合物。然而,本发明本身应当只由所附的权利要求书来限定。

Claims (21)

1、一种牙齿修复复合物,其包含:
树脂基料;和
半透明填料,所述半透明填料包含约15%-约80%体积、粒径范围为约0.2微米至约0.6微米的颗粒,
其中所述半透明填料给所述牙齿修复复合物提供至少约9的平均ΔC*坐标。
2、如权利要求1所述的牙齿修复复合物,其中所述牙齿修复复合物基本不含赋予乳白色的颜料。
3、如权利要求1所述的牙齿修复复合物,其中半透明填料包含约25%-约80%体积、粒径范围为约0.2-约0.6微米的颗粒。
4、如权利要求1所述的牙齿修复复合物,其中半透明填料和树脂基料的屈光指数均在约1.45-1.60的范围内。
5、如权利要求1所述的牙齿修复复合物,其中半透明填料的屈光指数在树脂基料屈光指数的+/-0.04内。
6、如权利要求1所述的牙齿修复复合物,其中复合物包括少于约0.0021%重量的黄色调颜料。
7、如权利要求1所述的牙齿修复复合物,其中半透明填料选自于以下组中:硼硅酸盐玻璃、硅铝酸钡玻璃、二氧化硅、硅酸钛、硅酸锆、硅铝酸钡镁玻璃、氧化钡、石英、和氧化铝。
8、如权利要求1所述的牙齿修复复合物,其中修复复合物包含约20%-约86%重量的半透明填料。
9、如权利要求1所述的牙齿修复复合物,其中半透明填料的平均粒径为约0.1微米至约1.0微米。
10、如权利要求9所述的牙齿修复复合物,其还包含约1%-15%重量、平均粒径小于约0.05微米的微填料。
11、如权利要求1所述的牙齿修复复合物,其中半透明填料的平均粒径为约0.05微米至约0.5微米。
12、如权利要求11所述的牙齿修复复合物,其还包含约1%-15%重量、平均粒径小于约0.05微米的微填料。
13、一种牙齿修复复合物,其包含:
屈光指数在约1.45-1.60范围内的树脂基料;和
用量为复合物重量的约20%至约86%、屈光指数在约1.45-1.60范围内的半透明填料,所述半透明填料包含约15%-约80%体积、粒径范围为约0.2微米至约0.6微米的颗粒,
其中所述半透明填料给所述牙齿修复复合物提供至少约9的平均ΔC*坐标;而且
半透明填料的屈光指数在树脂基料屈光指数的+/-0.04内。
14、如权利要求13所述的牙齿修复复合物,其中所述牙齿修复复合物基本不含赋予乳白色的颜料。
15、如权利要求13所述的牙齿修复复合物,其中半透明填料包含约25%-约80%体积、粒径范围为约0.2-约0.6微米的颗粒。
16、如权利要求13所述的牙齿修复复合物,其中复合物包括少于约0.0021%重量的黄色调颜料。
17、如权利要求13所述的牙齿修复复合物,其中半透明填料选自于以下组中:硼硅酸盐玻璃、硅铝酸钡玻璃、二氧化硅、硅酸钛、硅酸锆、硅铝酸钡镁玻璃、氧化钡、石英、和氧化铝。
18、如权利要求13所述的牙齿修复复合物,其中半透明填料的平均粒径为约0.1微米至约1.0微米。
19、如权利要求18所述的牙齿修复复合物,其还包含约1%-15%重量、平均粒径小于约0.05微米的微填料。
20、如权利要求13所述的牙齿修复复合物,其中半透明填料的平均粒径为约0.05微米至约0.5微米。
21、如权利要求20所述的牙齿修复复合物,其还包含约1%-15%重量、平均粒径小于约0.05微米的微填料。
CN00802209A 1999-10-07 2000-08-23 牙齿修复组合物用的乳白色填料 Pending CN1337871A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/413,762 US6232367B1 (en) 1999-10-07 1999-10-07 Opalescent fillers for dental restorative composites
US09/413,762 1999-10-07

Publications (1)

Publication Number Publication Date
CN1337871A true CN1337871A (zh) 2002-02-27

Family

ID=23638515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00802209A Pending CN1337871A (zh) 1999-10-07 2000-08-23 牙齿修复组合物用的乳白色填料

Country Status (8)

Country Link
US (1) US6232367B1 (zh)
EP (1) EP1137387B1 (zh)
JP (1) JP2003511400A (zh)
CN (1) CN1337871A (zh)
BR (1) BR0007178A (zh)
DE (1) DE60017545T2 (zh)
MX (1) MXPA01005700A (zh)
WO (1) WO2001026611A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100488486C (zh) * 2005-12-15 2009-05-20 安泰科技股份有限公司 一种齿科用复合树脂
CN102905673A (zh) * 2010-06-18 2013-01-30 株式会社德山齿科 牙科用复合修复材料
CN103108605A (zh) * 2010-09-15 2013-05-15 西尔欧集团 长期抑菌化合物及其在牙科修复材料中的应用

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10042050A1 (de) * 2000-08-26 2002-03-14 Degussa Dentalkomposite aufweisend Hybridfüllstoffe und Verfahren zur Herstellung
US6787629B2 (en) 2001-11-02 2004-09-07 Pentron Clinical Technologies, Llc Dental resin materials, method of manufacture, and uses thereof
US6593395B2 (en) * 2001-05-16 2003-07-15 Kerr Corporation Dental composition containing discrete nanoparticles
US6890968B2 (en) * 2001-05-16 2005-05-10 Kerr Corporation Prepolymerized filler in dental restorative composite
US9296891B2 (en) * 2001-11-02 2016-03-29 Pentron Clinical Technologies, Llc Dental resin materials, method of manufacture, and uses thereof
EP1400232A1 (en) * 2002-09-20 2004-03-24 Elephant Edelmetaal B.V. Aestetic ceramic veneered dental restoration
EP1400231A1 (en) * 2002-09-20 2004-03-24 Elephant Edelmetaal B.V. Aesthetic ceramic veneered dental restoration
US20050132928A1 (en) * 2003-12-22 2005-06-23 Culp Terry L. Dental composites placement techniques for direct restorations
DE102004017124B4 (de) * 2004-04-07 2008-07-10 Ivoclar Vivadent Ag Härtbare Dentalmaterialien mit einer einstellbaren Transluzenz und hohen Opaleszenz
WO2005123008A1 (en) * 2004-06-15 2005-12-29 Dentsply International Inc. Radical polymerizable macrocyclic resin compositions with low polymerization stress
US20060063854A1 (en) 2004-06-15 2006-03-23 Xiaoming Jin Low shrinkage and low stress dental compositions
WO2007033288A2 (en) * 2005-09-14 2007-03-22 Danville Materials, Inc. Composite paste for dental prostheses
US20090298966A1 (en) * 2005-09-22 2009-12-03 Gdf Gesellschaft Fur Dentale Forschung Und Innovationen Gmbh Dental material
DE102005053705A1 (de) * 2005-11-10 2007-05-16 S & C Polymer Silicon & Compos Nano-kristalline Erdalkali-Füllstoffe enthaltende Restaurationsmaterialien
US20070122361A1 (en) * 2005-11-29 2007-05-31 Weitao Jia Tooth colorant and whitener, method of manufacture, and method of use thereof
JP5054321B2 (ja) * 2006-03-28 2012-10-24 日揮触媒化成株式会社 歯科用充填材、その製造方法および歯科用複合材料
US20080187563A1 (en) * 2006-11-07 2008-08-07 Ehud Levy Oxygen delivery compositon
CN101610749B (zh) * 2006-12-28 2013-01-02 3M创新有限公司 牙科填料及方法
CN101605524B (zh) * 2007-02-08 2011-12-28 日本可乐丽医疗器材株式会社 牙科用组合物
US9414895B2 (en) * 2008-01-29 2016-08-16 David J. Clark Dental matrix devices specific to anterior teeth, and injection molded filling techniques and devices
RU2472708C2 (ru) * 2008-10-15 2013-01-20 Зм Инновейтив Пропертиз Компани Наполнители и композитные материалы с наночастицами диоксида циркония и кремнезема
GB2472987A (en) 2009-08-24 2011-03-02 Cambridge Entpr Ltd Composite optical materials, uses of composite optical materials and methods for the manufacture of composite optical materials
JP2011068596A (ja) * 2009-09-25 2011-04-07 Gc Corp 歯科用修復材組成物
EP2663448B1 (en) 2011-01-12 2016-11-02 Cambridge Enterprise Limited Manufacture of composite optical materials
JP5769429B2 (ja) * 2011-01-26 2015-08-26 株式会社トクヤマデンタル 歯科用複合修復材料
US8822564B2 (en) 2011-05-27 2014-09-02 Kerr Corporation Dental restorative material
US8883216B2 (en) 2012-08-27 2014-11-11 Red Lion Chem Tech, Llc Methods and ceramic nanoparticle compositions for heavy metal removal and for oral delivery of desirable agents
CN103319832B (zh) * 2013-06-13 2015-08-19 北京化工大学 齿科修复用光固化复合树脂及其制备方法
ES2815073T3 (es) 2013-06-27 2021-03-29 Ivoclar Vivadent Inc Circona nanocristalina y métodos de procesamiento de la misma
WO2015125470A1 (ja) * 2014-02-20 2015-08-27 クラレノリタケデンタル株式会社 歯科用修復材組成物
US9822039B1 (en) 2016-08-18 2017-11-21 Ivoclar Vivadent Ag Metal oxide ceramic nanomaterials and methods of making and using same
WO2024018305A1 (en) 2022-07-21 2024-01-25 3M Innovative Properties Company Curable composition for producing transparent orthodontic attachments

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2403211C3 (de) 1974-01-23 1981-12-24 Etablissement Dentaire Ivoclar, Schaan Werkstoff für Dentalzwecke
US4217264A (en) 1977-04-01 1980-08-12 American Dental Association Health Foundation Microporous glassy fillers for dental resin composites
US4215033A (en) 1978-09-08 1980-07-29 American Dental Association Health Foundation Composite dental material
US4306913A (en) 1978-09-11 1981-12-22 American Dental Association Health Foundation Method for preparing microporous glassy filler grains for dental resin composites
DE2963907D1 (en) 1979-01-05 1982-11-25 Ici Plc Dispersions of siliceous solids in liquid organic media
US4396476A (en) 1979-02-01 1983-08-02 Dentsply Research & Development Corporation Blend of cross-linked polymer, swelling monomer and cross-linking agent and curing process
US4396377A (en) 1980-04-07 1983-08-02 Dentsply Research & Development Corporation Dental appliances having interpenetrating polymer networks
GB2074590B (en) * 1980-04-29 1984-02-22 Kuraray Co Acrylate urethane binders in dental cement compositions
US4358549A (en) 1980-09-08 1982-11-09 Minnesota Mining And Manufacturing Company Dental filling composition utilizing zinc-containing inorganic filler
USRE32299E (en) 1980-09-08 1986-12-02 Minnesota Mining And Manufacturing Company Glass composition and articles
US4350532A (en) 1980-09-08 1982-09-21 Minnesota Mining And Manufacturing Company Glass composition and articles
USRE32073E (en) 1980-09-08 1986-01-28 Minnesota Mining And Manufacturing Company Dental filling composition utilizing zinc-containing inorganic filler
JPS5774369A (en) 1980-10-28 1982-05-10 Mitsui Petrochem Ind Ltd Coating composition
DE3172366D1 (en) 1980-12-03 1985-10-24 Ici Plc Dental compositions
US4698373A (en) 1981-01-21 1987-10-06 Dentsply Research & Development Corp. Stable one part dental compositions employing ipn technology
IL65159A0 (en) 1981-03-04 1982-05-31 Ici Plc Polymerisable dental compositions
IE54502B1 (en) 1982-03-04 1989-10-25 Ici Plc Photopolymerisable compositions
US4433959A (en) 1982-03-24 1984-02-28 Jaff Investment Company Composite laminate dental veneer containing color systems
US4500657A (en) * 1982-08-02 1985-02-19 Johnson & Johnson Dental Products Company Dental restorative compositions having improved mechanical properties and hydrolytic stability
US4544359A (en) * 1984-01-13 1985-10-01 Pentron Corporation Dental restorative material
JPS6286003A (ja) * 1985-10-11 1987-04-20 Tokuyama Soda Co Ltd 光重合用の複合組成物
US4744759A (en) 1986-05-13 1988-05-17 American Dental Association Health Foundation Inserts for composite dental restorations
JPS63199204A (ja) * 1987-02-13 1988-08-17 Tokuyama Soda Co Ltd 重合性組成物
US4778834A (en) 1987-02-24 1988-10-18 Sterling Drug Inc. Hydroxylapatite-synthetic resin composites
DE69028488D1 (de) 1989-01-27 1996-10-17 Neil Rex Hall Verstärktes kompositharz
CA1340760C (en) 1989-01-30 1999-09-21 Paul D. Hammesfahr Radiopaque fluoride releasing vlc dental composites and the use of specific fillers therein
US4920082A (en) 1989-01-30 1990-04-24 Corning Incorporated Glasses exhibiting controlled fluoride release
JPH0692444B2 (ja) * 1989-08-21 1994-11-16 株式会社トクヤマ 硬化性組成物
US5312484A (en) 1989-10-12 1994-05-17 Industrial Progress, Inc. TiO2 -containing composite pigment products
JPH0649737B2 (ja) 1990-04-20 1994-06-29 株式会社総合歯科医療研究所 強靭な厚肉注型品製造用の光硬化型樹脂用組成物
JP2523993B2 (ja) * 1990-12-17 1996-08-14 株式会社トクヤマ 歯科用複合材料の製造方法
ATE162077T1 (de) 1991-03-16 1998-01-15 Torf Ets Torf-derivierte bioaktive produkte und diese enthaltende pharmazeutische und kosmetische zusammensetzungen
AU2351292A (en) 1991-09-20 1993-03-25 Minnesota Mining And Manufacturing Company Aesthetic, opalescent cold-polymerizable dental restorative
US5360770A (en) 1992-01-07 1994-11-01 Den-Mat Corporation Fluoride ion-leachable glasses and dental cement compositions containing them
US5308243A (en) 1992-09-17 1994-05-03 Steven Edward Severy Method and compositions for producing life-like dental porcelain restorations and dental porcelain restorations so produced
DE4314817A1 (de) 1993-04-30 1994-11-03 Ivoclar Ag Opaleszierendes Glas
US5502087A (en) 1993-06-23 1996-03-26 Dentsply Research & Development Corp. Dental composition, prosthesis, and method for making dental prosthesis
WO1995011866A1 (en) 1993-10-29 1995-05-04 Minnesota Mining And Manufacturing Company Chemically derived leucite
US5470231A (en) 1994-04-20 1995-11-28 Stern; Alvin L. Method of forming porcelain tooth restorations
JP3214982B2 (ja) * 1994-07-04 2001-10-02 株式会社トクヤマ 無機組成物
DE4428839C2 (de) 1994-08-01 1997-01-23 Ivoclar Ag Alkali-Zink-Silicat-Glaskeramiken und -Gläser und Verfahren zur Herstellung der Glaskeramiken
DE4446033C2 (de) * 1994-12-23 1996-11-07 Heraeus Kulzer Gmbh Polymerisierbares Dentalmaterial
US5584886A (en) * 1995-04-11 1996-12-17 Lai; Juey H. Maxillofacial prosthetic materials
JP3524233B2 (ja) 1995-08-23 2004-05-10 株式会社ジーシー 歯科用無機有機複合充填材
US6300390B1 (en) * 1998-06-09 2001-10-09 Kerr Corporation Dental restorative composite
US6121344A (en) * 1998-06-19 2000-09-19 Kerr Corporation Optimum particle sized hybrid composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100488486C (zh) * 2005-12-15 2009-05-20 安泰科技股份有限公司 一种齿科用复合树脂
CN102905673A (zh) * 2010-06-18 2013-01-30 株式会社德山齿科 牙科用复合修复材料
CN103108605A (zh) * 2010-09-15 2013-05-15 西尔欧集团 长期抑菌化合物及其在牙科修复材料中的应用
CN103108605B (zh) * 2010-09-15 2015-12-09 西尔欧集团 长期抑菌化合物及其在牙科修复材料中的应用

Also Published As

Publication number Publication date
DE60017545T2 (de) 2006-01-12
MXPA01005700A (es) 2003-07-14
JP2003511400A (ja) 2003-03-25
DE60017545D1 (de) 2005-02-24
US6232367B1 (en) 2001-05-15
EP1137387B1 (en) 2005-01-19
WO2001026611A1 (en) 2001-04-19
BR0007178A (pt) 2001-09-04
EP1137387A1 (en) 2001-10-04

Similar Documents

Publication Publication Date Title
CN1337871A (zh) 牙齿修复组合物用的乳白色填料
CN105705112B (zh) 牙科研磨坯料、牙科修复体以及形成牙科研磨坯料的方法
EP1387658B1 (en) Dental composite containing discrete nanoparticles
US6121344A (en) Optimum particle sized hybrid composite
CA2051333C (en) Polymerizable dental material
Klapdohr et al. New inorganic components for dental filling composites
EP1101484B1 (en) Dental fillers
EP2724706B1 (en) Dental restorative material
CN102224106A (zh) 具有氧化锆和二氧化硅纳米粒子的填料和复合材料
JP5762405B2 (ja) 歯科用複合修復材料
RU2752386C2 (ru) Светоотверждаемая композиция
US4906446A (en) Filler for dental materials and dental materials containing the same
AU2014202479B2 (en) Durable dental material with improved transparent properties
WO2002015847A1 (fr) Composition dentaire durcissable
JPH0564604B2 (zh)
EP2146679B1 (en) Dental compositions for coating restorations and tooth surfaces
CN102665605A (zh) 牙科用组合物、铣削块和方法
EP1149573A2 (en) A dental composite material comprising aggregate
JPS5936602B2 (ja) 歯牙用加工材料
EP1017354B1 (en) Translucent wear resistant dental enamel material and method
JP5883859B2 (ja) 歯科複合材料用充填材
JP4271800B2 (ja) 歯科用多機能性フィラー
JPH05213713A (ja) 美的乳白光の冷温重合性歯科用材料
JP7422994B2 (ja) 歯科用硬化性組成物
JP7420405B2 (ja) 歯科用硬化性組成物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication