CN1329761A - 可将碳质原料转化成能量且无温室气体排放的方法和系统 - Google Patents

可将碳质原料转化成能量且无温室气体排放的方法和系统 Download PDF

Info

Publication number
CN1329761A
CN1329761A CN99813930A CN99813930A CN1329761A CN 1329761 A CN1329761 A CN 1329761A CN 99813930 A CN99813930 A CN 99813930A CN 99813930 A CN99813930 A CN 99813930A CN 1329761 A CN1329761 A CN 1329761A
Authority
CN
China
Prior art keywords
gas
carbon dioxide
half room
fuel cell
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99813930A
Other languages
English (en)
Other versions
CN1192448C (zh
Inventor
特里·R·加洛韦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1329761A publication Critical patent/CN1329761A/zh
Application granted granted Critical
Publication of CN1192448C publication Critical patent/CN1192448C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/40Fuel cell technologies in production processes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明的方法和系统将来自矿物燃料和其它可燃原料的碳质原料转化成电能,且无有害的温室气体排放。该方法和系统使用气化炉(112)和重整器(120)相结合的流程,将原料和温室气体转化成包括一氧化碳和氢气的合成气。合成气的一部分在产生电能的燃料电池(120)中经电化学氧化生成二氧化碳和水组成的排放气体,将其分离后,二氧化碳循环回到气化炉。另一部分,从气化炉出来的合成气转化成有用的烃产品。

Description

可将碳质原料转化成能量且无温室气体排放的方法和系统
本申请要求美国临时申请第60/064,692号,1997年11月7日提交的优先权。
本发明广泛地涉及消除传统的用煤,石油和天然气的发电厂排放二氧化碳和其它温室气体的方法和系统。
发明背景
矿物燃料在锅炉中燃烧以产生透平发电机使用的高温、高压蒸气的过程中会产生二氧化碳和其它温室气体,例如甲烷、臭氧和含氟烃的问题。这些矿物燃料燃烧,特别是煤,需要一种工艺装置以防止二氧化碳和其它温室气体的排放,它们的这些不需要的伴生物释放到地球的大气中,会吸收太阳辐射,被称之为温室效应。世界上很多地方要依赖煤为能源。人们已经作过许多有意义的尝试以开发清洁煤工艺,以大大地减少酸性气体的排放,如硫氧化物和氮氧化物。但是,到目前为止,这些清洁煤项目无一是针对消除二氧化碳和其它温室气体排放的。在发电厂和气化系统采用纯氧以防止氮的稀释效应和达到较高的效率的努力,遇到由于需要空分装置而成本不能接受和透平发电机进氧而温度过高的问题。
人们还进行过广泛的尝试,通过采用先进的热动力学复合循环,更高效的透平发电机,改进冷凝器和冷却塔,以及类似系统,来提高发电厂的效率。这些尝试中的一小部分涉及采用高效的矿物燃料气化工艺,因为这种工艺防止了燃烧和大量燃烧产物的排放。最后,威斯汀豪斯(Westinghouse,Corporate liferafure,“Sure Cell”1996)等进行的一种尝试,是将先进的高温透平发电机和燃料电池结合使用,使电转化率达到约70%,而目前传统的发电厂只有约47%。
今天,大气中二氧化碳和其它温室气体的增加,开始对地球对流层温度、全球降雨的分布、水平衡、剧烈气候风暴造成严重的环境后果以及类似的结果,这已成为世界性的担心问题。从技术上解决这个问题成为全世界的需要。
在世界范围内,由政府鼓励的,不同机构提供资金的研究机构,继续着力研究验明商业上有吸引力的从烟气中除去二氧化碳的气体分离技术,以及利用二氧化碳作为原料生产有用产品的化学。事实上,这是很大的挑战,进展很小,正如一些评述文献所阐述的那样,见Michele Aresta,and Eugenio Quaranta,“Carbon Dioxide:A Substitute for Phosgene”,Chem.Tech.pp.32-40,March 1997和Bette Hileman,“Industry Considers CO2Reduction Methods”,Chem.& Engr.News,pg.30,June 30,1997。将CO2从烟气中分出和使回收的CO2进行化学反应的尝试,明显不是正确的研究路线,因为使二氧化碳反应技术困难,过程费用太大。
发明概述
本发明方法和系统可将来自矿物燃料和其它可燃原料中的碳质原料转化为能量,而不产生有害的温室气体排放。该方法包括以下步骤:
(a)将碳质原料和温室气体在气化装置中转化成包括一氧化碳和氢的
   合成气;
(b)将至少一部分来自气化装置的合成气在燃料电池的第一半室中进
   行电化学氧化,生成包括二氧化碳和水的第一半室排出气体;
(c)回收第一半室排出气体中的二氧化碳,作为(a)步中温室气体的至少一部分;和
(d)在燃料电池的第二半室中电化学还原含氧气体,完成循环,并产生电能。
该系统包括:
(a)气化装置,设有碳质原料和温室气体入口,以及用于将混合原料转化成合成气的催化剂或其它手段;
(b)生产电能的燃料电池,包括:第一半室,设有与合成气流体连通的入口,和用于将合成气电化学氧化生成第一半室排出气体的第一手段或阳极;第二半室,设有用于将含氧气体电化学还原的第二手段或阴极;还有一个隔离第一半室和第二半室的膜,使气体组份不能从各自半室通过;和
(c)使来自第一半室的二氧化碳通过,以作为进入气化装置的温室气体的至少一部分的通路。
该方法回避了试图从烟气中除去和捕集二氧化碳的困难,并且没有试图使二氧化碳分别进行化学反应以期生产有用产品。本发明的方法和系统采用工业上通用的气化技术并与燃料电池相结合,可以高效地生产电能。这是通过利用燃料电池的特异性能的优点而完成的,即利用燃料电池的阳极和阴极上的两个反应用导电膜隔开以保持气体产物不混的特点。按此方法,可燃烧的原料气体在燃料电池第一半室中可被完全氧化,而且不与第二半室电极中的空气最终产物,即N2混合。例如,在煤气化时,生成主要由氢和一氧化碳组成的合成气。此合成气送入燃料电池,例如固体氧化物或熔融碳酸盐型电池的第一半室,即阳极或负端子侧,合成气在此被氧化成水和二氧化碳。这些气体不会被用于第二半室或另一半室,即燃料电池的阴极或正端子侧的燃烧空气中的通常的氮所稀释。当在锅炉或炉子中使用空气燃烧时,氮和燃烧气体混合。因此,合成气在燃料电池中进行氧化,而不是与空气燃烧,并且不会被其它气体稀释。在燃料电池中产生的水和二氧化碳通过冷凝液态水,可很容易地彼此分离,并使二氧化碳可返回到气化装置。二氧化碳进入高温气化装置,经与高温碳质原料反应,而生成更多的一氧化碳,如此反复循环。
通过本方法和系统,燃料电池中的二氧化碳很容易与空气和氮隔开。该二氧化碳几乎可以以纯净的形态循环进入气化装置。同样,水也以纯净形态进行再循环,其量按照气化装置控制的系统要求,以保持理想的氢和一氧化碳比,约1.75~约2.25。这有助于气化装置中保持高含氢量,使得气化装置产生的合成气可用于下游化学反应装置,如费一托(Fische-Tropsch)反应系统,生产从甲醇到石腊等各种有用化学品。这些产品再用于生产例如石脑油、柴油、汽油等有用化学品。这样,一氧化碳可用来生产有用的化学品,而不是以二氧化碳的形式丢弃有价值的碳源。装置保持了碳平衡,这样,装置输入的废弃物料中的碳质量,与输出的有价值的烃产品而非二氧化碳的碳质量相等。
这样实现的是一座化学工厂与一发电厂的结合,它可以生产有用的烃产品和高效率的电能,而无任何二氧化碳或其它温室气体排放。还有,最重要的气化装置比炼油厂、燃煤锅炉有更大的灵活性,因为它可以使用更多样的废弃物作为原料。解决了两个重要的问题。
该方法可用于采用矿物燃料,如碳质原料,包括煤、烃油、天然气、油页岩和石油焦的发电厂,以及炼油厂和石油化工厂。其它碳质原料,如废油、危害性废物、医院废物或它们的混合物均可作为本发明气化装置的原料。
附图说明
从以下说明和附图中,本发明的优点对本领域技术人员来说是显而易见的,其中:
图1是本发明方法和系统的第一种实施方案的简要流程图;
图2是本发明方法和系统的第二种实施方案的简要流程图;
图3是本发明方法和系统的第三种实施方案的简要流程图。
发明详述A.第一种实施方案,产生氢燃料电池能而不产生有害的温室气体的方法。
图1说明了本发明方法和系统的一种特殊的实施方案,在该过程中碳质废弃原料通过管线10进入内设催化剂床14的气化炉12,并在约400℃~约600℃(750°F~1100°F)的高温下转化成合成气。优选地,在气化炉12中采用流化催化剂床。在气化炉12中生成的合成气通过管线18出炉,然后在下游分成两路流经管线20和22。流经管线20的合成气从气门28进入燃料电池26。第二路合成气流经管线22去费一托催化反应器30。
本发明采用的气化方法和装置的一个实例是荷兰阿姆斯特丹荷兰壳牌公司(Royal Dutch Shell)气化炉(见L.O.M.Koenders,S.A.Posthuma,andP.L.Zuideveld,“The Shell Gasification Process for Conversion of HeavyResidues to Hydrogen and Power”,in a paper presented at GasificationTechnologies Conference,San Francico,CA,Oct.2-4,1996)。另一实例是德士古气化炉(见Corporate literature,“Texaco Gasification Process for SolidFeedstocks”,Texaco Depvolopment Corp.,White Plains,N.Y.and“Gasificaton:Reliable,Efficient and Clean”,Texaco Global Gas and Power,White Plains,N.Y.)。这些文献的有关部分作为参考结合在本发明详述中。气化技术另一实例是采用了美国专利NO.4,874,587所公开和要求保护的蒸汽重整反应器系统,亦作为参考结合在此发明详述中。
对于通过管线10进入气化炉12的石油焦原料,最适宜的操作条件是通过管线34输入6%氧,通过管线36输入12%CO2和通过管线38加入15%H2O。这样的条件可使气化炉12有足够氧气以保持其温度非常接近约900℃(1700°F),并且生成的合成气包括约22%CO和约45%H2。这些条件随原料的H/C比不同而稍有变化,但是合成气H2/CO比的目标值为约1.75~约2.25,可以通过稍稍改变进入气化炉12的O2、CO2和H2O的相对比例来控制。
在燃料电池26中,合成气原料向上通过电介质40周围和多孔催化阳极42,在此气体进行电化学氧化反应。膜44是离子导电体,但它不会让燃料电池26两侧的任何气体或烃类通过。
可以接受合成气并适宜用作本发明的燃料电池26的燃料电池实例包括固体氧化物燃料电池(由Westinghouse,Monroeville,Pennsylvania或Technical Management Inc.,Cleveland,Ohio制造)和熔融碳酸盐燃料电池(由Energy Research Corp.,Danbury,Connecticut制造)。下面文献的有关部分作为参考结合在本发明详述中,这些参考文献有:C.M.Caruana,“FuelCells Poised to Provide Power”,Chem.Eng.Progr.,pp.11-21,September,1996和S.C.Singhal,“Advanced in Tubular Solid Oxide Fuel Cell Technology”,Proceedings of the 4th International Symposium on Solid Oxide Fuel Cells,Pennington,N.J.,Vol.95-1,pp.195-207(1995)。
主要含有氢和一氧化碳的合成气被氧化后,离开燃料电池26的阳极42,其大部分成为水蒸汽和二氧化碳。这股被氧化的合成气物流通过管线48进入空冷冷凝器50,在此水蒸汽被冷凝成液态水,并从冷凝器底部通过管线52排出回用。从城市污水系统回收的废水可用于气化炉12。而管线52流出的全部或部分相当纯的水可以出售或再循环,以及与废水混合通过管线38送入气化炉12。二氧化碳气在冷凝器50中未被冷凝,通过冷凝器顶部和管线36以二氧化碳气的形式进入气化炉12。该二氧化碳在高温气化炉12中与炉内的碳质进料反应,生成更多的合成气以便进一步参加总反应。CO2或其它温室气体可通过管线56进入气化炉12,以保持希望的原料H/C比。
为了全面阐述图1,还要提到燃料电池26的另一半室,它包括在阴极60上进行空气还原。该标准空气电极可以使通过管线64进入的含氧气体,一般是空气,由下而上通过空气电解质66周围和电极60。空气流中的惰性组份,最主要是氮气,通过阴极半室并通过排放气流68排出。尽管成本可能更高,阴极半室也可以使用纯氧代替空气以求获得更高效率和产生更多的热量。该燃料电池产生的主要是电能,可达4~9kw/标准立方英尺氢气/分钟。
从管线22来的合成气在费一托催化反应器30中,在催化剂70上反应生成高沸点烃,例如石蜡或其它有用烃产品,并通过管线76回收。这些石蜡,例如可以用作壳牌中等馏份合成(Shell Middle DistillatesSynthesis)过程的原料,在此通过反应可生成石脑油、燃料气和煤油,这些均为有价值的化学产品(见J.Eilers,s.A.Posthuma,和S.T.Sie,“The ShellMiddle Distillate Synthesis Process(SMDS)”,Catalysis Letter,7,pp.253-270(1990))。该文献的有关部分作为参考结合在本发明详述中。
这样,通过管线10作为原料通入的全部碳物质均以有用烃产品形态的碳物质通过管线76回收,这就避免了当烃原料气化时排放的二氧化碳。而且不需要为从烟气中回收二氧化碳而使用昂贵和麻烦的碱洗塔,这是通常的燃烧/蒸气透平发电厂的配置。B.第二种实施方案,产生太阳能一甲醇燃料电池能而不产生有害的温室气体的方法。
本发明的方法和系统可用于生产甲醇,通过循环二氧化碳和电化学反应制得的氢反应生成“平衡的”最适合于生产甲醇的合成气。在该生产过程中,“平衡的”合成气中适宜的H2/CO=2.00。图2所示实施方案中,使用太阳能再生燃料电池系统将太阳能生产的氢气转化成甲醇,这种甲醇储存比较安全,用于燃料电池在夜间或阴天条件下生产电能。该第二种实施方案中还采用了旋转式废料进料器蒸气重整系统,在该系统中过热蒸气和氢与有机废料反应生成合成气和轻烃。该气体从旋转进料器出来送入高温蒸气重整器中,反应后生成完全纯净的“平衡的”合成气。
该第二种实施方案是对NASA提出的太阳能再生系统(G.E.Voecks,etal.Jet Propulsion Laboratory,Warshay,M.et al.NASA Lewis Research Center,Edwards,II.S.et al.,Navel Air Warfare Center,“Operation of the 25 kW NASALewis Research Center Solar Regenerative Fuel Cell Testbed Facility,”Paper#97295,International Energy Conversion Engineering conference,Proceedings,Vol.3,1999)的大改进。后一系统要求将氢气储存以备供给燃料电池。氢气储存在有人居住的建筑物或居民区的隐蔽区域,从现在安全观点出发是不能允许的。由一小型、自动化甲醇合成装置生产的甲醇,是约50%的甲醇/水混合物。这种混合物具有理想的安全特性,它在室温下,甚至有明火和过量空气存在下均不易燃烧。这种50%甲醇混合物作为图2所示燃料电池系统的进料也最为适宜。与第二种实施方案的燃料电池相匹配的是低温重整器和选择性氧化器。该燃料电池系统采用商品化的PEM膜电池,它已用于早期开发的燃料电池汽车(即Daimler-Benz等)和公共汽车(乔治敦大学)。单个电池可以以50或100kW大小购得。
图2所示太阳能甲醇燃料电池系统是为东圣路易斯太阳住宅村(EastSt.Louis Solar Cluster Village)的示范装置而设计的。该村将包括环绕娱乐中心而建的50套太阳能顶盖的住宅,娱乐中心内还安置了甲醇合成装置、甲醇储存和生产电能的燃料电池。该村的全套系统形成一个能量几乎可以自给自足的系统,包括太阳能和家庭垃圾废物的利用。当不能使用太阳能时,储存的甲醇驱动燃料电池生产住宅群和小型电解池所需的电能,该电解池用于生产甲醇合成装置所需“平衡的”合成气中的氢。多余的甲醇可用于该太阳能村居民的甲醇燃料电池小汽车和公共汽车。本发明第二实施方案中的这种太阳能甲醇燃料电池系统可以用于没有公共基础设施的边远地区和发展中国家。
现在参见图2流程,固体碳质废料通过管线100送入旋转式废料进料器112中,将废料转化成气体。该气体从进料器112出来,通过管线114和泵116进入设有流化催化剂床122的高温重整器120。废料气体在重整器120中,在约400℃~约700℃温度下,转化成“平衡的”合成气。该平衡的合成气从出口123通过管线124进入甲醇合成装置130。部分合成气通过管线136送入进料管线114,用以保持催化剂床的最低流化速率。从甲醇装置130回收的甲醇通过管线142送入甲醇储槽140。储槽140中的甲醇经过管线154进入低温蒸汽重整器150,转化成合成气。该合成气经过管线156进入选择性氧化催化剂热交换器160反应,将CO转换成CO2,CO2通过管线162循环回到进料管线114。而氢通过管线168,与目前可以买到的PEM燃料电池170的第一半室流动连通。第一半室的排出气体大部分为水蒸汽,通过管线172再循环,与管线162的CO2一起送入进料管线114。电解池180利用燃料电池170产生的电能174和太阳能板190提供的能量,将水分解为氢和氧。氢通过管线182送至进料管线114,以保证可以生产“平衡的”合成气并送入甲醇装置130。电解池180生成的氧通过管线184进入燃料电池的第二半室,用作燃料电池阴极最适宜的含氧气体,以生产电能174和热能186。由PV(聚乙烯基)太阳能电池板190产生的热能192与燃料电池170产生的热能186结合,使第二种实施方案达到能量平衡。多余的热能186可以出售。储槽150中多余的甲醇经由管线194,可用作前述的燃料源。C.第三种实施方案,使用带有循环的综合气化燃料电池而不产生有害温室气体的方法。
本发明方法和系统的第三种实施方案包括一个小型发电厂的较大规模的系统,使用煤和废料的混合物作为原料。图3所示实施方案中,采用高温固体氧化物燃料电池(SOFC),这种燃料电池可以接受气化装置或气化炉生产的合成气。燃料电池产生的CO2没有明显掺杂空气,因之可以循环。
SOFC燃料电池与三级透平机组联合循环体系,作为发电厂可以达到68%~74%的高效率。(见S.C.Singhal,“Advances in Tubular Solid OxideFuel Cell Technology”,Proceeding ofthe 4th International Symposium on SolidOxide Fuel Cell,Pennington,N.J.Vol.95-1,195-207(1995);和W.I.Lundberg,“Solid Oxide Fuel Cell/Gas Turbine Power Plant Cycles and PerformanceEstimates”,Power-Gen International,96,Orlando,FL.(Dec.4-6,1996))。SOFC的空气进料用一台透平驱动压缩机增压,然后在回收SOFC废热的“热回收装置”中加热。该加热的空气随后进入透平机第二段进行膨胀发电。最后,气化炉产生的部分蒸汽与SOFC产生的蒸汽一起推动蒸汽透平机的第三段。水冷凝器的目的是接受SOFC排出的含有CO2和水蒸汽的气体,并将水分出,以制造蒸汽透平机使用的蒸汽,并回收CO2,循环用于气化炉。虽然此水冷凝器仅象征性地表示为一个很简单的设备,但它有一个换热器作为该装置的一部分,以便有效地将水冷凝和将分离的水在其进入气相“热回收装置”之前再沸,此“热回收装置”产生高温蒸汽,送至蒸汽透平机。
蒸汽透平机是燃料电池整套设备的一个组成部分,由其排出的低压蒸汽可以提供给与发电厂毗邻的界区外用户,如其生产需要的低温热能。该流程避免使用蒸汽羽状排放的大型冷却塔。这样显著节约了费用,并对环境有利。
图2流程中设置了接受燃料电池输出的电能的电解池,能使装置进行负荷跟踪,同时保持煤进料和蒸汽重整器在恒定通量的条件下操作。装置电能输出量可通过改变电解池用电量而改变,以生产和储存过量的氢和氧。在用电高峰期间,可以将这些过量的氢输入燃料电池,大大增加燃料电池的发电量。
在图3所示的第三种实施方案中,固体碳质废料以煤或固体废料的形态,通过管线200进入湿式研磨机212,并与通过管线214加入的水或液体废料混合,制成适宜密度的浆液。将此浆液从进料器212通过进料管线216送入两段气化炉220的第一段218的入口219。通过管线222通入氧气与第一段218中的浆液混合。该浆液在气化炉220的第二段224中,在约800℃~1600℃温度下转化成合成气。副产物残渣从第二段224底部通过管线226回收。合成气从第二段224通过管线228去脱硫装置230。二硫化碳副产物从装置230底部通过管线232回收。从装置230出来的基本上无硫的合成气通过管线234进入SOFC燃料电池240的第一半室236。第一半室236排出的气体主要含有水蒸汽和CO2,通过管线244去水冷凝器250。CO2通过管线252循环回到气化炉220的第一段218。从燃料电池240回收的氮气废热258被收集在热回收装置260中。从热回收装置出来的氮气通过管线262放空。通过管线264供给燃料电池240第二半室266的空气,经气体透平机组272第一段压缩机270增压,并通过管线274经过热回收装置260。从热回收装置260出来的经加热的空气,经由管线282进入燃料电池240之前,先在透平机组272的第二段透平机280膨胀。管线284中的水,在气化炉220中的废热再沸器286的第二段224转化成蒸汽。来自冷凝器250的管线292中的冷凝水,在热回收装置260中转化成蒸汽。管线294中来自气化炉220第二段224的蒸汽,和管线296中来自热回收装置260的蒸汽,用作透平机组272第三段透平机290的动力。
另外,在不脱离本发明的精神和范围的情况下,本领域的普通技术人员可以提出本发明方法和系统的各种其它实施方案和形式,以使其适应特定的用途和条件。这样,这些改变和改进是合理的、正确的,并且是在下述权利要求等价物的范围内。

Claims (50)

1.一种将碳质原料转化为能量且无有害的温室气体排放的方法,包括:
(a)将碳质原料和温室气体流在气化装置中转化成包括一氧化碳和氢的合成气;
(b)上述气化装置出来的合成气的至少一部分在燃料电池的第一半室中进行电化学氧化,生成含有二氧化碳和水的第一半室排出气体;
(c)回收上述第一半室排出气体中的二氧化碳,作为至少一部分(a)步的温室气体流;和
(d)在上述燃料电池第二半室中进行含氧气体的电化学还原反应,完成循环并生产出电能。
2.权利要求1的方法,其中(a)步所用碳质原料选自煤、烃油、天然气、石油焦、油页岩、废油、有毒废物、医疗废物及其混合物。
3.权利要求1的方法,其中所述温室气体流是二氧化碳。
4.权利要求1的方法,用于生产电能的矿物燃料工厂。
5.权利要求1的方法,用于炼油厂。
6.权利要求1的方法,用于石油化工厂。
7.权利要求1的方法,其中所述气化装置内设流化催化剂床,并在约400℃~约700℃(750°F~1300°F)温度下操作。
8.权利要求1的方法,其中来自所述气化装置的合成气的一部分在化学反应器中转化成有用的烃产品。
9.权利要求8的方法,其中所述化学反应器是费一托反应器。
10.权利要求9的方法,其中来自第一半室排出气体的大部分水采用冷凝器进行冷凝。
11.权利要求10的方法,其中将氢和至少一部分冷凝水以一定量通入所述气化装置中,以调节混合的碳质原料和温室气体流的氢碳化,以生产费一托反应器所需的最佳比例的合成气。
12.权利要求11的方法,其中所述合成气的氢碳比为约1.75~约2.25。
13.权利要求9的方法,其中调节(a)步中的温室气体流量,以使进入所述气化装置的混合碳质原料和温室气体流的氢/一氧化碳比为约1.75~约2.25。
14.权利要求1的方法,其中(d)步的含氧气体是空气,在电还原过程中产生的氮排入大气中。
15.权利要求1的方法,其中所述燃料电池的第一半室含有围绕多孔的催化阳极的电解质。
16.权利要求15的方法,其中所述燃料电池的第二半室含有围绕催化阴极的空气电解质。
17.权利要求16的方法,其中所述燃料电池的第一和第二半室利用一个离子导电膜隔开,各半室内的组份不能通过该膜。
18.一种将碳质原料转化为能量,且无有害温室气体排放的系统,包括:
(a)一气化装置,设有碳质原料和温室气体流入口,将混合原料转化成包括一氧化碳和氢的合成气的催化剂,和合成气出口;
(b)生产电能的燃料电池,包括:第一半室,具有与合成气流动连通的入口和用于将合成气电化学氧化生成二氧化碳和水组成的第一半室排出气体的另一手段;第二半室,具有用于将含氧气体电化学还原的另二手段;以及隔离第一和第二半室的膜,各半室内的组份均不能通过它;和
(c)二氧化碳的通路方式,该二氧化碳从第一半室出来,作为通入所述气化装置的温室气体流的至少一部分。
19.权利要求18的系统,其中(a)步所用碳质原料选自煤、烃油、天然气、石油焦、油页岩、废油、有毒废物、医疗废物以及其混合物。
20.权利要求18的系统,其中温室气体流是二氧化碳。
21.权利要求18的系统,其中所述气化装置内设流化催化剂床,并在约400℃~约700℃温度下操作。
22.权利要求18的系统,其中一化学反应器与所述气化装置流体连通,并将来自所述气化装置的合成气转化成有用烃产品。
23.权利要求22的系统,其中所述化学反应器是费一托反应器。
24.权利要求23的系统,其中使用冷凝器将来自所述第一半室排出气体中的大部分水冷凝。
25.权利要求24的系统,其中将氢和至少一部分冷凝水以一定量通入所述气化装置中,以调节混合的碳质原料和温室气体流的氢碳比,以生产费一托反应器所需的最佳比例的合成气。
26.权利要求25的系统,其中所述合成气的氢碳比为约1.75~约2.25。
27.权利要求23的系统,其中调节(a)步中的温室气体流量,以使进入所述气化装置的混合碳质原料和温室气体流的氢/一氧化碳比为约1.75~约2.25。
28.权利要求18的系统,其中含氧气体是空气,而由离子还原形成的氮气排入大气。
29.权利要求18的系统,其中所述燃料电池第一半室含有围绕多孔催化阳极的电解质。
30.权利要求29的系统,其中所述燃料电池的第二半室含有围绕催化阴极的空气电解质。
31.一种可将碳质原料转化为能量且无有害的温室气体排放的方法,包括:
(a)将有机废物原料与所述反应器中的二氧化碳气体流在一高温蒸汽重整反应器中转化成包括一氧化碳和氢的合成气;
(b)将来自上述反应器的合成气的至少一部分转化成甲醇;
(c)将上述甲醇在燃料电池的第一半室中直接电化学氧化成包括二氧化碳和水的第一半室排出气体;
(d)回收第一半室排出气体中的二氧化碳,作为(a)步二氧化碳气流的至少一部分;和
(e)含氧气体在所述燃料电池的第二半室中进行电化学还原,产生电能。
32.权利要求31的方法,其中所述燃料电池利用一种预转化方法,将甲醇转化为氢和二氧化碳,并将氢作为燃料电池第一半室的原料。
33.权利要求32的方法,其中所述转化方法包括一个低温蒸汽重整器和一个选择性氧化器,并且其中来自所述选择性氧化器的二氧化碳作为(a)步的二氧化碳气流的一部分,而来自所述选择性氧化器的氢在第一半室进行电化学氧化。
34.权利要求31的方法,其中所述电能供给装有太阳能板的建筑物在夜间和阴天条件下使用。
35.权利要求34的方法,其中电解池产生的氢用于生产甲醇合成所需平衡气,所述电解池由所述电能提供电力。
36.权利要求35的方法,其中所述电解池产出的氧循环回到第二半室作为含氧气体的至少一部分。
37.权利要求34的方法,其中所述有机废物原料是城市垃圾。
38.一种可将碳质原料转化为能量且无有害的温室气体排放的方法,包括:
(a)将有机废物原料与所述反应器中的二氧化碳气体流在一高温蒸汽重整反应器中转化成包括一氧化碳和氢的合成气;
(b)将来自上述反应器的合成气的至少一部分转化成甲醇;
(c)将上述甲醇在燃料电池的第一半室中直接电化学氧化成包括二氧化碳和水的第一半室排出气体;
(d)回收第一半室排出气体中的二氧化碳,作为(a)步二氧化碳气流的至少一部分;和
(e)含氧气体在所述燃料电池的第二半室中进行电化学还原,产生电能。
39.权利要求38的方法,其中所述燃料电池利用一种预转化方法,将甲醇转化为氢和二氧化碳,并将氢作为燃料电池第一半室的原料。
40.权利要求39的方法,其中所述转化方法包括一个低温蒸汽重整器和一个选择性氧化器,并且其中来自所述选择性氧化器的二氧化碳作为(a)步的二氧化碳气流的一部分,而来自所述选择性氧化器的氢在第一半室进行电化学氧化。
41.权利要求38的方法,其中所述电能供给装有太阳能板的建筑物在夜间和阴天条件下使用。
42.权利要求41的方法,其中电解池产生的氢用于生产甲醇合成所需平衡气,所述电解池由所述电能提供电力。
43.权利要求42的方法,其中所述电解池产出的氧循环回到第二半室作为含氧气体的至少一部分。
44.权利要求41的方法,其中所述有机废物原料是城市垃圾。
45.一种将碳质原料转化成能量且无有害的温室气体排放的方法,包括:
(a)将碳质原料和二氧化碳气流在气化装置中转化成包括一氧化碳和氢的合成气;
(b)出自所述气化装置的合成气的至少一部分,在固体氧化物燃料电池第一半室中进行电化学氧化,生成包括二氧化碳和水的第一半室排出气体;
(c)将所述半室排出气体中的水在冷凝器中冷凝,并将大部分水从二氧化碳中分离出来;
(d)出自冷凝器的二氧化碳用作所述(b)步温室气体的至少一部分;
(e)回收所述第一半室排出气体中的二氧化碳,用作所述(a)步二氧化碳气流的至少一部分;和
(f)含氧气体在所述燃料电池第二半室中进行电化学还原,结果产生电能。
46.权利要求45的方法,其中所述原料选自与水或液体废物混合的煤、油页岩、固体废物及其混合物。
47.权利要求45的方法,其中所述燃料电池发出的热量用热回收装置回收。
48.权利要求47的方法,其中沸腾器的进水在所述气化器中转化成高压蒸汽,用于驱动三级蒸汽透平机的第三段。
49.权利要求46的方法,其中含氧气体在所述热回收装置中加热,后经膨胀,用于驱动所述三级蒸汽透平机的第二段,并用于(f)步。
50.权利要求45的方法,其中出自所述气化装置的合成气,在去所述燃料电池进行电化学氧化之前,在脱硫装置中进行脱硫。
CNB998139300A 1998-11-05 1999-11-01 可将碳质原料转化成能量且无温室气体排放的方法和系统 Expired - Fee Related CN1192448C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/186,766 US6187465B1 (en) 1997-11-07 1998-11-05 Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
US09/186,766 1998-11-05

Publications (2)

Publication Number Publication Date
CN1329761A true CN1329761A (zh) 2002-01-02
CN1192448C CN1192448C (zh) 2005-03-09

Family

ID=22686215

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998139300A Expired - Fee Related CN1192448C (zh) 1998-11-05 1999-11-01 可将碳质原料转化成能量且无温室气体排放的方法和系统

Country Status (5)

Country Link
US (1) US6187465B1 (zh)
EP (1) EP1142047A1 (zh)
CN (1) CN1192448C (zh)
HK (1) HK1043441B (zh)
WO (1) WO2000028610A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426885B (zh) * 2006-04-24 2013-03-27 约翰内斯堡威特沃特斯兰德大学 提高烃生产中的碳效率
CN103132100A (zh) * 2013-03-22 2013-06-05 上海交通大学 一种从煤生产纯净氢气和二氧化碳的工艺方法
CN103415596A (zh) * 2011-02-23 2013-11-27 西格里碳素欧洲公司 对用过的含碳阴极材料进行加工的方法
CN105762386A (zh) * 2009-09-08 2016-07-13 俄亥俄州国家创新基金会 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成
US9903584B2 (en) 2011-05-11 2018-02-27 Ohio State Innovation Foundation Systems for converting fuel
US10010847B2 (en) 2010-11-08 2018-07-03 Ohio State Innovation Foundation Circulating fluidized bed with moving bed downcomers and gas sealing between reactors
US10022693B2 (en) 2014-02-27 2018-07-17 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
US10081772B2 (en) 2008-09-26 2018-09-25 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
US10144640B2 (en) 2013-02-05 2018-12-04 Ohio State Innovation Foundation Methods for fuel conversion
CN108954827A (zh) * 2018-05-16 2018-12-07 重庆国翰能源发展有限公司 一种混合供能装置
US10253266B2 (en) 2009-09-08 2019-04-09 Ohio State Innovation Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US10502414B2 (en) 2011-05-11 2019-12-10 Ohio State Innovation Foundation Oxygen carrying materials
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
US11090624B2 (en) 2017-07-31 2021-08-17 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US11111143B2 (en) 2016-04-12 2021-09-07 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
CN113834224A (zh) * 2021-09-29 2021-12-24 西安交通大学 基于太阳能的锅炉烟气处理系统及方法
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
US11453626B2 (en) 2019-04-09 2022-09-27 Ohio State Innovation Foundation Alkene generation using metal sulfide particles
CN117154151A (zh) * 2023-08-30 2023-12-01 广东佛燃科技有限公司 一种利用废食用油重整制氢的固体氧化物燃料电池系统

Families Citing this family (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030022035A1 (en) * 1997-11-07 2003-01-30 Galloway Terry R. Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
AU6358199A (en) * 1998-10-27 2000-05-15 Quadrise Limited Electrical energy storage
US6387555B1 (en) * 2000-02-22 2002-05-14 Utc Fuel Cells, Llc Selective oxidizer in cell stack manifold
US6688387B1 (en) 2000-04-24 2004-02-10 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6588504B2 (en) 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
US7011154B2 (en) * 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6645485B2 (en) * 2000-05-10 2003-11-11 Allan R. Dunn Method of treating inflammation in the joints of a body
DE10041262A1 (de) * 2000-08-23 2002-03-14 Forschungszentrum Juelich Gmbh Brennstoffzellen-Kraftwerk
US6812586B2 (en) * 2001-01-30 2004-11-02 Capstone Turbine Corporation Distributed power system
CA2370069C (en) * 2001-02-05 2009-06-02 Honda Giken Kogyo Kabushiki Kaisha Vehicular two-wheel drive and four-wheel drive switching system
US6880633B2 (en) * 2001-04-24 2005-04-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
US6884531B2 (en) * 2001-05-21 2005-04-26 Saudi Arabian Oil Company Liquid hydrocarbon based fuels for fuel cell on-board reformers
CN100449841C (zh) * 2001-06-15 2009-01-07 兹特克公司 零排放或低排放和共生产型能量供应站
US6932847B2 (en) * 2001-07-06 2005-08-23 Millennium Cell, Inc. Portable hydrogen generator
CA2352626A1 (fr) * 2001-07-12 2003-01-12 Co2 Solution Inc. Couplage d'une pile a hydrogene a un bioreacteur enzymatique de transformation et sequestration du co2
CA2353307A1 (fr) 2001-07-13 2003-01-13 Carmen Parent Appareil et procede pour le traitement des effluents gazeux
US7090013B2 (en) * 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7165615B2 (en) * 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US6932155B2 (en) * 2001-10-24 2005-08-23 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US7104319B2 (en) * 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7182132B2 (en) * 2002-01-15 2007-02-27 Independant Energy Partners, Inc. Linearly scalable geothermic fuel cells
US6684948B1 (en) 2002-01-15 2004-02-03 Marshall T. Savage Apparatus and method for heating subterranean formations using fuel cells
AU2003215059B2 (en) * 2002-02-05 2007-03-22 The Regents Of The University Of California Production of synthetic transportation fuels from carbonaceous materials using self-sustained hydro-gasification
US6846404B2 (en) * 2002-04-09 2005-01-25 Chevron U.S.A. Inc. Reducing CO2 levels in CO2-rich natural gases converted into liquid fuels
US7132183B2 (en) * 2002-06-27 2006-11-07 Intellergy Corporation Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
US7220502B2 (en) * 2002-06-27 2007-05-22 Intellergy Corporation Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
US7318845B2 (en) * 2002-07-10 2008-01-15 Applied Research Associates, Inc. Compact distillates fuel processor with effective sulfur removal process
CA2405635A1 (en) 2002-09-27 2004-03-27 C02 Solution Inc. A process and a plant for the production of useful carbonated species and for the recycling of carbon dioxide emissions from power plants
US8200072B2 (en) 2002-10-24 2012-06-12 Shell Oil Company Temperature limited heaters for heating subsurface formations or wellbores
CA2448715C (en) * 2002-11-11 2011-07-05 Nippon Telegraph And Telephone Corporation Fuel cell power generating system with two fuel cells of different types and method of controlling the same
US6898936B1 (en) * 2002-12-04 2005-05-31 The United States Of America As Represented By The United States Department Of Energy Compression stripping of flue gas with energy recovery
NO320939B1 (no) * 2002-12-10 2006-02-13 Aker Kvaerner Engineering & Te Fremgangsmate for eksosgassbehandling i brenselcellesystem basert pa oksider i fast form
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
GB0310281D0 (en) * 2003-05-03 2003-06-11 Univ Robert Gordon A membrane apparatus and method of preparing a membrane and a method of producing synthetic gas
GB0314806D0 (en) * 2003-06-25 2003-07-30 Accentus Plc Processing biological waste materials to provide energy
US7176246B2 (en) * 2003-10-01 2007-02-13 Intevep, S.A. Process for converting heavy crude oils and petroleum coke to syngas using external source of radiation
US7449158B2 (en) * 2003-10-01 2008-11-11 Intevep, S.A. Apparatus and gasification of carbonaceous solid materials
CA2484919A1 (en) * 2003-10-15 2005-04-15 Universite De Sherbrooke Solid electrolyte fuel cell supported by an integrated reformer
KR100569239B1 (ko) * 2003-10-25 2006-04-07 한국과학기술연구원 이산화탄소와 탄화수소의 내부개질반응에 의해 전기와 합성가스를 동시에 생성하는 고체산화물 연료전지, 및 이를 이용한 전기화학적 전환반응시스템
US7396603B2 (en) * 2004-06-03 2008-07-08 Fuelcell Energy, Inc. Integrated high efficiency fossil fuel power plant/fuel cell system with CO2 emissions abatement
US20070029264A1 (en) * 2004-06-15 2007-02-08 Bowe Michael J Processing biological waste materials to provide energy
US20060228294A1 (en) * 2005-04-12 2006-10-12 Davis William H Process and apparatus using a molten metal bath
US8614364B2 (en) 2005-07-06 2013-12-24 Inentec Inc. Renewable electricity conversion of liquid fuels from hydrocarbon feedstocks
WO2007019643A1 (en) 2005-08-19 2007-02-22 Varipower Technology Pty Ltd Method for generating power
US8114176B2 (en) * 2005-10-12 2012-02-14 Great Point Energy, Inc. Catalytic steam gasification of petroleum coke to methane
US7950243B2 (en) * 2006-01-16 2011-05-31 Gurin Michael H Carbon dioxide as fuel for power generation and sequestration system
US20070210075A1 (en) * 2006-03-02 2007-09-13 John Self Induction heater
US7922782B2 (en) * 2006-06-01 2011-04-12 Greatpoint Energy, Inc. Catalytic steam gasification process with recovery and recycle of alkali metal compounds
US20080182298A1 (en) * 2007-01-26 2008-07-31 Andrew Eric Day Method And System For The Transformation Of Molecules,To Transform Waste Into Useful Substances And Energy
US20080166273A1 (en) * 2007-01-04 2008-07-10 Day Andrew E Method And System For The Transformation Of Molecules, This Process Being Used To Transform Harmful And Useless Waste Into Useful Substances And Energy
US20090049748A1 (en) * 2007-01-04 2009-02-26 Eric Day Method and system for converting waste into energy
US8563183B2 (en) * 2007-06-26 2013-10-22 The Board Of Trustees Of The Leland Stanford Junior University Integrated dry gasification fuel cell system for conversion of solid carbonaceous fuels
CN105062563A (zh) * 2007-08-02 2015-11-18 格雷特波因特能源公司 负载催化剂的煤组合物,制造方法和用途
US20090090055A1 (en) * 2007-10-09 2009-04-09 Greatpoint Energy, Inc. Compositions for Catalytic Gasification of a Petroleum Coke
WO2009048724A2 (en) * 2007-10-09 2009-04-16 Greatpoint Energy, Inc. Compositions for catalytic gasification of a petroleum coke and process for their conversion to methane
US8123827B2 (en) * 2007-12-28 2012-02-28 Greatpoint Energy, Inc. Processes for making syngas-derived products
WO2009086362A1 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Petroleum coke compositions for catalytic gasification
US20090165380A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Petroleum Coke Compositions for Catalytic Gasification
US20090165379A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Coal Compositions for Catalytic Gasification
WO2009086377A2 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US7897126B2 (en) * 2007-12-28 2011-03-01 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US20090165383A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Catalytic Gasification Process with Recovery of Alkali Metal from Char
WO2009086407A2 (en) 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US20090165361A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Carbonaceous Fuels and Processes for Making and Using Them
US20090220406A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Selective Removal and Recovery of Acid Gases from Gasification Products
US8709113B2 (en) 2008-02-29 2014-04-29 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
US7926750B2 (en) * 2008-02-29 2011-04-19 Greatpoint Energy, Inc. Compactor feeder
US8652222B2 (en) * 2008-02-29 2014-02-18 Greatpoint Energy, Inc. Biomass compositions for catalytic gasification
US8286901B2 (en) * 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8297542B2 (en) * 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
WO2009111332A2 (en) * 2008-02-29 2009-09-11 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
CN101959996B (zh) * 2008-02-29 2013-10-30 格雷特波因特能源公司 用于气化作用的颗粒状组合物及其制备和连续转化
US8114177B2 (en) 2008-02-29 2012-02-14 Greatpoint Energy, Inc. Co-feed of biomass as source of makeup catalysts for catalytic coal gasification
WO2009111345A2 (en) 2008-02-29 2009-09-11 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
US20090260287A1 (en) * 2008-02-29 2009-10-22 Greatpoint Energy, Inc. Process and Apparatus for the Separation of Methane from a Gas Stream
US20100018216A1 (en) * 2008-03-17 2010-01-28 Fassbender Alexander G Carbon capture compliant polygeneration
US8192716B2 (en) 2008-04-01 2012-06-05 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
CA2718295C (en) * 2008-04-01 2013-06-18 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
US20090307974A1 (en) * 2008-06-14 2009-12-17 Dighe Shyam V System and process for reduction of greenhouse gas and conversion of biomass
US20090324462A1 (en) * 2008-06-27 2009-12-31 Greatpoint Energy, Inc. Four-Train Catalytic Gasification Systems
US20090324458A1 (en) * 2008-06-27 2009-12-31 Greatpoint Energy, Inc. Two-Train Catalytic Gasification Systems
WO2009158580A2 (en) * 2008-06-27 2009-12-30 Greatpoint Energy, Inc. Four-train catalytic gasification systems
US20090324461A1 (en) * 2008-06-27 2009-12-31 Greatpoint Energy, Inc. Four-Train Catalytic Gasification Systems
WO2010033850A2 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
WO2010033848A2 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
CN102159687B (zh) * 2008-09-19 2016-06-08 格雷特波因特能源公司 使用炭甲烷化催化剂的气化方法
KR101256288B1 (ko) 2008-09-19 2013-04-23 그레이트포인트 에너지, 인크. 탄소질 공급원료의 기체화 방법
WO2010048493A2 (en) * 2008-10-23 2010-04-29 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
KR101290453B1 (ko) 2008-12-30 2013-07-29 그레이트포인트 에너지, 인크. 촉매된 탄소질 미립자의 제조 방법
KR101290423B1 (ko) * 2008-12-30 2013-07-29 그레이트포인트 에너지, 인크. 촉매된 석탄 미립자의 제조 방법
JP5580837B2 (ja) 2009-01-29 2014-08-27 プリンストン ユニバーシティー 二酸化炭素の有機生成物への変換
US8349504B1 (en) * 2009-03-24 2013-01-08 Michael John Radovich Electricity, heat and fuel generation system using fuel cell, bioreactor and twin-fluid bed steam gasifier
AU2010245167A1 (en) * 2009-04-28 2011-10-13 University Of Southern California Efficient and environmentally friendly processing of heavy oils to methanol and derived products
US8500868B2 (en) * 2009-05-01 2013-08-06 Massachusetts Institute Of Technology Systems and methods for the separation of carbon dioxide and water
US20100313840A1 (en) * 2009-05-05 2010-12-16 Days Energy Systems Method and system for converting waste into energy
CA2759961C (en) * 2009-05-13 2013-12-17 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8268899B2 (en) * 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
WO2010132551A2 (en) * 2009-05-13 2010-11-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US20110031439A1 (en) 2009-08-06 2011-02-10 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
CN102482598B (zh) 2009-09-16 2014-09-17 格雷特波因特能源公司 双模式制氢法
CN102575181B (zh) 2009-09-16 2016-02-10 格雷特波因特能源公司 集成氢化甲烷化联合循环方法
EP2478071A1 (en) * 2009-09-16 2012-07-25 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
WO2011034889A1 (en) 2009-09-16 2011-03-24 Greatpoint Energy, Inc. Integrated hydromethanation combined cycle process
WO2011049858A2 (en) 2009-10-19 2011-04-28 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
WO2011049861A2 (en) 2009-10-19 2011-04-28 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
US20110146978A1 (en) * 2009-12-17 2011-06-23 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
CN102639435A (zh) 2009-12-17 2012-08-15 格雷特波因特能源公司 整合的强化采油方法
WO2011106285A1 (en) 2010-02-23 2011-09-01 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652696B2 (en) * 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8845877B2 (en) * 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8721866B2 (en) * 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US8500987B2 (en) * 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
DE102010013660A1 (de) * 2010-04-01 2011-10-06 Linde Ag Verfahren und Vorrichtung zur Speicherung von Energie
AU2011248701B2 (en) 2010-04-26 2013-09-19 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
CA2793893A1 (en) 2010-05-28 2011-12-01 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US8524066B2 (en) * 2010-07-29 2013-09-03 Liquid Light, Inc. Electrochemical production of urea from NOx and carbon dioxide
CA2806673A1 (en) 2010-08-18 2012-02-23 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
CN103080285A (zh) 2010-09-10 2013-05-01 格雷特波因特能源公司 含碳原料的加氢甲烷化
US20120102837A1 (en) 2010-11-01 2012-05-03 Greatpoint Energy, Inc. Hydromethanation Of A Carbonaceous Feedstock
KR101543136B1 (ko) 2010-11-01 2015-08-07 그레이트포인트 에너지, 인크. 탄소질 공급원료의 히드로메탄화
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
CA2827916C (en) 2011-02-23 2016-06-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
US8562811B2 (en) 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
US20120271072A1 (en) 2011-04-22 2012-10-25 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
US8658016B2 (en) 2011-07-06 2014-02-25 Liquid Light, Inc. Carbon dioxide capture and conversion to organic products
CA2841062A1 (en) 2011-07-06 2013-01-10 Liquid Light, Inc. Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates
CN103890147A (zh) 2011-08-17 2014-06-25 格雷特波因特能源公司 碳质原料的加氢甲烷化
CN103890148A (zh) 2011-08-17 2014-06-25 格雷特波因特能源公司 碳质原料加氢甲烷化
WO2013052553A1 (en) 2011-10-06 2013-04-11 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
AU2012367826A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
WO2013112133A1 (en) 2012-01-23 2013-08-01 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US8945368B2 (en) 2012-01-23 2015-02-03 Battelle Memorial Institute Separation and/or sequestration apparatus and methods
KR101646890B1 (ko) 2012-10-01 2016-08-12 그레이트포인트 에너지, 인크. 응집된 미립자 저등급 석탄 공급원료 및 그의 용도
WO2014055365A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
WO2014055353A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
KR101576781B1 (ko) 2012-10-01 2015-12-10 그레이트포인트 에너지, 인크. 응집된 미립자 저등급 석탄 공급원료 및 그의 용도
CN104919023B (zh) 2013-01-04 2016-08-24 沙特阿拉伯石油公司 利用太阳辐射通过合成气制备单元将二氧化碳转化为烃类燃料
CA2937948C (en) 2014-01-31 2019-10-01 Fuelcell Energy, Inc. Reformer-electrolyzer-purifier (rep) assembly for hydrogen production, systems incorporation same and method of producing hydrogen
CN105368498A (zh) * 2015-09-08 2016-03-02 袁峥嵘 一种固定床加压连续气化制水煤气的方法
CN108604695B (zh) 2015-11-16 2021-09-17 燃料电池能有限公司 利用具有发动机的rep的能量储存
WO2017087405A1 (en) * 2015-11-16 2017-05-26 Fuelcell Energy, Inc. System for capturing co2 from a fuel cell
KR102143861B1 (ko) 2015-11-17 2020-08-12 퓨얼 셀 에너지, 인크 향상된 co2 포집을 갖는 연료 전지 시스템
CA3107519C (en) 2015-11-17 2023-01-31 Fuelcell Energy Inc. Hydrogen and carbon monoxide generation using an rep with partial oxidation
CA2914070C (en) 2015-12-07 2023-08-01 1304338 Alberta Ltd. Upgrading oil using supercritical fluids
US10577973B2 (en) 2016-02-18 2020-03-03 General Electric Company Service tube for a turbine engine
CN105845962B (zh) * 2016-03-30 2019-01-18 华中科技大学 固体氧化物燃料电池和固体氧化物电解池联合发电系统
WO2017184703A1 (en) 2016-04-21 2017-10-26 Fuelcell Energy, Inc. Fluidized catalytic cracking unit system with integrated reformer-electrolyzer-purifier
US10897055B2 (en) 2017-11-16 2021-01-19 Fuelcell Energy, Inc. Load following power generation and power storage using REP and PEM technology
CA2997634A1 (en) 2018-03-07 2019-09-07 1304342 Alberta Ltd. Production of petrochemical feedstocks and products using a fuel cell
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
CN109193010A (zh) * 2018-10-26 2019-01-11 浙江氢谷新能源汽车有限公司 甲醇裂解即时制氢发电系统
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US11495806B2 (en) 2019-02-04 2022-11-08 Fuelcell Energy, Inc. Ultra high efficiency fuel cell power generation system
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
AU2021357064A1 (en) * 2020-10-06 2023-04-20 The Claire Technologies Corporation Carbon-neutral process for generating electricity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473622A (en) * 1982-12-27 1984-09-25 Chludzinski Paul J Rapid starting methanol reactor system
JPS60177571A (ja) * 1984-02-22 1985-09-11 Ishikawajima Harima Heavy Ind Co Ltd コ−クス炉ガスエネルギ−回収発電方法
JPH02172159A (ja) * 1988-12-24 1990-07-03 Ishikawajima Harima Heavy Ind Co Ltd 溶融炭酸塩型燃料電池発電方法及び装置
US5248566A (en) * 1991-11-25 1993-09-28 The United States Of America As Represented By The United States Department Of Energy Fuel cell system for transportation applications
JPH0869808A (ja) * 1994-08-30 1996-03-12 Toyota Motor Corp 改質装置と燃料電池システム
JP3053362B2 (ja) * 1995-08-01 2000-06-19 株式会社東芝 炭酸ガスの分離方泡炭酸ガス吸収材及び炭酸ガスの分離装置
US5985474A (en) * 1998-08-26 1999-11-16 Plug Power, L.L.C. Integrated full processor, furnace, and fuel cell system for providing heat and electrical power to a building

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426885B (zh) * 2006-04-24 2013-03-27 约翰内斯堡威特沃特斯兰德大学 提高烃生产中的碳效率
US10081772B2 (en) 2008-09-26 2018-09-25 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
US10865346B2 (en) 2009-09-08 2020-12-15 Ohio State Innovation Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US10253266B2 (en) 2009-09-08 2019-04-09 Ohio State Innovation Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
CN105762386A (zh) * 2009-09-08 2016-07-13 俄亥俄州国家创新基金会 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成
US10010847B2 (en) 2010-11-08 2018-07-03 Ohio State Innovation Foundation Circulating fluidized bed with moving bed downcomers and gas sealing between reactors
CN103415596A (zh) * 2011-02-23 2013-11-27 西格里碳素欧洲公司 对用过的含碳阴极材料进行加工的方法
CN103415596B (zh) * 2011-02-23 2016-12-07 西格里碳素欧洲公司 对用过的含碳阴极材料进行加工的方法
US9903584B2 (en) 2011-05-11 2018-02-27 Ohio State Innovation Foundation Systems for converting fuel
US10502414B2 (en) 2011-05-11 2019-12-10 Ohio State Innovation Foundation Oxygen carrying materials
US10144640B2 (en) 2013-02-05 2018-12-04 Ohio State Innovation Foundation Methods for fuel conversion
US10501318B2 (en) 2013-02-05 2019-12-10 Ohio State Innovation Foundation Methods for fuel conversion
CN103132100A (zh) * 2013-03-22 2013-06-05 上海交通大学 一种从煤生产纯净氢气和二氧化碳的工艺方法
CN103132100B (zh) * 2013-03-22 2015-06-17 上海交通大学 一种从煤生产纯净氢气和二氧化碳的工艺方法
US10022693B2 (en) 2014-02-27 2018-07-17 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
US11111143B2 (en) 2016-04-12 2021-09-07 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
US11090624B2 (en) 2017-07-31 2021-08-17 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
CN108954827B (zh) * 2018-05-16 2020-10-13 重庆国翰能源发展有限公司 一种混合供能装置
CN108954827A (zh) * 2018-05-16 2018-12-07 重庆国翰能源发展有限公司 一种混合供能装置
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
US11826700B2 (en) 2018-08-09 2023-11-28 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
US11453626B2 (en) 2019-04-09 2022-09-27 Ohio State Innovation Foundation Alkene generation using metal sulfide particles
US11767275B2 (en) 2019-04-09 2023-09-26 Ohio State Innovation Foundation Alkene generation using metal sulfide particles
CN113834224A (zh) * 2021-09-29 2021-12-24 西安交通大学 基于太阳能的锅炉烟气处理系统及方法
CN113834224B (zh) * 2021-09-29 2023-10-31 西安交通大学 基于太阳能的锅炉烟气处理系统及方法
CN117154151A (zh) * 2023-08-30 2023-12-01 广东佛燃科技有限公司 一种利用废食用油重整制氢的固体氧化物燃料电池系统

Also Published As

Publication number Publication date
EP1142047A1 (en) 2001-10-10
WO2000028610A1 (en) 2000-05-18
CN1192448C (zh) 2005-03-09
US6187465B1 (en) 2001-02-13
HK1043441B (zh) 2005-06-03
HK1043441A1 (en) 2002-09-13

Similar Documents

Publication Publication Date Title
CN1192448C (zh) 可将碳质原料转化成能量且无温室气体排放的方法和系统
US7951283B2 (en) High temperature electrolysis for syngas production
US7279655B2 (en) Inductively coupled plasma/partial oxidation reformation of carbonaceous compounds to produce fuel for energy production
KR101142472B1 (ko) 탄화수소발생장치를 포함하는 용융탄산염연료전지시스템
EP0497226B1 (en) Method for producing methanol by use of nuclear heat and power generating plant
EP0890388B1 (en) Carbon dioxide fixation system
US20060127718A1 (en) Fuel cell, operating method thereof, sintering furnace, and power generator
CA2528691C (en) Fuel cell, operating method thereof, sintering furnace, and power generator
CN109921060A (zh) 一种基于固体氧化物电池的储电及制合成气的系统和方法
CN107221695B (zh) 一种以生物质气化制氢的燃料电池系统及其发电方法
WO2009002566A1 (en) Integrated dry gasification fuel cell system for conversion of solid carbonaceous fuels
CN109217370A (zh) 一种风/光与生物质互补的发电和化学品储能系统及控制方法
JP2020045430A (ja) 再生可能エネルギー利用システム
KR20160036881A (ko) 이산화탄소 재활용 방법 및 이를 이용한 이산화탄소 재활용 장치
CN116344883A (zh) 一种sofc-soec多能源联储联供系统及方法
Barbir Review of hydrogen conversion technologies
Skorek et al. the use of Methane in practical solutions of environmental engineering
Tsipis et al. Waste gas utilization potential for solid oxide fuel cells: A brief review
Elleuch et al. Intermediate-temperature solid oxide fuel cell fueled by biofuels
Cuesta et al. 'Waste-to-Energy’Fuel Cell Systems
Savaniu et al. ´ Waste-to-energy'fuel cell systems
Gonçalves et al. Production of H2 for use in low-temperature fuel cell technology
Parsa Design and Optimization of Hydrogen Production Systems in Fuel Cells
Huppmann MTU's carbonate fuel cell HotModule
Schultz et al. Nuclear power for the production of carbon free energy and fuels

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050309

Termination date: 20141101

EXPY Termination of patent right or utility model