CN1324641C - 用于等离子体溅射的与旋转磁控管结合的磁体阵列 - Google Patents

用于等离子体溅射的与旋转磁控管结合的磁体阵列 Download PDF

Info

Publication number
CN1324641C
CN1324641C CNB028224957A CN02822495A CN1324641C CN 1324641 C CN1324641 C CN 1324641C CN B028224957 A CNB028224957 A CN B028224957A CN 02822495 A CN02822495 A CN 02822495A CN 1324641 C CN1324641 C CN 1324641C
Authority
CN
China
Prior art keywords
magnet
reactor
central shaft
magnetron
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB028224957A
Other languages
English (en)
Other versions
CN1606795A (zh
Inventor
P·丁
R·陶
Z·徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN1606795A publication Critical patent/CN1606795A/zh
Application granted granted Critical
Publication of CN1324641C publication Critical patent/CN1324641C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3457Sputtering using other particles than noble gas ions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/358Inductive energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3322Problems associated with coating
    • H01J2237/3327Coating high aspect ratio workpieces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

辅助磁体的阵列(60)沿磁控溅射反应器的侧壁(14)一边设置,该边从靶(16)的一边对着晶片。该磁控管优选为一个小而强的磁控管,其具有第一磁极性的强度较高的外磁体(42),外磁体围绕具有第二磁极性的强度较弱的磁体,且该磁控管绕室中心轴(38)旋转。该辅助磁体优选具有第一磁极性以吸引不平衡的磁场分量投向晶片。该辅助磁体可为永磁体(62)或电磁体(90)。

Description

用于等离子体溅射的与旋转磁控管结合的磁体阵列
技术领域
本发明一般关于材料溅射。具体地,本发明关于磁控管产生磁场以增强溅射。
背景技术
磁控溅射是制造半导体集成电路时将金属沉积到半导体集成电路上以形成电连接和集成电路中其它结构的主要方法。靶是由待沉积金属组成的,等离子体中的离子以足够的能量被吸引到靶上,靶原子被从靶上击出,这就是溅射。溅射原子一般延运动轨迹向待溅射镀层的晶片移动,并且金属原子以金属形式沉积到晶片上。
可替换地,金属原子与等离子体中另一种气体反应,例如与氮气发生反应,以在晶片上反应地沉积金属化合物。反应性溅射常用于在窄孔侧壁上形成氮化钛或氮化钽薄阻挡层和形核层。
直流磁控溅射是最常用的商用溅射形式。金属靶被施加负的直流偏压,其范围约为-400到-600伏,以吸引工作气体氩气的正离子向靶运动以溅射出金属原子。通常,溅射反应器的侧边覆盖有屏蔽物以保护室壁被溅射沉积。屏蔽物通常是接地的以相对靶阴极提供一个阳极,从而以电容的形式将直流靶电源与室和其等离子体耦合。
具有至少一对相反的磁体的磁控管被设置在靶的背面以产生邻近并平行于靶前表面的磁场。磁场俘获电子以使等离子体电中性,额外的氩离子被吸引到邻近磁控管的区域以在该处形成高密度等离子体。这样,克提高溅射速率。
然而,在形成先进集成电路方面对传统的溅射面临挑战。如上所述地,溅射基本上是弹道过程,其具有近似各向同性的溅射图案,这非常适合于镀平面表面,但不适合于沉积金属到先进集成电路的窄的电路部件上。例如,先进集成电路包括许多层间(inter-level)通孔,其高宽比为5∶1或更高,其需要被镀层和填充金属。然而,已开发出一种技术用于牵引溅射原子深入到窄、深的孔中,以覆盖底部和侧面,然后用金属填充该孔,而不必桥接该孔从而会在此处形成内含的空洞。
用于溅射到深孔的一般技术离子化溅射原子,而且向晶片施加负偏压使带正电的溅射金属原子加速运动向晶片。这样,溅射图案各向异性且导向孔的底部。电浮动基座上自然地形成一负自偏压。然而,为了更好地控制,可在基座上施加一个电压。典型地,通过耦合电容器,射频电源被耦合到基座电极上,且在邻近等离子体的基座上形成负直流自偏电压。
至少有两种技术可提高溅射室中的等离子体密度,从而增加离子化的溅射原子的比率。
一种称为离子化金属镀(IMP,ionized metal plating)的方法使用射频感应线圈,其绕在靶和晶片间的加工空间外以将兆赫兹频率范围的射频能量耦合至加工空间中。该线圈在等离子体中产生轴向磁场,该磁场反过来,在等离子体的边缘产生环绕电场,从而,将能量耦合至远离晶片的区域的等离子体中,并且提高等离子体密度,从而提高金属离子化速率。IMP溅射通常在50到100毫托的相当高的氩气压力下进行。
IMP在深孔填充方面非常有效。其离子化比率可超过50%。然而,IMP装置相对较贵。甚至更重要的是,IMP一般为热的,高能高压工艺,其中大量氩离子也被加速向晶片运动。IMP形成的膜质量不是对所有应用都是最佳的。
近来发展的自离子化等离子体(SIP,self-ionized plasma)溅射技术允许等离子体溅射反应器只做稍微改造,即可在低压力,低温度工艺中,达到更有效地填充金属到高高宽比的孔中的结果。此技术已由Fu等人在美国专利6290825中进行了描述,并且由Chiang等人在1999年10月8日提交的美国专利09/414614中进行了描述,这两个申请部以参考的方式整体并入此处。
SIP溅射对传统的以电容的方式耦合的磁控管溅射反应器作了多种修改,以产生邻近于靶的高密度等离子体(HDP),并且延伸该等离子体并将该金属离子导向晶片。相对高的直流功率被施加到靶上,例如,对设计用于200毫米晶片的室用20到40kW功率。此外,该磁控管面积相对小,这样靶功率被集中在磁控管的更小面积内,从而增加施加到邻近该磁控管的HDP区域的功率密度。小面积磁控管被安设置在靶中心的一侧,且绕该中心旋转以提供更均匀的溅射和沉积。
在一种类型的SIP溅射中,该磁控管有不平衡的磁体,通常一个磁极性的强度高的外磁体围绕另一个磁极性的较弱的内磁体。从较强的磁体发出的磁力线可以分解为邻近靶表面的常规的水平磁场,和向晶片延伸的垂直磁场。垂直磁力线延伸等离子体,使其离晶片更近,且导引金属离子向晶片运动。而且,邻近室壁的垂直磁力线阻止电子从等离子体扩散到接地的屏蔽物。减少电子损失对增加等离子体密度和使等离子体在整个加工空间延伸特别有效。
SIP溅射可不使用射频感应线圈而实现。小HDP区域足够离子化大部分金属离子,估计大约在10%和25%之间,其有效地溅射覆镀层到深孔中。特别在高离子化比率时,离子化溅射金属原子被回吸到靶上并进一步溅射金属原子。结果是,可降低氩气工作压力而不会使等离子体坍缩(collapsing)。因此,晶片的氩气加热不是一个问题,且金属离子和氩气原子碰撞的可能性降低,这将降低离子密度,且使金属离子溅射图案随机化。
用于SIP溅射的不平衡磁控管的进一步优势是来自较强的外部环形磁体的磁场投射到朝向晶片的等离子体加工区域。该投射磁场具有在等离子体加工区域的更大的范围内支撑强等离子体,并且引导离子化溅射粒子运动向晶片的作用。在2000年7月10日申请的美国专利No.09/612861中,Wei Wang揭示了同轴电磁线圈的应用,该同轴电磁线圈绕在等离子体加工区域的主要部分外,以产生从靶延伸到晶片的一个磁场分量。磁线圈在将SIP溅射组合到长掷(long-throw)型溅射反应器方面特别有效,长掷型溅射反应器也就是一个由于辅助磁场支撑等离子体,并进一步导引离子化溅射粒子而在靶和晶片之间有较大空间的反应器。在美国专利5593551中,Lai揭示了在靶附近设置一个较小的线圈。
然而,SIP溅射仍然可以改进。它的一个基本问题是在最优化磁场位形(configuration)时,可利用的变量数有限。磁控管应该小以最大化靶功率密度,但是需要对靶的溅射是均匀的。邻近靶磁场应该有一个强的水平分量,以在临近靶处最大限度地俘获电子。磁场的某些分量应从靶向晶片投射以导引离子化溅射粒子。Wang的同轴磁线圈只部分解决了这些问题。Lai在美国专利5593551中揭示的水平放置的永磁体在这方面的效果较差。
发明内容
本发明包括磁控溅射反应器中的辅助磁体阵列,其绕室并靠近晶片设置,并且具有第一垂直磁极性。磁体可以是永磁体或是电磁体阵列,所述电磁体有沿室中心轴的线圈轴。
在一个实施例中,具有第一磁极性的强外磁体的可旋转磁控管围绕磁极性相反的较弱磁体。辅助磁体优选位于邻近晶片的加工空间的一半的位置,以从外磁体向晶片牵引磁场不平衡部分。
附图说明
图1是包括本发明的辅助磁体阵列的溅射反应器的示意剖视图。
图2是图1中溅射反应器内顶部磁控管的仰视平面图。
图3是支撑辅助磁体阵列的组件的实施例的正投影图。
图4是溅射反应器示意剖视图,其中辅助磁体阵列包括电磁体阵列。
具体实施方式
本发明的等离子体溅射反应器10的第一个实施例图示于图1中示意剖视图。真空室12一般包括圆柱形侧壁14,其电接地。通常,未示出的接地的可替换的屏蔽物位于侧壁14的内部以防止它们被溅射镀覆,但除了保持真空,它们也作为室侧壁。由将被溅射的金属组成的溅射靶16通过电绝缘体18被密封到室12。基座电极22支撑将被溅射覆盖的,与靶16平行相对的晶片24。加工空间在靶16和屏蔽物内部的晶片24间限定。
溅射工作气体优选氩气(Ar),通过质量流量控制器28从气源26经过计量表通入室。未示出的真空泵系统保持室12的内部处于很低的基本压力下,通常为10-8托或更低。在等离子体点火过程中,供应氩气以保持室压力近似为5毫托,但是如下面将解释的那样,此后压力将降低。直流电源34向靶16施加负偏压至近似-600伏(直流),以使氩气工作气体被激发为包含电子和正氩离子的等离子体。正氩离子被吸引到负偏压靶16上,并从靶上溅射出金属原子。
本发明对SIP溅射特别有用,其中小的,嵌套的磁控管36被支撑在未示出的靶16后面的后板上。室12和靶16一般对称地环绕中心轴38。SIP磁控管36包括第一垂直磁极性的内磁体40,和极性相反的第二垂直磁极性的环绕外磁体42。两个磁体都由磁轭44支撑并通过其磁耦合。磁轭44被固定在旋转臂46上,该臂由旋转轴48支撑,其沿中心轴38延伸。连到旋转轴48上的马达50使磁控管36绕中心轴38旋转。
在不平衡磁控管中,外磁体42有集中于其总区域的磁通量,该总磁通量比内磁体40产生的大,优选磁强度比至少为150%。磁性相反的磁体40、42在室12内产生磁场,室12通常是半环形的(semi-toroidal),较强的分量平行且邻近靶16的表面以在此处产生高密度等离子体于该处,从而提高溅射速率,并提高溅射金属原子的离子化比率。由于外磁体42的磁性比内磁体40强,来自外磁体42的部分磁场在其循环回外磁体42后面形成磁路前,向基座22方向投射。
射频电源54,如频率为13.56MHz,连到基座电极22上以在晶片24上产生负自偏压。此偏压吸引带正电的金属原子穿过邻近的等离子体外罩(sheath),然后镀在晶片高高宽比的孔的侧面和底部,如层间通孔的侧面和底部。
在SIP溅射中,磁控管小、磁强度高,且高直流功率加到靶上以使在靶16附近的等离子体密度高于1010cm-3。在该等离子体密度下,大量的溅射原子被电离成带正电的金属离子。金属离子密度足够高,以致大量离子被吸引回靶并进一步溅射出金属离子。结果是金属离子至少能部分地取代氩气离子而作为溅射工艺中的有效工作物质。也就是,氩气压力可被降低。降低氩气压力具有减少散射和金属离子的消电离(deionization)的优点。对于铜溅射,在某些条件下,在被称为持续自溅射(SSS)工艺中,一旦等离子体被点火,可以完全不用氩气工作气体。对于铝和钨溅射,SSS工艺是不可能的,但是氩气压力可由传统溅射中使用的压力显著降低至如,小于1毫托。
在本发明的一个实施例中,永磁体62的辅助阵列60被绕室侧壁14设置,且一般设置在面对晶片24的加工空间一半的位置。在此实施例中,辅助磁体62具有和嵌套的磁控管36的外磁体42相同的第一垂直磁极性,以便从外磁体42向下吸引磁场的不平衡部分。在下面详细描述的实施例中,有8个永磁体,但是只要超过4个,任意数目的绕中心轴38分布的永磁体将提供相似的良好的效果。可以将辅助磁体62设置在室侧壁14内侧,但优选在薄壁屏蔽物外部以提高它们在加工区域的有效强度。然而,对于总体加工效果而言,优选设置在侧壁14外侧。
辅助磁体阵列一般是关于中心轴38对称设置,以产生环形对称磁场。另一方面,嵌套的磁控管36的磁场分布不对称地绕中心轴38分布,但是当它关于旋转时间被平均时,它变成对称的。嵌套的磁控管36有多种形式。最简单但非优选的形式有扣式中心磁体40,其被环形外部磁体42包围,以便其磁场关于一个轴是对称的,该轴和室轴38隔开,且嵌套的磁控管轴绕室轴38旋转。优选嵌套磁控管为三角形,图2显示的仰视平面图中,其有一个顶点靠近中心轴38附近,且有一个基座在靶16周边附近。该形状特别有利,因为相对于环形嵌套磁控管,磁场关于时间的平均值更均匀。
在特定的瞬间,在旋转周期中,有效的磁场由图1中的虚线示出。半环形磁场BA1提供强的靠近且平行于靶16表面的水平分量,因此提高等离子体密度,溅射速率和溅射粒子的离子化比率。辅助磁场BA1,BA2是来自辅助磁体阵列60和来自嵌套的磁控管36的磁场的不平衡部分的和。在远离嵌套的磁控管36的室一侧,来自嵌套的磁控管36的磁场的不平衡部分的分量BA1占优势,且该分量不向晶片24延伸。然而,在室侧壁14附近,嵌套的磁控管36一侧,辅助磁体62强耦合至外磁体42,产生磁场分量BA2,其向晶片24投射。在视图的平面外,该磁场分量是两个分量BA1,BA2的叠加。
此结构影响结果,该结果是强垂直磁场是在邻近室侧壁14并沿着该室侧壁相当长度上延伸进嵌套的磁控管36的下方区域,由于辅助磁体62和强外磁体42极性的一致,磁场扫过磁控管。结果是,在室12临近被最强溅射的靶16的外侧有强垂直磁场。该投射磁场对延伸等离子体区域和将离子化粒子导引至晶片24都有效。
辅助磁体阵列60可以通过使用两个半环形磁体载座(carrier)70而实施,半环形磁体载座之一以正投影的方式示于图3。每个载座70包括四个凹槽72,其面向内部,且尺寸适合接收各个磁体组件74,各磁体组件包括一个磁体62。磁体组件74包括一弧形上夹具76和一下夹具78,当两个螺钉将两个夹具76、78紧固在一起时,夹具将圆柱状磁体62固定在凹槽中。载座70和夹具76、78可由非磁性材料,如铝形成。下夹具78的长度适配凹槽72,但上夹具76的末端部分伸出凹槽72,并在两端部钻了两个通孔82。两个螺钉84分别穿过两个通孔以使螺钉84被固定到磁体载座70上的螺纹孔86中,这样即将磁体62固定在磁体载座70的位置上。两个也是这样组装的半环形磁体载座70被设置在绕室壁14的环中,且通过传统紧固装置固定在其上。该结构直接将磁体62设置在室壁14外部附近。
在Wei Wang的电磁线圈内,在反应室整个直径范围内产生的螺线管电磁场实际上比永磁体环形阵列产生的外围偶极子磁场更均匀。然而,可以通过用图4中剖视图示出的电磁线圈90的环形阵列取代永磁体62产生类似形状的偶极子磁场,该电磁线圈90绕室壁的外围设置。线圈90通常关于各自的轴并平行于中心轴38绕成螺线管型,并被通电以在室内产生近均匀的偶极子磁场。这样设计的优点是可以快速调整辅助磁场的强度,甚至磁场的极性。
本发明已被应用于铜的SIP溅射。当传统SIP反应器溅射的铜膜的不均匀性为9%时,不均匀性由表面电阻测量确定,辅助磁控管可被最优化以形成不均匀性只有1%的膜。虽然提高的均匀性是以牺牲沉积速率获得的,对于在深孔中沉积薄的铜膜晶种层而言,较低的沉积速率对更好的工艺控制是更需要的。
虽然本发明针对SIP溅射反应器作了描述,辅助永磁体阵列可具有优势地应用于其它靶和功率配置,如美国专利6251242中SIP-反应器的环形拱状靶,美国专利6179973的中空阴极靶,或美国专利6045547中感应耦合IMP反应器。也可应用其它磁控管配置,如平衡磁控管和固定磁控管。此外,辅助磁体的极性可平行或反平行于顶部磁控管的外磁体的磁极性。其它可被溅射的材料包括铝,钽,钛,钴,钨等,和这些金属中的几种难熔金属的氮化物。
因此,辅助磁体阵列提供磁场的附加控制,这在磁控溅射中是至关重要的。

Claims (15)

1.一种等离子体溅射反应器,其包括:
真空室,其侧壁绕中心轴设置;
基座,其用于在所述真空室中支撑基片;
溅射靶,其通过电绝缘体密封到所述真空室,并且沿着所述中心轴,面对所述基座设置,加工空间在所述基座,所述靶和所述侧壁之间的区域形成;
磁控管,其设置在所述靶一侧,面对所述加工空间;以及
辅助磁体,其沿着所述中心轴,至少部分地绕所述加工空间、绕所述真空室的所述侧壁设置,并具有第一磁极性。
2.权利要求1所述的等离子体溅射反应器,其中所述磁控管可绕所述中心轴旋转。
3.如权利要求2所述的等离子体溅射反应器,其中所述磁控管包括具有第二磁极性的内磁体,其沿着所述中心轴方向;和围绕所述内磁体的外磁体,所述外磁体具有第三磁极性,其沿着所述中心轴并且其磁极性与所述第二磁极性相反。
4.如权利要求3所述的反应器,其中所述外磁体的总磁通量至少为所述内磁体的150%。
5.如权利要求3所述的反应器,其中所述第一磁极性和所述第三磁极性一致。
6.如权利要求5所述的反应器,其中所述外磁体总磁强度至少为所述内磁体的150%。
7.如权利要求3所述的反应器,其中所述内磁体与所述中心轴完全隔开。
8.如权利要求1所述的反应器,其中所述辅助磁体不在穿过面对所述靶的加工空间一半的位置的平面内延伸。
9.如权利要求1所述的反应器,其中所述辅助磁体包括永磁体。
10.如权利要求1所述的反应器,其中所述辅助磁体包括电磁体。
11.一种磁控溅射反应器,其包括:
真空室,其具有绕中心轴设置的侧壁;
基座,其用于在所述真空室内支撑待溅射镀敷的基片;
溅射靶,其通过电绝缘体密封到所述真空室,并且沿着所述中心轴,面对所述基座设置,所述靶和所述基座以一定的距离隔开;
磁控管,其设置在所述靶的一侧,面对所述基座,且其可绕所述中心轴旋转,所述磁控管包括:
环状的外磁体,其沿着所述中心轴,具有第一磁极性,并且产生第一总磁通量,和
内磁体,设置在所述外磁体的内侧,其具有和所述第一磁极性相反的第二磁极性,且产生第二总磁通量,
所述第一总磁通量和所述第二总磁通量的比率至少为150%;以及
辅助磁体,其绕所述中心轴,设置在所述侧壁外侧,并且具有所述第一磁极性。
12.如权利要求11所述的反应器,其中所述辅助磁体不在垂直于所述中心轴的平面内延伸,并且其距离所述靶比距离所述基座更近。
13.如权利要求11所述的反应器,其中所述辅助磁体是永磁体。
14.如权利要求11所述的反应器,其中所述辅助磁体是电磁体。
15.如权利要求11所述的反应器,其中有至少4个所述辅助磁体。
CNB028224957A 2001-11-14 2002-11-07 用于等离子体溅射的与旋转磁控管结合的磁体阵列 Expired - Lifetime CN1324641C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/993,543 2001-11-14
US09/993,543 US6610184B2 (en) 2001-11-14 2001-11-14 Magnet array in conjunction with rotating magnetron for plasma sputtering
PCT/US2002/036033 WO2003043052A1 (en) 2001-11-14 2002-11-07 Magnet array in conjunction with rotating magnetron for plasma sputtering

Publications (2)

Publication Number Publication Date
CN1606795A CN1606795A (zh) 2005-04-13
CN1324641C true CN1324641C (zh) 2007-07-04

Family

ID=25539663

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028224957A Expired - Lifetime CN1324641C (zh) 2001-11-14 2002-11-07 用于等离子体溅射的与旋转磁控管结合的磁体阵列

Country Status (5)

Country Link
US (2) US6610184B2 (zh)
JP (1) JP4564750B2 (zh)
KR (1) KR100927276B1 (zh)
CN (1) CN1324641C (zh)
WO (1) WO2003043052A1 (zh)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306265B1 (en) * 1999-02-12 2001-10-23 Applied Materials, Inc. High-density plasma for ionized metal deposition capable of exciting a plasma wave
US6610184B2 (en) * 2001-11-14 2003-08-26 Applied Materials, Inc. Magnet array in conjunction with rotating magnetron for plasma sputtering
US8696875B2 (en) 1999-10-08 2014-04-15 Applied Materials, Inc. Self-ionized and inductively-coupled plasma for sputtering and resputtering
US10047430B2 (en) 1999-10-08 2018-08-14 Applied Materials, Inc. Self-ionized and inductively-coupled plasma for sputtering and resputtering
EP2267439B8 (en) 1999-11-15 2015-05-27 Panasonic Healthcare Holdings Co., Ltd. Biosensor for quantifying a substrate
US8617351B2 (en) 2002-07-09 2013-12-31 Applied Materials, Inc. Plasma reactor with minimal D.C. coils for cusp, solenoid and mirror fields for plasma uniformity and device damage reduction
US8048806B2 (en) 2000-03-17 2011-11-01 Applied Materials, Inc. Methods to avoid unstable plasma states during a process transition
JP4009087B2 (ja) * 2001-07-06 2007-11-14 アプライド マテリアルズ インコーポレイテッド 半導体製造装置における磁気発生装置、半導体製造装置および磁場強度制御方法
US7374636B2 (en) * 2001-07-06 2008-05-20 Applied Materials, Inc. Method and apparatus for providing uniform plasma in a magnetic field enhanced plasma reactor
US7041201B2 (en) * 2001-11-14 2006-05-09 Applied Materials, Inc. Sidewall magnet improving uniformity of inductively coupled plasma and shields used therewith
KR100846484B1 (ko) * 2002-03-14 2008-07-17 삼성전자주식회사 Rmim 전극 및 그 제조방법 및 이를 채용하는 스퍼터링장치
TWI283899B (en) * 2002-07-09 2007-07-11 Applied Materials Inc Capacitively coupled plasma reactor with magnetic plasma control
US7504006B2 (en) 2002-08-01 2009-03-17 Applied Materials, Inc. Self-ionized and capacitively-coupled plasma for sputtering and resputtering
US7458335B1 (en) 2002-10-10 2008-12-02 Applied Materials, Inc. Uniform magnetically enhanced reactive ion etching using nested electromagnetic coils
WO2004038752A2 (en) * 2002-10-21 2004-05-06 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Contiguous capillary electrospray sources and analytical device
US20060226003A1 (en) * 2003-01-22 2006-10-12 John Mize Apparatus and methods for ionized deposition of a film or thin layer
US7422654B2 (en) * 2003-02-14 2008-09-09 Applied Materials, Inc. Method and apparatus for shaping a magnetic field in a magnetic field-enhanced plasma reactor
JP2005036250A (ja) * 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd スパッタ装置
US20050040030A1 (en) * 2003-08-20 2005-02-24 Mcdonald Peter H. Method of treating sputtering target to reduce burn-in time and sputtering target thereof and apparatus thereof
US20050103620A1 (en) * 2003-11-19 2005-05-19 Zond, Inc. Plasma source with segmented magnetron cathode
US7718042B2 (en) * 2004-03-12 2010-05-18 Oc Oerlikon Balzers Ag Method for manufacturing sputter-coated substrates, magnetron source and sputtering chamber with such source
US20050266173A1 (en) * 2004-05-26 2005-12-01 Tokyo Electron Limited Method and apparatus of distributed plasma processing system for conformal ion stimulated nanoscale deposition process
US7618521B2 (en) * 2005-03-18 2009-11-17 Applied Materials, Inc. Split magnet ring on a magnetron sputter chamber
US9659758B2 (en) * 2005-03-22 2017-05-23 Honeywell International Inc. Coils utilized in vapor deposition applications and methods of production
US20060278520A1 (en) * 2005-06-13 2006-12-14 Lee Eal H Use of DC magnetron sputtering systems
US20070012557A1 (en) * 2005-07-13 2007-01-18 Applied Materials, Inc Low voltage sputtering for large area substrates
JP4967354B2 (ja) * 2006-01-31 2012-07-04 東京エレクトロン株式会社 シード膜の成膜方法、プラズマ成膜装置及び記憶媒体
US20070215049A1 (en) * 2006-03-14 2007-09-20 Applied Materials, Inc. Transfer of wafers with edge grip
US7939181B2 (en) * 2006-10-11 2011-05-10 Oerlikon Trading Ag, Trubbach Layer system with at least one mixed crystal layer of a multi-oxide
CN101542013B (zh) * 2007-06-04 2011-05-04 佳能安内华股份有限公司 形成薄膜的溅射设备
US8968536B2 (en) 2007-06-18 2015-03-03 Applied Materials, Inc. Sputtering target having increased life and sputtering uniformity
US8114256B2 (en) * 2007-11-30 2012-02-14 Applied Materials, Inc. Control of arbitrary scan path of a rotating magnetron
EP2300632A4 (en) * 2008-06-18 2011-11-09 Angstrom Sciences Inc MAGNETRON WITH PERMANENT ELECTRO-MAGNETS AND MAGNETS
KR20110033184A (ko) * 2008-06-26 2011-03-30 가부시키가이샤 알박 스퍼터링 장치 및 스퍼터링 방법
US8137517B1 (en) 2009-02-10 2012-03-20 Wd Media, Inc. Dual position DC magnetron assembly
WO2010105077A2 (en) * 2009-03-12 2010-09-16 Applied Materials, Inc. Minimizing magnetron substrate interaction in large area sputter coating equipment
CZ304905B6 (cs) 2009-11-23 2015-01-14 Shm, S.R.O. Způsob vytváření PVD vrstev s pomocí rotační cylindrické katody a zařízení k provádění tohoto způsobu
TWI456082B (zh) * 2010-03-26 2014-10-11 Univ Nat Sun Yat Sen 磁控式電漿濺鍍機
CN102300383B (zh) * 2010-06-23 2013-03-27 北京北方微电子基地设备工艺研究中心有限责任公司 一种电感耦合装置及应用该装置的等离子体处理设备
CN102400107A (zh) * 2010-09-13 2012-04-04 北京北方微电子基地设备工艺研究中心有限责任公司 磁控溅射源及磁控溅射设备
CN102487590A (zh) * 2010-12-02 2012-06-06 鸿富锦精密工业(深圳)有限公司 壳体及其制造方法
CN103766002B (zh) 2011-06-09 2017-03-22 韩国基础科学支援硏究所 包括带状磁铁的等离子产生源及利用此的薄膜沉积系统
US10304665B2 (en) 2011-09-07 2019-05-28 Nano-Product Engineering, LLC Reactors for plasma-assisted processes and associated methods
US9761424B1 (en) 2011-09-07 2017-09-12 Nano-Product Engineering, LLC Filtered cathodic arc method, apparatus and applications thereof
TWI471894B (zh) * 2012-04-28 2015-02-01 Korea Basic Science Inst A plasma generating source including a ribbon magnet, and a thin film deposition system using the same
US8674327B1 (en) 2012-05-10 2014-03-18 WD Media, LLC Systems and methods for uniformly implanting materials on substrates using directed magnetic fields
US9412569B2 (en) 2012-09-14 2016-08-09 Vapor Technologies, Inc. Remote arc discharge plasma assisted processes
US10056237B2 (en) 2012-09-14 2018-08-21 Vapor Technologies, Inc. Low pressure arc plasma immersion coating vapor deposition and ion treatment
US9793098B2 (en) 2012-09-14 2017-10-17 Vapor Technologies, Inc. Low pressure arc plasma immersion coating vapor deposition and ion treatment
EP2811507B1 (en) 2013-06-07 2020-02-19 Soleras Advanced Coatings bvba Magnetic configuration for a magnetron sputter deposition system
DE102013106351A1 (de) * 2013-06-18 2014-12-18 Innovative Ion Coatings Ltd. Verfahren zur Vorbehandlung einer zu beschichtenden Oberfläche
CN104746025A (zh) * 2013-12-27 2015-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 溅射装置
CN104928635B (zh) * 2014-03-21 2017-12-19 北京北方华创微电子装备有限公司 磁控溅射腔室及磁控溅射设备
CN104037046B (zh) * 2014-06-25 2017-02-15 上海和辉光电有限公司 反应腔室以及利用该反应腔室的晶片加工方法
CN105779949B (zh) * 2014-12-19 2019-01-18 北京北方华创微电子装备有限公司 边磁铁框架及磁控溅射设备
CN107614748B (zh) * 2015-05-22 2019-09-10 株式会社爱发科 磁控溅射装置
CN105568241A (zh) * 2016-03-09 2016-05-11 重庆科技学院 射频偏置溅射装置及溅射方法
WO2018175689A1 (en) * 2017-03-22 2018-09-27 Applied Plasma Equipment Magnetron sputtering source for insulating target materials
US11183373B2 (en) 2017-10-11 2021-11-23 Honeywell International Inc. Multi-patterned sputter traps and methods of making
US11834204B1 (en) 2018-04-05 2023-12-05 Nano-Product Engineering, LLC Sources for plasma assisted electric propulsion
CN110327475B (zh) * 2019-07-25 2021-06-04 山东大学齐鲁医院 一种固体物料杀菌抑菌的装置和方法
CN110911263B (zh) * 2019-09-18 2022-07-01 北京信息科技大学 用于磁控溅射工艺腔室的磁场分布均匀化装置
US20220122866A1 (en) * 2020-10-21 2022-04-21 Applied Materials, Inc. Magnetic holding structures for plasma processing applications
US11618943B2 (en) 2020-10-23 2023-04-04 Applied Materials, Inc. PVD target having self-retained low friction pads
US11670493B2 (en) 2020-11-13 2023-06-06 Applied Materials, Inc. Isolator ring clamp and physical vapor deposition chamber incorporating same
CN114657522A (zh) * 2020-12-24 2022-06-24 中国科学院微电子研究所 磁控溅射装置以及磁控溅射方法
CN112951693B (zh) * 2021-02-09 2024-01-05 北京北方华创微电子装备有限公司 半导体刻蚀设备和刻蚀方法
CN113737143A (zh) * 2021-08-24 2021-12-03 北海惠科半导体科技有限公司 磁控溅射装置
US20230088552A1 (en) * 2021-09-17 2023-03-23 Applied Materials, Inc. Top magnets for decreased non-uniformity in pvd
US20230141298A1 (en) * 2021-11-05 2023-05-11 Applied Materials, Inc. Etch uniformity improvement for single turn internal coil pvd chamber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431799A (en) * 1993-10-29 1995-07-11 Applied Materials, Inc. Collimation hardware with RF bias rings to enhance sputter and/or substrate cavity ion generation efficiency
JPH10204614A (ja) * 1997-01-13 1998-08-04 Toshiba Corp 半導体装置の製造方法および半導体製造装置
US6193854B1 (en) * 1999-01-05 2001-02-27 Novellus Systems, Inc. Apparatus and method for controlling erosion profile in hollow cathode magnetron sputter source
US6224724B1 (en) * 1995-02-23 2001-05-01 Tokyo Electron Limited Physical vapor processing of a surface with non-uniformity compensation
EP1119017A2 (en) * 2000-01-21 2001-07-25 Applied Materials, Inc. Vault shaped target and high-field magnetron
CN1308771A (zh) * 1998-05-06 2001-08-15 东京电子亚利桑那公司 用于离子化物理气相淀积的方法和装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871433A (en) 1986-04-04 1989-10-03 Materials Research Corporation Method and apparatus for improving the uniformity ion bombardment in a magnetron sputtering system
KR880013424A (ko) 1987-04-08 1988-11-30 미타 가츠시게 플라즈머 장치
US5178739A (en) 1990-10-31 1993-01-12 International Business Machines Corporation Apparatus for depositing material into high aspect ratio holes
JPH04297575A (ja) * 1991-03-25 1992-10-21 Bridgestone Corp 薄膜コーティング方法
US5482611A (en) 1991-09-30 1996-01-09 Helmer; John C. Physical vapor deposition employing ion extraction from a plasma
TW271490B (zh) 1993-05-05 1996-03-01 Varian Associates
US5496455A (en) * 1993-09-16 1996-03-05 Applied Material Sputtering using a plasma-shaping magnet ring
JPH08288096A (ja) 1995-02-13 1996-11-01 Mitsubishi Electric Corp プラズマ処理装置
KR970002891A (ko) * 1995-06-28 1997-01-28 배순훈 브이씨알 헤드의 박막 증착용 스퍼터링 장치
US5907220A (en) * 1996-03-13 1999-05-25 Applied Materials, Inc. Magnetron for low pressure full face erosion
GB9606920D0 (en) 1996-04-02 1996-06-05 Applied Vision Ltd Magnet array for magnetrons
TW351825B (en) 1996-09-12 1999-02-01 Tokyo Electron Ltd Plasma process device
JPH111770A (ja) * 1997-06-06 1999-01-06 Anelva Corp スパッタリング装置及びスパッタリング方法
US6163006A (en) 1998-02-06 2000-12-19 Astex-Plasmaquest, Inc. Permanent magnet ECR plasma source with magnetic field optimization
US6080285A (en) * 1998-09-14 2000-06-27 Applied Materials, Inc. Multiple step ionized metal plasma deposition process for conformal step coverage
JP3448227B2 (ja) * 1998-10-30 2003-09-22 アプライド マテリアルズ インコーポレイテッド セルフスパッタリング方法
US6179973B1 (en) 1999-01-05 2001-01-30 Novellus Systems, Inc. Apparatus and method for controlling plasma uniformity across a substrate
US6290825B1 (en) 1999-02-12 2001-09-18 Applied Materials, Inc. High-density plasma source for ionized metal deposition
US6398929B1 (en) * 1999-10-08 2002-06-04 Applied Materials, Inc. Plasma reactor and shields generating self-ionized plasma for sputtering
US6610184B2 (en) * 2001-11-14 2003-08-26 Applied Materials, Inc. Magnet array in conjunction with rotating magnetron for plasma sputtering
US6228236B1 (en) * 1999-10-22 2001-05-08 Applied Materials, Inc. Sputter magnetron having two rotation diameters
JP4021601B2 (ja) 1999-10-29 2007-12-12 株式会社東芝 スパッタ装置および成膜方法
US6352629B1 (en) 2000-07-10 2002-03-05 Applied Materials, Inc. Coaxial electromagnet in a magnetron sputtering reactor
WO2002011176A1 (en) 2000-07-27 2002-02-07 Trikon Holdings Limited Magnetron sputtering
US6406599B1 (en) 2000-11-01 2002-06-18 Applied Materials, Inc. Magnetron with a rotating center magnet for a vault shaped sputtering target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431799A (en) * 1993-10-29 1995-07-11 Applied Materials, Inc. Collimation hardware with RF bias rings to enhance sputter and/or substrate cavity ion generation efficiency
US6224724B1 (en) * 1995-02-23 2001-05-01 Tokyo Electron Limited Physical vapor processing of a surface with non-uniformity compensation
JPH10204614A (ja) * 1997-01-13 1998-08-04 Toshiba Corp 半導体装置の製造方法および半導体製造装置
CN1308771A (zh) * 1998-05-06 2001-08-15 东京电子亚利桑那公司 用于离子化物理气相淀积的方法和装置
US6193854B1 (en) * 1999-01-05 2001-02-27 Novellus Systems, Inc. Apparatus and method for controlling erosion profile in hollow cathode magnetron sputter source
EP1119017A2 (en) * 2000-01-21 2001-07-25 Applied Materials, Inc. Vault shaped target and high-field magnetron

Also Published As

Publication number Publication date
CN1606795A (zh) 2005-04-13
US6875321B2 (en) 2005-04-05
US6610184B2 (en) 2003-08-26
KR100927276B1 (ko) 2009-11-18
JP4564750B2 (ja) 2010-10-20
JP2005509747A (ja) 2005-04-14
KR20050058238A (ko) 2005-06-16
US20040035692A1 (en) 2004-02-26
WO2003043052A1 (en) 2003-05-22
US20030089601A1 (en) 2003-05-15

Similar Documents

Publication Publication Date Title
CN1324641C (zh) 用于等离子体溅射的与旋转磁控管结合的磁体阵列
US6352629B1 (en) Coaxial electromagnet in a magnetron sputtering reactor
US6440282B1 (en) Sputtering reactor and method of using an unbalanced magnetron
JP4970937B2 (ja) 誘導性結合プラズマの均一性を改善する側壁磁石及びそれと共に使用するシールド
US6485617B2 (en) Sputtering method utilizing an extended plasma region
US6143140A (en) Method and apparatus to improve the side wall and bottom coverage in IMP process by using magnetic field
US8557094B2 (en) Sputtering chamber having auxiliary backside magnet to improve etch uniformity and magnetron producing sustained self sputtering of ruthenium and tantalum
US7618521B2 (en) Split magnet ring on a magnetron sputter chamber
US8920613B2 (en) Offset magnet compensation for non-uniform plasma
US6497796B1 (en) Apparatus and method for controlling plasma uniformity across a substrate
KR20010098491A (ko) 플라즈마 웨이브를 여기시킬 수 있는 이온화된 금속증착을 위한 고밀도 플라즈마 소스
US11688591B2 (en) Physical vapor deposition apparatus and method thereof
US6495009B1 (en) Auxiliary in-plane magnet inside a nested unbalanced magnetron
US6683425B1 (en) Null-field magnetron apparatus with essentially flat target
CN101142094A (zh) 磁控管溅射室上的分离磁体环
JP4680353B2 (ja) スパッタリング装置および成膜方法
JP2001288566A (ja) スパッタリング装置および成膜方法
KR100205682B1 (ko) 피복두께의 균일성, 스텝 커버리지 및 스텝 커버리지의 균일성을 만드는 평탄 마그네트론 스퍼터링 공급원

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070704