CN1320991A - 电气装置的固态保护电路 - Google Patents

电气装置的固态保护电路 Download PDF

Info

Publication number
CN1320991A
CN1320991A CN01117118A CN01117118A CN1320991A CN 1320991 A CN1320991 A CN 1320991A CN 01117118 A CN01117118 A CN 01117118A CN 01117118 A CN01117118 A CN 01117118A CN 1320991 A CN1320991 A CN 1320991A
Authority
CN
China
Prior art keywords
current
semiconductor switch
signal
threshold value
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01117118A
Other languages
English (en)
Other versions
CN1307767C (zh
Inventor
杰罗姆·K·黑斯廷斯
凯林·斯亚达·布兰德
詹姆斯·E·汉森
斯科特·A·里德
戴维·J·格里特
爱德华·L·维尔纳
安吉尔博特·海茨曼西德
威廉·E·博克派克
博格·帕尔
托马斯·E·斯特仑西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Corp
Original Assignee
Eaton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Corp filed Critical Eaton Corp
Publication of CN1320991A publication Critical patent/CN1320991A/zh
Application granted granted Critical
Publication of CN1307767C publication Critical patent/CN1307767C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/093Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current with timing means
    • H02H3/0935Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current with timing means the timing being determined by numerical means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/04Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks
    • H02H1/043Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks to inrush currents

Abstract

利用一种能够提供多个保护电平的电路来保护电气设备(14)不会由于电路故障被破坏。将半导体开关(18)和电流传感器(24)与电气设备(14)串联设置。当流入设备的电流超过第一阈值预定时间周期时,将半导体开关(18)断开直到电路被特别复位。当流入设备的电流超过第二阈值时,脉冲电流交替地将半导体开关(18)设置为导通状态和断开状态,这样施加到设备(14)的平均电流就在可接受范围内。如果电流超过甚或大于第三阈值,则立即使半导体开关(18)处于断开状态直到电路被手动复位。

Description

电气装置的固态保护电路
本发明涉及一种用于防止设备由于电气故障或电气短路被破坏的机构,更具体地说,本发明涉及这种装置,即用电气方法监视电气设备的性能并在发生故障、短路或过负载时发出保护动作。
发生电气故障时,重要的是保护电气装置不被破坏。例如,通常采用传统保险丝和机电断路器,当发生短路、检测到过电流后就将设备与供电电源断开。然而,这些传统的保护装置断开流过被保护电气装置的电流的速度相对较慢。因此,在发生故障时,流入设备的过电流足以破坏设备。
此外,各种电气装置需要保护装置具有不同的响应特性。例如,实质上,电气设备从开始起动到正常关机流过恒定电流值并且绝对不容许流过短路期间的过电流。这种设备的保护装置必须对相对小的过电流状况作出非常快速的响应。其它类型的电气设备允许在某些时间流过比其运行过程中流过的电流大的瞬时电流,例如在起动时。因此,对高电流条件响应太快的电路保护装置无意中会在出现正常现象时关闭设备的供电电流。因此,这类设备的保护装置必须以容许高主电流的形式作响应。保护装置对过电流的响应方式被称为释放(trip)响应特性或释放曲线,并且保护装置还必须与待保护的特定电气装置相匹配。
这通常意味着,保护装置的制造商必须设计、制造并库存大量对电流和时间具有不同释放响应特性的保护装置。因此,要求提供保护装置的基本配置,这种基本配置可以被容易地定做成具有不同释放响应特性。
本发明用于保护电负载免受过电流破坏的装置采用半导体开关将电负载与电流源接通。电流传感器串联连接到半导体开关并产生传感信号,传感信号显示流过电负载的电流值。
将控制电路连接到电流传感器和半导体开关。通过产生控制信号并施加到半导体开关的控制输入端,控制电路响应传感信号。在电流值小于第一阈值时的第一种运行模式下,控制电路保持半导体开关处于持续导通状态。当电流值大于第一阈值并小于第二阈值时,控制电路处于第二种运行模式,在预定时段后使半导体开关断开。在电流值大于第二阈值的第三种工作模式下,控制电路可以使半导体开关交替脉冲地导通和断开,这样就可以对负载施加在不破坏设备的可接受范围内的平均电流。
图1示出根据本发明的固态电路保护装置的方框图;
图2示出保护装置内的立即释放电路的详图;以及
图3示出固态电路保护装置的典型释放响应特性曲线图。
首先参考图1,固态电路保护装置10控制将直流施加到电负载14,所示的电负载14为并联的电容器和电阻。固态电路保护装置10具有正电压端12,将正电压端12连接到电源用于对负载14供电。电流从正电压端通过保险丝16、半导体开关18和电感器20流到负载端22到达负载。负载连接在负载端22与电压供给的负端之间,图中所示的电压供给的负端为地。
保险丝16为使用导体的传统装置,当在给定时间内流过过电流时,该导体会发热以致熔断。保险丝16可以采用标准保护装置(例如:玻璃管外壳保险丝或在印刷电路板上的适当迹线)。在半导体开关18不能导通或错误控制半导体开关的情况下,保险丝16提供冗余保护。当然可以认为保险丝的释放响应时间比电子电路保护的释放响应特性慢。
半导体开关18必须能够中断负载电流比并能在待控制的特定负载14规定的额定运行电压范围内通过瞬态电流、过电流和起动电流。n通道场效应晶体管(FET)(例如:International Rectifier of E1Segundo,CA 909245 USA推出的IRF1404型场效应晶体管)可以用作半导体开关18。必须降低其导通状态下的通道电阻以将通过FET的压降和热耗降到最低。尽管优选实施例在正电压端12与负载14之间采用半导体开关18,但是可以进行变化将该开关设置到负载的接地端。然而,此变换方法的缺陷在于不能对负载与地线之间的故障进行保护。
电压传感器28产生代表负载端电压值的模拟信号。将此模拟信号施加到微控制器26的输入端。当然通过断开半导体开关18,微控制器26响应传感器28输出的表示负载14上的电压的信号。
设置电流传感器24以检测在正电压端12与负载14之间的电流值。此传感器必须具有足以覆盖保护装置要求释放响应特性的极限电流的动态范围,并且具有足以实现要求的释放响应特性的快速瞬态响应。电流传感器24可以是霍尔效应传感器,它可以产生代表DC电流值的输出电压并且可以通过导线31将此输出电压施加到微控制器26的模拟输入端。还可以使用其它类型的传统传感器(例如:并联电阻器)将电流值表示提供给速度微控制器26。
微控制器26基于微处理器并包括具有用于输入电流传感器和电压传感器的输出信号的多路输入的内部模数转换器。微控制器的数字输入/输出电路为固态电路保护装置10的其它部件处理信号。例如,用户控制台25具有小键盘27和指示灯29(例如LED)。小键盘27具有独立瞬时接触开关用于将输入信号送到微控制器26以手动接通或断开固态电路保护装置10,以及复位释放条件。指示灯29由微控制器发出的信号进行供电以指示电路保护装置的运行状态。这些指示灯29之一指示何时释放电路保护装置10。微控制器26还具有内部非易失性存储器,用于存储确定保护功能的软件程序并用于存储软件程序使用的数据(例如:释放响应特性)。微控制器26和控制台25可以选择性地控制电路保护装置的附加电极,如以虚线示出的第二电极11。
微控制器26通过释放电路36操作半导体开关18,释放电路36产生足以控制半导体开关18优选实施例中的FET19的驱动电压。由于驱动N通道FET19的栅极的电压必须接近10伏大于FET的源极电压,所以释放电路36包括电荷泵或类似电路以产生比正输入端12的电压高的电压。
图2示出释放电路36的详图,其中将电流传感器24输出到导线31上的输出信号ISENSE施加到第一电压比较器40。将检测的电流值ISENSE与在微控制器26的模拟输出线37产生的第二阈值ITH2进行比较。根据特定负载14的过电流容差,第二阈值ITH2的固定值被编程到微控制器26。将第一比较器40输出端的比较结果施加到触发器42的RESET输入端。通过升高电阻器44还可以将复位输入端连接到正供电电压V+
触发器42的SET输入端被连接到双输入“与非”门46的输出端,双输入“与非”门46的两个输入端连接在一起作为倒相器使用。第一“与非”门46的输入端被连接到微控制器26的数字输出线33,数字输出线33传送超过15kHz、具体范围在20kHz至30kHz之间、优先为25kHz的固定频率的脉冲信号。此脉冲信号具有固定工作周期,所以形成具有固定宽带的脉冲序列。显然,脉冲序列周期性地置位与具有三个输入端的第二“与非”门48的一个输入端相连的触发器输出端。第二“与非”门48的另一个输入端接收微控制器26的另一个数字输出线33上的ON信号。通过手动操作控制台25的小键盘27上的开关可以确定ON信号被激活还是被关闭。
第二“与非”门48的第三输入端接收由第二电压比较器50和第二触发器51构成的瞬时释放机构的输出信号。具体地说,第二比较器50对电流传感器的输出信号ISENSE与第三阈值ITH3进行比较。微控制器26在另一个模拟输出线38上产生第三电流阈值ITH3,并将第三电流阈值ITH3定义为固定数值编程到固态保护电路10。第三电流阈值ITH3大于第二电流阈值ITH2。通过以下对固态电流保护电路的运行过程的说明,这两个电流阈值之间的准确关系将更加明显。不可以对第二电流阈值ITH2和第三电流阈值ITH3进行编程,而是利用在各比较器40和50的输入端的传统分压器对它们进行置位。第二比较器50的输出端被第二触发器51闭锁,第二触发器51具有与第二“与非”门48的另一个输入端相连的输出端。第二比较器50的置位输入端被连接到微控制器26的RESET输出线35。
目前说明的释放电路36的各部件将输入信号送到第二“与非”门48。通过被连接作为倒相器的第三“与非”门52馈送第二“与非”门48的输出。将第三“与非”门52发出的信号通过电阻器56连接到诸如标准光隔离器的隔离电路54。隔离电路54在导线58上产生输出,然后将此输出施加到传统FET栅极驱动电路60的输入端。电荷泵62通过导线39为FET栅极驱动电路60偏置FET19的栅极提供电压。
图1所示的固态电路保护装置10的运行过程是从操作员按下小键盘27上的适当开关开始进行的。通过经过导线34对第二“与非”门48施加高电平或激活ON信号,微控制器26响应此开关动作。此时,微控制器26还开始在与第一“与非”门46相连的数字输出线33上产生脉冲序列。此脉冲序列的高逻辑电平导致第一触发器42的输出升高,将另一个高电平施加到第二“与非”门48的另一个输入端。
在负载14正常运行期间,电流传感器24输出的输出信号ISENSE小于第三阈值ITH3。因此,第二电压比较器50在第二“与非”门48的第三输入端产生高逻辑电平。所以,第二“与非”门48产生低电平输出信号,低电平输出信号被第三“与非”门52倒相并经过隔离器54导通之后激活FET栅极驱动电路60。这导致栅极驱动电路60将FET19的栅极偏置到导通状态,因此可以将正电压端12输出的电流通过电感器20施加到负载14。
通过半导体开关18的电流值迅速升高并立即超过第二阈值ITH2。此时,第一比较器40的输出下降复位触发器42并导致第二“与非”门48改变输出状态。这会导致FET栅极驱动电路60使半导体开关18断开。存储在电感器20内的能量产生衰减电流流过负载14和回扫二极管21。
当在接到第一“与非”门46的导线33上的脉冲序列出现下一个正脉冲时,触发器42将被置位以产生另一个高逻辑电平,该高逻辑电平曾经将FET栅极驱动电路60和半导体开关18接通。半导体开关18的这种接通、断开循环以导线33上的信号的速率持续中断电流直到负载14内的电容器被充足充电,此时,负载电流实质上成为低于第二阈值ITH2的稳定电流。因此,将起动期间的负载电流限制到低于第二阈值ITH2,但是仍对起动负载运行施加电流。一旦通过半导体开关18的电流偏移降低到低于此阈值,则不再复位触发器42并且FET施加驱动电路60保持半导体开关18处于导通状态。只要负载14运行正常此导通状态就持续。
如果在起动期间出现故障,负载电流就不会降低到低于第二阈值ITH2。在这种情况下,中断电流可以长期持续。为了防止出现这种现象,通过对施加到负载的电流脉冲进行计数并在出现足以对典型负载电容进行充电的给定脉冲数时终止中断可以限制中断电流的持续时间。具体地说,微控制器26监视电流传感器24的输入线31,这样就可以指出交替的高电流状况和0电流状况并对高电流脉冲进行计数。
将该计数与基准数目进行比较并在出现电流脉冲的基准数目时终止中断状态。此时,微控制器26在导线34上将低逻辑电平信号送到释放电路36,释放电路36使半导体开关断开直到操作员按下控制台25上的RESET开关并复位微控制器。
另一方面,还可以采用电压传感器28来防止在电流中断模式下运行太长时间。在负载14流过过电流的短路电流情况期间,负载上的电压将明显地低于其在正常运行期间的电压。电压传感器28检测负载14上的电压,电压传感器28将模拟电压信号送到微控制器26。如果在电流中断模式期间,检测的负载电压保持低于给定阈值的时间比预定时间间隔长,则微控制器26通过将低逻辑电平(关闭ON信号)施加到ON/OFF线34来断开释放电路36。
通过参考诸如图3所示的典型释放响应特性,可以更好地理解正常起动之后在过电流期间固态保护电路10的运行过程。负载14长期容许低于第一阈值ITH1的负载电流,并且半导体开关18将持续导通低于第一阈值ITH1的负载电流。将第一阈值ITH1设置在被保护的负载14的额定电流的100%至125%之间。负载可以容许阈值ITH1与I2之间的负载电流的时间值与电流值成反比。换句话说,容许第一阈值上的小偏差的时间比容许接近I2的过电流的时间长。这就在响应曲线的部分70产生线性释放响应特性。释放响应特性的此部分被编程到微控制器26并将此部分作为线性方程或数据表存储到其存储器。该数据表具有成对数值,其中一个数值是电流值,另一个数值定义在固态电路保护装置10必须释放之前可以容许的电流值的时间间隔。
在T1规定的时间内,负载可以容许I2与第三阈值ITH3之间的电流值。负载14不能容许比阈值ITH3更高的电流值,即使是瞬间,因此,电流保护装置将立即释放。应该注意,在第二阈值ITH2与第三阈值ITH3之间的双向影线区域72内的负载电流尽管可以被负载14容许,但是会破坏FET19。因此,当确定在此区域内运行时,固态电路保护装置10进入电流中断运行模式。在此模式中,半导体开关18以产生小于第二阈值ITH2的平均电流的速率被脉冲地接通或断开。因此负载保持被供电,这样,就保持对负载电容器充电,但是可以将施加到负载的电流限制到第二阈值。
当检测的电流ISENSE在第一阈值ITH1与第二阈值ITH2之间时,释放电路36开始保持半导体开关18为导通状态,因为此电流低于两个比较器阈值ITH2和ITH3。然而,微控制器26在导线31上接收电流传感器24的输出信号ISENSE,利用部分70的被编程释放响应特性确定是否断开半导体开关18。具体地说,微控制器26确定在释放响应特性确定的时间段内是否出现过电流。一旦出现过电流,则微控制器26通过将低逻辑电平(去激活ON信号)施加到数字线34可以断开释放电路36。此恒定低逻辑电平触发第二“与非”门48的输出电平断开FET栅极驱动电路60和半导体开关18。微控制器26还点亮控制台25上指示释放状况的指示灯29。微控制器26将OFF信号持续施加到释放电路36直到按下控制台25上的手动复位开关。
当检测的负载电流ISENSE在电流阈值ITH2与ITH3之间时,微控制器26不将释放响应特性数据应用于确定是否断开释放电路36。相反,固态保护电路10进入电流中断模式,在电流中断模式中,FET19脉冲地以导线33上的脉冲信号的速率接通或断开。
具体参考图2,当电流传感器24在导线31上产生大于导线37上的第二阈值ITH2输出信号ISENSE时,第一比较器40的输出降低。此低输出复位触发器42,因此将低逻辑电平施加到第二“与非”门48的输入端。这样就在第二“与非”门48的输出端产生高逻辑电平,第三“与非”门52将此高逻辑电平倒相,因此可以将低逻辑电平施加到光隔离器54。这样又反过来关闭FET栅极驱动电路60,FET栅极驱动电路60使半导体开关18断开。此时,电感器20输出的电流流过负载14和回扫二极管21。
半导体开关18保持断开直到微控制器26输出的脉冲序列中的下一个高逻辑电平脉冲出现在数字线33上,微控制器26将此高逻辑电平施加到释放电路36。被第一“与非”门46倒相的脉冲置位触发器42,触发器42产生高输出电平并施加到第二“与非”门48。此高逻辑电平激活FET栅极驱动电路60,再一次使半导体开关18导通。
当FET19再一次接通时,电感器20限制电流升高的速率以致电流值不会立即超过第二阈值ITH2。因此,可以将小电流值施加到负载14并对其电容进行充电。然而,流过半导体开关18的电流甚至升高到高于第二电流阈值ITH2,第一比较器40检测第二电流阈值ITH2。当这种情况发生时,第一比较器40改变输出状态并复位触发器42,触发器42又将最终导致FET栅极驱动电路60断开半导体开关18的信号施加到第二“与非”门48。半导体开关18的断开与接通循环过程持续进行,这样就导致平均负载电流低于第一阈值ITH1
尽管半导体开关18不容易受到与线性电流极限相同强度热应力的影响,但是如果电流中断模式持续时间太长,就会破坏FET19甚或破坏负载。正如上述参考固态电路保护装置10的起动运行那样,通过微控制器26对施加到负载的电流脉冲数进行计数并且当出现规定脉冲数时将导线34上的低逻辑电平OFF信号送到释放电路36,可以限制电流中断的时间长度。另一方面,也可以采用电压传感器28检测短路电路并通知微控制器26断开释放电路36。
电流中断应确保负载电流不超过第三阈值ITH3。然而,如果出现不正常工作,第二比较器50检测大于第三阈值ITH3的负载电流并产生使半导体开关18持续断开的输出。具体地说,第二比较器50的输出下降,该输出复位第二触发器51并对第二“与非”门48施加低逻辑电平。其结果是将FET断开。

Claims (19)

1.一种用于保护电负载(14)免受过电流破坏的装置(10),该装置包括:
半导体开关(18),用于将电负载与电流源(12)接通并具有控制输入端;
电流传感器(24),被连接到半导体开关(18)用于产生表示流过电负载(14)的电流值的传感信号;以及
控制电路(26),被连接到电流传感器(24)和半导体开关(18)用于通过产生将施加到控制输入端的控制信号来响应传感信号,控制电路具有:第一运行模式,这时电流值小于第一阈值,其中半导体开关(18)被保持在连续导通状态;第二运行模式,这时电流值大于第一阈值并小于第二阈值,其中可以在预定时间后使半导体开关(18)断开;以及第三运行模式,这时电流值大于第二阈值,其中半导体开关(18)交替脉冲地导通和断开以将流过负载(14)的电流限制到小于第二阈值。
2.根据权利要求1所述的装置(10),其中控制电路(26)保持在第二运行模式下直到特别复位。
3.根据权利要求1所述的装置(10),其中半导体开关(18)交替脉冲地导通和断开进行具有相同周期的多个循环。
4.根据权利要求1所述的装置(10),其中半导体开关(18)以至少15kHz的速率交替脉冲地导通和断开。
5.根据权利要求1所述的装置(10),其中半导体开关(18)以在20kHz与30kHz之间的速率交替脉冲地导通和断开。
6.根据权利要求1所述的装置(10),其中控制电路(26)具有第四运行模式,这时电流值大于比第二阈值大的第三阈值,其中利用控制信号使半导体开关(18)断开直到装置(10)被特别复位。
7.根据权利要求1所述的装置(10),其中控制电路(26)包括:
可编程控制器(26),用于产生具有恒定工作周期的脉冲信号和ON信号;
开关驱动电路(60),根据开关激活信号产生控制信号;以及
释放电路(36),被连接到可编程控制器(26)、开关驱动电路(60)以及电流传感器(24),所述释放电路包括逻辑电路(40、42、48、50、51、52),它们在传感信号低于第二阈值并且ON信号被激活时产生开关激活信号,它们还在传感信号大于第二阈值并且ON信号被激活时根据脉冲信号产生脉冲开关激活信号。
8.根据权利要求7所述的装置(10),其中可编程控制器(26)根据在预定时间周期内大于第一阈值的电流值产生去激活ON信号。
9.根据权利要求8所述的装置(10),其中可编程控制器(26)根据电流值存储规定预定时间周期的数据。
10.根据权利要求7所述的装置(10),其中释放电路(36)包括:
第一比较器(37),将传感信号与第二阈值进行比较并以响应形式在输出端产生第一控制信号。
触发器(42),有一个输入端(R)被连接到第一比较器(37)的输出端,另一个输入端(S)被连接到可编程控制器(26)以接收脉冲信号,触发器(42)还具有输出端;以及
逻辑门(48),有一个输入端被连接到触发器(42)的输出端而另一个输入端被连接到可编程控制器(26)以接收ON信号,逻辑门(48)还具有与开关驱动电路(60)相连的输出端。
11.根据权利要求10所述的装置(10),其中释放电路(36)进一步包括第二比较器(50),它将传感信号与第三阈值进行比较并将输出连接到逻辑门(48)以在传感信号大于第三阈值时使半导体开关(18)断开。
12.根据权利要求1所述的装置(10),该装置进一步包括与半导体开关(18)串联的保险丝(16)。
13.一种用于保护电负载(14)免受过电流破坏的方法,该方法包括:
将半导体开关(18)设置为导通状态以将电源(12)输出的电流施加到电负载(14);
检测电流值;
将电流值与第一阈值进行比较;
将电流值与比第一阈值大的第二阈值进行比较;
确定何时电流值超过第一阈值预定时间周期并确定这种情况发生时何时发出终止信号;
根据终止信号,将半导体开关(18)设置为断开状态以终止将电流施加到电负载(14);以及
当电流值超过第二阈值时,交替地将半导体开关(18)设置为导通状态和断开状态以将电流脉冲施加到电负载(14)并将通过负载(14)的平均电流限制到低于第二阈值。
14.根据权利要求13所述的方法,其中交替地将半导体开关(18)设置为导通和断开状态以具有相同周期的循环形式施加电流脉冲。
15.根据权利要求13所述的方法,该方法进一步包括确定,在多长时间内将半导体开关(18)交替地设置为导通状态和断开状态;并在预定时间周期之后将半导体开关(18)设置为持续断开状态。
16.根据权利要求13所述的方法,该方法进一步包括:
检测电负载(14)的电压值;
将此电压值与给定阈值进行比较;以及
当在预定时间周期内此电压值小于给定阈值时,将半导体开关设置为持续断开状态。
17.根据权利要求13所述的方法,该方法进一步包括:
将电流值与比第二阈值大的第三阈值进行比较;以及
当电流值大于第三阈值时,将半导体开关(18)设置为持续断开状态。
18.根据权利要求13所述的方法,其中交替地将半导体开关(18)设置为导通状态和断开状态的过程以至少15kHz的速率将电流脉冲施加到电负载(14)。
19.根据权利要求13所述的方法,其中交替地将半导体开关(18)设置为导通状态和断开状态的过程以20kHz至30kHz之间的速率将电流脉冲施加到电负载(14)。
CNB011171189A 2000-04-26 2001-04-26 电气装置的固态保护电路 Expired - Fee Related CN1307767C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/558,507 US6356423B1 (en) 2000-04-26 2000-04-26 Soild state protection circuit for electrical apparatus
US09/558,507 2000-04-26

Publications (2)

Publication Number Publication Date
CN1320991A true CN1320991A (zh) 2001-11-07
CN1307767C CN1307767C (zh) 2007-03-28

Family

ID=24229816

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011171189A Expired - Fee Related CN1307767C (zh) 2000-04-26 2001-04-26 电气装置的固态保护电路

Country Status (7)

Country Link
US (1) US6356423B1 (zh)
EP (1) EP1150410B1 (zh)
CN (1) CN1307767C (zh)
AT (1) ATE371887T1 (zh)
CA (1) CA2343872C (zh)
DE (1) DE60130164T2 (zh)
ES (1) ES2291239T3 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623979A (zh) * 2011-01-07 2012-08-01 易丰兴业有限公司 隔离型交流故障电流限制电路
CN103081270A (zh) * 2010-08-31 2013-05-01 伊顿公司 高压直流系统中控制直流电弧的高压电子开关及其操作方法
CN103247997A (zh) * 2013-06-01 2013-08-14 重庆大学 一种电子熔断器
CN103983297A (zh) * 2014-04-09 2014-08-13 奇瑞汽车股份有限公司 参数值的检测方法和装置
CN106099837A (zh) * 2016-07-25 2016-11-09 贝兹维仪器(苏州)有限公司 具有备用电路的石油测井仪器保护装置
CN106537712A (zh) * 2014-07-29 2017-03-22 宝马股份公司 用于监控电驱动车辆的高压车载电网发生过载的设备
CN107317314A (zh) * 2017-08-15 2017-11-03 中国航天时代电子公司 一种带有限流保护和反时限保护功能的固态功率控制器
CN109075556A (zh) * 2016-04-28 2018-12-21 罗姆股份有限公司 过电流保护电路
CN110073563A (zh) * 2016-12-08 2019-07-30 菲尼克斯电气公司 电负载及其连接线路的过电流保护装置
CN111149267A (zh) * 2017-09-27 2020-05-12 埃伦贝格尔及珀恩斯根有限公司 电子保护开关及其运行方法
CN112366104A (zh) * 2016-03-01 2021-02-12 原子动力公司 混合式气隙和固态断路器
CN112640238A (zh) * 2018-07-17 2021-04-09 西门子能源全球有限公司 用于识别高压直流输电线路中的故障并且生成用于直流断路器的触发信号的方法和设备
CN113383474A (zh) * 2019-01-17 2021-09-10 利勃海尔比伯拉赫零部件有限公司 触发至少一个爆炸熔断器的驱动装置和具有这种爆炸熔断器的储能装置
CN113452252A (zh) * 2021-06-28 2021-09-28 上海任威电子科技有限公司 串接型多路共地输出通信电源及其过流检测和保护方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3845261B2 (ja) * 2001-02-28 2006-11-15 矢崎総業株式会社 自動車用電気負荷駆動制御装置
PT1294069E (pt) 2001-09-18 2006-08-31 Magnetek Spa Disjuntor de circuito electronico
US6590757B2 (en) 2001-09-28 2003-07-08 Eaton Corporation Method and apparatus for detecting and suppressing a parallel arc fault
US6724598B2 (en) * 2001-10-12 2004-04-20 Daniel Segarra Solid state switch with temperature compensated current limit
US7449801B2 (en) * 2002-11-28 2008-11-11 Infineon Technologies Ag Semiconductor circuit arrangement for controlling a high voltage or a current of high current intensity
EP1604440B1 (en) 2003-03-14 2016-06-15 ABB Technology AG Electronic circuit breaker
US20050078024A1 (en) * 2003-10-09 2005-04-14 Honeywell International Inc. Digital current limiter
US7064946B2 (en) * 2003-12-18 2006-06-20 International Rectifier Corporation Electronic fuse
KR100622972B1 (ko) * 2005-06-17 2006-09-13 삼성전자주식회사 전력변환기의 제어장치 및 제어방법
US7810435B2 (en) * 2006-04-11 2010-10-12 Maier Lawrence C Power regulation device for model railway system
US7706116B2 (en) * 2007-01-22 2010-04-27 Honeywell International Inc. SSPC technology incorporated with thermal memory effects to achieve the fuse curve coordination
US8050806B2 (en) * 2007-03-21 2011-11-01 Honeywell International Inc. Ground fault interruption using DSP based SSPC module
US8284534B2 (en) 2007-10-30 2012-10-09 Freescale Semiconductor, Inc. Overcurrent protection circuit, integrated circuit, apparatus and computer program product
GB0812335D0 (en) * 2008-07-05 2008-08-13 Qinetiq Ltd Circuit breaker
DE202009005420U1 (de) 2009-03-11 2009-06-18 Ellenberger & Poensgen Gmbh Elektronischer Schutzschalter
DE102011088912A1 (de) * 2011-12-16 2013-06-20 Continental Automotive Gmbh Schaltungsanordnung zur Detektion eines Kurzschlusses bei einer Leistungsschalteranordnung
CN103166168B (zh) * 2011-12-19 2016-11-02 上海航空电器有限公司 一种高压直流固态功率控制器
WO2015124885A1 (en) * 2014-02-18 2015-08-27 Ge Aviation Systems Limited Method for limiting current in a circuit
US10498130B2 (en) 2014-02-18 2019-12-03 Ge Aviation Systems Limited Method for limiting current in a circuit
DE102014004912A1 (de) * 2014-04-07 2015-10-08 Energijski Konduktorji D.O.O. Schutzgerät und Schutzsysteme für Stromkreise sowie Verfahren zur Steuerung des Schutzsystems
DE202014011366U1 (de) 2014-08-28 2019-10-18 Ellenberger & Poensgen Gmbh Elektronischer Schutzschalter
DE102015211059B3 (de) 2015-06-16 2016-09-01 Ellenberger & Poensgen Gmbh Elektronischer Schutzschalter
DE102015219545B3 (de) 2015-10-08 2017-01-05 Ellenberger & Poensgen Gmbh Elektronischer Schutzschalter
DE102017202103B3 (de) 2017-02-09 2018-03-01 Ellenberger & Poensgen Gmbh Verfahren zum Betreiben eines elektronischen Schutzschalters und elektronischer Schutzschalter
US10804692B2 (en) * 2017-06-16 2020-10-13 Atom Powers, Inc. Hybrid diamond solid-state circuit protector
CN107918430B (zh) * 2017-12-07 2023-07-25 中国南方电网有限责任公司超高压输电公司曲靖局 一种实现开关量回路在线检修的直流控制保护装置
US10700603B2 (en) 2017-12-13 2020-06-30 Ovh Circuit and system implementing a power supply configured for spark prevention
EP3499669A1 (en) 2017-12-13 2019-06-19 Ovh Circuit and system implementing a smart fuse for a power supply
US10747291B2 (en) * 2018-04-27 2020-08-18 Hewlett Packard Enterprise Development Lp Overcurrent event power throttling
WO2019245724A1 (en) * 2018-06-22 2019-12-26 Illinois Institute Of Technology Intelligent tri-mode solid state circuit breakers
WO2020119942A1 (en) * 2018-12-10 2020-06-18 Eaton Intelligent Power Limited Fault current mitigation method and system for solid state circuit breaker
US11431160B2 (en) 2019-06-19 2022-08-30 Eaton Intelligent Power Limited Hybrid circuit breaker assembly
CN111697540B (zh) * 2020-06-19 2022-03-22 中煤科工集团重庆研究院有限公司 基于微分电路的变频器逆变igbt短路检测保护系统
EP3958466B1 (en) * 2020-08-18 2024-05-15 Aptiv Technologies AG Triggering circuit and electronic fuse device incorporating the same
CN116666172B (zh) * 2023-06-16 2024-04-05 上海正泰智能科技有限公司 断路器控制方法以及断路器系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1122892B (it) * 1979-08-30 1986-04-30 Honeywell Inf Systems Alimentatore a protezione accresciuta operabile in modo diagnostico
DE3725390A1 (de) * 1987-07-31 1989-02-09 Wickmann Werke Gmbh Schaltsicherung
US5003426A (en) * 1989-06-06 1991-03-26 Sigma Instruments, Inc. Faulted current indicators and inrush restraints therefor
US5216352A (en) * 1990-11-29 1993-06-01 Square D Company Solid state current controlled interruption system
GB9819911D0 (en) * 1998-09-11 1998-11-04 Meggitt Mobrey Limited Switch control apparatus and method
US6104584A (en) * 1999-02-18 2000-08-15 Lucent Technologies, Inc. Voltage feedback inrush current limit circuit having increased tolerance for component value variation

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979812B (zh) * 2010-08-31 2018-08-10 伊顿公司 高压直流系统中控制直流电弧的高压电子开关及其操作方法
CN103081270A (zh) * 2010-08-31 2013-05-01 伊顿公司 高压直流系统中控制直流电弧的高压电子开关及其操作方法
US9036315B2 (en) 2010-08-31 2015-05-19 Eaton Corporation High voltage electronic switches for controlling direct current arcs in high voltage direct current systems and methods of operating the same
CN103081270B (zh) * 2010-08-31 2015-07-29 伊顿公司 高压直流系统中控制直流电弧的高压电子开关及其操作方法
CN104979812A (zh) * 2010-08-31 2015-10-14 伊顿公司 高压直流系统中控制直流电弧的高压电子开关及其操作方法
CN102623979A (zh) * 2011-01-07 2012-08-01 易丰兴业有限公司 隔离型交流故障电流限制电路
CN103247997A (zh) * 2013-06-01 2013-08-14 重庆大学 一种电子熔断器
CN103247997B (zh) * 2013-06-01 2015-08-12 重庆大学 一种电子熔断器
CN103983297A (zh) * 2014-04-09 2014-08-13 奇瑞汽车股份有限公司 参数值的检测方法和装置
US10703206B2 (en) 2014-07-29 2020-07-07 Bayerische Motoren Werke Aktiengesellschaft Device for monitoring a high-voltage on-board power supply system of an electrically operated vehicle for the occurrence of overloading
CN106537712A (zh) * 2014-07-29 2017-03-22 宝马股份公司 用于监控电驱动车辆的高压车载电网发生过载的设备
CN106537712B (zh) * 2014-07-29 2019-08-16 宝马股份公司 用于监控电驱动车辆的高压车载电网发生过载的设备
CN112366104A (zh) * 2016-03-01 2021-02-12 原子动力公司 混合式气隙和固态断路器
CN109075556B (zh) * 2016-04-28 2019-12-03 罗姆股份有限公司 过电流保护电路
CN109075556A (zh) * 2016-04-28 2018-12-21 罗姆股份有限公司 过电流保护电路
CN106099837A (zh) * 2016-07-25 2016-11-09 贝兹维仪器(苏州)有限公司 具有备用电路的石油测井仪器保护装置
CN110073563A (zh) * 2016-12-08 2019-07-30 菲尼克斯电气公司 电负载及其连接线路的过电流保护装置
US11258251B2 (en) 2016-12-08 2022-02-22 Phoenix Contact Gmbh & Co. Kg Arrangement for protecting electrical loads and the connection lines thereof from overcurrent
CN110073563B (zh) * 2016-12-08 2022-04-05 菲尼克斯电气公司 电负载及其连接线路的过电流保护装置
CN107317314A (zh) * 2017-08-15 2017-11-03 中国航天时代电子公司 一种带有限流保护和反时限保护功能的固态功率控制器
CN107317314B (zh) * 2017-08-15 2019-03-15 中国航天时代电子公司 一种带有限流保护和反时限保护功能的固态功率控制器
CN111149267A (zh) * 2017-09-27 2020-05-12 埃伦贝格尔及珀恩斯根有限公司 电子保护开关及其运行方法
CN111149267B (zh) * 2017-09-27 2022-06-03 埃伦贝格尔及珀恩斯根有限公司 电子保护开关及其运行方法
CN112640238A (zh) * 2018-07-17 2021-04-09 西门子能源全球有限公司 用于识别高压直流输电线路中的故障并且生成用于直流断路器的触发信号的方法和设备
CN113383474A (zh) * 2019-01-17 2021-09-10 利勃海尔比伯拉赫零部件有限公司 触发至少一个爆炸熔断器的驱动装置和具有这种爆炸熔断器的储能装置
CN113452252A (zh) * 2021-06-28 2021-09-28 上海任威电子科技有限公司 串接型多路共地输出通信电源及其过流检测和保护方法

Also Published As

Publication number Publication date
CA2343872C (en) 2007-11-13
EP1150410A3 (en) 2005-05-11
DE60130164T2 (de) 2008-05-21
CN1307767C (zh) 2007-03-28
ATE371887T1 (de) 2007-09-15
EP1150410A2 (en) 2001-10-31
DE60130164D1 (de) 2007-10-11
CA2343872A1 (en) 2001-10-26
ES2291239T3 (es) 2008-03-01
US6356423B1 (en) 2002-03-12
EP1150410B1 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
CN1307767C (zh) 电气装置的固态保护电路
CN100341219C (zh) 用于检测并抑制并联电弧故障的方法和装置
US5532635A (en) Voltage clamp circuit and method
CN105099145B (zh) 用于电力开关的短路保护的门极驱动单元和方法
US4396882A (en) Inrush current limiter
US5914545A (en) Switching device with power FET and short-circuit detection
CN1917318A (zh) 为受保护装置保护的低压负载供电的方法和电子电源设备
CN1910802A (zh) 用于最小化在电连接器之间的电弧放电的装置和方法
CN1930779A (zh) 电源的dv/dt检测过电流保护电路
CN103036196A (zh) 过压保护装置及方法
CN102204406A (zh) 用于驱动有机发光二极管的电路装置和方法
CN201345530Y (zh) 过流保护电路
CN116316493A (zh) 短路电流抑制电路、服务器设备及过流抑制电路
CN113675830B (zh) 一种热插拔器件及其输入电压过冲抑制保护电路
EP0397017B1 (en) Device for protecting semiconductor circuits against transients on the supply line
US5001587A (en) Protection circuit for railroad signaling high voltage surge protection circuit
CA2429785A1 (en) Ballast with adaptive end-of-lamp-life protection
CN113162011A (zh) 过压保护电路及供电电路
CN208849442U (zh) 一种电源接口防护电路及具有其的摄像机
KR20170096424A (ko) 서지 보호회로
CN1630155A (zh) 电源保护装置和具有保护装置的电子装置
EP4213327A1 (en) Voltage limiting device for constant current circuits
CN220401419U (zh) 一种限流保护电路及装置
CN210381404U (zh) 一种适用于led产品的保护装置
CN215912260U (zh) 电路单元及驱动电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070328

Termination date: 20110426