CN1317075A - 旋转装置 - Google Patents

旋转装置 Download PDF

Info

Publication number
CN1317075A
CN1317075A CN99810643A CN99810643A CN1317075A CN 1317075 A CN1317075 A CN 1317075A CN 99810643 A CN99810643 A CN 99810643A CN 99810643 A CN99810643 A CN 99810643A CN 1317075 A CN1317075 A CN 1317075A
Authority
CN
China
Prior art keywords
medium channel
medium
rotor
stator
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN99810643A
Other languages
English (en)
Inventor
奥古斯蒂努斯·W·M·伯泰尔斯
乌韦·史蒂芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SKF Lubrication Systems Germany GmbH
Original Assignee
Willy Vogel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Willy Vogel AG filed Critical Willy Vogel AG
Publication of CN1317075A publication Critical patent/CN1317075A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/165Axial entry and discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/181Axial flow rotors
    • F04D29/183Semi axial flow rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2238Special flow patterns
    • F04D29/2255Special flow patterns flow-channels with a special cross-section contour, e.g. ejecting, throttling or diffusing effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Power Steering Mechanism (AREA)
  • Valve Device For Special Equipments (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

一种旋转装置(1),包括:(a)两通道(3,4);(b)转子(8);(c)静子(13),该静子(13)包括:(c1)第一中心体(14),其有外表面(15),该外表面(15)与静子叶片(19)共同限定介质通道空间(27),该静子叶片(19)在其一端部区域(20)形成第五介质通道(24),其方向与轴向不同,在其另一端部区域(22)形成第六介质通道(25),其方向与轴向几乎相同,该第五介质通道(24)与第四介质通道(11)连通,该第六介质通道(25)与第二介质通道(3,4)连通;(c2)第二中心体(23),其中,在第六介质通道(25)与第二介质通道(3,4)之间延伸有由第二中心体和壳体限定的集气管流道(26)。

Description

旋转装置
已知的旋转装置有多种形式。
例如,已知离心泵有一轴向进口和带叶片的转子,以便甩动液体,从而在离心力的作用下径向向外抽送该液体,同时离心泵还有一个或多个例如切向出口。
还知道轴向压缩机有多组串联布置的转子和静子叶片。该结构包括数千种极其复杂的部件,而且这些部件必须有很高的尺寸精度和机械强度标准。该轴向压缩机的一个实例是燃气轮机,在燃气轮机中,高压气体介质由专用气源供给并被引导到转子叶片上,这样,该转子由力驱动,同时例如带动如发电机这样的机器旋转。
这些已知的装置流动不稳定,尤其是在低流量时。这通常导致转子负载不平衡,转子负载的不平衡将引起振动加大、转速变化无法控制及使得轴承、轴和叶片上的机械负载非常大。
所有已知的旋转装置还有更多技术上的缺陷。
例如,效率通常较低且很依赖于转速。
另外,已知装置通常体积庞大、很重且很昂贵。
在利用铸造方法制造转子时,叶片必须有某一最小壁厚,这导致不希望的有效流通容积减小,同时由于释出(release)和形成涡区而产生损失。叶片壁厚和所需的叶片形状还限制了所能装上的叶片的数量。此外,铸造方法将不可避免地产生不希望的表面粗糙度和不平衡度,该不平衡度是由不希望和无法控制的密度差引起的,例如由于含有杂质。
铸造金属和合金的抗拉强度也是有限的。
已知的离心泵还受到所谓滑移的影响,所谓滑移是指流体几乎不附在由邻接叶片限定的流道的吸入侧的现象。由于叶片之间的张角,从而形成滑移区或有“滞流”的水的区域,在该区域中有大规模的静态湍流,因此,在该区域内流通量为零。从而导致离心泵的出口压力剧烈波动。
此外,已知装置的结构使它们在工作过程中产生大量的噪音。
例如,所有作为水泵的已知装置都只有有限的增压能力。例如,在作为消防泵时,泵通常彼此串联起来以便达到所需的压力,其表现为使所要泵送的水升高。
在已知的旋转装置中,有时还有这样的缺点,即介质进口和介质出口并不在相同方向上,而是例如彼此成直角。但是在某些确定的情况下希望至少能够选择使进口和出口在同一方向上。
已知的装置还不能使用粘性变化大的介质。
在已知装置中,流通介质的流速在装置的流通过程中变化相当大。由于出现加速,导致噪音的产生和效率的损失。因此希望在所有情况下使该介质的流通速度在流过旋转装置时保持恒定,例如在目标值的0.2-5倍的范围内。
本发明的一个目的是提供一种旋转装置,该旋转装置没有现有技术的上述问题和限制,或者至少减小上述问题和限制的程度。
本发明的另一目的是提供一种装置,该装置能够在相对于现有技术明显增大的工作范围内进行调节。
因此,总的来说本发明提供了一种如权利要求1所述的旋转装置。
例如,如权利要求2所述的装置能用作泵或压缩机。
如权利要求3所述的装置涉及一种作为马达的装置。
权利要求4、5和6涉及用于抽送的不同介质。权利要求6中的术语“两相介质”是指例如这样的介质,即该介质根据工作温度和工作压力可以处于液态和/或气态。该介质大量用于冷却系统中,例如:氟利昂、氨、烷烃。
权利要求7总体介绍了转子流道的可能形式。
权利要求8、9、10给出了优选的转子流道数量。
权利要求11涉及防止在工作过程中产生剧烈的周期性压力波动的旋转装置的结构。该结构保证低噪音和均匀流动。
权利要求12涉及当旋转装置作为介质泵时在介质进口处的横切螺旋桨(infeed propellor)的使用。该横切螺旋桨保证介质进入转子流道时不会在一定压力和速度下释出。
权利要求13和14介绍了一种较轻和较容易制造的转子的非常实用的实施例。
重要的是在第三介质通道区域中没有不连续性,如果有不连续性,将会产生大规模的涡流和湍流,从而产生卸压和噪音,因此如权利要求15所述的结构是很有利的。
权利要求16涉及一种旋转装置的结构,在该结构中可以采用较多数量的导流片,且在第三介质通道处没有使导流片厚度大大减小该位置处的介质通道。由于相对于转子流道的轴向而言其沿径向的横向尺寸越来越大,因此有额外的空间,以便在距离第三介质通道一定距离处交错布置第二组第二导流片。如果需要,在交错布置的第一和第二导流片之间还可以布置第三组导流片。这些导流片又比第二导流片更短,并沿从第三介质通道到第四介质通道的方向延伸,一直延伸到第四介质通道,并与对着第三介质通道的第二导流片末端有一定距离。这样的结构可以有很好的流动导引效果,且基本对介质的有效通道没有不利影响。
权利要求17和18涉及静子叶片的形状。因为全部静子叶片都是等角度间距布置的,因此它们的相互距离在任意轴向位置处都是相同的。不过,在流变学上,沿从第五介质通道到第六介质通道的方向上看,必需沿静子流道的流线方向产生有效散开。在垂直于该流线的方向上,在沿着该流线的任意位置处,在叶片间可以确定渐进角(angleof progression)。权利要求17将涉及该角度。权利要求18的结构所具有的优点是大大提高了效率。
根据权利要求19而采用板材来制造盘和叶片所具有的优点是能使转子非常轻。板材可以非常轻、光滑且尺寸可靠。对材料的进一步选定还要考虑耐磨损性(取决于通过的介质)、抗弯刚性、机械强度等。对于转子,它的盘具有所述的双曲形,因此重要的是,即使由于高速旋转而使材料受到离心力时也能够保持住基本形状。在这方面还应当注意到,布置在盘之间且与盘刚性连接的叶片对转子的加强有很大的作用。因此,重要的是采用较多的叶片。转子还可制成具有非常高的尺寸精度,且内部的不平衡度很小。
权利要求20、21、22给出了在特定情况下的材料选择。
根据转子的尺寸和转速,所述板材可以有合适的尺寸。合适的选择通常在权利要求23所述的范围内。对于可能会有的较小的不平衡度,转子的惯性质量矩优选是尽可能地小,尤其是在低密度介质例如气体时。因此建议选用在技术上尽可能小的厚度。
权利要求24介绍了几种可以将转子导流片连接到盘上的可行方法。
权利要求25涉及静子叶片的可选材料。作为该材料选择基础的在技术上所要考虑的因素大体上与转子的导流片相同。
权利要求26涉及材料的选择,或者说至少是壳体的圆柱形内表面上的材料和静子叶片材料的选择。通过使这些材料的热膨胀系数与权利要求20相同,可以消除热应力,从而在极大的温度变化情况下也能保证相互连接和保持静子流道的合适形状。
叶片采用很薄的板材也有利于有效消除热应力。
权利要求27是上述技术原则的特定改进,材料的可能性相同。显然,在进一步的改进中,不仅壳体的圆柱形内表面必须由相应的材料制成,而且壳体的整个圆柱形壳或者甚至是整个壳体也可以由相应材料制成。
权利要求28集中说明静子流道的形状。
正如前面在权利要求19-23中所述,惯性质量矩和转子的一定不平衡度的危险优选是尽可能的小。
权利要求29也涉及这一方面,且尤其是采用气体作为介质,毕竟该气体介质对惯性质量矩没有明显的影响。由于径向尺寸小,轴应当具有很大的重量,从而使其惯性质量矩与转子的惯性质量矩大小大约相同,尽管如此,但应当知道,轴的长度在某些情况下非常大,因此它的上述影响会很大。此外,转子优选是采用尽可能最轻的形状,这样,它的惯性质量矩也相当小。
权利要求30、31介绍了几种形成转子盘的可能方法。
权利要求32特别说明了一种形成转子的特定方法。
权利要求33所述的结构在采用非常热或非常冷的介质的情况下非常有效。
权利要求34介绍了一种非常有利的实施例,其中在有效密封的同时摩擦力几乎为零。
权利要求35和36给出了更优选的静子叶片的可行数目。在本发明的旋转装置的设计中,必须考虑到,如果流管细长时,在很宽的流动范围内都只有局部的流管是可控的。
权利要求37、38和39进一步给出了旋转装置在所有第四介质通道的总截面积与第三介质通道的总截面积之间的比值这一方面的特征。相应选择值在很大程度上取决于设计要求。
类似地,权利要求40、41和42提供了第四介质通道环的直径与第三介质通道直径之比的可选值。作为泵时,相应选择值取决于进口和出口之间要产生的压力比,作为涡轮时,其取决于膨胀比。
在本发明的泵中,在第四和第五介质通道区域中还有很强的旋转。这导致该处的静压与已知的离心泵相比来说相对较低。由于该处的压力相对较低,因此对其相关壁厚和局部密封要求不高,从而可以采用例如简单的密封,例如迷宫式密封,而迷宫式密封在特定情况下被认为是低级的。众所周知,由于其性质,迷宫式密封并不是完全密封的。由于局部压力相对较低,该密封采用迷宫式密封就足够了。
所述小壁厚可以通过深冲压制造。
本发明装置用途极广。作为泵,它有非常均衡的压力和效率特性曲线,其功率特性曲线大体上是单调的,因此,该泵适于多种不同用途,而对于普通的泵,则是不同用途需要不同尺寸。
由于所述特性曲线在任何转速下都单调且基本成线性,这提供了重要的选择方式,即通过简单地调节驱动功率,获得与其基本明确对应的输出特性。在现有技术中,实现该目的需要根据多个相关参数的瞬时值进行复杂和昂贵的调节。因此在实际中并不这样进行调节。
抽吸粘性变化很大的介质时,只需要很少的不同大小的泵,因为介质的粘性对该装置的特性影响小。
在作为泵时,一个装置就可以达到非常大的流量和/或非常高的压力,其可与多个现有技术的泵的串联相比。
为了将泵的工作过程倒转而成为马达,或者相反,通常需要对静子流道和转子流道的尺寸进行一些改变。
下面将参考附图介绍本发明。附图中:
图1所示为旋转装置的第一实施例的局部剖视且局部切开的侧视图;
图2是图1中的装置的局部断开的透视图,示意表示了空间结构;
图3所示为集气管的一种变化形式;
图4是旋转装置的第二实施例的局部断开的透视图;
图5A所示为静子的一部分的展开图,该静子部分上带有限定静子流道的静子叶片;
图5B所示为静子叶片的展开图;
图5C所示为两个静子叶片的与图5A相应的视图,用于表示几何比例;
图5D所示为图5C的静子流道的直线图;
图5E所示为作为流道距离的函数的流道宽度的曲线图;
图5F所示为作为流道距离的函数的包角(enclosed angle);
图6A所示为旋转装置的第三实施例的示意剖视图;
图6B所示为一种变化形式的与图6A相应的视图;
图7所示为对于旋转装置第四实施例的转子和静子从内部结构下面看的分解透视图,其中省略了壳体和底部的转子盘;
图8所示为图7的静子的俯视图,其中省略了壳体和转子;
图9所示为转子的与图7相应的、从下面看的分解透视图;
图10A所示为第五实施例的静子部分的与图8相应的透视图,其中集气管有所不同;
图10B所示为一种变化形式的与图10A类似的视图;
图10C所示为一种变化形式的与图10B类似的视图;
图10D是表示两叶片间的切向距离与轴向位置之间的关系的曲线图;
图10E所示为作为流道位置的函数的流道宽度;
图10F是表示作为流道位置的函数的包角的曲线图;
图11是旋转装置的第六实施例的一部分的局部断开的透视图;
图12A是制造转子叶片的模具的局部示意透视图;
图12B所示为沿图12A中的线B-B的剖视图;
图12C所示为制造静子叶片的装置的示意分解图;
图12D是图12C中的装置的透视图;
图13A所示为用于装配图9所示转子的装置的示意分解图;
图13B是在静子的制造过程中的多个传导块的结构的局部透视示意图;
图13C是画在图13B下面的、表示根据图13B制造的静子的局部断开的透视图;
图13D所示为图13B中的用于传导热和电的块组件。
图14所示为对已知旋转装置和本专利申请的装置的作为相对流量的函数的效率进行比较的示意曲线图;
图15所示为与已知泵进行比较的、作为在不同转速下的流量函数的、由本发明装置产生的压力;
图16是另一实施例中与图15相应的曲线图;
图17是本发明旋转装置的又一实施例的透视图;
图18是图17中的装置的切开的透视图;
图19所示为图17中的装置的分解图;
图20是马达的透视图;
图21是在第六介质通道和第二介质通道之间延伸的流道单元的透视图;
图22所示为图21中的单元的俯视图;以及
图23是一种变化形式的切开的透视图。
图1所示为旋转装置1。该旋转装置包括一壳体2,该壳体有一位于中心的轴向第一介质通道3和三个轴向第二介质通道4、5、6。装置1还包括一轴7,该轴7在壳体2的内部和壳体2外部延伸,且将该轴安装成可相对于该壳体2旋转,并支承着装于壳体2内的转子8,该转子将在下文中介绍。转子8使中心的第三介质通道9与第一介质通道3连通。该第三介质通道9分支成多个等角度间隔的转子流道10,这些转子流道10的每一个都在至少近乎径向的主平面内延伸并从第三介质通道9延伸到各第四介质通道11。该第三介质通道9的端部区域和第四介质通道11的端部区域都基本沿轴向延伸。如图1所示,各转子流道10大体稍微成S形,大致与半个余弦函数相当,且各转子流道10的中间部分12沿至少有相当大的径向分量的方向延伸。各转子流道的横截面的表面积从第三介质通道到第四介质通道是增大的。
旋转装置1还包括装于壳体2内的静子13。该静子13包括第一中心体14和第二中心体23。
该第一中心体14在其与转子8相邻的区域有一圆柱形外表面15,该圆柱形外表面与壳体2的圆柱形内表面16一起限定了基本为圆柱形的介质通道空间17,该介质通道空间17的径向尺寸最多是圆柱形外表面15的半径的0.2倍,且在该介质通道空间17中装有多个等角度间隔的静子叶片19,该静子叶片一对对地限定了静子流道18,且每个静子叶片19在对着转子8的端部区域20处形成第五介质通道24,该第五介质通道24的方向与轴向方向21明显不同,尤其是角度至少60°,在静子叶片19的另一端部区域22形成第六介质通道25,该第六介质通道25的方向与轴向方向21基本相同,尤其是角度最大为15°,该第五介质通道24与第四介质通道11连通,而该第六介质通道25与三个第二介质通道4、5、6连通。
该第二中心体布置成这样,即,在第六介质通道25和第二介质通道4、5、6之间,三个集气管流道26从第六介质通道25向第二介质通道4、5、6渐缩地延伸。这些集气管流道也由第二中心体23的外表面29和壳体2的圆柱形内表面16限定。
图1中由箭头表示了总的介质流通通道27。该通道27限定于第一介质通道3和第二介质通道4、5、6之间,并分别通过以下部分:第一介质通道3、第三介质通道9、转子流道10、第四介质通道11、静子流道18、第六介质通道25、集气管流道26、第二介质通道4、5、6,且在所述部分之间都基本光滑地过渡。应当注意,在图1中,根据装置1的抽吸作用示出了介质沿箭头27的流动,为此,轴7由马达装置(未示出)驱动旋转。对于下面将介绍的装置1的结构,如果高压介质通过介质通道4、5、6压入第二介质通道4、5、6时,那么介质的流动将会反向,则转子8将会被驱动旋转,同时也可以驱动轴7旋转。
该装置的结构是这样的,即,在工作过程中,一方面,在转子8的旋转和轴的旋转之间有相互力矩,从而可以使通过所述介质流通通道27流动的介质具有速度和压力。
因此,该装置通常可以作为泵工作,这时,驱动轴7并使介质沿箭头27抽送,或者可以作为涡轮/马达,这时介质流动反向且该介质提供驱动力。
图2所示为装置1的示意剖视透视图。显然,集气管流道26由第二中心体23形成,该第二中心体23可以认为是一插入件,该插入件布置在第一中心体14上部并有三个形成集气管流道26的凹陷部分30。该凹陷部分呈圆形,且其下侧与第六介质通道25连通,以便引导介质沿箭头27进入第二介质通道4、5、6。
图3所示为插入件23的局部断开的透视图。在该实施例中,该插入件23由金属板制成。它也可以由其它合适的材料构成,例如固体的优选是增强的塑料和类似物。
图4所示为功能与装置1相当的装置31。该装置31包括驱动马达28。
由图4可以比图1更清楚地看到,在作为介质进口的第三介质通道9内布置有带有多个螺旋桨叶片33的横切螺旋桨32。
可以认为图9中的转子与图1中的转子8相对应,并应当注意,图4中的装置31中的转子34有多个额外的增强支架35,而在转子8中是没有的。
如图9所示,转子8包括多个单独的部件,这些部件相互组装成一体的方法将在下面介绍。转子8包括一下部盘36、一上部盘37、12个相对较长的导流片38和交叉布置在该较长导流片38之间的12个相对较短的导流片39,这些导流片以图示方式形成各转子流道10的等间距边界。各导流片38、39形成弯曲形状,并有垂直弯曲的边40、41,以便与盘36、37配合密封该介质。导流片38、39优选是通过焊接与盘连接,从而形成一体的转子。在中心的第三介质通道9内布置有横切螺旋桨32。该横切螺旋桨有12个叶片,该叶片与该较长的转子导流片38连接,而没有流变明显的过渡区。在横切螺旋桨32的中部布置有向下的锥形流线形元件42。
图4非常清楚地表示了装置31在作为例如液体泵时的工作状况。通过驱动轴7与转子34共同运动,液体通过螺旋桨32的作用而被压入转子流道。部分由于所产生的离心加速度,可以获得与离心泵相当的强烈抽压作用。不过,离心泵是通过根本不同形式的转子流道进行工作的。从转子流道10流出的液体有强烈的旋转,形成既有切向或旋转方向分量又有轴向分量的环流形式。静子叶片19消除该旋转分量,并将最初轴向引入的流体再一次沿轴向引入到集气管流道26,在该集气管流道,分散的流体再集中起来并送入各介质出口4、5、6。如果需要,如图2所示,可以通过将三个出口4、5、6并成一根管道43,从而通过该管道进一步抽送该介质。再参考图10,可以看到另一可行的实施例,在该实施例中,出口也几乎完全轴向延伸。
如图5A所示,静子叶片19在其横切侧有弯边44。该弯边有流变作用。它使得由快速旋转的转子34所产生的、有强烈旋转的介质流体光滑地、成流线形地向静子流道18过渡。
在该实施例中,参考图9,所述转子由盘36、37、导流片38、39、螺旋桨32等不锈钢部件构成。
图5A所示为第一中心体的外表面15和静子叶片19的展开图。
图5B所示为沿图5A中的虚线B-B的导流片19的视图。
图5C所示为一组静子叶片19一起限定了一组静子流道18。
图5D所示为流道18的设计图,其中定义了沿逐条线46的相互角(mutual angle),如图5D所示,该逐条线46至少在本实施例中彼此沿轴线的距离大约是5mm。各静子流道的出口宽度大约是15mm,如图5C所示。图5D表示了在所示不同位置处两叶片19之间的相应半角。
图5E所示为作为根据图5C和5D中的位置的函数的流道宽度。
图5F所示为图5D所示的夹角。应当看到,该夹角在各个位置都没有超过大约15°的流变有效值,甚至保持在14°以下。
在图1和图4中可以清楚地看到,各转子8、34在第三介质通道和第四介质通道区域内分别通过迷宫式密封件45、46而相对于壳体2密封。轴通过至少两个轴承安装在壳体上,在图1和4中仅画出了这两个轴承中的一个。该轴承由参考标号47表示。
图6A所示为结构稍微有所不同的旋转装置。该结构包括一个连续的集气管流道单元,因为有由第二中心体50与壳体52的壁51一起限定的空间49。因此只有一个介质出口4。
图6B所示为旋转装置48’,该旋转装置的结构几乎完全与图6A中的装置48的结构类似。与装置48不同的是,装置48’包括一电马达。它还包括多个由参考标号90表示的静子绕组,该静子绕组布置在静止位置,而转子的锚固件(anchor)91与转子8的上部盘37牢固连接。
静子绕组的连接线并没有画出。它们能通过静子叶片19内的未使用空间而合适地向上延伸,并在合适位置从装置48’中引出。
图7表示了转子8的内部结构,其中省略了下部盘36。这可以参考图9。在图7中,特别重要的是第二中心体53的结构。与图2相比,可以更清楚地看出该实施例与装置1的结构的区别。该第二中心体53有三个限定了凹陷部分55的插入件54,该凹陷部分55使得静子流道18的出口开口与介质出口4、5、6连通。凹陷部分55设有流体导流片,尽管该流体导流片有不同的形状,但是为了方便,它们都由参考标号56表示。通过该结构,同样可以形成非常平稳的无旋流动。
图8所示为从另一侧看时图7中的静子57。
图10A所示为第五实施例的一部分。静子61的结构更有规则且更对称,在这一点上它与图2和7所示的实施例有区别。在图10A所示实施例中,集气管流道62以类似的方式在静子流道18上形成。集气管流道62的一侧由沿出口4方向渐缩的第二中心体64的表面63限定,另一侧由壳体的内表面(未示出)限定。流道62由分隔壁65相互分开。如图所示,平均大约2.7个静子流道合并形成一个集气管流道62。
图10B所示为图10A的一种变化形式。图10B中的静子61’与图10A中的实施例的区别是这样,即,流道62’由形状与静子61相应部件的形状不同的表面63’和导流片65’彼此分隔开。因此,图10B中的介质通道93’具有比图10A中的介质通道93大的通道。因此,整个流道62’的速度差小于整个流道62的速度差。这可能在某些情况下很有利。
图10C所示为另一种变化形式,其中静子61”不仅包括相对较长的导流片19,而且还包括交错布置在该较长导流片之间的较短导流片19’。它的效果可以参考下面的图10D、10E和10F进行说明。静子61’’的其它部分基本与静子61’类似。应当指出的是,将导流片19和19’的下端区域进行折叠。因此保证在有好的流线形的同时还增加了刚性、强度和抗腐蚀性。
图10D所示为图10C中的相邻导流片19、19’之间的切向距离和图10A和10B中的导流片19之间的切向距离。图中切向距离表示为轴向位置的函数。曲线Ⅰ和Ⅱ对应于相邻的导流片。
图10E涉及图10C的实施例。该曲线表示作为流道位置的函数的流道宽度。相对较长和相对较短的导流片交错布置的影响是显而易见的。该影响可由曲线的突变而看出。如果没有该突变,由Ⅱ表示的部分将光滑连接到由Ⅰ表示的部分上,这样,区域Ⅱ内的流道宽度将会变得非常大。这将严重影响静子流道的延伸特性(elongatecharacter),从而将会影响上述装置的性能。
图10F所示为作为流道位置的函数的包角。与图5F的比较显示,通过选择使短导流片和长导流片交错布置,在图10C的结构中该包角总是小于10°,而在图5F中该包角达到大约14°。
图11所示为第六实施例。该旋转装置66包括具有多个转子流道68的转子67,该转子流道68由金属板壁限定。该转子可以通过爆炸变形(explosive deformation)、利用内部介质压力、利用橡胶压制或其它合适的已知技术而形成。集气管流道69由导流片70限定,该导流片70大致成螺旋形地在吸入区域上延伸。
图12表示了能够由相应的不锈钢条制成空间形状复杂的静子叶片19的方法。
图12A示意表示了用于由预定长度的扁平钢条制成静子叶片19的模具71。该模具包括两个模具部件72、73,它们在力的作用下能够彼此相对旋转,在旋转闭合的位置,这两模具部件有两个彼此正对的分离表面,这两表面的形状基本相同,且其形状与叶片19的形状相应。该分离表面位于74所指的位置处,在该位置上,画的是实际处在叶片形成过程中的这种叶片19,其中,模具部件72、73的毗邻部分是以断开视图的画法来表示的。在底部所表示的是相应的分离表面75,该分离表面75继续成叶片19的形状。箭头76表示模具部件72、73的可相对旋转性。导引块76、77作为模具部件72、73在旋转过程中的导引件。所述的用于旋转地驱动模具部件72、73的装置并没有画出。
在该模具的打开位置(该位置并没有在图12A中画出),将直的不锈钢条插入。该不锈钢条是完全扁平且直的。然后,该模具部件相互旋转,这样,模制表面相互靠近。从而与钢条接合,同时使其变形。参考图12B,该图表示了模具部件72、73的相互共同作用。可以清楚看见,模具部件73在其下面毗邻支承柱77处有一凹部78,该凹部与不锈钢条19的弯曲底边79对应,同时,当模腔闭合时,在模具部件72的上表面和模具部件73之间的顶部还有一类似的凹部80。该模腔的最终闭合仅由叶片19的金属厚度决定。凹部80对应于上部的弯曲边81。
图12C和12D所示为用于由扁平钢条801形成静子叶片819的一种可选装置或模具871,其中给定长度的扁平钢条801的弯曲形状如图12D中所示。该模具871包括两个模具部件872、873,它们在力的作用下能够彼此相对旋转,在旋转闭合的位置,这两模具部件有两个彼此正对的分离表面,这两表面的形状基本相同,且其形状与叶片819的形状相应。所述模具部件872、873的相互旋转可以通过利用手柄802使模具部件873旋转而进行,其中模具部件872保持静止,因为它与固定在工作面上的框架803形成一整体。第二手柄804安装在基本圆柱形的元件805上,该基本圆柱形的元件805有一个近乎三角形的开口806,该三角形开口806用于放入钢条801和取出所形成的叶片819。相应部件805和814通过装入键槽807内的键808而相互配合旋转。
所述分离表面810、811使得钢条801生成双曲的基本形状,不过没有弯曲边812、813,该弯曲边812、813用于使静子的叶片变形部分与各圆柱体连接。通过旋转中间手柄802而获得该形状后,通过进一步旋转手柄804,即可形成该弯曲边812、813。在该进一步旋转的过程中,如前所述,中心部件814与元件805相互配合旋转且有弯曲边815,由于中心部件814的旋转,所述边缘产生所希望的弯曲。第二弯曲边816布置在元件805的内部。
通过用装置871进行简单操作,叶片819就能这样由预成形的金属条801制成。
应当知道,金属条801是通过激光切割制成。因此可以获得非常精确的无切屑、无毛刺的金属板元件,且该金属板元件没有内部应力。狭窄的端部区域820能够如箭头823所示折叠到820’所指的位置。这样,叶片819就可用作静子的部件。这样的静子例如如图13C所示。
图13A所示为一种可行且非常实用的制造转子8的方法。开始处是下部盘36、上部盘37和转子导流片38、39,该转子导流片38、39置于上部盘36和下部盘37之间并牢固与它们连接(也可见图9)。
在分解图13A中还可以看出,多串相似的、导电和导热的成形块82能够并入所形成的三维导流片38、39中。这些块由金属线83连接起来以形成相应的串,并能够导电,电流能够由电源86经过上电极84和下电极85传导,并流经相应的盘37、块82、导流片38、39、下部盘36和下电极85。通过挤压装置(未示出),用力将形状分别与上部盘37和下部盘36相对应的盘形电极84、85彼此压向一起,同时也以一相互距离相向挤压图3中所画出和提及的部件。成形区域86作为挤压点而布置在上电极84中。对应的区域87布置在下电极84中。在传输足够大的电流的时候,较大的电流经挤压区域86、87并经过相应的电流通路传导,而该挤压区域86、87与导流片38、39配准。由此即可使导流片38、39有效点焊到盘36、37上。例如,铜块82有很好的导电性,而且对导流片38、39没有不利的热影响。这样完成点焊后,通过拉动金属线83而将相应的块串取下。该操作完成后,转子就基本制成了。如图1所示,固定盘90也可以焊接到上部盘37上,并利用盖体91而使该转子固定在轴7上。在上述参考图13介绍的点焊操作完成后,如图4所示的转子还有支架35,然后再安装轴37。
图13B以大大简化且省略了多个部件的方式表示了一种制造如图13C所示的静子831的装置830。为了更好地理解图13B的装置,首先参考图13C。静子831包括一圆柱形内壁832和一圆柱形外壁833。在该实施例中,这些壁由不锈钢制成。外壁833相对较厚,而内壁832相对较薄。相对较长的静子叶片819(见图12)和交错布置在该较长静子叶片间的较短叶片819’都置于合适的位置,并且它们的弯曲边812、813都通过焊接而固定在相应的内壁832和外壁833上。显然,这些弯曲边812、813的形状必须与相应的圆柱形表面精确配合。因此,图12所示的装置是专门设计的。
图13B所示为等间距放置的铜块串的装置,其中省略了圆柱形壁832、833,为了方便起见,这些铜块都以834表示,且其形状如图13D所示,分别与叶片819、819’相对应。这些块彼此机械连接,且通过束带835而相互电绝缘。橡胶垫836具有这样的形状,即,使得由块834、束带835和垫836组成的整个构件837精确安装在静子831的叶片819、819’之间。块834基本成U形。这样,边812、813能够彼此导电和导热地连接,而不会通过叶片819的中间板导电。通过对比图13B和13C,可以看出块834和叶片819、819’的相对布置方式。
图13B是简化画法,只表示了最前面一组串837,同时为了清楚,还省略了圆柱形的壳832、833。外部电极838布置在外壳833的外面,而内部电极839布置在内壳832的内部。这些电极用于同时通过点焊区传输电流,为了方便起见,这些点焊区都由840表示。为此,电极838、839都与电流841连接。在将内圆柱壁832和外圆柱壁833布置好并在整个圆周上布置好插入有块串837的叶片819、819’后,布置内部电极839和外部电极838,然后通上电流,这样,在电流位置处,弯曲边812、813被点焊到内圆柱壁832和外圆柱壁833上。随后在束带835上将各块串837从该结构的顶部抽出,从而形成静子831。
图14所示为表示成相对流速Q的函数的效率“EFF”百分数的曲线,该相对流速Q分别是现有技术的装置的(曲线Ⅰ)、在如上述图1所示的装置中所测量的(曲线Ⅱ)和最后在如图7、8、9、10所示的装置中测量的。显然,本发明的结构的效率曲线大大高于现有技术,具有很大的进步。特别是在低转速时有显著的提高。该提高说明了为什么一个装置能够用于多种不同的用途。而在现有技术中,不同的用途通常需要有不同的装置。
图15也表示了本发明装置作为泵时的性能。图15中的曲线涉及到作为本发明装置的流速的函数的泵压力值,并与尺寸和本发明装置相当的八级普通离心泵进行对比。用圆形测量值点表示的曲线Ⅰ表示测量已知的泵NOVA PS 1874所得的值。其它的曲线表示本发明的泵在下面各转速时的测量值:1500、3000、4000、5000、5500、6000转/分钟。
图16所示为两种本发明的泵的测量结果与两种现有技术的泵的测量结果所进行的比较。曲线Ⅰ和Ⅱ表示普通类型的八级离心泵在3000转/分钟时的情况。曲线Ⅰ涉及的进口为58mm,而曲线Ⅱ进口为80mm。
所画的分别标出1500、3000、4000、5000、6000转/分钟的曲线表示一种一级的本发明装置,该装置的壳体直径为170mm,转子直径为152mm,进口直径为38mm。虚线所示曲线也表示一种一级的本发明装置,该装置的壳体直径为170mm,转子直径为155mm,进口直径为60mm。
线Ⅲ和Ⅳ分别表示上述本发明第一类型的泵的涡凹(cavitation)边界和上述本发明第二类型的泵的涡凹边界。
由前述可知,上述新结构的旋转装置能产生大大优于类似的已知装置的结果。尤其是参考图15和16,还应当注意,该比较涉及到一级的本发明装置与八级的现有技术装置,即与串联的八个已知旋转装置比较。
图17所示为包括旋转装置902和马达903的单元901。将该单元设计成作为泵。在下部设置有作为进口的第一介质通道904,在侧面设置有作为出口的第二介质通道905。
图18示意表示了单元901的结构。它与如图4所示的实施例不同,在图4所示实施例中该单元包括一马达和一泵,该泵基本上是不可分地连接在马达上,而单元901是由两个单独的部件构成。为此,马达轴906的朝外成锥形的端头在其末端有一锥形螺纹907,而转子轴908有相应的互补形状。这样,马达903和泵902以可拆开和可传递功率的方式彼此连接起来,且还能很容易地拆开。后面将会参考图21和22特别介绍泵902部件的结构。
图19以分解图的方式表示了该单元,其中主要的部件彼此连接和相互关联。应当注意的是,泵902设有静子的上部部件909的结构与前述实施例的相应部件不同。转子910和进口部件911与前述实施例相同。
图20所示为马达903,在其下部有连接件912,以便与出口部件909上的相应连接套筒913连接。
图21和22所示为出口部件909的部件914。部件914包括一个带有中心开口916的金属板缩管915。缩管915中贴着壁面而布置有流体导流片,这些导流片以图21、22所示方式布置,且尽管它们有不同的形状,但是为了方便起见,它们都由参考标号917表示。导流片917是一个参数族(parametric family)的元件。
一个同样由金属板构成的内部缩管918布置于缩管915内部,这样,流体导流片917分别由缩管915和918界定,从而形成导流流道919。这些流道919都流出到出口905内,以确保可控的流动形式,同时使摩擦损失很小。流体导流片917可以以与制造静子叶片和/或转子导流片的方法类似的方法制造。可以参考图12和13所涉及的可行制造方法。
单元901的结构就不需要进一步介绍了。其结构和操作方法都可以通过前述实施例的介绍而知道。
导流流道919的功能与图10A和10B中的集气管流道62、62’类似。与图10不同的是,单元903的结构是这样,即,其出口905在单元903的侧面延伸。这简化了在马达903和泵902之间的关键连接结构。不过应当知道,也可以采用如图1、2和4所述的实施例。
图23所示为带有用于驱动转子1003的电马达1002的泵1001。静子1005的进口1004通过旋转对称的过渡区1007连接到侧面的进口1006上。转子1003通过第二旋转对称过渡区域1008连接到侧面的出口1009上,在本实施例中,该侧面出口1009布置成与进口1006共轴。而区域1007和1008处于同轴包围的关系。
应当注意到,在图23中,已经确定的部件如叶片、导流片等都没有画出。
箭头1010表示介质流。

Claims (42)

1.旋转装置(1),包括:
(a)一壳体(2),该壳体(2)有一位于中心的、基本轴向的第一介质通道(3)和至少一个基本轴向的第二介质通道(4)(5)(6);
(b)一转子轴,该转子轴在壳体(2)的内部和壳体(2)外部延伸,且将该转子轴安装成可相对于该壳体(2)旋转,并支承着装于壳体(2)内的转子(8),该转子(8)使中心的第三介质通道(9)与所述第一介质通道(3)连通,该第三介质通道(9)分支成多个等角度间隔的转子流道(10),这些转子流道(10)的每一个都在至少大体径向的主平面内延伸并从第三介质通道(9)延伸到相应的第四介质通道(11),其中,第三介质通道(9)的端部区域和第四介质通道(11)的端部区域都分别基本沿轴向延伸,各转子流道(10)成曲线形,例如基本呈U形或基本呈S形,且各转子流道(10)的中间部分(12)在至少有相当大的径向分量的方向上延伸,各转子流道(10)有一流管横截面表面积,即与各处的主方向横切的横截面面积,该横截面沿从第三介质通道到第四介质通道的方向从相对值1增大到相对值至少为4;
(c)一静子(13),该静子(13)装于该壳体(2)内并包括:
(c1)第一中心体(14),该第一中心体(14)具有基本旋转对称的外表面(15),例如:至少大体为圆柱形、至少大体为锥形、曲线形或组合形成,该外表面(15)具有平滑的形状,它与壳体(2)的内表面(16)一起限定了总体基本旋转对称的例如圆柱形的介质通道空间(17),该介质通道空间(17)的径向尺寸最多是所述外表面(15)的半径的0.4倍,且在该介质通道空间(17)中装有多个等角度间隔的静子叶片(19),该静子叶片一对对地限定了静子通道(18),且每个静子叶片(19)在对着转子(8)的端部区域(20)处形成第五介质通道(24),该第五介质通道(24)的方向与轴向方向(21)明显不同,尤其是角度至少60°,在静子叶片(19)的另一端部区域(22)处形成第六介质通道(25),该第六介质通道(25)的方向与轴向方向(21)几乎相同,尤其是角度最大为15°,该第五介质通道(24)与第四介质通道(11)连通,以便使介质基本沿轴向流动,并将其布置在基本相同的径向位置,而该第六介质通道(25)与所述至少一个第二介质通道(4)(5)(6)连通;
(c2)一第二中心体,其中,在第六介质通道(25)和所述至少一个第二介质通道(4)(5)(6)之间,多个集气管流道(26)成锥形从第六介质通道(25)向所述至少一个第二介质通道(4)(5)(6)渐缩延伸,这些集气管流道由第二中心体(23)的外表面(29)和壳体(2)的圆柱形内表面(16)限定;
其中,总的介质流通通道(27)限定于第一介质通道(3)和所述至少一个第二介质通道(4)(5)(6)之间,并分别通过以下部分:第一介质通道(3)、第三介质通道(9)、转子流道(10)、第四介质通道(11)、静子流道(18)、第六介质通道(25)、集气管流道(26)、第二介质通道(4)(5)(6),或者反过来,且在工作过程中,所述部分之间都基本光滑地连续过渡;以及
其中,该结构是这样的,即,在工作过程中,一方面,在转子(8)的旋转和轴(7)的旋转之间有相互力矩,并且在流经所述介质流通通道(27)的介质中有压力。
2.根据权利要求1所述的装置,其中:轴(7)与马达(28)连接,以便进行驱动,且第一介质通道是介质进口,第二介质通道是介质出口。
3.根据权利要求1所述的装置,其中:第二介质通道是介质进口,并与高压介质源连接,第一介质通道是介质出口。
4.根据权利要求1所述的装置,其中:该介质是液体、悬浮液、乳液或类似物。
5.根据权利要求1所述的装置,其中:该介质是气体。
6.根据权利要求1所述的装置,其中:该介质是两相介质。
7.根据权利要求1所述的装置,其中:各转子流道的轴向截面形状基本与半个余弦函数相似。
8.根据权利要求1所述的装置,其中:转子流道的数量至少是10个。
9.根据权利要求8所述的装置,其中:转子流道的数量至少是20个。
10.根据权利要求9所述的装置,其中:转子流道的数量至少是40个。
11.根据权利要求1所述的装置,其中:转子流道的数量与静子流道的数量不同,这样,在旋转过程中不会出现该第四介质通道与第五介质通道位置一致的情况,从而防止在流经该旋转装置的介质中产生与其相关的周期性的压力波动。
12.根据权利要求2所述的装置,其中:在作为介质进口的第三介质通道内布置有一个带有多个螺旋桨叶片的横切螺旋桨。
13.根据权利要求1所述的装置,其中:该转子包括两个盘,这两个盘与作为分隔器的导流片一起限定了转子流道。
14.根据权利要求1所述的装置,其中:导流片从第三介质通道延伸到与共同限定第四介质通道的盘的端部区域有一定距离的区域。
15.根据权利要求12和13所述的装置,其中:各螺旋桨叶片与一导流片相连。
16.根据权利要求13所述的装置,其中:第一组第一导流片从第三介质通道延伸到第四介质通道,至少一个第二组第二导流片在该第一导流片之间交错布置,该第二导流片从与第三介质通道有一定距离处延伸到第四介质通道。
17.根据权利要求13所述的装置,其中:在第五介质通道和第六介质通道之间的区域内,一起形成静子流道的一组静子叶片之间的角度所达到的最大值为20°。
18.根据权利要求16和17所述的装置,其中:所述角度所达到的最大值为10°。
19.根据权利要求13所述的装置,其中:该盘和导流片由板材构成,例如可由纤维增强的塑料、铝(合金)、不锈钢或弹簧钢。
20.根据权利要求1所述的装置,其中:与介质接触的全部表面都能抵抗介质的化学和/或机械作用。
21.根据权利要求1所述的装置,其中:与介质接触的全部表面都由材料制成并相互导电连接,从而有效避免火花的形成。
22.根据权利要求1所述的装置,其中:与介质接触的全部表面都提前制成光滑的,例如通过研磨、抛光、珩磨或者应用涂层,该涂层例如碳化物、氮化物(例如氮化钛、氮化硼)、玻璃、硅酸盐、高等级塑料如聚酰亚胺。
23.根据权利要求19所述的装置,其中:转子直径与板材厚度的比值为50-1600。
24.根据权利要求13所述的装置,其中:该导流片通过(点)焊、粘接、钎焊、磁力、螺纹连接件、凸缘/孔连接件或类似方式与盘连接。
25.根据权利要求1所述的装置,其中:转子叶片由板材构成,例如可由纤维增强的塑料、铝(合金)、不锈钢或弹簧钢。
26.根据权利要求1所述的装置,其中:壳体内表面的材料的热膨胀系数与静子叶片基本相同。
27.根据权利要求26所述的装置,其中:至少壳体的内表面由与静子叶片相同的材料构成。
28.根据权利要求1所述的装置,其中:静子流道是这样的,即,在横切轴向方向而延伸的周边平面内,静子流道的相对壁之间的距离在各轴向位置处都基本相同。
29.根据权利要求1所述的装置,其中:轴是固体的,因此它对包括该轴和所述转子的旋转单元的惯性质量矩的影响是很大的。
30.根据权利要求13所述的装置,其中:该盘由金属通过深冲压、辊压、压力加工、液压成形、爆炸变形或者通过橡胶压制或类似方法而制成。
31.根据权利要求13所述的装置,其中:该盘由塑料通过注模法、热成形、热真空成形或类似方法制成。
32.根据权利要求1所述的装置,其中:该转子由放入模具内的至少两层叠置的金属板制成,该模具有形状与所需转子形状一致的模腔,在对着所述模腔的壁而产生塑性变形的过程中,其间引入两层压力介质,以导致板材料的膨胀,从而形成转子。
33.根据权利要求1所述的装置,其中:将轴安装成可相对于壳体在轴承中旋转,轴承位于距介质流通通道很远的位置,这样,流通的介质所可能的大幅增加或减少的温度对轴承的温度没有影响或只有很小的影响。
34.根据权利要求1所述的装置,其中:转子通过至少两个迷宫式密封件而相对于壳体密封,其中一个在第三介质通道区域附近,另一个在第四介质通道区域附近。
35.根据权利要求1所述的装置,其中:静子叶片的数目至少是10。
36.根据权利要求35所述的装置,其中:静子叶片的数目至少是20。
37.根据权利要求1所述的装置,其中:所有第四介质通道的总截面表面积与第三介质通道的总截面表面积的比值至少为1。
38.根据权利要求37所述的装置,其中:所有第四介质通道的总截面表面积与第三介质通道的总截面表面积的比值至少为3。
39.根据权利要求38所述的装置,其中:所有第四介质通道的总截面表面积与第三介质通道的总截面表面积的比值至少为10。
40.根据权利要求1所述的装置,其中:第四介质通道的环的直径与第三介质通道的直径的比值至少为1.5。
41.根据权利要求40所述的装置,其中:第四介质通道的环的直径与第三介质通道的直径的比值至少为10。
42.根据权利要求41所述的装置,其中:第四介质通道的环的直径与第三介质通道的直径的比值至少为20。
CN99810643A 1998-07-28 1999-07-28 旋转装置 Pending CN1317075A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1009759A NL1009759C2 (nl) 1998-07-28 1998-07-28 Rotatie-inrichting.
NL1009759 1998-07-28

Publications (1)

Publication Number Publication Date
CN1317075A true CN1317075A (zh) 2001-10-10

Family

ID=19767578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99810643A Pending CN1317075A (zh) 1998-07-28 1999-07-28 旋转装置

Country Status (12)

Country Link
US (1) US6565315B1 (zh)
EP (1) EP1102936B1 (zh)
JP (1) JP3416116B2 (zh)
KR (1) KR100388669B1 (zh)
CN (1) CN1317075A (zh)
AT (1) ATE260414T1 (zh)
AU (1) AU5416499A (zh)
DE (1) DE69915078T2 (zh)
DK (1) DK1102936T3 (zh)
ES (1) ES2214042T3 (zh)
NL (1) NL1009759C2 (zh)
WO (1) WO2000006907A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465716A (zh) * 2010-11-04 2012-05-23 蒋小伟 微型涡轮机
CN105020184A (zh) * 2015-07-29 2015-11-04 湖北三宁化工股份有限公司 气提液涡轮泵
CN110026591A (zh) * 2019-04-22 2019-07-19 中北大学 一种深孔加工的智能高强度bta钻头

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025576B2 (en) 2001-03-30 2006-04-11 Chaffee Robert B Pump with axial conduit
WO2001087121A2 (en) * 2000-05-17 2001-11-22 Chaffee Robert B Inflatable device with recessed fluid controller and modified adjustment device
SK9022000A3 (en) * 2000-06-09 2002-10-08 Ego Spol S R O Method of generating electrical energy and apparatus for carrying out the method
WO2003005861A1 (en) 2001-07-10 2003-01-23 Robert Chaffee Configurable inflatable support devices
DE60306915T2 (de) 2002-05-03 2007-03-01 Robert B. Boston Chaffee Selbstschliessendes ventil mit elektromechanischer vorrichtung zur betätigung des ventils
WO2004045343A1 (en) 2002-11-18 2004-06-03 Chaffee Robert B Inflatable device
NL1022785C2 (nl) * 2003-02-26 2004-08-30 Tendris Solutions Bv Pomp of turbine, aandrijving die een dergelijke pomp of turbine omvat en buitenboordmotor.
WO2005000074A1 (en) * 2003-06-09 2005-01-06 Aero International Products, Inc. Reversible inflation system
JP4540379B2 (ja) * 2004-03-31 2010-09-08 米原技研有限会社 加圧遠心ポンプ
US7588425B2 (en) * 2005-03-18 2009-09-15 Aero Products International, Inc. Reversible inflation system
US20070077153A1 (en) * 2005-09-30 2007-04-05 Austen Timothy F Rechargeable AC/DC pump
EP1795758A1 (de) * 2005-12-09 2007-06-13 Grundfos Management A/S Laufrad für ein Pumpenaggregat und Pumpenaggregat
US8033797B2 (en) * 2007-05-17 2011-10-11 The Coleman Company, Inc. Pump with automatic deactivation mechanism
DE102007048778A1 (de) * 2007-10-10 2009-04-16 Rerum Cognitio Forschungszentrum Gmbh Verfahren zur Druckerhöhung für diverse Arbeitsfluids
NL2001435C2 (nl) * 2008-04-02 2009-10-05 Bronswerk Heat Transfer Bv Rotatie-inrichting.
US8302221B1 (en) 2009-03-03 2012-11-06 Pivot Assist, Llc Medical assist device with lift seat
US20150292518A1 (en) * 2014-04-11 2015-10-15 Yu-Pei Chen Fan Dampers of Centrifugal Fan
DE102014223942A1 (de) * 2014-11-25 2016-06-30 Ksb Aktiengesellschaft Kreiselpumpe mit einer Leiteinrichtung
US11725672B2 (en) 2017-02-10 2023-08-15 Carnot Compression Inc. Gas compressor with reduced energy loss
US11209023B2 (en) 2017-02-10 2021-12-28 Carnot Compression Inc. Gas compressor with reduced energy loss
US10359055B2 (en) 2017-02-10 2019-07-23 Carnot Compression, Llc Energy recovery-recycling turbine integrated with a capillary tube gas compressor
US11835067B2 (en) 2017-02-10 2023-12-05 Carnot Compression Inc. Gas compressor with reduced energy loss
DE102017203833A1 (de) * 2017-03-08 2018-09-13 Mahle International Gmbh Flüssigkeitspumpe
JP2018193940A (ja) * 2017-05-18 2018-12-06 日本電産株式会社 送風装置、および掃除機
TR202011510A2 (tr) * 2020-07-20 2021-02-22 Nevzat Ciftci Toroi̇dal yapida bi̇r pompa

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE967862C (de) * 1944-09-18 1957-12-19 British Thomson Houston Co Ltd Diagonalverdichter mit beschaufelter Leitvorrichtung zunehmenden Querschnitts fuer gasfoermige Stroemungsmittel
US2857849A (en) * 1953-11-13 1958-10-28 Joseph R Smylie Motor driven pumping units
US3243102A (en) * 1963-12-20 1966-03-29 Kenton D Mcmahan Centrifugal fluid pump
US3316849A (en) * 1965-07-15 1967-05-02 Donald H Cooper Self-priming, direct current pump-motor
US3398694A (en) * 1966-08-11 1968-08-27 Marine Constr & Design Co Submersible pump device for net brailing
FR1533760A (fr) * 1967-08-08 1968-07-19 Grundfoss Bjerringbro Pumpefab Pompe centrifuge
US4304104A (en) * 1980-05-02 1981-12-08 Northern Natural Gas Company Pitot heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465716A (zh) * 2010-11-04 2012-05-23 蒋小伟 微型涡轮机
CN105020184A (zh) * 2015-07-29 2015-11-04 湖北三宁化工股份有限公司 气提液涡轮泵
CN105020184B (zh) * 2015-07-29 2017-04-12 湖北三宁化工股份有限公司 气提液涡轮泵
CN110026591A (zh) * 2019-04-22 2019-07-19 中北大学 一种深孔加工的智能高强度bta钻头

Also Published As

Publication number Publication date
JP3416116B2 (ja) 2003-06-16
ES2214042T3 (es) 2004-09-01
KR100388669B1 (ko) 2003-06-25
JP2002521618A (ja) 2002-07-16
AU5416499A (en) 2000-02-21
NL1009759C2 (nl) 2000-02-01
EP1102936A1 (en) 2001-05-30
DE69915078D1 (de) 2004-04-01
WO2000006907A1 (en) 2000-02-10
EP1102936B1 (en) 2004-02-25
DE69915078T2 (de) 2004-07-15
KR20010079549A (ko) 2001-08-22
ATE260414T1 (de) 2004-03-15
US6565315B1 (en) 2003-05-20
DK1102936T3 (da) 2004-06-07

Similar Documents

Publication Publication Date Title
CN1317075A (zh) 旋转装置
CN1075877C (zh) 具有改进的流动通道的泵
CN1193170C (zh) 具有多个叶轮的电动泵
US20100284812A1 (en) Centrifugal Fluid Pump
EP2403116A1 (en) Rotor for electric motor, compressor unit provided with rotor, method for producing a rotor for an electric motor
US9174426B1 (en) Method of manufacturing a shrouded centrifugal impeller for high speed use
US9416784B2 (en) Exhaust pump
EP2813711B1 (en) Circulation pump
CN1392346A (zh) 带有串联式叶片的多相流体泵送或压缩装置
JP2013047479A (ja) インペラ及びこれを備えた回転機械並びにインペラの製造方法
CN1009017B (zh) 潜油泵
CN1126116C (zh) 架空电线
CN1236196C (zh) 离心或混流涡轮机械
CN216306246U (zh) 离心泵
EP1101037B1 (en) Rotation device with drive motor
CN1896549A (zh) 螺旋形风扇
CN210686424U (zh) 一种涡轮及涡轮的注塑模具
RU2559501C2 (ru) Перемешивающий элемент, работающий в осевом направлении, предпочтительно крыльчатка, изготовленная из листового металла
CN209294063U (zh) 一种单壳体多级泵
WO2000006911A1 (en) Gas compressor
CN1813128A (zh) 风车
CN1156219A (zh) 带有串联式叶片的多相流体泵送或压缩装置
CN111980971A (zh) 泵装置
WO2000006908A1 (en) Device for increasing the pressure in a medium flow
CN107795524B (zh) 一种低温潜液泵出液连接管结构及其生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication