CN1313929A - 燃气和蒸汽轮机装置 - Google Patents

燃气和蒸汽轮机装置 Download PDF

Info

Publication number
CN1313929A
CN1313929A CN99809871A CN99809871A CN1313929A CN 1313929 A CN1313929 A CN 1313929A CN 99809871 A CN99809871 A CN 99809871A CN 99809871 A CN99809871 A CN 99809871A CN 1313929 A CN1313929 A CN 1313929A
Authority
CN
China
Prior art keywords
saturator
water
steam
gas
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99809871A
Other languages
English (en)
Other versions
CN1237259C (zh
Inventor
乌尔里克·谢弗斯
弗兰克·汉尼曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN1313929A publication Critical patent/CN1313929A/zh
Application granted granted Critical
Publication of CN1237259C publication Critical patent/CN1237259C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明涉及一种燃气和蒸汽轮机装置(1),它包括一个在燃气轮机(2)废气侧下游的废气锅炉(30),它的加热面连接在汽轮机(20)的水汽循环(24)中,为了集中气化矿物燃料(B),在燃气轮机(2)燃烧室(6)上游通过一根燃料管(130)连接一气化装置(132)。在燃料管(130)内连接一饱和器(150)。在此类燃气和蒸汽轮机装置(1)中,应保证饱和器(150)与气化装置(132)的工作状态无关地可靠运行。为此按本发明一个二次侧连接在饱和器循环(152)内的饱和器水换热器(184),可在一次侧被供入从汽轮机(20)水汽循环(24)抽取的给水(S),在饱和器水换热器(184)内冷却后的给水(S)可借助于压缩空气的一个分流(T)被加热,此压缩空气的分流(T)可输入在气化装置(132)上游的一个空气分解装置(138)中。

Description

燃气和蒸汽轮机装置
本发明涉及一种燃气和蒸汽轮机装置,它包括一个在燃气轮机废气侧下游的废气锅炉,它的加热面连接在汽轮机的水汽循环中;以及包括一个通过燃料管连接在燃气轮机燃烧室上游的燃料气化装置,其中,在燃料管内连接一饱和器,气化的燃料与在饱和器循环内流动的水流反向地流入饱和器内。
矿物燃料集中气化的燃气和蒸汽轮机装置通常包括燃料的气化装置,它的出口侧通过一些为气体净化所设的部件与燃气轮机的燃烧室连接。燃气轮机下游废气侧可连接一废气锅炉,它的加热面连接在汽轮机的水汽循环中。例如由GB-A2234984已知一种此类型的装置。
为了在燃烧气化的矿物燃料时减少有害物排放量,在此装置中,在气化装置与燃气轮机燃烧室之间的燃料管内连接一饱和器,在饱和器内将水蒸气加入气化的燃料。为此,气化的燃料与水流逆向地流过饱和器,水流在一个称为饱和器循环的水循环内流动。为了调整饱和器内的一个对于将水蒸汽加入气化燃料而言足够的温度水平,在这里规定,通过冷却抽取的空气和/或通过冷却燃料气化形成的粗燃气将热量耦合在饱和器循环中。
然而在此装置中,饱和器的工作与气化装置的工作状态和/或与设在气化装置上游的空气分解装置的工作状态有关,所以这种设计方案只有一种有限的适应性。此外,这种设计方案调整比较麻烦并因而易出故障。
由US 5319924已知,要供入饱和器内的给水在换热器内预热,其中,此换热器在一次侧可加入未净化的粗燃气。此外,由DE 4321081已知一种设计为燃料加湿器的饱和器,其中,为了预热饱和器水设有换热器,它可在一次侧加入给水。
因此本发明的目的是提供一种上述类型的燃气和蒸汽轮机装置,它即使在不同的工作状态下,也能以特别简单的方式保证饱和器的可靠运行。
按本发明为达到此目的采取的措施是,一个为了加热水流其二次侧连接在饱和器循环内的饱和器水换热器,可在其一次侧被供入从汽轮机水汽循环抽取的给水,在饱和器水换热器内冷却后的给水可借助压缩空气的一个分流加热,此压缩空气的分流输入在气化装置上游的空气分解装置。
本发明考虑问题的出发点是,即使在不同的工作状态下也能保证饱和器的可靠运行,并因而能实现此燃气和蒸汽轮机装置有特别高的适应性,为此,饱和器应能与气化装置和空气分解装置的工作参数无关地运行。在这里,尤其是为了将热量耦合到饱和器循环内,不应直接通过从气化装置流出的介质或通过流入空气分解装置的抽气进行。确切地说,取代这些做法,规定通过一种从汽轮机水汽循环抽取的介质将热量耦合到饱和器循环内,在这种情况下,气化装置和/或空气分解装置的工作参数与饱和器的工作参数无关,它们彼此可以独立调整。因此,为运行这些部件所需的调节器也可以设计得比较简单。
按特别有利的进一步发展,来自空气分解装置的氧可输入气化装置,空气分解装置本身在入口侧可被供入空气,这些空气是在属于燃气轮机的压气机内压缩后的空气分流,在这种情况下,为了冷却此压缩空气分流,在一根将压气机与空气分解装置连接起来的抽气管内,连接另一个换热器的一次侧,它的二次侧则连接在一根给水管内,该给水管将饱和器水换热器出口侧与属于废气锅炉的给水箱连接起来。采用这种结构保证装置有特别高的效率。流入饱和器水换热器的给水,在将热量耦合到在饱和器循环中流动的水流中的同时,起先自身冷却。然后在饱和器水换热器下游给水侧的另一个换热器中,所述已经冷却的给水经受一次重新加热,与此同时对流入空气分解装置中也称为抽气的压缩空气分流实施冷却。由此为了能特别多地回收热量,实施的是一种从抽气流到汽轮机的水汽循环中去的热量耦合。
为了补偿在饱和器循环中流动的水流例如由于在饱和器中将水蒸汽加入气化燃料而引起的损失,恰当的是将给水管通入饱和器循环中。在这种情况下,为了获得特别高的装置效率,给水管在此饱和器循环中的流入位置,按特别有利的设计,沿水流的流动方向看设在饱和器水换热器的前面。在这种结构中,保证由给水向在饱和器循环内流动的水流传输特别大的热量。因此,给水在温度特别低的情况下从饱和器水换热器流出,所以尤其在利用此已冷却的给水来冷却抽气时,还能实现特别高效的抽气冷却。
采用本发明获得的优点主要在于,通过利用从汽轮机水汽循环抽取的给水将热量耦合到饱和器循环中,可保证饱和器与气化装置的工作状态无关地可靠运行。因此,尤其是燃气轮机也能够在规定的参数范围内与气化装置的工作状态无关地运行。所以这种热量耦合的设计方案适应性特别强地和尤其还能与整体设计方案无关,亦即与空气分解装置的供气方式和其中所使用的部件无关地应用。此外,通过采用由于将热量传输给水流而被冷却的给水来冷却用于空气分解装置的抽气,还保证装置有特别高的效率。
下面借助附图进一步说明本发明的实施例。附图示意表示了一种燃气和蒸汽轮机装置。
图中所示的燃气和蒸汽轮机装置1包括燃气轮机装置1a和蒸汽轮机装置1b。燃气轮机装置1a包括与压气机4连接的燃气轮机2和在燃气轮机2上游的燃烧室6,后者与压气机4的压缩空气管8连接。燃气轮机2和压气机4以及发电机10处于一公共的轴12上。
蒸汽轮机装置1b包括与发电机22连接的一汽轮机20和在水汽循环24内连接在汽轮机20下游的一凝汽器26以及一废气锅炉30。汽轮机20由第一压力级或高压部分20a和第二压力级或中压部分20b以及第三压力级或低压部分20c组成,它们通过一根公共的轴32驱动发电机22。
为了将在燃气轮机2中膨胀后的工质AM或废气输入废气锅炉30中,废气管34与废气锅炉30的入口30a连接。从燃气轮机2来的已膨胀作功过的工质AM通过废气锅炉出口30b朝着去往图中没有表示的烟囱的方向离开废气锅炉30。
废气锅炉30包括一凝结水预热器40,它在入口侧可通过一根其中连接一凝结水泵44的凝结水管42从凝汽器26供入凝结水K。凝结水预热器40出口侧通过导管45与给水箱46连接。此外,为了在需要时绕过凝结水预热器40,凝结水管42可经由图中未示出的一根旁通管直接与给水箱46连接。给水箱46通过导管47与具有中压抽取点的高压给水泵48连接。
高压给水泵48将从给水箱46中流出的给水S增压至适用于水汽循环24中配属于汽轮机20高压部分的高压级50的压力水平。处于高压状态的给水S可经一个给水预热器52输入高压级50,给水预热器的出口侧通过一根可用阀54关闭的给水管56与高压汽包58连接。高压汽包58与设在废气锅炉30内的高压蒸发器60连接,以构成一水汽循环62。为了排出新蒸气F,高压汽包58与设在废气锅炉30内的高压过热器64相连,后者的出口侧与汽轮机20高压部分20a的蒸汽进口66连接。
汽轮机20高压部分20a的蒸汽出口68通过中间过热器70与汽轮机20中压部分20b的蒸汽进口72连接。它的蒸汽出口74通过溢流管76与汽轮机20低压部分20c的蒸汽进口78连接。汽轮机20低压部分20c的蒸汽出口80通过蒸汽管82与凝汽器26相连,从而形成了一个封闭的水汽循环24。
此外,从高压给水泵48在凝结水K已达到一个中间压力的抽取点分出一根支管84。支管84通过另一个给水预热器86或中压燃料节省器与配属于汽轮机20中压部分20b的水汽循环的中压级90连接。此外,第二个给水预热器86在出口侧通过一根可用阀92关闭的给水管94与中压级90的中压汽包96连接。中压汽包96与设在废气锅炉30内设计为中压蒸发器的加热面98连接以构成一个水汽循环100。为了排出中压新蒸汽F′,中压汽包96经蒸汽管102与中间过热器70连接并因而与汽轮机20中压部分20b的蒸汽进口72连接。
从导管47分出另一根配设有低压给水泵107和可用阀108关闭的导管110,它与水汽循环24中配属于汽轮机20低压部分20c的低压级120相连。低压级120包括一低压汽包122,它与设在废气锅炉30内设计为低压蒸发器的加热面124连接,以构成一个水汽循环126。为了排出低压新蒸汽F″,低压汽包122经其中连接一低压过热器129的蒸汽管128与溢流管76连接。因此,燃气和蒸汽轮机装置1的水汽循环24在本实施例中包括了三个压力级50、90、120。但按其他方案也可以设较少的压力级,尤其是两个压力级。
燃气轮机装置1a被设计成,可采用通过矿物燃料B气化生成的气化合成气SG来运行。作为合成气例如可采用气化煤或气化油。为此,燃气轮机2燃烧室6进口侧通过燃料管130与气化装置132连接。气化装置132可通过装料系统134输入作为矿物燃料B的煤或油。
为了制备气化矿物燃料B所需的氧O2,气化装置132上游经氧气管136连接一空气分解装置138。空气分解装置138进口侧可供入在压气机4内压缩后的空气的一个分流T。为此,空气分解装置138进口侧与抽气管140连接,抽气管140是在分岔点142从压缩空气管8分出的。此外在抽气管140内还汇入另一根空气管143,空气管143中连接有一附加的压气机144。因此在本实施例中流入空气分解装置138的全部气流L由从压缩空气管8分出的分流T和由附加的压气机144输送的气流组成。这种线路方案也称为部分集中的设计方案(teilintegriertes Anlagenkonzept)。按另一种可选用的设计,即所谓的全部集中的设计方案(vollintegrierten Anlagenkonzept),另一根空气管143连同附加的压气机144都可以取消,所以向空气分解装置138的供气全部通过从压缩空气管8抽取的分流T进行。
在空气分解装置138中分解气流L时,除氧O2外获得的氮N2通过连接在空气分解装置138上的氮气管145输入混合器146,并在那里掺入合成气SG中。混合器146被设计成,用于特别均匀和不成绺地混合氮N2和合成气SG。
从气化装置132流出的合成气SG通过燃料管130首先到达粗燃气余热蒸汽发生器147内,在那里与一种流动介质通过热交换冷却合成气SG。在此热交换过程产生的高压蒸汽以图中未表示的方式输入水汽循环24的高压级50中。
沿合成气SG的流动方向看,在粗燃气余热蒸汽发生器147后、混合器146前,在燃料管130中连接一合成气SG的除尘器148和脱硫装置149。按另一种可选用的设计,尤其在气化油作为燃料时,也可以设煤烟清洗器来取代除尘器148。
为了在燃烧室6内燃烧气化燃料时的有害物排放量能特别小,气化燃料在进入燃烧室6之前被加入水蒸汽。这可以按热工学特别有利的方式在饱和器系统中实现。为此,在燃料管130中连接一饱和器150,气化的燃料相对于也称为饱和器水(Saettigerwasser)的已加热的水流W,反向地流入饱和器。在这种情况下,饱和器水或水流W在一个与饱和器150连接且其中设有循环泵154的饱和器循环152内循环。为了补偿在气化燃料饱和时发生的饱和器水的损失,在饱和器循环152上连接一输入管158。
沿合成气SG流动方向看,在饱和器150下游的燃料管130与一个起粗燃气-混合气换热器作用的换热器159的二次侧连接。换热器159的一次侧在除尘器148上游的一个地点同样连接在燃料管130中,所以要流入除尘器148的合成气SG将其部分热量传给从饱和器150流出的合成气SG。合成气SG在经由换热器159进入脱硫装置149前的导引,也可以采用基于其他一些部件而改变的线路方案。尤其在接入煤烟清洗装置的情况下,换热器可优选地布置在煤烟清洗装置下游的粗燃气一侧。
在饱和器150与换热器159之间,在燃料管130内连接另一个换热器160的二次侧,它的一次侧可以是热给水或热蒸汽。在这里,通过设计为粗燃气-纯燃气换热器的换热器159和换热器160,保证即使在燃气和蒸汽轮机装置1不同的运行状态,也能特别可靠地预热流入燃气轮机2燃烧室6的合成气SG。
为了在需要时往流入燃烧室6的合成气SG中加入蒸汽,在燃料管130中还连接另一个混合器161,中压蒸汽可通过图中未表示的一蒸汽管输入其中,以便尤其在出现工作上的故障状况时保证燃气轮机可靠运行。
为了冷却要输入空气分解装置138中也称为抽气的压缩空气分流T,在抽气管140中连接换热器162的一次侧,它的二次侧设计为流动介质S′的中压蒸发器。为构成蒸发器循环163,换热器162与设计为中压汽包的水-汽汽包164连接。水-汽汽包164通过导管166、168与配属于水汽循环100的中压汽包96连接。作为替换方案,换热器162二次侧也可以直接与中压汽包96相连。也就是说在本实施例中,水-汽汽包164间接地与设计为中压蒸发器的加热面98连接。为了补充蒸发掉的流动介质S′,在水-汽汽包164上还连接有一给水管170。
沿压缩空气分流T的流动方向看,在换热器162下游的抽气管140内连接另一个换热器172,它的二次侧设计为流动介质S″的低压蒸发器。在这里为了构成蒸发器循环174,换热器172与设计为低压汽包的水-汽汽包176连接。在本实施例中,水-汽汽包176通过导管178、180与配属于水汽循环126的低压汽包122连接,并因而间接地与设计为低压蒸发器的加热面124连接。但作为替换方案,水-汽汽包176也可以按其他恰当的方式连接,在这种情况下,从水-汽汽包176抽取的蒸汽可作为工业用汽和/或作为加热用蒸汽输给附带的用户。按另一种可选用的设计,换热器172二次侧也可以直接与低压汽包122连接。此外,水-汽汽包176还与一给水管182相连。
蒸发器循环163、174可分别设计为强制循环,在这种情况下,流动介质S′或S″的循环由循环泵来保证,以及,流动介质S′、S″在设计为蒸发器的换热器162或172中至少部分蒸发。但在本实施例中,无论是蒸发器循环163还是蒸发器循环174均分别设计为自然循环,在这里,流动介质S′或S″的循环借助于在蒸发过程中建立的压差和/或通过各自的换热器162或172和各自的水-汽汽包164或176按地理位置的布局(geodaetische Anordnung)来保证。在这种设计中,在蒸发器循环163和在蒸发器循环174内分别只连接有一个(图中未示出)尺寸比较小的循环泵,用于系统的起动。
为了将热量耦合到饱和器循环152中并由此调整水流W的温度,使之为了将水蒸汽加入合成气SG内而有足够的温度水平,设置一个饱和器水换热器184,它的一次侧可供入来自给水箱46的给水S。为此,饱和器水换热器184d的一次侧进口通过导管186与支管84连接,出口通过导管188与给水箱46连接。在这里,沿水流W的流动方向看,饱和器水换热器184的二次侧在输入管158入口的下游连接在饱和器循环152内。
为了在需要时附加地加热水流W,在本实施例中,在饱和器循环152内连接一附加的换热器189。在这里,附加的换热器189的一次侧被加入来自水汽循环24中压级90经预热的给水。不过,根据所规定的排放值和/或燃气温度,也可以取消附加换热器189。
为了重新加热从饱和器水换热器184流出的已冷却的给水S,在导管188内连接另一个换热器190,它的一次侧在换热器172的下游连接在抽气管140中。采用这样的布置,可实现从抽气中获得特别高的热量回收率,并因而使燃气和蒸汽轮机装置1有特别高的效率。
沿分流T的流动方向看,在换热器172与换热器190之间,从抽气管140分出一根冷却空气管192,通过此导管可将经冷却的分流T的一个分量T′输入燃气轮机2,作为冷却叶片用的冷却空气。
通过向饱和器水换热器184加入来自汽轮机20水汽循环24的给水S,可以使饱和器150与空气分解装置138的工作状态无关地可靠运行。与此同时,通过在附加的换热器190中重新加热在饱和器水换热器184内被冷却的给水S,特别有利于提高燃气和蒸汽轮机装置1的总效率。在这种情况下,保证可靠调整要流入空气分解装置138的抽气分流T的最终温度,并与此同时回收在此分流中的热量用于燃气和蒸汽轮机装置1的能量生产过程。

Claims (3)

1.一种燃气和蒸汽轮机装置(1),它包括一个在燃气轮机(2)废气侧下游的废气锅炉(30),它的加热面连接在一汽轮机(20)的水汽循环(24)中;以及包括一个通过燃料管(130)连接在燃气轮机(2)燃烧室(6)上游的燃料(B)气化装置(132),其中,在燃料管(130)内连接一饱和器(150),气化的燃料(SG)与在饱和器循环(152)内流动的水流(W)反向地流入该饱和器内(150);其中,一个为了加热水流(W)其二次侧连接在饱和器循环(152)内的饱和器水换热器(184),可在一次侧被供入从汽轮机(20)水汽循环(24)抽取的给水(S);在饱和器水换热器(184)内冷却后的给水(S)可借助压缩空气的一个分流(T)被加热;此压缩空气的分流(T)输入在气化装置(132)上游的一个空气分解装置(138)中。
2.按照权利要求1所述的燃气和蒸汽轮机装置(1),其中,来自空气分解装置(138)的氧(O2)可输入气化装置(132),空气分解装置本身在入口侧可被供入在属于燃气轮机(2)的压气机(4)内压缩后的空气的一个分流(T);为了冷却此压缩空气的分流(T),在一根将压气机(4)与空气分解装置(138)连接起来的抽气管(140)内,连接另一个换热器(190)的一次侧,该换热器(190)的二次侧连接在一根将饱和器水换热器(184)出口侧与一个属于废气锅炉(30)的给水箱(46)连接起来的给水管(188)内。
3.按照权利要求1或2所述的燃气和蒸汽轮机装置(1),其中,沿水流(W)的流动方向看,一根输入管(158)在饱和器水换热器(184)之前汇入饱和器循环(152)内。
CNB99809871XA 1998-08-17 1999-08-04 燃气和蒸汽轮机装置 Expired - Fee Related CN1237259C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19837251A DE19837251C1 (de) 1998-08-17 1998-08-17 Gas- und Dampfturbinenanlage
DE19837251.5 1998-08-17

Publications (2)

Publication Number Publication Date
CN1313929A true CN1313929A (zh) 2001-09-19
CN1237259C CN1237259C (zh) 2006-01-18

Family

ID=7877786

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB99809871XA Expired - Fee Related CN1237259C (zh) 1998-08-17 1999-08-04 燃气和蒸汽轮机装置

Country Status (10)

Country Link
US (1) US6301873B2 (zh)
EP (1) EP1105624B1 (zh)
JP (1) JP4390391B2 (zh)
KR (1) KR100615733B1 (zh)
CN (1) CN1237259C (zh)
CA (1) CA2340650C (zh)
DE (2) DE19837251C1 (zh)
ES (1) ES2201787T3 (zh)
MY (1) MY125029A (zh)
WO (1) WO2000011325A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287243A (zh) * 2010-06-16 2011-12-21 西门子公司 燃气和蒸汽轮机设备
CN102209873B (zh) * 2008-11-10 2014-02-26 乔治洛德方法研究和开发液化空气有限公司 用于锅炉的空气分离和水加热集成设备

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19846225C2 (de) * 1998-10-07 2002-05-29 Siemens Ag Gas- und Dampfturbinenanlage
DE19941685C1 (de) * 1999-09-01 2000-07-20 Siemens Ag Verfahren und Einrichtung zur Erhöhung des Drucks eines Gases
US6745573B2 (en) * 2001-03-23 2004-06-08 American Air Liquide, Inc. Integrated air separation and power generation process
EP1277920A1 (de) * 2001-07-19 2003-01-22 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Brenners einer Gasturbine sowie Kraftwerksanlage
US20050034446A1 (en) * 2003-08-11 2005-02-17 Fielder William Sheridan Dual capture jet turbine and steam generator
US20060254280A1 (en) * 2005-05-12 2006-11-16 Siemens Westinghouse Power Corporation Combined cycle power plant using compressor air extraction
US20070017207A1 (en) * 2005-07-25 2007-01-25 General Electric Company Combined Cycle Power Plant
US20100281870A1 (en) * 2009-05-08 2010-11-11 General Electric Company System and method for heating fuel for a gas turbine
US20100319359A1 (en) * 2009-06-19 2010-12-23 General Electric Company System and method for heating turbine fuel in a simple cycle plant
EP2503112A1 (de) * 2011-03-24 2012-09-26 Siemens Aktiengesellschaft Verfahren zum schnellen Zuschalten eines Dampferzeugers
US8926941B2 (en) * 2012-12-31 2015-01-06 Chevron U.S.A. Inc. Capture of CO2 from hydrogen plants using a temperature swing adsorption method
US9739478B2 (en) 2013-02-05 2017-08-22 General Electric Company System and method for heat recovery steam generators
US9097418B2 (en) * 2013-02-05 2015-08-04 General Electric Company System and method for heat recovery steam generators
CN105556228B (zh) * 2013-07-09 2018-02-09 林德股份公司 产生压缩气流的方法和设备及低温分离空气的方法和设备
US10914200B2 (en) * 2013-10-31 2021-02-09 General Electric Technology Gmbh Combined cycle power plant with improved efficiency

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB234984A (en) 1924-05-23 1925-06-11 James Dronsfield Improvements in doffer ring grinding machines
ATE34201T1 (de) * 1985-08-05 1988-05-15 Siemens Ag Kombiniertes gas- und dampfturbinenkraftwerk.
IE63440B1 (en) * 1989-02-23 1995-04-19 Enserch Int Investment Improvements in operating flexibility in integrated gasification combined cycle power stations
US5319924A (en) * 1993-04-27 1994-06-14 Texaco Inc. Partial oxidation power system
US5388395A (en) * 1993-04-27 1995-02-14 Air Products And Chemicals, Inc. Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output
DE4321081A1 (de) * 1993-06-24 1995-01-05 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage
US5406786A (en) * 1993-07-16 1995-04-18 Air Products And Chemicals, Inc. Integrated air separation - gas turbine electrical generation process
US5513488A (en) * 1994-12-19 1996-05-07 Foster Wheeler Development Corporation Power process utilizing humidified combusted air to gas turbine
US6032456A (en) * 1995-04-07 2000-03-07 Lsr Technologies, Inc Power generating gasification cycle employing first and second heat exchangers
JP3787820B2 (ja) * 1996-02-16 2006-06-21 石川島播磨重工業株式会社 ガス化複合発電設備
US6141796A (en) * 1996-08-01 2000-11-07 Isentropic Systems Ltd. Use of carbonaceous fuels
JPH1082306A (ja) * 1996-09-06 1998-03-31 Ishikawajima Harima Heavy Ind Co Ltd ガス化複合発電設備
DE19736889C1 (de) * 1997-08-25 1999-02-11 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Gas- und Dampfturbinenanlage zur Durchführung des Verfahrens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209873B (zh) * 2008-11-10 2014-02-26 乔治洛德方法研究和开发液化空气有限公司 用于锅炉的空气分离和水加热集成设备
CN102287243A (zh) * 2010-06-16 2011-12-21 西门子公司 燃气和蒸汽轮机设备
CN102287243B (zh) * 2010-06-16 2015-09-16 西门子公司 燃气和蒸汽轮机设备

Also Published As

Publication number Publication date
JP2002523662A (ja) 2002-07-30
ES2201787T3 (es) 2004-03-16
US6301873B2 (en) 2001-10-16
WO2000011325A1 (de) 2000-03-02
DE59905862D1 (de) 2003-07-10
CN1237259C (zh) 2006-01-18
EP1105624A1 (de) 2001-06-13
CA2340650C (en) 2008-10-14
KR100615733B1 (ko) 2006-08-25
EP1105624B1 (de) 2003-06-04
CA2340650A1 (en) 2000-03-02
US20010022077A1 (en) 2001-09-20
KR20010072502A (ko) 2001-07-31
JP4390391B2 (ja) 2009-12-24
DE19837251C1 (de) 2000-02-10
MY125029A (en) 2006-07-31

Similar Documents

Publication Publication Date Title
CN1237259C (zh) 燃气和蒸汽轮机装置
CN101203660B (zh) 蒸汽发生设备以及用于运行和改装蒸汽发生设备的方法
CN1258035C (zh) 燃气和蒸汽轮机装置
US4729217A (en) Combined gas/steam power station plant
US5755089A (en) Method and apparatus for operating a gas and steam turbine plant using hydrogen fuel
US6434925B2 (en) Gas and steam turbine plant
US20040172951A1 (en) Method for operating a burner of a gas turbine and a power plant
CN101755169A (zh) 用于通过氧燃料燃烧发电的发电装置和方法
CN1091835C (zh) 燃气和蒸汽轮机装置
CN1112985A (zh) 燃气轮机组受热部件的冷却方法
JPH09177508A (ja) 排熱回収式蒸気発生装置および蒸気消費器に組み合わされたガスターボ群を運転するための方法
CA2397612C (en) Gas and steam turbine installation
NO163152B (no) Kombinert gassturbin-dampturbinanlegg med forkoblet kullforgasningsanlegg.
JPH06500374A (ja) ガス・蒸気タービン複合設備
RU2062332C1 (ru) Комбинированная газопаротурбинная устанвока
CN109312635A (zh) 冷凝物再循环
US20040025510A1 (en) Method for operating a gas and steam turbine installation and corresponding installation
JP2766687B2 (ja) 複合発電プラント
CN1006996B (zh) 组合式燃气-蒸汽轮机发电站

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060118

Termination date: 20160804