CN1292014A - 聚烯烃聚合物分散体产品及其制备方法 - Google Patents

聚烯烃聚合物分散体产品及其制备方法 Download PDF

Info

Publication number
CN1292014A
CN1292014A CN99803470A CN99803470A CN1292014A CN 1292014 A CN1292014 A CN 1292014A CN 99803470 A CN99803470 A CN 99803470A CN 99803470 A CN99803470 A CN 99803470A CN 1292014 A CN1292014 A CN 1292014A
Authority
CN
China
Prior art keywords
polymer dispersion
polymer
reactor
ethylene
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN99803470A
Other languages
English (en)
Inventor
S·达塔
C·考兹维斯
B·A·哈灵顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN1292014A publication Critical patent/CN1292014A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本发明涉及含有半结晶塑料(SP)组分和无定形弹性体(AE)组分的聚烯烃聚合物分散体。本发明的聚合物分散体的特征是含有不连续相(分散相)的连续相,如图2所示。本发明的实施方案包括:1)在由无定形弹性体组分组成的连续相内分散的由SP组分组成的不连续相,和/或2)在由SP组分组成的连续相内分散的由无定形弹性体组分组成的不连续相。

Description

聚烯烃聚合物分散体产品及其制备方法
技术领域
本发明涉及含有半结晶塑料(SP)组分和无定形弹性体(AE)组分的聚烯烃聚合物分散体。本发明的聚合物分散体的特征是含有不连续相(分散相)的连续相,如图2所示。本发明的实施方案包括:1)在由无定形弹性体组分组成的连续相内分散的由SP组分组成的不连续相,和/或2)在由SP组分组成的连续相内分散的由无定形弹性体组分组成的不连续相。
技术背景
当将半结晶塑料和无定形弹性体混合时,两者通常不混溶,并形成分散体,即两者的混合物形成聚合物共混物,这种聚合物共混物倾向于分离成均匀相内组合物和不同相间组合物的不同相。物理混合方法常用于制备这种分散体。物理方法的一个例子是分别制备半结晶塑料(SP)和无定形弹性体(AE),然后在熔融状态下于强力混炼机,如布雷本登混炼机中将两者混合。
已有人致力于研究制备SP和AE的均质分散体。“均质分散体”定义为将SP和AE组分混合至比通过物理方法混合各组分所预期的程度更细的程度。均质混合是不同聚合物间的接触表面积的度量,它涉及混合物中两组分的粒状分散体的物理尺寸的反转。均质分散的证据可通过检测聚合物分散体的形态来确定,而且在混合物的机械性能、热性能和溶解性能的评价中也是显然的。众所周知,通常不混溶的聚烯烃聚合物的混合程度影响了聚合物的物理共混物的性能。高度分散的混合物有益于提高共混物的冲击强度、韧性和降低韧脆转变温度。在Hanser Verlag出版(1996)、Datta等人所著的《聚合相容剂:在聚合物共混物中的应用和优点》的第一节中,已描述了通过增加接触界面面积并由此减小分散体的粒子尺寸而提高聚合物共混物的机械性能。由于均质混合物的众多益处,多种方法已用于获得不混溶聚烯烃聚合物的均质混合。
Yamaguchi等人在《应用聚合物科学杂志》的第62卷,87-97页(1996)上已揭示了制备SP和AE的均质混合物的一种方法,其教导了聚丙烯与乙烯和含多于三个碳原子的α-烯烃、特别是丁烯和己烯的共聚物的共混物在特定的α-烯烃组成范围内可形成均质混合物。这一方法局限于特定组合物,因为由乙烯和丙烯组成的聚合物分散体不能形成均质混合物,而且其它超出该特定组成范围的乙烯共聚物也不能形成均质混合物。美国专利4,966,944、美国专利4,742,106、美国专利4,744,292和美国专利5,391,618已显示了相似的数据。
制备包含SP和AE的均质混合物的第二种方法是利用在第一反应器中制备的聚合物中的乙烯基不饱和度作为在第一反应器和第二反应器中制得的聚合物间引入化学键接的方法,以制得聚合物的均质混合物。Datta等人在期刊《大分子》,第24卷,561-566页(1991)发表的文章显示了无定形弹性体、再后是SP组分的序列聚合。聚合物分散体中引入了二烯单体,其实例为乙烯基降冰片烯和3-丁烯基降冰片烯,其在第一聚合反应器中制得的聚合物主链材料上留下了乙烯基不饱和侧基。通过红外光谱技术检测乙烯基不饱和度的数量,估计为每个聚合物链含6至10个乙烯基。只有当使用含剩余乙烯基不饱和度的二烯时,此序列聚合的产品才能均质混合。加入任何其它类型的二烯或产生不是乙烯基不饱和度的官能度不能形成聚烯烃的均质混合物。使用这类二烯可导致形成高度支化的结构,这在许多最终应用中是不期望出现的。
Feng等人在期刊《Acta Polymerica Sinica》第2卷,125页(1987)描述了制备含有SP和AE的均质混合物的第三种方法,其中AE由组成分布(CD)宽、多组分的混合物组成。对共聚物的详细分析表明其覆盖从聚丙烯到聚乙烯的组分连续区。Simonazzi在期刊《纯粹和应用化学》(Pure and Applied Chemistry)第56卷,625页(1984)中的文章已讨论了此特点。这些SP和AE的均质共混物与本发明中共混物的不同之处在于AE的组成范围宽。同时其不是由溶液聚合方法合成的。
制备含有SP和AE的均质混合物的第四种方法是通过加入聚合物相容剂。例如,Datta等人在《大分子》第26卷,2064页(1993)中,Kontos在美国专利3,853,969和3,378,606中揭示了全同立构聚丙烯作为SP组分和由聚丙烯与乙烯和己烯的共聚物作为AE组分的共混物的形成。这些聚合物共混物是均质混合物,但其形成需要使用相容剂,例如Datta等人的支化聚合物或Kontos的线型多嵌段聚合物。在无相容剂时,共混物并非均质混合。
Lynch等人在ACS Division of Polymeric Materials:Science andEngineering-Preprints第71卷,609(1994)上发表了制备含有SP和AE的均质混合物的第五种方法,其小心地共沉淀了AE(乙烯丙烯共聚物)和SP(聚丙烯)的溶液。但是,此方法制得的产品在均质混合程度时是热力学不稳定的,这是由于在高于聚丙烯熔点的温度短期加热时,各相的混合程度降低到对应于预制聚丙烯和无定形乙烯丙烯共聚物的简单混合物。
发明简述
本发明中含有半结晶塑料(SP)和无定形弹性体(AE)的均质混合物不需上述的任一种方法就可获得聚烯烃的均质混合物,同时具有提高的均质分散程度。
本发明中制备均质分散体的方法包括:a)将溶剂和第一组单体以预定的比例加入第一反应器,b)在所述第一反应器中加入可溶性金属茂催化剂,c)在溶液中聚合第一组单体以制得含第一种聚合物的流出液,d)将流出液加入第二反应器,e)将第二组单体以预定的比例和任选的额外溶剂和催化剂一起加入第二反应器,f)在第一种聚合物的存在下于溶液中聚合第二组单体以制得第二种聚合物,其中:a)第一组和第二组单体选自乙烯、α-烯烃、非共轭二烯,b)两种聚合物之一为熔点高于60℃的SP,c)另一种聚合物为含有20-70重量%乙烯且熔点低于60℃的AE共聚物,d)第一种聚合物的每个分子链含有少于0.2个乙烯基,并且e)第一种聚合物和第二种聚合物不相容,并形成两相混合物。
本发明的产品是基本不含加入的相容剂的聚合物分散体,其含有分子量至少为20,000的聚合物分散体和分子量至少为20,000的半结晶塑料;其中所述无定形弹性体和所述半结晶塑料由选自乙烯、C3-C20高级α-烯烃、非共轭二烯及其组合的单体制备;其中所述无定形弹性体或所述半结晶塑料的每个分子链上都不含有多于0.2个乙烯基侧基;其中所述聚合物分散体的系数A(在下面定义)值小于1。在优选实施方案中系数A小于0.6,最优选小于0.4。
此产品也有大于2的系数B(在下面定义),优选大于3,最优选大于4。
当聚合物分散体为在SP中分散的AE时,AE由选自乙烯、C3-C20高级α-烯烃、非共轭二烯及其组合的单体构成;并且SP由选自乙烯、C3-C20高级α-烯烃、非共轭二烯及其组合的单体构成。当聚合物分散体为在AE中分散的SP时,SP由选自乙烯、C3-C20高级α-烯烃、非共轭二烯及其组合的单体构成;并且AE由选自乙烯、C3-C20高级α-烯烃、非共轭二烯及其组合的单体制得。发明详述
本发明中半结晶塑料(SP)和无定形弹性体(AE)的聚合物分散体完全由聚合的烯烃构成。这些烯烃包括乙烯和含有3个至20个碳原子的高级α-烯烃,以及任选量的非共轭二烯,这些烯烃可存在于SP或AE中。如果含有二烯,优选其占聚合物分散体的10摩尔%或小于10摩尔%。
半结晶塑料(SP)由具有均匀的分子内组成的单一组成的均相聚合物构成,由实施例和Steskal,J.和Strakova,D.等人在《大分子》(1989),第22卷,861页发表的文章中所描述的差示溶剂萃取测定。通过凝胶渗透色谱测定,SP的分子量分布应使多分散指数(PDI),即Mn/Mw小于5.0。优选的PDI在1.8至3.0之间。通过差示扫描量热法(DSC)测定,SP的熔点,即Tm,高于60℃,优选高于80℃,最优选高于100℃。SP的熔化热至少为10焦耳/克,优选20焦耳/克,更优选至少为30焦耳/克。SP的熔化热优选比AE的熔化热高10焦耳/克。更优选SP的熔化热比AE的熔化热高20焦耳/克。SP的结晶度来源于分子链上乙烯或立体规整的C3-C20α-烯烃的长序列,所以优选聚丙烯、聚乙烯或其共聚物。SP可含有选自本领域已知可用于聚合物硫化的那些二烯的二烯。二烯的含量可从0至10摩尔%,优选0-5摩尔%,最优选0-3摩尔%。
当SP是聚丙烯或主要含丙烯的聚合物时,丙烯可表现为全同立构或间同立构序列。当SP是主要含丙烯的乙烯/丙烯共聚物时,一般丙烯的含量必须大于80重量%,以具有上述的熔点和熔化热。当SP是主要含丙烯的共聚物时,丙烯的含量可为80-100重量%丙烯,最优选85-98重量%丙烯。
当SP是主要含乙烯的乙烯/丙烯共聚物时,一般乙烯的含量必须大于65重量%,以具有上述的熔点和熔化热。乙烯的最低含量将是所用共聚单体和催化剂体系的函数,所以其为一种变量,可为65-100重量%乙烯,最优选85-98重量%乙烯。
反应器条件按照如下所述变化,以得到本发明所描述的半结晶塑料。
通过差示溶剂萃取测定,无定形弹性体(AE)是具有均匀分子内组成的均相聚合物,通过凝胶渗透色谱测定,其PDI小于5.0。优选的PDI在1.8至3.0之间。AE由乙烯、C3-C20α-烯烃和任选的非共轭二烯构成,由DSC测定其熔点低于60℃,更优选低于55℃,最优选低于45℃。AE的熔化热不高于15焦耳/克,优选不高于10焦耳/克,最优选低于5焦耳/克。聚合物分散体的AE组分是含有20-70重量%乙烯的乙烯与C3-C20α-烯烃的共聚物,条件是AE的乙烯含量与SP组分的乙烯含量至少相差5重量%乙烯,更优选10重量%乙烯。AE可含有选自本领域已知可用于聚合物硫化的那些二烯的二烯。二烯的含量可从0至10摩尔%,优选0-5摩尔%,最优选0-3摩尔%。
反应器条件可按照如下所述变化,以得到本发明所描述的无定形弹性体。
在本发明的优选实施方式中,SP是含有少于20重量%共聚单体的聚烯烃共聚物,而AE是含有两种或多种烯烃的共聚物。
AE对SP的比例可根据用于特定用途的聚合物分散体的所需性能而变化。此比例在1/99至99/1重量之间变化,优选从10/90至90/10。SP一般占聚合物分散体的5-95重量%,但优选占至少45重量%,最优选至少25重量%。
SP和AE的分子量可根据用于特定用途的聚合物分散体的所需性能而有较大的变化。数均分子量为20,000至2,000,000是合适的。正如本领域熟练技术人员所知,可控制每种组分的分子量和每种组分的用量以制得具有特定分子量和分子量分布的最终共混物。特别值得注意的是,本发明中即使SP和AE的的分子量高于其缠结分子量,SP和AE也形成了均质分散体。应当很好理解的是,聚合混合物的分子量显著低于上述分子量时,聚合混合物也可均质分散。反应器条件
本发明中描述的聚合物分散体是在一组反应器(在下文中称为串联反应器)中用溶液聚合方法制得的。该组反应器至少含有两个串联连接的聚合反应器,其中SP和AE的单个组分在各自的反应器中制备。
1998年3月4日提交的共同待审申请60/076,712和1998年3月4日提交的共同待审申请06/076,841揭示了制备本发明的聚合物分散体的适当方法,根据美国专利实践引入本文作为参考。
典型地操作第一个反应器以在溶液中聚合第一种聚合物组分,将由第一反应器出来的反应器流出液全部或部分引入随后反应器的进料中,操作此随后的反应器以聚合第二种聚合物组分。这确保第二个反应器中制得的第二种聚合物组分是在第一反应器中制得的聚合物产品的存在下制得的。在优选操作模式中,在第一反应器中制备SP,在SP的存在下于第二反应器中制备AE,但另外也可在第一反应器中制备AE,于第二反应器中制备SP。只要从第一反应器中带出的单体量不使第二反应器中共聚单体的浓度过高,以致不能以所需量制得所需组成的SP。
本发明的聚合物分散体可于一组至少两个串联连接的连续流罐式搅拌反应器(CFSTR)中加入金属茂催化剂经溶液聚合而制得。每个反应器应能独立进行单体和溶剂进料。为除去作为催化剂毒物的极性化合物,希望通过分子筛、氧化铝床或其它本领域已知的吸附剂纯化所有溶剂和单体进料。当在反应器组中可应用多于两个的反应器时,优选使用两个CFSTR,只在第一反应器中加入催化剂,此后不再加入催化剂。从反应器中移走热量通过本领域中熟知的方法进行,如自动冷却、进料预冷却(绝热反应器)、冷却蛇管或结合使用这些技术。优选带预冷却进料的绝热反应器。
压力必须足以保持反应器内容物在反应器温度下为溶液。聚合可于从-20℃或低于-20℃至200℃或更高的温度范围内进行,优选0℃至160℃,最优选聚合反应在55℃至140℃范围内进行,因为对从溶液中回收聚合物和在聚合期间冷却反应器的能量需求都降低了。每个反应器中的停留时间保持在1至180分钟,优选5至30分钟。反应器流出液中聚合物浓度保持在1至20重量%,更优选3至12重量%。
总聚合速率由催化剂和单体进料速率决定。通过调节进入反应器的单体进料速率来控制聚合物组成。通过选择反应器温度(MW随温度升高而降低)、单体浓度(MW随单体浓度升高而升高)和任选加入例如氢气的链转移剂来决定聚合物的分子量。
通常可通过与用如异丙醇、丙酮或正丁醇的非溶剂凝聚而从流出液中回收聚合物产物,或可通过用热或蒸汽汽提溶剂或其它介质以回收聚合物。一种或多种传统添加剂如抗氧化剂可在回收工序中引入聚合物中。可能的抗氧化剂包括苯基-β-萘胺、二-叔丁基氢醌、磷酸三苯酯、庚基化二苯胺、2,2’-亚甲基-双(4-甲基-6-叔丁基)苯酚和2,2,4-三甲基-6-苯基-1,2-二氢喹啉。
可通过本领域已知的任何聚合工序实施聚合,但是,必要的是AE和SP的聚合都在溶液聚合条件下进行,其条件为两种组分都完全处于溶液中。通过选择溶剂可得到这些聚合条件,溶剂是足量的,且在包括温度和压力的合适反应条件下对作为聚合介质的两种聚合物组分都常用,以使聚合物混合物的所有组分都保持溶液态。用于制备本发明聚合物的溶剂的例子是烃类溶剂,例如脂族、环脂族和芳香族烃类。优选的溶剂是C12或C12以下直链或支链饱和烃类,和C5至C9饱和脂环烃或芳香烃。这些溶剂或反应介质的例子是己烷、丁烷、戊烷、庚烷、环戊烷、环己烷、环庚烷、甲基环戊烷、甲基环己烷、异辛烷、苯、甲苯、二甲苯,其中优选己烷。
本发明中使用的单体是乙烯、高级α-烯烃(C3-C20)和非共轭二烯。
最优选的高级α-烯烃是丙烯,但下述其它高级α-烯烃也可使用。适用的高级α-烯烃可为支链或直链、环状和芳香族取代的或未取代的,并优选C3-C18α-烯烃。优选高级α-烯烃的非局限示例是丙烯、1-丁烯、1-戊烯、1-己烯、1-辛烯和1-十二碳烯。只要混合物中任何不可聚合的烯烃作为催化剂的惰性物,就可使用混合的α-烯烃以及混合的α-和非α-烯烃(如混合的丁烯)。这些取代的高级α-烯烃的例子是式 的化合物,其中n代表1至30个碳原子的整数(优选至10个碳原子),X优选含有CH3,但可含有芳基、烷芳基或环烷基取代基。被一个或多个这种X取代基所取代的高级α-烯烃也有用,其中取代基连接在一个非末端碳原子上,更优选连于与末端碳原子优选相距2至30个碳原子的非末端碳原子上,条件是如此取代的碳原子不位于烯烃的1-或2-碳原子位置上。取代高级α-烯烃时,优选不用芳香族或其它庞大基团在2-碳原子位置上取代,因为芳香族和庞大基团干扰了随后所期望的聚合。
尽管ENB是本发明中使用的最优选非共轭二烯,但也可使用下述其它非共轭二烯。优选用作共聚单体的非共轭二烯是含有大约6至15个碳原子的直链烃类二烯烃或环烯基取代的链烯烃,例如:(a)直链无环二烯,如1,4-己二烯和1,6-辛二烯;(b)支链无环二烯,如5-甲基-1,4-己二烯;3,7-二甲基-1,6-辛二烯;3,7-二甲基-1,7-辛二烯;和二氢化月桂烯和二氢化罗勒烯的混合异构体;(c)单环脂环族二烯,如1,3-环戊二烯;1,4-环己二烯;1,5-环-辛二烯和1,5-环十二碳二烯;(d)多环脂环族稠合和桥接接环二烯,如四氢化茚;降冰片二烯;甲基-四氢化茚;二聚环戊二烯(DCPD);二环-(2.2.1)-庚-2,5-二烯;链烯基、亚烷基、环烯基和亚环烷基降冰片烯,如5-亚甲基-2-降冰片烯(MNB)、5-丙烯基-2-降冰片烯、5-异亚丙基-2-降冰片烯、5-(4-环戊烯基)-2-降冰片烯、5-亚环己基-2-降冰片烯和5-乙烯基-2-降冰片烯(VNB);(e)环烯基取代的链烯烃,如烯丙基环己烯、乙烯基环辛烯、烯丙基环癸烯和乙烯基环十二碳烯。典型使用的非共轭二烯中,优选的二烯是二聚环戊二烯、1,4-己二烯、5-亚甲基-2-降冰片烯、5-亚乙基-2-降冰片烯和四环(Δ-11,12)5,8十二碳烯。特别优选的二烯烃是5-亚乙基-2-降冰片烯(ENB)、1,4-己二烯、二聚环戊二烯(DCPD)、和5-乙烯基-2-降冰片烯(VNB)。请注意,整个本申请中的术语“非共轭二烯”与“二烯”交换使用。
选择聚合条件以使在第一反应器中制得的聚合物组分基本无乙烯基不饱和度。乙烯基不饱和度定义为结构R1-C(R2-R3)-CH=CH2,其中R1、R2和R3代表烃基部分,其可位于侧链或链端。可通过多种方法使分子链中出现乙烯基不饱和度,例如加入含有此官能度的共聚单体或通过导致此官能度的机理来终止分子链。使用二烯共聚单体引入的乙烯基不饱和度将典型地位于主链的侧基上,而源于链转移方法的乙烯基不饱和度将典型地出现在链的末端。在第一步聚合中制得的聚合物中的乙烯基不饱和度可导致其与随后的聚合反应器中制得的聚合物形成均质混合物,其中在第二步聚合中,不饱和乙烯基为端基的聚合物作为大单体进行共聚反应,如下述的关于现有技术的讨论所示。可通过多种光谱技术检测乙烯基不饱和度,例如红外或核磁共振光谱,乙烯基官能度的基本缺乏量定义为每个分子链小于0.20个乙烯基。
适合制备本发明的聚合物分散体的聚合的一个例子包括:(a)单一金属茂聚合催化剂,将其只引入第一反应器,并被本领域已知的任何工序所活化,这种催化剂能制备SP组和AE组分,(b)一种例如己烷的聚合溶剂,其足以溶解聚合中制得的所有聚合物,(c)聚合温度为0℃至200℃,以使所有聚合组分可溶,(d)压力在2至100巴(转换为SI单位)范围内,以使聚合溶剂保持在液态,和(e)一组两个连续流罐式搅拌聚合反应器,其中SP在第一反应器中制得,AE在第二反应器中制得。如果SP不是聚乙烯,那么必须使用能进行立体规整聚合的金属茂催化剂。
下述的本发明使用的催化剂体系是4、5和6族金属茂,其含有例如非配位阴离子(NCA)或甲基铝氧烷(MAO)的活化剂,和任选的清除化合物。如果SP主要为丙烯(大于80重量%),那么催化剂体系可优选能使丙烯进行立体规整聚合。使用特定的催化剂体系和乙烯-丙烯单体进料,丙烯的转化率随温度的升高而降低。本发明的优选催化剂体系是当反应温度升高至190℃时丙烯对乙烯转化率的比例保持基本不变的催化剂体系。
在此使用的术语“金属茂”和“金属茂催化剂前体”应该理解为指含有过渡金属M、一个或多个环戊二烯基(Cp)配位体、至少一个源于非-环戊二烯基的配位体X和0或1个含杂原子的配位体Y的化合物,其中配位体根据M的价数与M配位。金属茂催化剂前体一般是中性络合物,但当被合适的助催化剂(指活化剂)活化时,生成一种活性金属茂催化剂,后者一般指含有一个能配位、插入和聚合烯烃的空配位点的有机金属络合物。金属茂催化剂前体优选以下任一种或两种类型的金属茂化合物之一或其混合物:
1)环戊二烯基(Cp)络合物,其含有用于配位体的两个Cp环体系。Cp配位体与金属形成夹心式络合物,并能自由旋转(未桥接)或通过桥接基团锁定成刚性构型。Cp环配位体可为相似的或不相似的、未取代的、取代的、或其衍生物,例如可被取代的杂环体系,并且取代基可稠合形成其它饱和或不饱和的环体系,例如四氢化茚基、茚基或芴基环体系。这些环戊二烯基络合物的通式为
(Cp1R1 m)R3 n(Cp2R2 p)MXq其中(Cp1R1 m)配位体的Cp1与(Cp2R2 p)配位体的Cp2是相同或不同的环戊二烯基环,每个R1和R2分别代表卤素或含有至多20个碳原子的烃基、卤化碳基、烃基取代的有机非金属或卤化碳基取代的有机非金属基团,m代表0至5,p代表0至5,并且位于相关环戊二烯基环的相邻碳原子上的两个取代基R1和/或R2可连在一起形成含有4至20个碳原子的环,R3代表桥接基团,n代表在两个配位体间的直链上的碳原子数目,其为0至8,优选0至3,M代表3价至6价的过渡金属,优选元素周期表的4、5或6族过渡金属,并优选处于最高氧化态,每个X代表非-环戊二烯基配位体,并独立地代表卤素或含有至多20个碳原子的烃基、含氧烃基、卤化碳基、烃基取代的有机非金属、含氧烃基取代的有机非金属或卤化碳基取代的有机非金属基团,q等于M的价数减2。
2)单环戊二烯基络合物,其只含有一个Cp环体系作为配位体。Cp配位体与金属形成半夹心式络合物,并能自由旋转(未桥接)或通过桥接基团与含杂原子的配位体锁定成刚性构型。Cp环配位体可为未取代的、取代的、或其衍生物,例如可被取代的杂环体系,并且取代基可稠合形成其它饱和或不饱和的环体系,例如四氢化茚基、茚基或芴基环体系。含杂原子的配位体通过桥接基团与金属和任选与Cp配位体二者相连接。杂原子本身是选自元素周期表中VA族或VIA族的配位数为3的原子。这些单-环戊二烯基络合物的通式为
(Cp1R1 m)R3 n(YrR2)MXs其中每个R1分别代表卤素或含有至多20个碳原子的烃基、卤化碳基、烃基取代的有机非金属或卤化碳基取代的有机非金属基团,m代表0至5,并且位于相关环戊二烯基环的相邻碳原子上的两个R1取代基可连在一起形成含有4至20个碳原子的环,R3代表桥接基团,n为在两个配位体间的直接链上的碳原子数目,其为0至8,优选0至3,M代表3价至6价的过渡金属,优选元素周期表中4、5或6族过渡金属,并优选处于最高氧化态,Y代表含有杂原子的基团,其中杂原子是配位数为3的VA族元素或配位数为2的VIA族元素,优选氮、磷、氧或硫,R2代表选自C1至C20烃基、取代的C1至C20烃基的基团,其中一个或多个氢原子被卤素原子替代,并且当Y为3配位和未桥接时,在Y上可能有两个R2基团,每个分别是选自C1至C20烃基、取代的C1至C20烃基的基团,其中一个或多个氢原子被卤素原子替代,并且每个X都是非-环戊二烯基配位体,并分别是卤素或含有至多20个碳原子的烃基、含氧烃基、卤化碳基、烃基取代的有机非金属、含氧烃基取代的有机非金属或卤化碳基取代的有机非金属基团,s等于M的价数减2。
美国专利5,324,800;5,198,401;5,278,119;5,387,568;5,120,867;5,017,714;4,871,705;4,542,199;4,752,597;5,132,262;5,391,629;5,243,001;5,278,264;5,296,434;和5,304,614揭示了适于本发明的上面第一组所述类型的双环戊二烯基金属茂的例子,所有这些专利均引入本文以供参考。
本发明中上面第一组所述类型中优选的双环戊二烯基金属茂的示例性而非局限制性例子是下列物质的外消旋异构体:μ-(CH3)2Si(茚基)2M(Cl)2μ-(CH3)2Si(茚基)2M(CH3)2μ-(CH3)2Si[四氢茚基]2M(Cl)2μ-(CH3)2Si[四氢茚基]2M(CH3)2μ-(CH3)2Si(茚基)2M(CH2CH3)2μ-(C6H5)2C(茚基)2M(CH3)2其中M选自Zr、Hf或Ti。
美国专利4,892,851;5,334,677;5,416,228;和5,449,651揭示了适于本发明的上面第一组所述类型的不对称环戊二烯基金属茂的例子,并在美国化学会志1988,110,6255中也有所描述,所有这些文献均引入本文以供参考。
本发明中上面第一组所述类型中优选的不对称环戊二烯基金属茂的示例性而非局限制性例子是:μ-(C6H5)2C(环戊二烯基)[芴基]M(R)2μ-(C6H5)2C(3-甲基环戊二烯基)[芴基]M(R)2μ-(CH3)2C(环戊二烯基)[芴基]M(R)2μ-(C6H5)2C(环戊二烯基)(2-甲基茚基)M(R)2μ-(C6H5)2C(3-甲基环戊二烯基)(2-甲基茚基)M(R)2μ-(C6H5)2C(环戊二烯基)(2,7-二甲基芴基)M(R)2μ-(CH3)2C(环戊二烯基)(2,7-二甲基芴基)M(R)2其中M选自Zr和Hf,R选自Cl和CH3
美国专利5,026,798;5,057,475;5,350,723;5,264,405;5,055,438和WO 96/002244揭示了适于本发明的上面第二组所述类型的单环戊二烯基金属茂的例子,所有这些文献均引入本文以供参考。
本发明中上面第二组所述类型中优选的单环戊二烯基金属茂的示例性而非不局限性例子是:μ-(CH3)2Si(环戊二烯基)(1-金刚烷基氨基amido)M(R)2μ-(CH3)2Si(3-叔丁基环戊二烯基)(1-金刚烷基氨基)M(R)2μ-(CH2(四甲基环戊二烯基)(1-金刚烷基氨基)M(R)2μ-(CH3)2Si(四甲基环戊二烯基)(1-金刚烷基氨基)M(R)2μ-(CH3)2C(四甲基环戊二烯基)(1-金刚烷基氨基)M(R)2μ-(CH3)2Si(四甲基环戊二烯基)(1-叔丁基氨基)M(R)2μ-(CH3)2Si(芴基)(1-叔丁基氨基)M(R)2μ-(CH3)2Si(四甲基环戊二烯基)(1-环十二烷基氨基)M(R)2μ-(C6H5)2C(四甲基环戊二烯基)(1-环十二烷基氨基)M(R)2其中M选自Ti、Zr和Hf,R选自Cl和CH3
此处所述的适合作为本方法中催化剂的另一类有机金属络合物是那些含有二亚氨基配位体体系的络合物,如杜邦公司的WO 96/23010所描述的络合物。根据美国专利实践将其引入本文以供参考。非配位阴离子
术语“非配位阴离子”意指一种不能与所述过渡金属阳离子配位的阴离子,或一种只与所述阳离子进行弱配位的阴离子,以能保持足够的不稳定性而被中性路易斯碱所置换。“相容性”非配位阴离子是那些当最初形成的络合物分解时不降解为中性的阴离子。进一步,阴离子不会向阳离子转移阴离子取代基或碎片,以导致形成中性的四配位金属茂化合物和源于阴离子的中性副产物。根据本发明有用的非配位阴离子是那些相容性的、能通过平衡其离子电荷而将金属茂阳离子稳定在+1状态、但保持足够的不稳定性以允许在聚合中被烯类或炔类不饱和单体置换的阴离子。另外,本发明中有用的阴离子在足够分子尺寸意义上很大或庞大,以大大抑制或防止金属茂阳离子被聚合方法中可能存在的可聚合单体以外的路易斯碱所中和。阴离子的分子尺寸典型地大于或等于4埃。
在EP-A-0 277 003,EP-A-0 277 004,美国专利5,198,401和5,278,119,和WO92/00333中的早期工作中描述了由被非配位阴离子所活化的金属茂阳离子构成的用于配位聚合的离子催化剂。其中说明了一种优选制备方法,其中金属茂(双Cp和单Cp)被阴离子前体所质子化,以使烷基/氢化物基团从过渡金属中提取出来,使其既呈阳离子性,又被非配位阴离子平衡电荷。也已知道使用不含活泼质子但能产生活性金属茂阳离子和非配位阴离子的电离化离子化合物。请参考EP-A-0 426 637、EP-A-0 573 403和美国专利5,387,568。能离子化金属茂化合物的布朗斯台德酸以外的反应性阳离子包括二茂铁鎓(ferrocenium)三苯基碳鎓和三乙基甲硅烷基鎓(triethylsilylinium)阳离子。任何能形成耐水(或其它布朗斯台德酸或路易斯酸)降解的配位络合物的金属或非金属可用于或包含于第二种活化剂化合物的阴离子中。合适的金属包括铝、金、铂等,但不限于此。合适的非金属包括硼、磷、硅等,但不限于此。根据美国专利实践,这些文件中关于非配位阴离子和其前体的描述引入本文以供参考。
另一种制备离子催化剂的方法使用离子化阴离子前体,其最初为中性路易斯酸,但与金属茂化合物进行离子化反应时形成阳离子和阴离子,例如三(五氟苯基)硼用于夺取烷基、氢化物或甲硅烷基配位体以生成金属茂阳离子和稳定化非配位阴离子,请参考EP-A-0 427697和EP-A-0 520 732。加成聚合中的离子催化剂也可通过含有金属氧化基团与阴离子基团的阴离子前体氧化过渡金属化合物的金属中心而制得,请参考EP-A-0 495 375。根据美国专利实践,这些文件中关于非配位阴离子和其前体的描述也相似地引入本文以供参考。
本发明中能离子阳离子化金属茂化合物并随后用所得非配位阴离子稳定的合适活化剂实例包括:三烷基取代的铵盐,如:四苯基硼酸三乙铵、四苯基硼酸三丙基铵、四苯基硼酸三正丁基铵、四(对-甲苯基)硼酸三甲铵、四(邻-甲苯基)硼酸三甲铵、四(五氟苯基)硼酸三丁基铵、四(邻,对-二甲基苯基)硼酸三丙基铵、四(间,间-二甲基苯基)硼酸三丁基铵、四(对-三氟甲基苯基)硼酸三丁基铵、四(五氟苯基)硼酸三丁基铵、四(邻-甲苯基)硼酸三正丁基铵等;N,N-二烷基苯胺盐,如:四(五氟苯基)硼酸N,N-二甲基苯胺、四(七氟萘基)硼酸N,N-二甲基苯胺、四(全氟-4-联苯基)硼酸N,N-二甲基苯胺、四苯基硼酸N,N-二甲基苯胺、四苯基硼酸N,N-二乙基苯胺、四苯基硼酸N,N-2,4,6-五甲基苯胺等;二烷基铵盐,如:四(五氟苯基)硼酸二-(异丙基)铵、四苯基硼酸二环己基铵等;和三芳基鏻盐,如:四苯基硼酸三苯基鏻、四苯基硼酸三(甲基苯基)鏻、四苯基硼酸三(二甲基苯基)鏻等。
合适的阴离子前体的进一步例子包括那些含有稳定碳鎓离子和相容性非配位阴离子的化合物。它们包括:四(五氟苯基)硼酸_鎓(tropillium)、四(五氟苯基)硼酸三苯甲鎓、四(五氟苯基)硼酸重氮苯、苯基三(五氟苯基)硼酸_鎓、苯基三(五氟苯基)硼酸三苯甲鎓、苯基三(五氟苯基)硼酸重氮苯、四(2,3,5,6-四氟苯基)硼酸_鎓、四(2,3,5,6-四氟苯基)硼酸三苯甲鎓、四(3,4,5-三氟苯基)硼酸重氮苯、四(3,4,5-三氟苯基)硼酸_鎓、四(3,4,5-三氟苯基)硼酸重氮苯、四(3,4,5-三氟苯基)铝酸_鎓、四(3,4,5-三氟苯基)铝酸三苯甲鎓、四(3,4,5-三氟苯基)铝酸重氮苯、四(1,2,2-三氟乙烯基)硼酸_鎓、四(1,2,2-三氟乙烯基)硼酸三苯甲鎓、四(1,2,2-三氟乙烯基)硼酸重氮苯、四(2,3,4,5-四氟苯基)硼酸_鎓、四(2,3,4,5-四氟苯基)硼酸三苯甲鎓、四(2,3,4,5-四氟苯基)硼酸重氮苯等。
当金属配位体包括不能在标准条件下进行离子化夺取的卤化物部分时如(甲基-苯基)亚甲硅基(四-甲基-环戊二烯基)(叔丁基氨基)二氯化锆时,可通过与例如锂或铝氢化物或烷基化物、烷基铝氧烷、格氏试剂等的有机金属化合物进行已知的烷基化反应将其转化。请参考EP-A-0 500 944、EP-A1-0 570 982和EP-A1-0 612 768中描述的在加入活化阴离子化合物之前或之时进行烷基铝化合物与二卤化物取代的金属茂化合物的反应的方法。例如,烷基铝化合物可在其进入反应器之前与金属茂混合。因为烷基铝也适合作为清除剂,所以将其过量于在对金属茂的烷基化反应所需的正常化学计算量使用允许将其与金属茂化合物一起加入反应溶剂。正常情况下,为避免早期活化,铝氧烷不能与金属茂一起加入,但铝氧烷作为清除剂和烷基化活化剂时可直接加入含有可聚合单体的反应器中。
已知的烷基铝氧烷也适合作为催化剂活化剂,特别对那些含有卤化物配位体的金属茂。用作催化剂活化剂的铝氧烷组分典型地是通式为(R-Al-O)n的低聚铝化合物,它是环状化合物,或R(R-Al-O)nAlR2的低聚铝化合物,它是线型化合物。在铝氧烷的通式中,R是C1-C5烷基,例如甲基、乙基、丁基或戊基,和“n”是从1至50的整数。最优选R是甲基,“n”至少为4。可通过本领域中已知的各种方法制备铝氧烷。例如,可用溶于惰性有机溶剂中的水处理烷基铝,或将烷基铝与悬浮于惰性有机溶剂中的例如水合硫酸铜的水合盐接触以生成铝氧烷。一般无论如何制备,烷基铝与有限量水的反应生成线型和环状铝氧烷的混合物。
尽管三烷基铝是本发明中使用的最优选清除剂,但也可使用以下其它的清除剂。本申请和权利要求书中使用的术语“清除化合物”意指包括对从反应溶剂中除去极性杂质有效的化合物。这些杂质可偶然与任何聚合反应组分一起引入,特别是与溶剂、单体和共聚单体进料一起,并对催化剂活性和稳定性有不利影响。其可导致催化活性的降低或甚至消除,特别是当催化剂体系为金属茂阳离子-非配位阴离子对时。极性杂质,或催化剂毒物包括水、氧气、氧化烃类、金属杂质等。优选在将其引入反应器之前采取措施,例如通过在各种组分的合成或制备期间或之后进行化学处理或采取仔细的分离技术,但在聚合过程本身中通常仍将需要一些少量清除化合物。典型的清除化合物为有机金属化合物,例如上述的5,153,157、5,241,025、EP-A-638和WO-A-91/09882和WO-A-94/03506中的13族有机金属化合物,以及WO-A-93/14132中的有机金属化合物。例示的化合物包括三乙基铝、三乙基硼烷、三-异丁基铝、异丁基铝氧烷,优选含有与金属或非金属中心共价键接的庞大取代基的那些以将与活性催化剂之间的不利相互作用最小化。当铝氧烷用作活化剂时,不需额外加入清除化合物。与金属茂阳离子-非配位阴离子对一起使用时,清除剂的用量在聚合反应中最小化至对提高活性有效的用量。聚合物分散体的表征
本发明的均质聚合物分散体含有半结晶塑料(SP)组分和无定形弹性体(AE)组分,但当与具有相同比例的相同SP和AE的物理共混物相比时,本发明的均质聚合物分散体具有提高的性能。本发明的聚合物分散体由其与相同重量比例的相同聚合物的物理混合物之间的性能差异限定。必要的是在将本发明的均质聚合物分散体的性能与预制组分的物理混合物(此后指“物理共混物”)进行任何比较时,聚合物分散体和对比物理混合物的组分具有相似的分子特征,例如组成、分子量和分子量分布,从而两者只在制备过程上有差异。通过使用本领域已知的任何技术将两种预制聚合物共混来制备物理共混物,所述技术如熔融混合、捏合或从常用溶剂中共沉淀。于本发明中所述的多个聚合反应器中使用从上述组中选择的金属茂催化剂,通过溶液聚合制备本发明的聚合物分散体。在第一反应器中制得的组分的每个分子链含有少于0.2个乙烯基,优选每个分子链含有少于0.1个乙烯基,最优选每个分子链少于0.05个乙烯基。在本发明的实施过程中,关键的是聚合物分散体的两种组分在第二组分的合成期间都存在于最后的反应器中。
在经过本领域已知的技术分离后,本发明的聚合物分散体是SP和AE的混合物。可根据以下特征将其与物理共混物区别开来:(a)显微术(光学、电子束或原子力)测定的相尺寸,(b)聚合物分散体与物理共混物的溶解度的差异,和(c)聚合物的应力-应变拉伸伸长率机械测试数据差异。与物理共混物相比,由在聚合物分散体中形成SP/AE组分的均质混合物所引起的均质聚合物分散体的的其它性能提高也在本发明的范围内。
Lohse等在大分子,24,561-566(1991)上的文章显示了与本发明相似的制备含有SP和AE组分的聚合物的方法。但是在这种情况下,需要一种第三单体(termonomer)来提供第一反应器中制得的聚合物上的乙烯基双键,以用于通过引入乙烯基双键进行部分第二聚合物的共聚反应。该乙烯基双键的存在也可导致第一种聚合物含有不期望的支化量。在此工序中,也对每种聚合物组分使用不同的催化剂体系。对于本发明的聚合物分散体,已不存在这种对第一反应器中制备的聚合物结构上的限制,只使用单一催化剂且对在第一反应器中制得的聚合物的所有组合物观察到受益的性能,这些聚合物包括没有通过二烯第三单体引入乙烯基不饱和度的聚合物。AE的例子是乙烯和α-烯烃的共聚物,SP的例子是乙烯或丙烯的均聚物,SP不含位于主链侧位的乙烯基双键,而乙烯、α-烯烃和5-亚乙基-2-降冰片烯的共聚物是含有不是乙烯基的侧位双键的AE的例子。
与相应的物理共混物相比,目前还不完全清楚本发明的聚合物分散体的这些有益物理性能的出现原因。尽管不希望受下述的讨论限制或禁止,但我们认为聚合物分散体中观察到的有益性能是由于形成了同时具有AE和SP组分特征的聚合物分子。特别是,我们认为这种分子含有每种聚合物组分的链段。这种分子的量可能极小,因为采用现有的分析手段还不能分离任何嵌段分子。在还没有这种嵌段分子的形成的确凿证据时,我们可推测它们可通过单一聚合物分子部分在第一反应器中和部分在第二反应器中顺序生长以形成含有至少两种链段的单个分子而形成,这些链段同时含有AE和SP组分的聚合物特征。形成这种分子的另一种方法是利用偶合反应,其中在第一聚合反应器中制备的聚合物与在第二聚合反应器中制备的聚合物反应形成含有聚合物分散体和在其中引入的SP组分二者的链段的单一聚合物分子。
当不考虑推测的机理时,与物理共混物相比,对本发明的聚合物分散体的力学性能的提高具有有力的证据。上面列出的性能的提高显示了这些改进的方向。某些关键性能是鉴别聚合物分散体和物理共混物之间区别的手段。这些关键的性能如下面的表1所示。表1也显示了用聚合物分散体替代物理共混物时关键性能的变化趋势。
表1:特性测试、关键参数和将样品从物理共混物变为本发明的聚合物分散体时参数的变化趋势。
分析手段 关键参数 变化趋势(物理共混物对聚合物分散体)
相结构的显微术 分散相畴的直径 降低
共混物的差示溶解度 随无定形弹性体洗脱出的半结晶塑料组分量 升高
应力-应变拉伸 伸长率和拉伸强度 升高
当通过本文所述方法对本发明的聚合物分散体进行显微分析时,分散相的线型尺寸对在两种相同聚合物的物理混合物中的分散相的线型尺寸的比例定义为系数A,此比例将小于1,优选小于0.6,最优选小于0.4。另外,聚合物分散体的分散相的平均直径将小于0.7微米,优选小于0.55微米,最优选小于0.4微米。
通过本文所述的技术测定断裂伸长率,本发明的聚合物分散体的断裂伸长率明显高于两种相同SP/AE的对比物理混合物。给定的聚合物分散体与对比物理共混物的断裂伸长率之比定义为系数B,此比例将大于2,优选大于3,最优选大于4。
代表实施例
聚合反应在两个串联的一升搅拌反应器中进行,在体系中连续进料并连续提取产品。第一反应器也可作为单独反应器操作。溶剂(包括但不限于己烷)和单体(包括但不限于乙烯、丙烯和ENB(5-亚乙基-2-降冰片烯))在氧化铝和分子筛床上纯化。也使用同一技术纯化用于制备催化剂溶液的甲苯。通过计量泵将除乙烯之外的所有进料泵入反应器中,乙烯在其本身压力下通过质流计/控制仪以气体形式流动。通过反应器冷却夹套内的循环水控制反应器的温度。反应器保持在高于反应混合物的蒸汽压的压力下,以使反应物处于液态。反应器在全液态下操作。
乙烯和丙烯进料结合为一股料流,然后与预冷却的已冷却为至少0℃的己烷料流混合。如果使用ENB,也将其加入其它单体上游的己烷料流中。在联合溶剂和单体料流中于其恰好进入反应器之前加入三异丁基铝清除剂的己烷溶液,以进一步降低任何催化剂毒物的浓度。通过另一孔单独向反应器泵入在甲苯中的催化剂组分混合物。从第一反应器出来的聚合物、溶剂、未转化单体和催化剂的溶液进入第二反应器。通过另一孔向第二反应器加入额外的单体己烷溶液。
第二反应器的产品从压力控制阀流出,其将压力降至大气压。这使得溶液中的未转化单体闪蒸到从气液分离器顶端排出的气相中。主要包含聚合物和溶剂的液相从分离器的底部流出,并将其收集以回收聚合物。通过汽提,然后干燥,或通过在加热和真空下蒸发溶剂来从溶液中回收聚合物。
通过门尼粘度(用门尼粘度计测定,ASTM D1648)、乙烯含量(用FTIR测定,ASTM D3900)、ENB含量(用FTIR测定,ASTMD6047)、熔融温度和/或玻璃化转变温度(用本文述的DSC测定)和分子量(用本文所述的GPC测定)来表征第一反应器和第二反应器的聚合物。对第二反应器的聚合物的分析代表了整个聚合物共混物的性能。
用于表征本发明产物的凝胶渗透色谱(GPC)技术已在许多文献中描述,特别是美国专利4,989,436,根据美国专利实践将其引入本文以供参考。G.Ver Strate,C.Cozewith,S.Ju在大分子,21,3360(1988)中描述了分子量和组成的测定,根据美国专利实践将其引入本文作为参考。其它所用的技术以F.Eirich编辑、Academic Press出版(1978年)、G.Ver Strate所著的《弹性体科学与技术》中第三章“结构表征”中所述的聚合物结构表征为坚实基础。用于表征本发明产物的差示扫描量热法(DSC)的标准程序是在20℃用无成型应变的样品装载量热仪,将样品冷却至-75℃,以10℃/分钟的扫描速率扫描至180℃,冷却至-75℃,然后再扫描一次。计算TgTm和熔化热。有时,在第二次扫描中看不到低熔融结晶度,因为即使在低温下也可能需要数小时。
用第一和第二反应器的聚合物溶液的样品分析聚合物浓度。由此测量值和反应器进料速率可通过物料平衡确定两个反应器中的聚合速率。然后从单独第一反应器和两个反应器总体的聚合速率与聚合物组成数据计算单体转化率。为计算单独第二反应器的聚合速率和聚合物组成,使用了以下物料平衡方程式:
                           方程式1
                           方程式2
         方程式3
          方程式4
     方程式5
         方程式6
其中:
PR1=第一个反应器的聚合速率
PR2=第二个反应器的聚合速率
PRt=总聚合速率
E1=第一个反应器的聚合物的乙烯含量
E2=第二个反应器的聚合物的乙烯含量
Et=全部反应器的聚合物的乙烯含量
D1=第一个反应器的聚合物的二烯含量
D2=第二个反应器的聚合物的二烯含量
Dt=全部反应器的聚合物的二烯含量
F1=第一个反应器制备的聚合物占总聚合物的分数
MN1=第一个反应器的聚合物的数均分子量
MN2=第二个反应器的聚合物的数均分子量
MNt=全部反应器的聚合物的数均分子量
MW1=第一个反应器的聚合物的重均分子量
MW2=第二个反应器的聚合物的重均分子量
MWt=全部反应器的聚合物的重均分子量
实施一系列聚合反应证明本发明的方法和产物。这些如下面的实施例所示。代表本发明的聚合物的合成数据列于下面的表2,并且这些实施例的聚合物的表征数据列于下面的表3。实施例1(HTCPU:实验123A)
通过将μ-Me2Si(茚基)2HfMe2催化剂和DMAH(四(五氟苯基)硼酸N,N-二甲基苯胺盐[DMAH+B-(pfp)4])活化剂溶解于干燥的甲苯中以制备催化剂溶液,将其与乙烯、丙烯和己烷一起加入第一反应器。将TIBA(三异丁基铝)的己烷溶液作为毒物清除剂加入第一反应器。从第一反应器出来的聚合物溶液进入第二反应器。在第二反应器中加入额外的乙烯和己烷。表1中显示了反应器的流体。在离开第二反应器的聚合物溶液中加入异丙醇,以终止第二反应器中的聚合反应。将此溶液加入沸水中以蒸出溶剂和沉淀聚合物,此时聚合物是潮湿的块,然后将其在真空烘箱中干燥。加入第一反应器的乙烯/丙烯进料比是0.0475重量/重量,以制备高丙烯含量的共聚物。加入第二反应器的单体进料包括出自第一反应器的未反应单体和加入第二反应器的其它单体进料。在此实施例中只将额外的乙烯加入第二反应器,以制备高乙烯含量的聚合物。在物料平衡计算离开第一反应器和进入第二反应器的未反应丙烯量的基础上,进入第二反应器的乙烯对丙烯的比例是0.667。测定第一反应器聚合物的乙烯含量为17重量%,流出第二反应器的总聚合物的乙烯含量为45.9%。第一反应器的聚合速率是72.3克/小时,第二反应器的聚合速率是171.3克/小时,因此总聚合物的70.3%在第二反应器中制得。在这些速率的基础上,第二反应器中制得的聚合物的乙烯含量为58.1%。实施例2(HTCPU:实验127A、B、C)
以与实施例1相似的方式进行聚合,但是,向第二反应器的乙烯进料速率逐步从90提高至150,然后180克/小时,以提高第二反应器中制得的聚合物的量和乙烯含量(请参考表1中实施例2A、2B和2C的数据)。每次变化乙烯进料速率后,使反应器有足够的时间在取样分析之前达到稳定状态。
在三个实验(实验2A、2B和2C)中,第一反应器中制得的聚合物的乙烯含量是16.1、17.6和16.5重量%。当提高乙烯进料速率时,计算出第二反应器中制得的聚合物含有47.4、60和61%乙烯。在实验2A、2B和2C中,第二反应器中制得的聚合物产量是总产量的63.8、70.4和80.5重量%。实施例3(HTCPU:实验163A和B)
此聚合与实施例1相似,不同的是调节向第一反应器的乙烯对丙烯的单体进料比例,以降低第一反应器中制备的聚合物的乙烯含量和制备具有提高的丙烯结晶度的聚合物。进行两个聚合反应(表1中的实验3A和3B)。实施例3B中加入第二反应器的丙烯进料速率高于实施例3A,并在第二反应器中加入较少的丙烯以保持第二反应器聚合物的高乙烯含量。
在实施例3A中,在第一反应器和第二反应器中制得的聚合物分别含有5.9重量%和58.2重量%的乙烯。第二反应器中制得53重量%的聚合物。在实施例3B的条件下,在第一反应器和第二反应器中制得的聚合物分别含有4.3重量%和63.4重量%的乙烯。第二反应器中制得总聚合物的46.6重量%实施例4(HTCPU:实验302A、B、C)
根据上述方法和下面表2中的配方制备聚合物,以制备下面表3中显示的聚合物。实施例5(HTCPU:实验307A、B、C和D)
根据上述方法和下面表2中的配方制备聚合物,以制备下面表3中显示的聚合物。实施例6(HTCPU:实验318A、B、C和D)
根据上述方法和下面表2中的配方制备聚合物,以制备下面表3中显示的聚合物。
表2:本发明聚合物分散体的合成数据
试验# 反应器 己烷cc/min 乙烯g/hr 丙烯g/hr 二烯gh/r 反应器T℃ 催化剂G/hr 聚合速率g/hr
 1  R1  52  11  240  0  20  0.004  87
 R2  20  120  0  0  40  170
 总共  72  131  240  0  257
 2A  R1  52  10  242  0  20  0.004  76
 R2  20  90  0  0  40  134
 总共  72  100  242  0  210
 2B  R1  52  10  242  0  20  0.004  78
 R2  20  150  0  0  40  185
 总共  72  160  242  0  263
 2C  R1  52  10  242  0  20  0.004  58
 R2  20  180  0  0  53  242
 总共  72  190  242  0  300
 3A  R1  52  10  240  0  41  0.004  142
 R2  20  120  106  0  75  160
 总共  72  130  346  0  303
 3B  R1  52  10  295  0  41  0.004  198
 R2  20  120  73  0  75  168
 总共  72  130  368  00  366
 4A  R1  92  0  360  0  60  0.0083  165
 R2  36  180  30  24.6  80  191
 总共  128  180  390  24.6  356
 4B  R1  92  15  360  0  60  0.0083  222
 R2  36  180  30  24.6  80  168
 总共  128  180  390  24.6  390
 4C  R1  92  15  360  0  40  0.0083  213
 R2  36  180  30  24.6  80  194
 总共  128  180  390  24.6  407
 5A  R1  92  0  360  0  60  0.00835  165
 R2  0  234  42  17.2  80  239
 总共  92  234  402  17.2  404
 5B  R1  92  15  360  0  60  0.00835  206
 R2  36  234  42  17.2  80  231
 总共  128  249  402  17.2  437
 5C  R1  92  15  360  0  60  0.00835  206
 R2  36  234  42  12.9  80  253
 总共  128  249  402  12.9  459
 5D  R1  92  15  360  0  60  0.00835  208
 R2  36  234  42  22.4  80  216
 总共  128  249  402  22.4  424
 6A  R1  92  132  104  0  61  0.0057  177
 R2  0  0  308  0  75  23
 总共  92  132  412  0  200
 6B  R1  92  132  104  0  61  0.0057  177
 R2  35  0  389  0  75  94
 总共  127  132  493  0  271
 6C  R2  92  132  104  0  62  0.0057  178
 R1  35  0  486  0  75  92
 总共  127  132  590  0  270
 6D  R1  92  132  104  0  62  0.0057  178
 R2  35  30  388  0  75  135
 总共  127  162  492  0  313
表3:本发明聚合物分散体的表征数据
试验# 反应器 乙烯wt% 二烯wt% ML@125(1+4) Mn×1000  MWD
 1  R1  17 0
 R2  56.9 0
 总共  43.4 0  46.4  95.2
 2A  R1  16.1 0
 R2  47.4 0
 总共  36.1 0  39.2  104
 2B  R1  17.6 0
 R2  60 0
 总共  47.4 0  69.7  89.4
 2C  R1  16.5 0
 R2  61 0
 总共  52.3 0  75.2  87.9
 3A  R1  5.9 0
 R2  58.2 0
 总共  33.6 0  18.2  78.4
 3B  R1  4.3 0
 R2  63.4 0
 总共  31.4 0  30.3  84.3
 4A  R1 0
 R2 5.74
 总共 3.08  193  78.1
 4B  R1 0
 R2 8.4
 总共 3.62  4.2  63.6
 4C  R1 0
 R2 7.16
 总共 3.42  18  94.6
 5A  R1 0
 R2 4.57
 总共 2.70  130  n/a
 5B  R1 0
 R2 4.33
 总共 2.29  9.3  n/a
 5C  R1 0
 R2 4.05
 总共 2.23  9.4  n/a
 5D  R1 0
 R2 3.05
 总共 1.55  5.8  n/a
 6A  R1 0
 R2 0
 总共 0  13.8  70.8
 6B  R1 0
 R2 0
 总共 0  11.4  61.1
 6C  R2 0
 R1 0
 总共 0  15.2  61.1
 6D  R1 0
 R2 0
 总共 0  7.7  67
通过使用这些合成方法,我们在表4中显示了聚合物分散体的合成的代表实施例。表4显示了SP组分的实施例,其可为聚乙烯、乙烯丙烯共聚物(表4中的EP)或聚丙烯。当聚合物分散体总是乙烯丙烯共聚物时,这些SP组分具有聚乙烯或全同立构聚丙烯的结晶度。乙烯-丙烯共聚物的组成通过乙烯(表4中的E)的含量(以重量计)和5-亚乙基-2-降冰片烯(表4中的ENB)的含量(以重量计)来表达。表3也显示了此合成方法的灵活性,因为SP组分可在系列聚合反应器中的首个反应器(表3中的R1)或随后的反应器(表2中的R2)中制得。
表4:合成聚合物分散体的组成和反应器序列设计
半结晶性塑料(SP)组分 无定形弹性体(AE) 实施例
组成 结晶度 反应器 组成 反应器
含58%E的EP 聚乙烯  R2 含17%E的EP  R1  1
含63%E的EP 聚乙烯  R2 含16.1%E的EP  R1  2A
含70.4%E的EP 聚乙烯  R2 含17.6%E的EP  R1  2B
含80.5%E的EP 聚乙烯  R2 含16.5%E的EP  R1  2C
含5.9%E的EP 全同立构PP  R1 含58.2%E的EP  R2  3A
含4.3%E的EP 全同立构PP  R1 含63.4%E的EP  R2  3B
聚丙烯 全同立构PP  R1 含25.5%E、5.7%ENB的EPDM  R2  4A
含9.8%E的EP 全同立构PP  R1 含55.0%E、8.4%ENB的EPDM  R2  4B
含10.6%E的EP 全同立构PP  R1 含61.5%E、7.16%ENB的EPDM  R2  4C
聚丙烯 全同立构PP  R1 含78.7%E、4.57%ENB的EPDM  R2  5A
含10.4%E的EP 全同立构PP  R1 含55.6%E、4.33%ENB的EPDM  R2  5B
含10.4%E的EP 全同立构PP  R1 含58.3%E、4.05%ENB的EPDM  R2  5C
含10.4%E的EP 全同立构PP  R1 含51.3%E、3.05%ENB的EPDM  R2  5D
含5.19%E的EP 全同立构PP  R2 含69.9%E的EP  R1  6A
含11%E的EP 全同立构PP  R2 含68.7%E的EP  R1  6B
含5.32%E的EP 全同立构PP  R2 含68.7%E的EP  R1  6C
含14%E的EP 全同立构PP  R2 含69.4%E的EP  R1  6D
实施例7
在此实施例中,我们证明在本发明的实施中,在用于系列反应器的第一个反应器的代表性聚合条件下所制备的乙烯共聚物中不存在多于0-2/链的乙烯基。表10对在一定范围聚合温度下制备的聚合物的多种乙烯含量显示了聚合数据。通过13C NMR分析测得聚合物中不饱和度的浓度,通过GPC测得数均Mw。数据表明在多种反应条件下,每个分子链中乙烯基的摩尔分数小于0.2。
    表5     每1000个碳原子的不饱和度     不饱和分数 分子量
%C2=  温度   1,2-亚乙烯基  三取代 乙烯基 亚乙烯基 总不饱和度    1,2-亚乙烯基 三取代 乙烯基 亚乙烯基  Mn×10-3  C2摩尔分数 平均MW 乙烯基摩尔分数
 7a  12.7  40     0.01   0  0  0.13  0.14     .0714 .0000 .0000 .9286   96  0.18  39.49     0.00
 7b  15  40     0   0  0  0.15  0.15     .0000 .0000 .0000 1.000  105  0.21  39.07     0.00
 7c  38.4  40     0.01   0  0  0.18  0.19     .0526 .0000 .0000 .9474  92.7  0.48  35.23     0.00
 7d  38.3  40     0.03   0.01  0  0.2  0.24     .1250 .0417 .0000 .8333  94.6  0.48  35.25     0.00
 7e  57.7  40     0.02   0.03  0  0.22  0.27     .0741 .1111 .0000 .8148  47.4  0.67  32.60     0.00
 7f  61.7  40     0.01   0  0  0.13  0.14     .0714 .0000 .0000 .9286  0.00  42.00     0.00
 7g  62.4  102     0.02   0.04  0.01  0.38  0.45     .0444 .0889 .0222 .8444  41.1  0.71  32.01     0.03
 7h  24.1  40     0.01   0  0.02  0.16  0.19     .0526 .0000 .1053 .8421  58.5  0.32  37.48     0.16
 7i  59.2  70     0.01   0  0.02  0.22  0.25     .0400 .0000 .0800 .8800  38.6  0.69  32.41     0.10
 7j  54.2  70     0   0  0.02  0.19  0.21     .0000 .0000 .0952 .9048  49.5  0.64  33.04     0.14
 7k  44.5  70     0   0  0.03  0.19  0.22     .0000 .0000 .1364 .8636  46.9  0.55  34.36     0.19
 7l  28.4  71     0.04   0.05  0.04  0.33  0.46     .0870 .1087 .0870 .7174  37.3  0.37  36.78     0.09
 7m  18  71     0.03   0.03  0.03  0.21  0.3     .1000 .1000 .1000 .7000  52.4  0.25  38.53     0.14
 7n  12.2  71     0.02   0.02  0.04  0.2  0.28     .0714 .0714 .1429 .7143  49.1  0.17  39.59     0.18
 7o  6.4  71     0.04   0.04  0.04  0.19  0.31     .1290 .1290 .1290 .6129  49.1  0.09  40.70     0.16
非本发明的对比实施例
通过将聚合物分散体与聚合物分散体中同等重量比例的SP组分的物理熔融混合来制备用于突出本发明新颖性的、非本发明的对比实施例。重要的是聚合物分散体和对比的物理共混物的重量比例相似,差别在5%以内,以能进行相对性能的真正比较。也很重要的是物理共混物的聚合物是聚合物分散体的组分的近似复制品。因此,用从单点聚合催化剂制备的聚合物制备物理共混物,其中单点聚合催化剂例如从上述已知具有单聚合点的钒聚合催化剂或金属茂催化剂中选择。这确保物理共混物具有与聚合物分散体相同的组分特征。我们发现,物理共混物的性能只微弱地取决于组分的组成。我们选择物理共混物的组分的准则是每种组分的组成是与我们欲复制的聚合物分散体组分的乙烯含量相差10%以内。因此,可通过将作为SP组分的乙烯含量为80.5+/-8%乙烯的组分和作为聚合物分散体的含有16.5+/-1.6重量%乙烯的乙烯丙烯共聚物混合以复制例如代表性实施例2C的聚合物分散体。分子量对共混物组分的影响较小。尽管组分的分子量对改变在本发明的分子量范围内分子量小于5000时的性能十分有效,但如果聚合物分散体和物理共混物中的相似组分的分子量相差25%,就基本无差别。因此,分子量为80,000的聚合物分散体中聚合物分散体的性能可与分子量为60,000至100,000的物理共混物中具有上述组成限制的聚合物分散体相比较。
在一个300毫升的布雷本登混炼机中于170℃至200℃在85转/分钟下将具有与聚合物分散体中相似的组成和分子量的预制聚合物共混5分钟,以制备对比物理共混物。此混炼机从C.W.BrabenderInstruments,Inc_South Hackensack,NJ获得。混炼机装备有高剪切辊叶,在我们的实验中其在混合时间内得到均匀分散体。在混合后将物理共混物从混炼机中移出,然后用与聚合物分散体相同的方法进行生产和检测。本研究中使用的物理共混物如下面的表5所示。乙烯-丙烯共聚物的组成通过乙烯(表5中的E)含量(以重量计)和5-亚乙基-2-降冰片烯(表5中的ENB)的含量(以重量计)来表达。
表6:物理共混物的合成中细分的组成和重量比例
半结晶性塑料(SP)组分 无定形弹性体(AE) 实施例 参考/实施例
组成 结晶度 重量% 组成 重量%
含83%E的EP 聚乙烯 20 含18.3%E的EP  80  7  2C
含4.1%E的EP 全同立构PP 52 含60.1%E的EP  48  8  3B
聚丙烯 全同立构PP 42 含27.4%E、4.9%ENB的EPDM  58  9  4A
聚丙烯 全同立构PP 40 含75%E、4.2%ENB的EPDM  60  10  5A
含5.02%E的EP 全同立构PP 33 含73.2%E的EP  67  11  6A
相结构的显微分析
使用透射电子显微技术(TEM)检测共混物的形态学。聚合物分散体和物理共混物的压缩成型样品的厚度大约为0.12英寸,其在静止状态下于200℃保持30-40分钟,用Reichert-Jung FC-4超薄切片机将其低温(-196℃)切片成厚度为50-100微米的切片。将这些薄切片在RuO4的1%水溶液上的气相中染色数日。金属氧化物优先附着于聚合物分散体或物理共混物的AE组分上,同时SP组分相对未受影响。聚合物共混物的TEM显微相片显示AE组分处的较暗影象和SP组分的较亮影象。
将通过上述过程获得的TEM图片在Hewlett-Packard扫描仪上以300dpi的分辨率进行扫描,得到点阵文件。用Image 1.47分析此文件,Image 1.47是Wayne Rasband(NIH)在Apple Macintosh Quadra650平台上开发的软件。此程序根据相间的对比来区分分散相和周围基体的图象。用在分散相和连续相间有高度对比的SEM显微图片进行图象分析,以得到分散相相畴尺寸的关键数据。根据作为此过程的内部证据的此方法也可得到分散相尺寸的面积的补充数据。由此分析得到分散相粒子的面积和直径数据。用微软公司的Excel 5数据分析和扩展页软件进行数据的统计分析。典型地,对5至6幅显微相片的大约200个粒子进行分析,以得到统计上显著的结果。
横截面的TEM显微相片显示了几乎为圆形的分散相的图象。这表明使分散相在形变方向发生优先形变的先前的机械剪切效应已被静态热处理完全消除。期望在这些条件下分散相的相尺寸已接近平衡状态。Datta等人已观察到此现象,并发表在大分子26,2064-2076(1993)上。典型地,任一个粒子的最小直径和最大直径之间的差别小于25%。在这些条件下,样片横截面中的粒子面积与具有上述直径的圆的面积相似。图象分析准确度的度量是所有图象的分散相总面积占图象总面积的比例分数。理想状态下,它应与聚合物分散体中分散相的体积分数相等。软件中对比度的选择和图象标准可影响此比例,我们已选择用于图象分析图片的对比度标准,以使此比例与由聚合实验的共混物组分的比例所预期的值相差7%以内。
粒子的分散相尺寸数据体现本发明突出的新颖性。数据表达为所有共混物显微相片的粒径的算术平均值。每个聚合物分散体和对比的共混物如数据表6所示。按上述方法制备对比共混物。分散相的平均尺寸数据表明与对比实施例中物理共混物相比,本发明的聚合物分散体形成了尺寸更小的分散相。
系数A定义为本发明的聚合物分散体的分散相的线型尺寸对相应的物理共混物的分散相的平均线型尺寸之比。此情况下,线型尺寸是分散相的直径。有可能本发明的聚合物分散体的分散相在电子显微相片中的横截面中不是近似圆形。在这些情况下,A是平均特征尺寸的统计平均比例,例如聚合物分散体中分散相的无规切弦长度尺寸对物理共混物中分散相的无规切弦长度尺寸的比例。本发明的共混物和相同聚合物的物理共混物的A值如表6所示。本发明的共混物的A值显著更低。
表7:聚合物分散体和相应物理共混物中分散相的平均直径和临界比例A值
实施例 分散相的平均直径(微米) 对比实施例 分散相的平均直径(微米) 临界系数A
 2C  0.23  7  1.1 .21
 3B  0.32  8  0.95 .33
 4A  0.52  9  0.76 .68
 4B  0.45  na  na
 6A  0.39  10  0.68 .57
差示溶剂分级:
应用聚合物的部分溶解度准则,用溶剂将聚合物分级,以用来确定聚合物部分的存在,其可为无定形弹性体或SP组分,通过合成使它们的溶解性能改变,以形成均质分散体。Stejskal等人在期刊大分子的1989年第22卷第861页发表的文章已对此溶剂分级方法进行了最详尽的描述。此文章也描述了对在均质分散体的聚合物混合物中中等溶解度的聚合物部分的形成进行的分析。尽管不限于这种解释,但我们认为聚合物分散体和物理共混物的溶液分级结果证明聚合物分散体聚合物的分子结构有差别,这种聚合物具有与物理共混物相同的组成和共混物组分,但是在本发明所述的性能方面不同。在此方法中,分析了聚合物共混物的样品,它可为物理共混物或本发明的聚合物分散体。
准确称量大约3.0克聚合物,在具有大约4”-5”侧边的400目不锈钢片上将其压制成薄膜。将不锈钢筛浸泡在大约400-500毫升环己烷中,并在室温下(69°F至73°F)于带封闭接口罩的玻璃容器中保存。Irganox-1076是一种可从Ciba-Geigy公司(现在的Novartis公司)购买的抗氧化剂,在加入环己烷之前将1毫升Irganox-1076溶液加入玻璃容器。抗氧化剂的溶液每10升己烷含有26克Irganox-1076。
将共混物样品于溶剂中浸泡48小时。在此期间,样品的可溶部分被萃取进环己烷溶剂,而样品的不溶部分保留在筛网上。在此期间的最后,将含有样品不溶部分的筛网移走,同时将聚合物的可溶部分的溶液移走并蒸发,以留下溶于环己烷的聚合物共混物部分的固体剩余物。一般对聚合物分散体和物理共混物来说,不溶部分主要包含SP组分,可溶部分主要包括聚合物分散体。
但是对于本发明的聚合物,可溶聚合物的重量分数和/或组成与同等聚合物的物理共混物不同。应用此分离技术将物理共混物基本完全分离成SP组分和聚合物分散体。级分的重量分析表明级分的相对重量与用于制备物理共混物的两种聚合物的相应重量相似。对级分的IR分析确定了级分的性质与用于形成物理共混物的单个聚合物的组成相似。对分离得到的可溶级分的DSC分析表明很少或没有将SP组分萃取进可溶级分中。在表7中概括了这些结果。表7分为两部分。表7a概括了本发明的聚合物分散体的结果。表7b概括了对比实施例的物理共混物的结果。表7b中的这些分析结果基于用于合成这些共混物的聚合物的简单物理混合物是可预期的。
这些结果对原位、均质分散的共混物是根本不同的,也是本发明的一个突出新颖性。萃取本发明的聚合物分散体,得到聚合物级分,其不对应于预期的纯聚合物分散体或SP组分的重量分数或组成。可溶级分的重量分数一般小于在合适的聚合反应器中制备的聚合物分散体中AE的重量分数。进一步,可溶和不溶级分的组成基本不同于聚合物分散体的单个组分。这些差异可归因于含有聚合物分散体的可溶级分中SP组分的萃取和在不溶性SP组分内一部分聚合物分散体的保留。表7所示的数据表明了本发明的这一特点。对此级分的DSC分析显示了与少量SP组分的存在相符的熔融峰的出现,证实萃取出了含有聚合物分散体的部分SP组分。
表7(a):聚合物分散体的差示溶剂分级(%E=聚合物组成,乙烯%,AE=无定形弹性体,SP=半结晶塑料组分)
实验 可溶级分 不溶级分 聚合:SAE 聚合:SPC
重量分数 %E 重量分数 %E 重量分数 %E 重量分数 %E
 1  86  45.9  14  na  67  59.6  33  17
 2A  63  34.7  37  na  64  36.1  36  16
 2B  68  36.8  32  na  70  47.4  30  17.6
 2C  78  50.1  22  na  80  52  20  16
 4B  80  20  43  57
 4C  66  34  48  52
 5B  65  34  53  47
 5C  71  29  55  45
 5D  59  41  51  49
表7(b):物理共混物的差示溶剂分级(%E=聚合物组成,乙烯%,AE=无定形弹性体,SP=半结晶塑料组分)
实验 可溶级分 不溶级分 混合:AE 混合:SP
重量分数 %E 重量分数 %E 重量分数 %E 重量分数 %E
 8  47  na  53  na  48  27  52  4.1
 9  55  na  45  na  58  75  42  0
 10  61  na  39  na  60  73  40  0
用上述方法萃取聚合物分散体和物理共混物导致聚合物分散体组分的优先萃取,而对剩余SP组分的分析只通过对可溶组分的分离方法进行。在这些实验条件下,如果对SP组分进行的聚合物分散体的分离不完全,此分析结果可有可能不很准确。
另一种分析方法依靠从聚合物分散体的剩余物中分离SP组分,据描述这种方法解决了对这些结果方面的任何保留的疑问。将SP组分从聚合物分散体中分离是通过仅对后者进行硫化以形成不溶组分,通过在合适的温度下用溶剂从这种不溶组分萃取而分离出前者来实现的。选择硫化方法以使SP组分不被硫化,而聚合物分散体几乎被完全硫化。此条件易于达到,如果(a)聚合物分散体以足以完全硫化聚合物的浓度含有在聚合物主链上引入的二烯而SP组分不含二烯,和(b)选择硫化体系以仅与聚合物分散体侧链上的双键易于进行反应。
在下述实验方法中,聚合物分散体含有3重量%这一最小量的二烯、5-亚乙基-2-降冰片烯(ENB),并且硫化剂是每一百重量份聚合物5份由Schenectady,NY的Schenectady国际公司生产的酚醛树脂硫化剂SP-1045、每一百重量份聚合物1份由Milwaukee,WI的Aldrich化学公司获得的水合二氯化锡和每一百重量份聚合物10份也由Aldrich化学公司获得的作为溶剂的十氢化萘的混合物。聚合物样品可以是为本发明主题的聚合物分散体的实施例之一或是物理共混物的对比实施例之一,将40克这种样品加入60毫升布雷本登混炼机的混合室中,混炼机连有PL-2000混炼机体系,两者都由布雷本登仪器公司制造。混炼机保持在170℃,混合旋转器设定在15转/分钟。一旦聚合物经过良好的混合,就在聚合物中加入硫化体系组分,并缓慢混合5分钟以上,以将硫化剂分散在聚合物中。通过在混炼机的外夹套中使用冷却空气使聚合混合物的温度保持在尽量接近165℃。5分钟后移出聚合物样品,并将其压制成片,尺寸大约为4”×4”。
准确称量3.0克这种材料,并于Mylar(保护膜)片材之间将其压制在400目6”×6”不锈钢方筛网上,再在15吨力下于210℃加热15分钟。在此期间,SP-1045和二氯化锡进攻含有双键侧基的聚合物中聚合物分散体部分的双键,以硫化此聚合物。不含双键的聚合物的SP组分基本不受影响。将含有粘合的聚合物薄膜的不锈钢方块加入克耶达萃取套管中,并在氮气保护下用含有200ppm Irganox 1076的500毫升二甲苯萃取,回流温度为140℃。回流连续进行36至48小时,以确保将聚合物共混物组分完全分离为可溶和不溶级分。在此期间的最后,停止回流,得到聚合物样品的可溶级分和含有剩余物的萃取套管。
将可溶性聚合物级分于100℃真空干燥至恒重,并从聚合物样品的初始重量和可溶性聚合物的重量分数之间的差别计算不溶聚合物的重量分数。由于用二甲苯萃取硫化剂SP1045剩余物,在计算可溶级分和不溶级分的重量分数的分配之前,对可溶级分的重量进行修正。对聚合物分散体的两个样品和相应的物理共混物的一个样品的分析数据如表8所示。通过此方法将物理共混物完全分离成各自的可溶性SP组分和不溶性交联聚合物分散体。在分离聚合物分散体时,分离远不完全,可溶性级分远少于第一反应器中制得的SP组分量。这是与相应的物理共混物相比,聚合物分散体的混溶性提高的证据。
表8:交联后聚合物分散体与物理共混物的萃取(AE=无定形弹性体,SP=半结晶塑料组分)
实施例 共混物类型 重量%:可溶性SP 重量%:不溶性AE 合成的SP/AE比例
4A 分散体 40 60 46/54
5A 分散体 33 67 41/59
9 物理 43 57 42/58
共混物的应力-应变伸长率数据
用哑铃形样品检测聚合物分散体和相应的物理共混物的应力-应变伸长率性能。ASTM中规定了测试的尺寸和方法。在15吨力下于180℃至200℃将样品压模15分钟成为尺寸为6”×6”的片料。将冷却的片料移出,并用模头将样品移出。在Instron 4465上进行样品的应力应变测试,Instron 4465由Instron Corporation,100 RoyallStreet,Canton,MA制造。在用Instron Corporation提供的Series Ⅸ材料测试系统收集的文档中收集数字化数据,并用Redmond,WA的微软公司提供的扩展页程序Excel 5分析数据。
将如下面表6所示的聚合物分散体的数据与也列于表6的相应物理共混物的对比实施例进行比较。表6显示了每种共混物在伸长率相差10%时的模量,共混物可以是本发明的聚合物分散体或是对比实施例的物理共混物。数据表中的阴影部分表示由于样品断裂,未收集样品的模量数据。数据表中的空白部分表示由于样品的伸长率大于Instron拉伸仪的伸长极限,因而无数据。典型地伸长率大于700%至900%的共混物在到达伸长率极限前不会断裂。
如对比实施例所示,聚合物分散体和SP组分的物理共混物表现出很差的应力-应变性能。这些材料的物理共混物一般易于在特定的测试条件下变形,并在少于200%的较低伸长率时断裂。认为这是由于聚合物组分的相互不相容性引起的。对预期的应力应变数据形式的偏离表明了聚合物分子结构之间存在差异。
与物理共混物具有基本相同的组成范围和共混比例的相同聚合物的聚合物分散体显示出明显更大的伸长率和拉伸强度。此数据列于表9,其中将一组聚合物分散体和对比物理共混物的应力-应变性能进行比较。表中的阴影部分表示样品在测试中断裂,而空白部分表示由于样品的伸长超过拉伸仪的记录极限而没有数据。这些数据清楚地表明聚合物分散体在此应力-应变性能的关键领域的优越性。在图1中的数据也清楚地显示了这一点。
表9:聚合物分散体和对比物理共混物的应力-应变数据
%伸长                                     样品模量(psi)
 4A  4B  4C  5A  5B  5C  5D     9     10
    10  770  397  423  399  288  256  321  1091  579
    20  809  490  531  447  367  326  404  1027  501
    30  803  537  578  462  400  368  447  858
    40  803  558  593  468  420  388  466  796
    50  807  568  597  472  430  399  475  160
    60  813  572  597  475  434  406  479
    70  819  572  595  478  436  410  481
    80  824  572  593  482  438  412  481
    90  829  570  591  485  438  415  481
    100  833  569  589  488  439  416  481
    110  837  568  588  491  439  418  481
    120  840  568  587  494  440  420  482
    130  843  568  587  497  441  422  482
    140  843  568  587  500  442  423  484
    150  844  569  589  502  443  425  486
    160  844  570  591  504  445  427  488
    170  843  572  592  506  447  429  490
    180  841  573  595  508  449  432  493
    190  837  576  597  509  452  435  496
    200  833  578  600  511  455  437  500
    210  825  582  603  511  458  440  504
    220  813  585  607  511  462  444  509
    230  792  589  612  512  465  449  513
    240  593  617  511  470  453  519
    250  598  622  511  475  458  524
    260  602  628  509  480  463  530
    270  607  635  508  487  469  537
    280  613  642  505  493  474  545
    290  619  650  502  500  480  552
    300  626  660  497  508  488  560
    310  634  669  490  516  495  570
    320  642  679  481  525  503  582
    330  652  691  468  535  511  593
    340  663  704  438  546  521  605
    350  675  718  558  532  619
    360  689  733  572  543  635
    370  704  751  585  553  650
    380  720  768  601  566  669
    390  738  788  617  580  689
    400  758  811  634  593  708
    410  781  833  654  607  729
    420  804  858  671  624  753
    430  828  887  691  638  776
    440  853  917  713  654  802
    450  882  950  734  670  829
    460  914  982  759  687  858
    470  950  1016  784  706  887
    480  986  1050  810  724  920
    490  1026  1088  836  743  953
    500  1069  1128  864  765  994
    510  1119  1170  895  784  1035
    520  1177  1219  926  805  1075
    530  1236  1263  961  827  1119
    540  1301  1314  995  852  1164
    550  1371  1367  1029  878  1207
    560  1448  1419  1066  903  1256
    570  1531  1470  1103  932  1320
    580  1795  1515  1137  963  1477
    590  2187  1555  1180  996  1701
    600  2539  1656  1260  1032  1982
    610  2791  1895  1384  1067  2242
    620  2945  2171  1552  1111  2474
    630  2437  1715  1164  2693
    640  2667  1898  1248  2917
    650  2869  2076  1378  3143
    660  3052  2249  1529  3367
    670  3230  2456  1692  3627
    680  3408  2635  1851
    690  3608  2828  2004
    700  3818  2140
    710  4049  2273
    720  2401
    725  2470

Claims (18)

1.一种基本无预制或外加相容剂的聚合物分散体,它包括重均MW至少为20,000的基本无定形弹性体和重均MW至少为20,000的半结晶性塑料,所述半结晶性塑料优选含有乙烯和丙烯的共聚物;
其中所述聚合物分散体具有包含所述无定形弹性体或所述半结晶性塑料的分散相;
其中所述无定形弹性体和所述半结晶性塑料是由选自乙烯、C3-C30高级α-烯烃、非共轭二烯及其结合的单体制得的;
其中所述无定形弹性体或所述半结晶性塑料每个分子链都不含有多于0.2个的乙烯基;
其中所述无定形弹性体含有0-10摩尔%二烯;
其中所述半结晶性塑料含有0-10摩尔%二烯;
其中所述聚合物分散体的系数A值小于1,优选小于0.6,更优选小于0.4;
其中所述系数A定义为所述聚合物分散体的分散相的线型尺寸对相应的物理共混物的分散相的平均线型尺寸的比例。
2.权利要求1的聚合物分散体,其系数B的值大于2,优选大于3,更优选大于4;其中所述系数B定义为所述聚合物分散体的断裂伸长率对对比的物理共混物的断裂伸长率的比例。
3.权利要求2的聚合物分散体,其断裂伸长率大于500%。
4.权利要求1的聚合物分散体,具有平均直径小于0.7微米的分散相。
5.权利要求1的聚合物分散体,其中所述无定形弹性体占聚合物分散体的5-95重量%。
6.权利要求1的聚合物分散体,其中所述半结晶性塑料占聚合物分散体的至少25重量%。
7.权利要求1的聚合物分散体,其中所述半结晶性塑料的熔化热高于所述无定形聚合物,优选所述半结晶性塑料的熔化热高于10焦耳/克,更优选所述半结晶性塑料的熔化热高于30焦耳/克。
8.权利要求1的聚合物分散体,其中所述半结晶性塑料的Tm高于60。
9.权利要求1的聚合物分散体,其中所述半结晶性塑料经差示溶剂萃取测定由具有均匀分子内组成的聚合物组成,并且通过凝胶渗透色谱测定得其PDI小于5.0,优选在1.8至3.0之间。
10.权利要求1的聚合物分散体,具有来源于立体规整聚合的聚丙烯和聚乙烯共聚物的结晶度。
11.权利要求10的聚合物分散体,其中所述半结晶性塑料含有多于80重量%的丙烯,优选85-98重量%丙烯。
12.权利要求10的聚合物分散体,其中所述半结晶性塑料含有多于65重量%的乙烯,优选77-98重量%乙烯。
13.权利要求1的聚合物分散体,其中二烯选自ENB、DCPD、1,4-己二烯、MNB、降冰片二烯和(Δ-11,12)5,8十二碳烯。
14.权利要求1的聚合物分散体,其中所述无定形弹性体的Tm低于50,熔化热为0-15焦耳/克。
15.权利要求1的聚合物分散体,其中所述无定形弹性体经差示溶剂萃取测定由具有均匀分子内组成的聚合物组成,并且通过凝胶渗透色谱测得其PDI小于5.0,优选在1.8至3.0之间。
16.权利要求1的聚合物分散体,其中所述无定形弹性体含有20-70重量%乙烯,条件是所述无定形弹性体的乙烯含量与所述半结晶性塑料组分至少相差10重量%。
17.权利要求15的聚合物分散体,其中所述的无定形弹性体的乙烯含量与所述半结晶性塑料组分至少相差5重量%。
18.权利要求1的聚合物分散体,其中所述无定形弹性体含有20-70重量%乙烯,条件是所述无定形弹性体的熔化热与所述半结晶性塑料组分至少相差10焦耳/克。
CN99803470A 1998-03-04 1999-03-01 聚烯烃聚合物分散体产品及其制备方法 Pending CN1292014A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7671398P 1998-03-04 1998-03-04
US60/076,713 1998-03-04

Publications (1)

Publication Number Publication Date
CN1292014A true CN1292014A (zh) 2001-04-18

Family

ID=22133753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99803470A Pending CN1292014A (zh) 1998-03-04 1999-03-01 聚烯烃聚合物分散体产品及其制备方法

Country Status (11)

Country Link
US (1) US6207756B1 (zh)
EP (1) EP1060212B1 (zh)
JP (1) JP4418107B2 (zh)
KR (1) KR20010052195A (zh)
CN (1) CN1292014A (zh)
AU (1) AU2796899A (zh)
BR (1) BR9909217A (zh)
CA (1) CA2319792A1 (zh)
DE (1) DE69917006T2 (zh)
EA (1) EA200000905A1 (zh)
WO (1) WO1999045062A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203562A (zh) * 2005-06-22 2008-06-18 埃克森美孚化学专利公司 具有连续弹性体相的多相聚合物共混物及其制备方法
CN102414230A (zh) * 2009-04-28 2012-04-11 埃克森美孚化学专利公司 基于乙烯的共聚物,含有该共聚物的润滑油组合物和它们的制备方法
CN108239336A (zh) * 2016-12-27 2018-07-03 韩华道达尔有限公司 用于电力电缆的聚丙烯树脂和绝缘层中包含聚丙烯树脂的电力电缆

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232871B2 (en) * 1997-08-12 2007-06-19 Exxonmobil Chemical Patents Inc. Propylene ethylene polymers and production process
US6635715B1 (en) * 1997-08-12 2003-10-21 Sudhin Datta Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers
US6921794B2 (en) * 1997-08-12 2005-07-26 Exxonmobil Chemical Patents Inc. Blends made from propylene ethylene polymers
EP1098934A1 (en) * 1998-07-01 2001-05-16 Exxon Chemical Patents Inc. Elastic blends comprising crystalline polymer and crystallizable polymers of propylene
JP2002097228A (ja) * 2000-09-20 2002-04-02 Mitsui Chemicals Inc シンジオタクティックポリプロピレン系共重合体、該共重合体を含む組成物および成形体
EP1390417B1 (en) * 2001-04-12 2010-10-20 ExxonMobil Chemical Patents Inc. Process for polymerizing propylene and ethylene in solution
US6906160B2 (en) * 2001-11-06 2005-06-14 Dow Global Technologies Inc. Isotactic propylene copolymer fibers, their preparation and use
SG147306A1 (en) * 2001-11-06 2008-11-28 Dow Global Technologies Inc Isotactic propylene copolymers, their preparation and use
US6927256B2 (en) * 2001-11-06 2005-08-09 Dow Global Technologies Inc. Crystallization of polypropylene using a semi-crystalline, branched or coupled nucleating agent
US6943215B2 (en) 2001-11-06 2005-09-13 Dow Global Technologies Inc. Impact resistant polymer blends of crystalline polypropylene and partially crystalline, low molecular weight impact modifiers
US20050012235A1 (en) * 2001-11-30 2005-01-20 Schregenberger Sandra D Oxygen tailoring of polyethylene resins
WO2003050148A1 (en) * 2001-12-12 2003-06-19 Exxonmobil Chemical Patents Inc. Compositions suitable for elastomeric membranes
DE60327855D1 (de) 2002-06-19 2009-07-16 Exxonmobil Chem Patents Inc Verfahren zur polymerisation von ethylen, höheren alpha-olefin-comonomeren und dienen, insbesondere vinyl norbornen und nach diesem verfahren hergestellte polymere
US8058371B2 (en) * 2002-09-20 2011-11-15 Exxonmobil Chemical Patents Inc. Super-solution homogeneous propylene polymerization
US8008412B2 (en) * 2002-09-20 2011-08-30 Exxonmobil Chemical Patents Inc. Polymer production at supersolution conditions
US20080153997A1 (en) * 2006-12-20 2008-06-26 Exxonmobil Research And Engineering Polymer production at supercritical conditions
US20040086621A1 (en) * 2002-11-06 2004-05-06 Kraft Foods Holdings, Inc. Reduced calorie fat
JP5525680B2 (ja) * 2003-11-14 2014-06-18 エクソンモービル・ケミカル・パテンツ・インク プロピレン−ベース・エラストマー、その製品およびその製造方法
US20060038315A1 (en) * 2004-08-19 2006-02-23 Tunnell Herbert R Iii Oxygen tailoring of polyethylene resins
US8202940B2 (en) * 2004-08-19 2012-06-19 Univation Technologies, Llc Bimodal polyethylene compositions for blow molding applications
US7892466B2 (en) 2004-08-19 2011-02-22 Univation Technologies, Llc Oxygen tailoring of polyethylene resins
SG156639A1 (en) * 2004-10-13 2009-11-26 Exxonmobil Chem Patents Inc Elastomeric reactor blend compositions
CN1328310C (zh) * 2004-11-05 2007-07-25 中国科学院化学研究所 聚烯烃复合材料及其制备方法
CN100383166C (zh) * 2004-12-22 2008-04-23 中国科学院化学研究所 抗冲击聚丙烯材料的制备方法
US7803876B2 (en) * 2005-01-31 2010-09-28 Exxonmobil Chemical Patent Inc. Processes for producing polymer blends and polymer blend pellets
WO2006083515A1 (en) * 2005-01-31 2006-08-10 Exxonmobil Chemical Patents Inc. Polymer blends and pellets and methods of producing same
WO2006120177A2 (en) * 2005-05-11 2006-11-16 Basell Poliolefine Itatia S.R.L. Polymerization process for preparing polyolefin blends
US7585917B2 (en) * 2005-06-13 2009-09-08 Exxonmobil Chemical Patents Inc. Thermoplastic blend compositions
DE102005028989A1 (de) * 2005-06-21 2007-01-04 Basf Ag Verfahren zur Herstellung einer wässrigen Polymerdispersion
US20060293462A1 (en) * 2005-06-22 2006-12-28 Sunny Jacob Heterogeneous polymer blend and process of making the same
US9745461B2 (en) 2005-06-22 2017-08-29 Exxonmobil Chemical Patents Inc. Vulcanized polymer blends
US7951872B2 (en) * 2005-06-22 2011-05-31 Exxonmobil Chemical Patents Inc. Heterogeneous polymer blend with continuous elastomeric phase and process of making the same
US7935760B2 (en) * 2005-06-22 2011-05-03 Exxonmobil Chemical Patents Inc. Process of making a heterogeneous polymer blend
US9644092B2 (en) 2005-06-22 2017-05-09 Exxonmobil Chemical Patents Inc. Heterogeneous in-situ polymer blend
EP1896533B1 (en) * 2005-06-22 2013-08-28 ExxonMobil Chemical Patents Inc. Heterogeneous polymer blend and process of making the same
US7451600B2 (en) * 2005-07-06 2008-11-18 Pratt & Whitney Canada Corp. Gas turbine engine combustor with improved cooling
WO2007067298A1 (en) * 2005-12-06 2007-06-14 Exxonmobil Chemical Patents Inc. Random propylene diene copolymer thermoplastic vulcanizate compositions
EP1957548B1 (en) 2005-12-06 2013-08-07 ExxonMobil Chemical Patents Inc. Ethylene elastomer compositions
US7709577B2 (en) * 2005-12-07 2010-05-04 Exxonmobil Chemical Patents Inc. Process of making polymer blends
US7935761B2 (en) * 2006-06-08 2011-05-03 Exxonmobil Chemical Patents Inc. Process for preparing articles
WO2007145705A1 (en) 2006-06-08 2007-12-21 Exxonmobil Chemical Patents Inc. Process for preparing articles
US7915345B2 (en) * 2006-06-08 2011-03-29 Exxonmobil Chemical Patents Inc. Solution blending process for preparing thermoplastic vulcanizates
US7985804B2 (en) * 2006-11-06 2011-07-26 Exxonmobil Chemical Patents Inc. Rubber toughened compositions, articles, films, and methods of making the same
US8143352B2 (en) * 2006-12-20 2012-03-27 Exxonmobil Research And Engineering Company Process for fluid phase in-line blending of polymers
US8242237B2 (en) 2006-12-20 2012-08-14 Exxonmobil Chemical Patents Inc. Phase separator and monomer recycle for supercritical polymerization process
US7256240B1 (en) 2006-12-22 2007-08-14 Exxonmobil Chemical Patents Inc. Process of making polymer blends
US8080610B2 (en) 2007-03-06 2011-12-20 Exxonmobil Research And Engineering Company Monomer recycle process for fluid phase in-line blending of polymers
US7943711B2 (en) * 2007-05-14 2011-05-17 Exxonmobil Chemical Patents Inc. Ethylene elastomer compositions
CN101855249B (zh) * 2007-09-13 2013-02-13 埃克森美孚研究工程公司 在线生产增塑聚合物和增塑聚合物共混物的方法
EP2201042B1 (en) * 2007-09-13 2012-06-27 ExxonMobil Research and Engineering Company In-line blending of plasticizers with a base polymer
EP2450403A1 (en) * 2007-12-20 2012-05-09 ExxonMobil Research and Engineering Company Polypropylene ethylene-propylene copolymer blends and in-line process to produce them
US7994237B2 (en) * 2007-12-20 2011-08-09 Exxonmobil Research And Engineering Company In-line process to produce pellet-stable polyolefins
US7910679B2 (en) * 2007-12-20 2011-03-22 Exxonmobil Research And Engineering Company Bulk homogeneous polymerization process for ethylene propylene copolymers
US8318875B2 (en) * 2008-01-18 2012-11-27 Exxonmobil Chemical Patents Inc. Super-solution homogeneous propylene polymerization and polypropylenes made therefrom
EP2083046A1 (en) 2008-01-25 2009-07-29 ExxonMobil Chemical Patents Inc. Thermoplastic elastomer compositions
US8969481B2 (en) 2008-12-18 2015-03-03 Exxonmobil Chemical Patent Inc. Peroxide cured TPV
US20120028866A1 (en) 2010-07-28 2012-02-02 Sudhin Datta Viscosity Modifiers Comprising Blends of Ethylene-Based Copolymers
US9416206B2 (en) 2010-01-22 2016-08-16 Exxonmobil Chemical Patents Inc. Lubricating oil compositions and method for making them
US20120225978A1 (en) 2011-03-02 2012-09-06 Basf Se Aqueous binders for granular and/or fibrous substrates
CN103429653A (zh) 2011-03-02 2013-12-04 巴斯夫欧洲公司 颗粒状和/或纤维状基底用水性粘合剂
US8877842B2 (en) 2011-04-04 2014-11-04 Basf Se Aqueous binders for granular and/or fibrous substrates
EP2694580B1 (de) 2011-04-04 2019-07-10 Basf Se Wässrige bindemittel für körnige und/oder faserförmige substrate
EP2814885B1 (de) 2012-02-14 2018-01-31 Basf Se Wässrige bindemittelzusammensetzung
US9023919B2 (en) 2012-02-14 2015-05-05 Basf Se Aqueous binder composition
JP2015527413A (ja) 2012-05-31 2015-09-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 結合剤
JP2017510697A (ja) 2014-04-04 2017-04-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 成形体の製造方法
WO2016008834A1 (de) 2014-07-15 2016-01-21 Basf Se Bindemittel für bodenbelagsklebstoffe
EP3390056B1 (en) 2015-12-16 2020-11-18 ExxonMobil Chemical Patents Inc. Low crystalline polymer compositions
SG11201807680TA (en) 2016-03-31 2018-10-30 Exxonmobil Chemical Patents Inc Low crystalline polymer compositions prepared in a dual reactor
US11280333B2 (en) * 2017-05-16 2022-03-22 Circor Pumps North America, Llc. Progressive cavity pump having improved stator dry-running protection
WO2019194957A1 (en) * 2018-04-06 2019-10-10 Exxonmobil Chemcial Patents Inc. Compatibilized thermoplastic vulcanizate compositions
WO2020221605A1 (en) 2019-05-02 2020-11-05 Basf Se Aqueous binder composition

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL270258A (zh) 1960-10-17
BE637093A (zh) 1962-09-10
GB1200362A (en) * 1967-07-28 1970-07-29 Ici Ltd Polymer composition
FR2493855B1 (fr) 1980-11-13 1986-01-10 Naphtachimie Sa Compositions de polypropylene de resistance au choc ameliorees
US4491652A (en) * 1981-05-13 1985-01-01 Uniroyal, Inc. Sequentially prepared thermoplastic elastomer and method of preparing same
JPH064733B2 (ja) 1986-02-03 1994-01-19 日本石油化学株式会社 高剛性かつ耐衝撃性ポリオレフイン樹脂組成物
US4966944A (en) 1986-12-10 1990-10-30 Quantum Chemical Corporation Impact propylene copolymers with improved bruise resistance
JP2857438B2 (ja) 1988-09-30 1999-02-17 エクソン・ケミカル・パテンツ・インク 分子量分布および組成分布のせまい共重合体の線状エチレン共重合体ブレンド
EP0366411A3 (en) 1988-10-28 1991-04-24 Exxon Chemical Patents Inc. Graft polymers of ethylene-propylene-diene monomer polymers with propylene, means of preparation, and use of polypropylene compositions
IL95097A0 (en) 1989-08-23 1991-06-10 Himont Inc Thermoplastic olefin polymer and its preparation
CA2060019A1 (en) 1991-03-04 1992-09-05 Phil Marvin Stricklen Process for producing polyolefins having a bimodal molecular weight distribution
JP3076619B2 (ja) 1991-05-14 2000-08-14 三井化学株式会社 ブロック共重合体の製造方法
EP0619827B1 (en) 1991-12-30 1996-06-12 The Dow Chemical Company Ethylene interpolymer polymerizations
US6545088B1 (en) 1991-12-30 2003-04-08 Dow Global Technologies Inc. Metallocene-catalyzed process for the manufacture of EP and EPDM polymers
BE1005795A3 (fr) 1992-05-13 1994-02-01 Solvay Procede de polymerisation d'olefines et (co)polymeres a blocs derives d'au moins une olefine.
DE69320135T2 (de) 1992-10-15 1998-12-10 Mitsubishi Chem Corp Polypropylen Zusammensetzungen
KR100301978B1 (ko) 1993-01-29 2001-11-14 리챠드 지. 워터맨 에틸렌공중합법
US5571864A (en) 1993-03-23 1996-11-05 Regents Of The University Of Minnesota Miscible polyolefin blends with modifying polyolefin having matching segment lengths
DE69434709T2 (de) 1993-06-07 2006-10-19 Mitsui Chemicals, Inc. Propylenelastomere
JP4026846B2 (ja) 1994-04-11 2007-12-26 三井化学株式会社 プロピレン系重合体組成物の製造方法およびプロピレン系重合体組成物
CA2162946C (en) * 1994-11-21 2004-01-06 Kazuyuki Watanabe Propylene block copolymer and process for producing the same
US5696213A (en) 1995-04-21 1997-12-09 Exxon Chemical Patents Inc. Ethylene-α-olefin-diolefin elastomers solution polymerization process
ATE210688T1 (de) 1996-04-01 2001-12-15 Dow Chemical Co Olefin-lösungspolymerisation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203562A (zh) * 2005-06-22 2008-06-18 埃克森美孚化学专利公司 具有连续弹性体相的多相聚合物共混物及其制备方法
CN101208391B (zh) * 2005-06-22 2012-11-28 埃克森美孚化学专利公司 多相聚合物共混物及其制备方法
CN101203562B (zh) * 2005-06-22 2014-03-12 埃克森美孚化学专利公司 具有连续弹性体相的多相聚合物共混物及其制备方法
CN102414230A (zh) * 2009-04-28 2012-04-11 埃克森美孚化学专利公司 基于乙烯的共聚物,含有该共聚物的润滑油组合物和它们的制备方法
CN102414230B (zh) * 2009-04-28 2014-05-21 埃克森美孚化学专利公司 基于乙烯的共聚物,含有该共聚物的润滑油组合物和它们的制备方法
CN108239336A (zh) * 2016-12-27 2018-07-03 韩华道达尔有限公司 用于电力电缆的聚丙烯树脂和绝缘层中包含聚丙烯树脂的电力电缆
CN108239336B (zh) * 2016-12-27 2022-10-18 韩华道达尔能源有限公司 用于电力电缆的聚丙烯树脂和绝缘层中包含聚丙烯树脂的电力电缆

Also Published As

Publication number Publication date
EP1060212A1 (en) 2000-12-20
BR9909217A (pt) 2000-11-21
KR20010052195A (ko) 2001-06-25
JP4418107B2 (ja) 2010-02-17
AU2796899A (en) 1999-09-20
JP2002505362A (ja) 2002-02-19
DE69917006T2 (de) 2005-05-04
DE69917006D1 (de) 2004-06-09
US6207756B1 (en) 2001-03-27
EA200000905A1 (ru) 2001-04-23
WO1999045062A1 (en) 1999-09-10
CA2319792A1 (en) 1999-09-10
EP1060212B1 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
CN1292014A (zh) 聚烯烃聚合物分散体产品及其制备方法
JP4242067B2 (ja) 一連反応器の使用によるポリマーブレンドの製法
JP4249984B2 (ja) インターポリマー類の製造方法、および、それより製造された製品
JP4275857B2 (ja) Epdm型重合におけるジエン変換を高める方法
JP2002505352A (ja) 架橋ハフノセン化合物を使用するオレフィンコポリマーの重合法
CN1246871A (zh) 结合有聚乙烯大分子单体的丙烯聚合物
JP2019019265A (ja) ポリエチレンパウダー
CN1192442A (zh) 金属茂,其制备方法及在α-烯烃聚合上的应用
EP0977808A1 (en) Amorphous propylene-polyene copolymers and compositions thereof
CN113045694A (zh) 聚乙烯树脂组合物
JP3210039B2 (ja) プロピレン共重合体組成物
WO2019022058A1 (ja) ポリエチレン組成物
WO2023191080A1 (ja) ポリエチレンパウダーとその製造方法及び、オレフィン重合用触媒とその製造方法
MXPA00008556A (es) Producto y metodo para hacer dispersiones de polimero de poliolefina
MXPA00008702A (en) Dynamic vulcanization of polymer blends from series reactors
JPH07196717A (ja) 低結晶性エチレン系ランダム共重合体
JPH09104723A (ja) 低結晶性エチレン系ランダム共重合体の加硫物およびその製造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication