WO2023191080A1 - ポリエチレンパウダーとその製造方法及び、オレフィン重合用触媒とその製造方法 - Google Patents

ポリエチレンパウダーとその製造方法及び、オレフィン重合用触媒とその製造方法 Download PDF

Info

Publication number
WO2023191080A1
WO2023191080A1 PCT/JP2023/013646 JP2023013646W WO2023191080A1 WO 2023191080 A1 WO2023191080 A1 WO 2023191080A1 JP 2023013646 W JP2023013646 W JP 2023013646W WO 2023191080 A1 WO2023191080 A1 WO 2023191080A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
transition metal
polyethylene powder
Prior art date
Application number
PCT/JP2023/013646
Other languages
English (en)
French (fr)
Inventor
直哉 沖津
啓祐 平見
圭秀 魚海
昭夫 藤原
誠 岡本
賢司 江原
文乃 北村
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2023191080A1 publication Critical patent/WO2023191080A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties

Definitions

  • the present invention relates to a polyethylene powder and a method for producing the same, and a catalyst for olefin polymerization and a method for producing the same.
  • Ethylene polymers are used in a wide variety of applications such as films, sheets, microporous membranes, fibers, foams, and pipes. Ethylene polymers are used because they are easy to melt process, and the resulting molded products have high mechanical strength, excellent chemical resistance, rigidity, and the like. Among them, ultra-high molecular weight ethylene polymers have a large molecular weight, so they have higher mechanical strength, excellent sliding properties and abrasion resistance, and excellent chemical stability and long-term reliability. From this point of view, ultra-high molecular weight polyethylene powder is used as a raw material for microporous membranes for secondary battery separators, particularly those typified by lead-acid batteries and lithium ion batteries.
  • Patent Document 1 states that when the intrinsic viscosity is within a predetermined range and a specific proportion of the heat of fusion obtained under specific measurement conditions of a differential scanning calorimeter (DSC) is greater than or equal to a specific lower limit value, Ethylene-based polymers have been proposed that can provide molded products (e.g., stretched molded products, microporous membranes) with excellent oxidation resistance and shrinkage resistance.
  • DSC differential scanning calorimeter
  • Patent Document 2 describes a method for producing a supported metallocene catalyst that can produce a polyolefin polymer with improved apparent density while maintaining the properties of a highly active catalyst, and a method for producing a polyolefin using the same. A method is proposed.
  • Patent No. 6383479 Special Publication No. 2017-518423
  • the present invention has been made in view of the above circumstances, and aims to provide a polyethylene powder that has excellent heat resistance, film uniformity, dimensional stability, and high heat resistance rate when made into a microporous film, for example. purpose.
  • the present inventors have succeeded in improving heat resistance and film uniformity by controlling predetermined physical properties within a specific range in polyethylene powder with a predetermined viscosity average molecular weight. They have discovered that it is possible to provide a microporous membrane with excellent dimensional stability and high heat resistance, and have completed the present invention.
  • the viscosity average molecular weight is 100,000 or more and 4,000,000 or less
  • a polyethylene powder whose crystal thickness parameter obtained from measurement using a differential scanning calorimeter (DSC) is 5°C or more and 9°C or less.
  • DSC differential scanning calorimeter
  • the polyethylene according to [1] which has a z-average shrinkage factor gz value of 0.600 or more and 1 or less as measured by a gel permeation chromatography (GPC) measuring device that combines a differential refractometer and a viscosity detector. powder.
  • GPC gel permeation chromatography
  • the peak top temperature (Tm2 top ) is 135°C or more and 140°C or less.
  • ⁇ Measurement conditions> (1) Leave at 50°C for 1 min. (2) Raise the temperature from 50°C to 180°C at 10°C/min (first heating process) (3) Leave at 180°C for 5 min. (4) Cool from 180°C to 50°C at 10°C/min. (5) Leave at 50°C for 5 min. (6) Raise the temperature from 50°C to 180°C at 10°C/min.
  • the transition metal compound component [B-1] and/or the transition metal compound component [B-2] and the activator [C] and/or the organometallic compound component [B-2] are added to the particles obtained in the first supporting reaction step.
  • D] includes a second supporting reaction step of reacting with The transition metal compound [B-1] is a compound represented by the following (formula 3), and the transition metal compound [B-2] is a compound represented by the following (formula 4), and the transition metal compound [B-2] is a compound represented by the following (formula 4).
  • the curing agent [C] is a compound represented by the following (Formula 5) or (Formula 6), and the organometallic compound component [D] is a compound represented by the following (Formula 5) or (Formula 6). It is a compound containing at least one metal selected from the group consisting of Group 13, and the inorganic solid particles [A] are porous polymeric materials or Groups 2 to 4, 13 and 14 of the periodic table. Inorganic solid particles containing at least one element selected from the group consisting of A method for producing an olefin polymerization catalyst that satisfies ⁇ Condition 1> and/or ⁇ Condition 2> below.
  • ⁇ Condition 1> In the first supporting reaction step, the transition metal compound [B-1] and/or the transition metal compound component [B-2] are reacted with the activator [C] and/or the organometallic compound component [D].
  • the method includes a premixing step and a step of reacting the mixture obtained in the premixing step with the inorganic solid particles [A].
  • ⁇ Condition 2> In the first supporting reaction step, the activator [C] and the organometallic compound component [D] are added to the molar amount [B] of the transition metal compound component [B-1] and/or the transition metal compound component [B-2].
  • the molar ratio (([C]+[D])/[B]) of the molar amount ([C]+[D]) is 1 or more and 60 or less.
  • X 1 is each independently a monovalent anionic ⁇ -bond ligand, a divalent anionic ⁇ -bond ligand that binds to M in a divalent manner, and a monovalent each to L and M.
  • each X 2 independently represents a neutral Lewis base coordination compound having up to 40 non-hydrogen atoms; j is 1 or 2, provided that when j is 2, the two ligands L are optionally bonded to each other via a divalent group having up to 20 non-hydrogen atoms, and the 2
  • the valent group is a hydrocarbadiyl group having 1 to 20 carbon atoms, a halohydrocarbadiyl group having 1 to 12 carbon atoms, a hydrocarbyleneoxy group having 1 to 12 carbon atoms, and a hydrocarbyleneamino group having 1 to 12 carbon atoms.
  • k is 0 or 1
  • p is 0, 1 or 2
  • X 1 is a monovalent anionic ⁇
  • p is an integer that is at least 1 smaller than the formal oxidation number of M
  • p is an integer that is at least (j+1) smaller than the formal oxidation number of M
  • q is 0, 1 or 2).
  • M2 represents a transition metal selected from the group consisting of titanium, zirconium, and hafnium, and whose formal oxidation number is +2, +3, or +4,
  • R 5 each independently represents 1 to 20 groups selected from the group consisting of a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms, a silyl group, a germyl group, a cyano group, a halogen atom, and a composite group thereof.
  • X3 each independently represents a halide, a hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbyloxy group having 1 to 18 carbon atoms, a hydrocarbylamino group having 1 to 18 carbon atoms, a silyl group, or a silyl group having 1 to 18 carbon atoms.
  • two substituents X 3 work together to form a neutral conjugated diene or a divalent group having 4 to 30 carbon atoms
  • Y 1 represents -O-, -S-, -NR 6 - or -PR 6 -, provided that R 6 is a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms, or a hydrocarbyl group having 1 to 8 carbon atoms.
  • [14] Contains inorganic solid particles [A], transition metal compound component [B-1] and/or transition metal compound component [B-2], and activator [C] and/or organometallic compound component [D] ,
  • the transition metal compound [B-1] is a compound represented by the following (formula 3)
  • the transition metal compound [B-2] is a compound represented by the following (formula 4)
  • the transition metal compound [B-2] is a compound represented by the following (formula 4).
  • the curing agent [C] is a compound represented by the following (Formula 5) or (Formula 6)
  • the organometallic compound component [D] is a compound represented by the following (Formula 5) or (Formula 6).
  • the inorganic solid particles [A] are porous polymeric materials or Groups 2 to 4, 13 and 14 of the periodic table.
  • Inorganic solid particles containing at least one element selected from the group consisting of The content (mol) of the central metal M contained in the transition metal compound component [B-1] and/or the transition metal compound component [B-2] is 20 ⁇ mol or more and 1000 ⁇ mol or less, and the content of the central metal M is 20 ⁇ mol or more and 1000 ⁇ mol or less.
  • a catalyst for olefin polymerization, wherein the molar ratio (Al/M) between Al content (mol) and Al content (mol) is 1 or more and 30 or less.
  • L 1 is each independently selected from the group consisting of a cyclopentadienyl group, an indenyl group, a tetrahydroindenyl group, a fluorenyl group, a tetrahydrofluorenyl group, and an octahydrofluorenyl group
  • X 1 is each independently a monovalent anionic ⁇ -bond ligand, a divalent anionic ⁇ -bond ligand that binds to M in a divalent manner, and a monovalent each to L and M.
  • each X 2 independently represents a neutral Lewis base coordination compound having up to 40 non-hydrogen atoms; j is 1 or 2, provided that when j is 2, the two ligands L are optionally bonded to each other via a divalent group having up to 20 non-hydrogen atoms, and the 2
  • the valent group is a hydrocarbadiyl group having 1 to 20 carbon atoms, a halohydrocarbadiyl group having 1 to 12 carbon atoms, a hydrocarbyleneoxy group having 1 to 12 carbon atoms, and a hydrocarbyleneamino group having 1 to 12 carbon atoms.
  • k is 0 or 1
  • p is 0, 1 or 2
  • X 1 is a monovalent anionic ⁇
  • p is an integer that is at least 1 smaller than the formal oxidation number of M
  • p is an integer that is at least (j+1) smaller than the formal oxidation number of M
  • q is 0, 1 or 2).
  • M2 represents a transition metal selected from the group consisting of titanium, zirconium, and hafnium, and whose formal oxidation number is +2, +3, or +4,
  • R 5 each independently represents 1 to 20 groups selected from the group consisting of a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms, a silyl group, a germyl group, a cyano group, a halogen atom, and a composite group thereof.
  • X3 each independently represents a halide, a hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbyloxy group having 1 to 18 carbon atoms, a hydrocarbylamino group having 1 to 18 carbon atoms, a silyl group, or a silyl group having 1 to 18 carbon atoms.
  • two substituents X 3 work together to form a neutral conjugated diene or a divalent group having 4 to 30 carbon atoms
  • Y 1 represents -O-, -S-, -NR 6 - or -PR 6 -, provided that R 6 is a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms, or a hydrocarbyl group having 1 to 8 carbon atoms.
  • the polyethylene powder of the present invention it is possible to provide a microporous membrane that is excellent in heat resistance, membrane uniformity, dimensional stability, and high heat resistance rate, for example.
  • this embodiment a mode for carrying out the present invention (hereinafter also referred to as “this embodiment”) will be described in detail. Note that the present invention is not limited to this embodiment, and can be implemented with appropriate modifications within the scope of the gist.
  • the polyethylene powder of this embodiment has a viscosity average molecular weight of 100,000 or more and 4,000,000 or less,
  • the crystal thickness parameter obtained from measurement using a differential scanning calorimeter (DSC) is 5°C or more and 9°C or less.
  • DSC differential scanning calorimeter
  • the polyethylene powder of the present embodiment can provide a microporous membrane that is excellent in heat resistance, membrane uniformity, dimensional stability, and high heat resistance rate.
  • the polyethylene powder of this embodiment has a z -average shrinkage factor (hereinafter referred to as "average shrinkage factor") measured by a gel permeation chromatography (GPC) measuring device that combines a differential refractometer and a viscosity detector.
  • GPC gel permeation chromatography
  • the polyethylene powder of the present embodiment can provide a microporous membrane that is even more excellent in heat resistance, membrane uniformity, dimensional stability, and high heat resistance rate.
  • the above crystal thickness parameter is determined by the temperature at the peak top (Tm2 top ) and the temperature at the peak convergence point (Tm2 end ) in the DSC curve of the second heating process obtained by the measurement shown in ⁇ Measurement conditions> below. (Tm2 end - Tm2 top ) (hereinafter also referred to as "temperature difference (Tm2 end - Tm2 top ) in the DSC curve").
  • ⁇ Measurement conditions> (1) Leave at 50°C for 1 min.
  • the polyethylene powder of this embodiment has a peak top temperature (Tm2 top ) is 135°C or more and 140°C or less, ⁇ Measurement conditions> (1) Leave at 50°C for 1 min. (2) Raise the temperature from 50°C to 180°C at 10°C/min (first heating process) (3) Leave at 180°C for 5 min. (4) Cool from 180°C to 50°C at 10°C/min. (5) Leave at 50°C for 5 min. (6) Raise the temperature from 50°C to 180°C at 10°C/min. 2nd heating process) It is preferable that the crystal thickness parameter is 6.7°C or more and 9.0°C or less.
  • the polyethylene powder of the present embodiment can provide a microporous membrane that is even more excellent in heat resistance, membrane uniformity, dimensional stability, and high heat resistance rate.
  • the DSC curve of the second heating process obtained by the measurement shown in ⁇ Measurement conditions> above using a differential scanning calorimeter (DSC) shows the characteristics of crystals generated in the recrystallization process of polyethylene powder. .
  • the characteristics of such crystals correspond to, for example, the characteristics of crystals generated in the cooling process after melt-kneading polyethylene powder in the actual process of manufacturing a microporous membrane, and the characteristics of crystals generated here. It is thought that the characteristics of the crystals affect the physical properties of the microporous membrane.
  • the fact that the temperature difference (Tm2 end - Tm2 top ) in the DSC curve is within the above range indicates that it contains a polyethylene component with a high melting point, that is, the presence of thickly grown crystal parts. It is thought that there are.
  • the process by which the crystal part grows thickly is that during the cooling process, a low-mobility region with one end restrained, such as a long chain branch, starts to crystallize first, and then crystallization occurs using this low-mobility region as a nucleus. It is estimated that the thickness of the crystal part locally increases as the crystallization progresses further.
  • the generation of such crystal parts during the recrystallization process is one of the reasons why it is possible to provide a microporous film with excellent heat resistance, film uniformity, dimensional stability, and high heat resistance rate. It is presumed that this is the cause.
  • the polyethylene powder of this embodiment preferably has a viscosity average molecular weight of 200,000 or more and 4,000,000 or less, more preferably 250,000 or more and 3,000,000 or less, and 300,000 or more and 2,000,000 or less. ,500,000 or less.
  • the polyethylene powder of this embodiment tends to have sufficient mechanical strength when formed into a microporous membrane when the viscosity average molecular weight is equal to or higher than the lower limit.
  • the viscosity average molecular weight of the polyethylene powder of this embodiment when the viscosity average molecular weight of the polyethylene powder of this embodiment is below the above upper limit, it has excellent moldability, and when formed into a microporous membrane, thickness unevenness and the occurrence of unmelted substances are suppressed (uniformity ), the residual stress in the microporous membrane is suppressed (low shrinkage rate), and it also tends to be easily mixed with other polyethylene resins, making it difficult to segregate in the microporous membrane during blending.
  • the viscosity average molecular weight of the polyethylene powder can be measured by the method described in Examples below.
  • the polyethylene powder of this embodiment has a temperature difference (Tm2 end - Tm2 top ) in the DSC curve of 5°C or more and 9°C or less, preferably 6°C or more and 8.5°C or less, and preferably 6.7°C or more and 8.5°C or less. More preferably, the temperature is 8°C or lower.
  • the temperature difference (Tm2 end ⁇ Tm2 top ) in the DSC curve is 6.7°C.
  • the temperature is preferably 9.0°C or higher, more preferably 6.7°C or higher and 8.5°C or lower, even more preferably 6.7°C or higher and 8°C or lower.
  • Tm2 end - Tm2 top when the temperature difference (Tm2 end - Tm2 top ) in the DSC curve is equal to or higher than the lower limit value, heat resistance is improved when formed into a microporous film due to the high melting point component, and By blending it with other polyethylene resins, it is possible to improve the heat resistance when forming a microporous membrane.
  • the polyethylene powder of this embodiment is used as a microporous membrane for a secondary battery separator, if the temperature difference (Tm2 end - Tm2 top ) in the DSC curve is below the above-mentioned upper limit, there will be a slight difference in temperature during abnormal heat generation of the battery.
  • the pores of the porous membrane tend to close more easily, and the stretching process tends to be more uniform.
  • the method for obtaining polyethylene powder having a temperature difference (Tm2 end - Tm2 top ) in the above range in the DSC curve is not particularly limited, but for example, a trace amount of long chain Included are methods of manufacturing polymers to include branching. Specifically, there is a method in which the main chain and the side chain are controlled separately and the proportion of the side chain is suppressed to a very small amount. Methods for separately controlling the main chain and side chains are not particularly limited, but for example, a catalyst containing two types of active species ((A) for macromonomer incorporation and (B) for macromonomer synthesis) may be used.
  • Another method is to form a multilayer structure on the surface of the carrier by changing the type of co-catalyst for each active species, pre-mixing the co-catalyst and the active species, and supporting them in two or more stages.
  • the method of suppressing the proportion of side chains to a very small amount is not particularly limited, but for example, the proportion of the above two types of active species ((A) for macromonomer incorporation/(B) for macromonomer synthesis) may be in the range of 1 to 1000.
  • the ratio of the co-catalyst (C) and the active species for macromonomer uptake (A) ((C)/(A)) was controlled within the range of 0.5 to 1.5, and the co-catalyst (D) and the active species for macromonomer synthesis (B) ((D)/(B)) may be controlled in the range of 1 to 60.
  • the temperature difference (Tm2 end - Tm2 top ) in the DSC curve of the polyethylene powder can be measured by the method described in Examples below.
  • the average shrinkage factor gz of the polyethylene powder of this embodiment is preferably 0.600 or more and 1 or less, more preferably 0.65 or more and 0.985 or less, and 0.7 or more and 0.97 or less. It is even more preferable that there be.
  • the average shrinkage factor gz of the polyethylene powder of this embodiment is equal to or higher than the lower limit value, when it is made into a microporous film, the stress remaining in the microporous film is suppressed (low shrinkage rate), and branching The occurrence of entanglement due to chains is suppressed below a certain level, and crystallization tends to be promoted.
  • the average shrinkage factor gz of the polyethylene powder of this embodiment is below the upper limit value, high melting point crystals are likely to be generated and the strength when melted is increased, so when formed into a microporous film, heat resistance
  • the stability during film formation is further improved, leading to the suppression of film unevenness, and by blending it with other polyethylene resins, it is possible to further improve the heat resistance and stretchability of microporous films. It tends to be possible.
  • the method for obtaining polyethylene powder having an average shrinkage factor gz within the above range is not particularly limited, but for example, the polymer may be modified to contain a trace amount of long chain branching using a catalyst obtained by a special production method described below.
  • a manufacturing method is mentioned. Specifically, there is a method in which the main chain and the side chain are controlled separately and the proportion of the side chain is suppressed to a very small amount.
  • Methods for separately controlling the main chain and side chains are not particularly limited, but for example, a catalyst containing two types of active species ((A) for macromonomer incorporation and (B) for macromonomer synthesis) may be used.
  • Examples of methods include changing the type of co-catalyst for each active species, pre-mixing the co-catalyst and the active species, and supporting them in two or more stages to form a multilayer structure on the surface of the carrier.
  • the method of suppressing the proportion of side chains to a very small amount is not particularly limited, but for example, the proportion of the above two types of active species ((A) for macromonomer incorporation/(B) for macromonomer synthesis) is in the range of 1 to 1000.
  • the ratio of the co-catalyst (C) and the active species for macromonomer uptake (A) ((C)/(A)) is controlled in the range of 0.5 to 1.5, and the co-catalyst (D) and the active species for macromonomer synthesis (B) ((D)/(B)) may be controlled in the range of 1 to 60.
  • the average shrinkage factor gz of the polyethylene powder can be measured by the method described in Examples below.
  • the polyethylene powder of this embodiment can be stretched under the following conditions. (Stretching conditions) A 100 mm x 100 mm x 1 mm thick gel sheet made of 30 mass % polyethylene powder and 70 mass % liquid paraffin is stretched 7x7 times at 115°C.
  • the polyethylene powder of this embodiment can be stretched under the above conditions, unevenness in film thickness when formed into a microporous film tends to be suppressed. Moreover, there is a tendency that microporous membranes can be manufactured with high productivity.
  • the method for obtaining polyethylene powder that can be stretched under the above conditions is not particularly limited, but for example, by appropriately adjusting the catalyst composition and polymerization conditions, the proportion of ultra-high molecular weight components (molecular weight > 10 7 or more) can be kept below a certain level. There are ways to reduce this.
  • the stretchability under the above conditions can be specifically evaluated by the method described in Examples below.
  • the polyethylene powder of this embodiment preferably has an absorption coefficient of 1.0 or more and 4.0 or less at 400 cm -1 to 450 cm -1 in terahertz measurement, and preferably 1.9 or more and 3.5 or less. More preferably, it is 2.1 or more and 3.5 or less.
  • the terahertz wave is absorbed as vibrational energy of polymer chains, and the absorption peak of the terahertz wave at 500 cm -1 to 550 cm -1 is due to the absorption peak of polyethylene. Since it corresponds to the vibration of the amorphous part, it is estimated that the absorption peak at 400 cm -1 to 450 cm -1 corresponds to the vibration derived from the long chain branched structure present in the amorphous part.
  • the method for obtaining polyethylene powder whose absorption coefficient at 400 cm -1 to 450 cm -1 is within the above range is not particularly limited, but for example, the types of active species and co-catalysts and the combination thereof may be adjusted as appropriate. In this way, one method is to uniformly incorporate the macromonomer.
  • the absorption coefficient at 400 cm -1 to 450 cm -1 can be evaluated by the method described in Examples below.
  • the polyethylene powder of this embodiment has no peak in the region shown below in 1 H-NMR measurement.
  • Both (1) and (2) are regions where signals corresponding to terminal double bonds are detected, and the absence of a peak in this region means that no macromonomer remains in the polyethylene powder.
  • the polyethylene powder of this embodiment does not have a peak in the region shown above in 1 H-NMR measurement, it can be stretched uniformly when formed into a microporous film, which tends to suppress film thickness unevenness.
  • residual stress in the microporous membrane is further suppressed (low shrinkage rate), and when blended with other polyethylene resins, a uniform microporous membrane tends to be obtained.
  • 1 H-NMR measurement there are no particular limitations on how to obtain a polyethylene powder that does not have a peak in the region shown above, but examples include supporting an active species that can incorporate macromonomers on the outermost surface of the catalyst, and An example of this method is to appropriately adjust the raw material composition and amount of comonomer to prevent terminal double bonds from remaining.
  • the 1 H-NMR peak of the polyethylene powder can be measured by the method described in Examples below.
  • the aluminum content of the polyethylene powder of the present embodiment is preferably 0 ppm or more and 50 ppm or less, more preferably 0 ppm or more and 30 ppm or less, and even more preferably 0 ppm or more and 15 ppm or less.
  • the aluminum content of the polyethylene powder of this embodiment is within the above range, high melting point crystals tend to be easily generated, and when formed into a microporous film, it tends to be of high quality. Furthermore, clogging of the filter during the molding process can be suppressed, leading to improved productivity.
  • the aluminum content in the polyethylene powder can be measured by the method described in Examples below.
  • the silicon content of the polyethylene powder of this embodiment is preferably 0 ppm or more and 30 ppm or less, more preferably 0 ppm or more and 10 ppm or less, and even more preferably 0 ppm or more and 2 ppm or less.
  • silicon content of the polyethylene powder of this embodiment is within the above range, high melting point crystals tend to be easily generated, and when formed into a microporous film, it tends to be of high quality. Furthermore, clogging of the filter during the molding process can be suppressed, leading to improved productivity.
  • the silicon content in the polyethylene powder can be measured by the method described in Examples below.
  • the polyethylene powder of this embodiment has a peak top temperature (hereinafter also referred to as "Tm2 top ”) of 130°C or more and 140°C or less in the DSC curve during the second heating process.
  • Tm2 top peak top temperature
  • the temperature is preferably 133°C or higher and 140°C or lower, and even more preferably 135°C or higher and 140°C or lower.
  • Tm2 top is preferably 135°C or more and 140°C or less, and 136°C
  • the temperature is more preferably 140°C or higher, and even more preferably 137°C or higher and 140°C or lower.
  • a method for obtaining a polyethylene powder having Tm2 top within the above range is not particularly limited, but includes, for example, a method of adjusting the catalyst raw material composition and the amount of comonomer.
  • Tm2 top can be measured by the method described in Examples below.
  • the polyethylene powder of this embodiment preferably has a density of 920 kg/m 3 or more and 960 kg/m 3 or less, more preferably 930 kg/m 3 or more and 955 kg/m 3 or less, and 935 kg/m 3 or more and 950 kg/m 3 or less. It is more preferable that it is m3 or less.
  • the density of polyethylene powder can be measured by the method described in Examples below.
  • the method for producing an olefin polymerization catalyst of the present embodiment includes adding a transition metal compound [B-1] and/or a transition metal compound component [B-2] to an inorganic solid particle [A], an activator [C], and a transition metal compound component [B-2]. / or a first supporting reaction step of reacting with the organometallic compound component [D]; The transition metal compound component [B-1] and/or the transition metal compound component [B-2] and the activator [C] and/or the organometallic compound component [B-2] are added to the particles obtained in the first supporting reaction step.
  • the transition metal compound [B-1] is a compound represented by the following (formula 3)
  • the transition metal compound [B-2] is a compound represented by the following (formula 4)
  • the transition metal compound [B-2] is a compound represented by the following (formula 4).
  • the curing agent [C] is a compound represented by the following (Formula 5) or (Formula 6)
  • the organometallic compound component [D] is a compound represented by the following (Formula 5) or (Formula 6). It is a compound containing at least one metal selected from the group consisting of Group 13, and the inorganic solid particles [A] are porous polymeric materials or Groups 2 to 4, 13 and 14 of the periodic table.
  • ⁇ Condition 1> In the first supporting reaction step, the transition metal compound [B-1] and/or the transition metal compound component [B-2] are reacted with the activator [C] and/or the organometallic compound component [D].
  • the method includes a premixing step and a step of reacting the mixture obtained in the premixing step with the inorganic solid particles [A].
  • the activator [C] and the organometallic compound component [D] are added to the molar amount [B] of the transition metal compound component [B-1] and/or the transition metal compound component [B-2].
  • the molar ratio (([C]+[D])/[B]) of the molar amount ([C]+[D]) is 1 or more and 60 or less.
  • X 1 is each independently a monovalent anionic ⁇ -bond ligand, a divalent anionic ⁇ -bond ligand that binds to M in a divalent manner, and a monovalent each to L and M.
  • each X 2 independently represents a neutral Lewis base coordination compound having up to 40 non-hydrogen atoms; j is 1 or 2, provided that when j is 2, the two ligands L are optionally bonded to each other via a divalent group having up to 20 non-hydrogen atoms, and the 2
  • the valent group is a hydrocarbadiyl group having 1 to 20 carbon atoms, a halohydrocarbadiyl group having 1 to 12 carbon atoms, a hydrocarbyleneoxy group having 1 to 12 carbon atoms, and a hydrocarbyleneamino group having 1 to 12 carbon atoms.
  • k is 0 or 1
  • p is 0, 1 or 2
  • X 1 is a monovalent anionic ⁇
  • p is an integer that is at least 1 smaller than the formal oxidation number of M
  • p is an integer that is at least (j+1) smaller than the formal oxidation number of M
  • q is 0, 1 or 2).
  • M2 represents a transition metal selected from the group consisting of titanium, zirconium, and hafnium, and whose formal oxidation number is +2, +3, or +4,
  • R 5 each independently represents 1 to 20 groups selected from the group consisting of a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms, a silyl group, a germyl group, a cyano group, a halogen atom, and a composite group thereof.
  • X3 each independently represents a halide, a hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbyloxy group having 1 to 18 carbon atoms, a hydrocarbylamino group having 1 to 18 carbon atoms, a silyl group, or a silyl group having 1 to 18 carbon atoms.
  • two substituents X 3 work together to form a neutral conjugated diene or a divalent group having 4 to 30 carbon atoms
  • Y 1 represents -O-, -S-, -NR 6 - or -PR 6 -, provided that R 6 is a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms, or a hydrocarbyl group having 1 to 8 carbon atoms.
  • r is an integer of 1 to 7
  • s is an integer of 2 to 14
  • C-2) -(M 4 R 7 t-2 -O) u -...
  • R 7 is each independently a hydrocarbon group or substituted hydrocarbon group having 1 to 12 carbon atoms
  • t is a metal M is the valence of 4
  • u is an integer of 2 or more.
  • the transition metal compound used in the first supporting reaction step is preferably [B-1]
  • the transition metal compound used in the second supporting reaction step is preferably [B-2].
  • the activator [C] and the organometallic compound component [B] with respect to the molar amount [B] of the transition metal compound component [B-1] and/or the transition metal compound component [B-2] The molar ratio (([C]+[D])/[B]) of the molar amount ([C]+[D]) of D] is preferably 0.5 or more and 1.5 or less, and 0. More preferably, it is 9 or more and 1.1 or less.
  • the molar ratio ([B 2 ]/[B 2 ]) of the transition metal compound component ([B 2 ]) used in the second support reaction step to the transition metal compound component ([B 1 ]) used in the first support reaction step 1 ]) is preferably 1 or more and 1000 or less, more preferably 5 or more and 100 or less.
  • the amount of long chain branching in the production of olefin polymers can be increased. It is possible to suppress the amount to a very small amount.
  • the method for producing an olefin polymerization catalyst of the present embodiment satisfies the following ⁇ Condition 1> and/or ⁇ Condition 2>. ⁇ Condition 1> In the first supporting reaction step, the transition metal compound [B-1] and/or the transition metal compound component [B-2] are reacted with the activator [C] and/or the organometallic compound component [D].
  • the method includes a premixing step and a step of reacting the mixture obtained in the premixing step with the inorganic solid particles [A].
  • ⁇ Condition 1> it is likely that a layer in which the transition metal compound and the activator are uniformly mixed can be formed on the surface of the inorganic solid particles [A].
  • the macromonomer is incorporated uniformly, making it possible to synthesize an olefin polymer with less segregation of long chain branches.
  • the activator [C] and the organometallic compound component [D] are added to the molar amount [B] of the transition metal compound component [B-1] and/or the transition metal compound component [B-2].
  • the molar ratio (([C]+[D])/[B]) of the molar amount ([C]+[D]) is 1 or more and 60 or less, and preferably 1 or more and 30 or less.
  • Inorganic solid particles [A] used in the method for producing an olefin polymerization catalyst it is preferable to use magnesium chloride particles as the inorganic solid particles [A].
  • magnesium chloride particles when magnesium chloride particles are used as the inorganic solid particles [A], the catalyst particles tend to break easily during polymerization, and an olefin polymer with less metal residue can be produced. .
  • the olefin polymerization catalyst of this embodiment comprises inorganic solid particles [A], transition metal compound component [B-1] and/or transition metal compound component [B-2], activator [C] and/or organic Contains a metal compound component [D],
  • the transition metal compound [B-1] is a compound represented by the above (formula 3)
  • the transition metal compound [B-2] is a compound represented by the above (formula 4)
  • the transition metal compound [B-2] is a compound represented by the above (formula 4).
  • the curing agent [C] is a compound represented by the above (Formula 5) or (Formula 6), and the organometallic compound component [D] is a compound represented by the above (Formula 5) or (Formula 6). It is a compound containing at least one metal selected from the group consisting of Group 13, and the inorganic solid particles [A] are porous polymeric materials or Groups 2 to 4, 13 and 14 of the periodic table.
  • the content (mol) of the central metal M contained in the transition metal compound component [B-1] and/or the transition metal compound component [B-2] is 20 ⁇ mol or more and 1000 ⁇ mol or less, and the content of the central metal M is 20 ⁇ mol or more and 1000 ⁇ mol or less.
  • (mol) and the content (mol) of Al (Al/M) is 1 or more and 30 or less.
  • the content (mol) of the central metal M is preferably 20 ⁇ mol or more and 250 ⁇ mol or less, and the molar ratio (Al/M) is preferably 1 or more and 10 or less.
  • the olefin polymerization catalyst of the present embodiment includes the above-mentioned components, and the content (mol) of the central metal M and the molar ratio (Al/M) of the central metal M content (mol) and the Al content (mol). ) is within the above range, it is easy to control the amount and length of long chain branches in the olefin polymer obtained by polymerization, and it is also possible to suppress the amount of long chain branches in the olefin polymer to a very small amount.
  • the content (mol) of the central metal M in the catalyst component and the molar ratio (Al/M) between the content (mol) of the central metal M and the content (mol) of Al will be described later. It can be measured by the method described in Examples.
  • the inorganic solid particles [A] are preferably magnesium chloride particles.
  • the catalyst particles tend to break easily during polymerization, and an olefin polymer with less metal residue can be produced.
  • the inorganic solid particles [A], the transition metal compound [B-1], the transition metal compound component [B-2], the activator [C], and the organometallic compound component [ D] is an inorganic solid particle [A], a transition metal compound [B-1], a transition metal compound component [B-2], an activator [C], and an organic
  • the contents of the metal compound component [D] can be applied as appropriate.
  • the contents of each condition described in the below-mentioned [Method for producing polyethylene powder] can be applied as appropriate to each condition in the method for producing an olefin polymerization catalyst of the present embodiment.
  • the method for producing an olefin polymer of the present embodiment includes a step of polymerizing an olefin using the above-described catalyst for olefin polymerization.
  • the polyethylene powder of this embodiment can be produced, for example, by polymerizing ethylene or ethylene and other comonomers using a predetermined catalyst component.
  • the catalyst components used in the production of the ethylene polymer constituting the polyethylene powder of this embodiment are not particularly limited, but include, for example, inorganic solid particles [A], transition metal compound component [B-1], and transition metal It is preferably composed of a compound component [B-2] and an activator [C] and/or an organometallic compound component [D].
  • the inorganic solid particles [A] include, but are not particularly limited to, porous polymeric materials (however, the matrix may be polyethylene, polypropylene, polystyrene, ethylene-propylene copolymer, ethylene-vinyl ester, etc.).
  • Polyolefins such as polymers, partial or completely saponified products of styrene-divinylbenzene copolymers and ethylene-vinyl ester copolymers, and their modified products, thermoplastic resins such as polyamides, polycarbonates, and polyesters, phenolic resins, epoxy resins, and urea. resin, thermosetting resin such as melamine resin, etc.), inorganic solid particles (e.g.
  • Composite oxides containing silica are not particularly limited, but examples include silica and oxides of elements selected from Group 2 or Group 13 of the periodic table, such as silica-magnesia and silica-alumina. Examples include composite oxides.
  • the inorganic solid particles [A] may be selected from silica, alumina, and a composite oxide of silica and an oxide of an element selected from elements belonging to Group 2 or Group 13 of the periodic table. preferable.
  • the shape of the silica product used as the inorganic solid particles [A] there is no particular restriction on the shape of the silica product used as the inorganic solid particles [A], and the shape of the silica may be any shape such as granules, spheres, aggregates, and fumes.
  • Preferred examples of commercially available silica products include, but are not limited to, SD3216.30, SP-9-10046, Davison Syloid TM 245, Davison 948, or Davison 952 [all of the above, manufactured by Grace Davison ( Manufactured by W.R.
  • magnesium chloride used as the inorganic solid particles [A].
  • an organomagnesium compound (A-1) which is soluble in an inert hydrocarbon solvent represented by the following (Formula 1) and a chlorinated compound represented by the following (Formula 2) A method of reacting with agent (A-2) can be mentioned.
  • M 1 is a metal atom selected from the group consisting of Group 12, Group 13, and Group 14 of the periodic table, and R 1 , R 2 and R 3 each have 2 carbon atoms.
  • R 1 , R 2 and R 3 each have 2 carbon atoms.
  • the above is a hydrocarbon group of 20 or less, and ⁇ , ⁇ , e, f, and g are real numbers that satisfy the following relationship.
  • the organomagnesium compound (A-1) is shown as a complex compound of organomagnesium that is soluble in an inert hydrocarbon solvent, and includes all dihydrocarbylmagnesium compounds and complexes of this compound with other metal compounds. It is inclusive.
  • the hydrocarbon groups represented by R 1 and R 2 are not particularly limited, but for example, each independently is an alkyl group, a cycloalkyl group, or an aryl group, and more specifically, Examples thereof include, but are not limited to, methyl, ethyl, propyl, butyl, propyl, hexyl, octyl, decyl, cyclohexyl, and phenyl groups. Among these, it is preferable that R 1 and R 2 are each an alkyl group.
  • the metal atom M1 a metal atom belonging to any one of the group consisting of Group 12, Group 13, and Group 14 of the periodic table can be used, and more specifically, it is not particularly limited. Examples include zinc, boron, aluminum, and the like. Particularly preferred are aluminum and zinc.
  • the ratio ⁇ / ⁇ of magnesium to metal atom M 1 is not particularly limited, but is preferably 0.1 or more and 30 or less, more preferably 0.5 or more and 10 or less.
  • At least one of R 1 and R 2 is a hydrocarbon group having 6 or more carbon atoms.
  • it is an alkyl group in which the total number of carbon atoms contained in R 1 and R 2 is 12 or more.
  • the secondary or tertiary alkyl group having 4 to 6 carbon atoms in group (1) is not particularly limited, but includes, for example, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, 2- Examples include methylbutyl, 2-ethylpropyl, 2,2-dimethylpropyl, 2-methylpentyl, 2-ethylbutyl, 2,2-dimethylbutyl, and 2-methyl-2-ethylpropyl groups. In particular, 1-methylpropyl group is preferred.
  • alkyl group having 2 or 3 carbon atoms in group (2) is not particularly limited, and examples thereof include ethyl, 1-methylethyl, propyl, and the like. Particularly preferred is ethyl group.
  • the alkyl group having 4 or more carbon atoms is not particularly limited, and examples thereof include butyl, pentyl, hexyl, heptyl, octyl, and the like. Particularly preferred are butyl and hexyl groups.
  • the hydrocarbon group having 6 or more carbon atoms in group (3) is not particularly limited, but examples thereof include hexyl, heptyl, octyl, nonyl, decyl, phenyl, 2-naphthyl groups, and the like.
  • the hydrocarbon groups alkyl groups are preferred, and among the alkyl groups, hexyl and octyl groups are more preferred.
  • Form 1 As the number of carbon atoms contained in an alkyl group increases, it tends to become more soluble in an inert hydrocarbon solvent, and the viscosity of the solution tends to increase. Therefore, in the above (Formula 1), it is preferable to use appropriately long-chain alkyl groups as the hydrocarbon groups R 1 and R 2 in terms of handling.
  • the above organomagnesium compound (A-1) is used as an inert hydrocarbon solution, but the solution may contain or remain in trace amounts of Lewis basic compounds such as ethers, esters, and amines. can be used without any problem.
  • the hydrocarbon group represented by R 3 is preferably an alkyl group or aryl group having 1 to 12 carbon atoms, more preferably an alkyl group or aryl group having 3 to 10 carbon atoms.
  • R 3 examples include, but are not limited to, methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 1,1-dimethylethyl, pentyl, hexyl, 2-methylpentyl, 2-ethylbutyl, Examples include 2-ethylpentyl, 2-ethylhexyl, 2-ethyl-4-methylpentyl, 2-propylheptyl, 2-ethyl-5-methyloctyl, octyl, nonyl, decyl, phenyl, and naphthyl groups. Particularly preferred are butyl, 1-methylpropyl, 2-methylpentyl, and 2-ethylhexyl groups.
  • the method for synthesizing the organomagnesium compound (A-1) is not particularly limited, but for example, the formula: R 1 MgX 1 and the formula: R 1 2 Mg (R 1 is as described above, and X 1 is a halogen atom).
  • any organomagnesium compound belonging to the group consisting of the formula: M 1 R 2 k and the formula: M 1 R 2 (k-1) H (M 1 , R 2 and k are as described above).
  • Any organometallic compound belonging to the group consisting of is reacted in an inert hydrocarbon solvent at a temperature of 25° C. to 150° C., if necessary, followed by R 2 (R 2 is as described above).
  • R 2 is as described above
  • an alkoxymagnesium compound and/or alkoxyaluminum compound having a hydrocarbon group represented by R2 that is soluble in an inert hydrocarbon solvent is a method of synthesis.
  • reaction ratio between the organomagnesium compound soluble in an inert hydrocarbon solvent and alcohol is not particularly limited, the molar composition ratio of alkoxy groups to all metal atoms in the alkoxy group-containing organomagnesium compound obtained as a result of the reaction: g/( ⁇ + ⁇ ) satisfies 0 ⁇ g/( ⁇ + ⁇ ) ⁇ 2, and preferably 0 ⁇ g/( ⁇ + ⁇ ) ⁇ 1.
  • the chlorinating agent (A-2) is a silicon chloride compound represented by (Formula 2) and having at least one Si—H bond.
  • R 4 is a hydrocarbon group having 1 to 12 carbon atoms, and h and i are real numbers that satisfy the following relationship: 0 ⁇ h, 0 ⁇ i, 0 ⁇ h+i ⁇ 4)
  • the hydrocarbon group represented by R 4 is not particularly limited, but includes, for example, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. Specific examples include methyl, ethyl, propyl, 1-methylethyl, butyl, pentyl, hexyl, octyl, decyl, cyclohexyl, and phenyl groups.
  • alkyl groups having 1 to 10 carbon atoms are preferred, and alkyl groups having 1 to 3 carbon atoms such as methyl, ethyl, propyl, and 1-methylethyl groups are more preferred.
  • h and i are numbers larger than 0 that satisfy the relationship h+i ⁇ 4, and i is preferably 2 or more and 3 or less.
  • chlorinating agent (A-2) a silicon chloride compound consisting of these compounds or a mixture of two or more selected from these compounds is used.
  • HSiCl 3 , HSiCl 2 CH 3 , HSiCl(CH 3 ) 2 and HSiCl 2 (C 3 H 7 ) are preferred, and HSiCl 3 and HSiCl 2 CH 3 are more preferred.
  • the chlorinating agent (A-2) is mixed in advance with an inert hydrocarbon solvent, a chlorinated hydrocarbon such as 1,2-dichloroethane, o-dichlorobenzene, or dichloromethane, an ether solvent such as diethyl ether or tetrahydrofuran, It is preferable to use it after diluting it with a mixed solvent or a mixed solvent thereof. Among these, it is more preferable to use an inert hydrocarbon solvent in view of the performance of the catalyst.
  • an inert hydrocarbon solvent in view of the performance of the catalyst.
  • the reaction ratio between the organomagnesium compound (A-1) and the chlorinating agent (A-2) is not particularly limited; ) is preferably 0.01 mol or more and 100 mol or less, more preferably 0.1 mol or more and 10 mol or less.
  • the reaction method of the organomagnesium compound (A-1) and the chlorinating agent (A-2), and the organomagnesium compound (A-1) and the chlorinating agent (A-2) can be reacted simultaneously in a reactor.
  • a simultaneous addition method in which the chlorinating agent (A-2) is introduced into the reactor while reacting a method in which the organomagnesium compound (A-1) is introduced into the reactor after the chlorinating agent (A-2) is introduced into the reactor, or an organomagnesium compound (A-1) is introduced into the reactor.
  • Any method can be used in which the chlorinating agent (A-2) is introduced into the reactor after chlorinating agent (A-1) is charged into the reactor in advance.
  • Particularly preferred is a method in which the chlorinating agent (A-2) is charged into the reactor in advance and then the organomagnesium compound (A-1) is introduced into the reactor.
  • the reaction temperature between the organomagnesium compound (A-1) and the chlorinating agent (A-2) is not particularly limited, but is preferably 25°C or higher and 150°C or lower, and preferably 30°C or higher and 120°C or lower.
  • the temperature is more preferably 40°C or higher and even more preferably 100°C or lower.
  • the temperature of the reactor is adjusted to a predetermined temperature in advance, and the simultaneous addition is performed. It is preferable to adjust the temperature inside the reactor to a predetermined temperature while performing the reaction.
  • the chlorinating agent (A-2) is charged into the reactor. It is preferable to adjust the temperature to a predetermined temperature and adjust the temperature inside the reactor to a predetermined temperature while introducing the organomagnesium compound (A-1) into the reactor.
  • the temperature of the reactor containing the organomagnesium compound (A-1) It is preferable to adjust the temperature inside the reactor to a predetermined temperature while introducing the chlorinating agent (A-2) into the reactor.
  • the magnesium chloride obtained by the above reaction is separated by filtration or decantation and then thoroughly washed with an inert hydrocarbon solvent to remove unreacted substances or by-products.
  • transition metal compound component [B-1] used in this embodiment will be explained.
  • Examples of the transition metal compound component [B-1] used in the present embodiment are not particularly limited, but include, for example, a compound represented by the following (Formula 3). L 1 j W k M 1 X 1 p X 2 q ...
  • X 1 is each independently a monovalent anionic ⁇ -bond ligand, a divalent anionic ⁇ -bond ligand that binds to M in a divalent manner, and a monovalent each to L and M.
  • each X 2 independently represents a neutral Lewis base coordination compound having up to 40 non-hydrogen atoms; j is 1 or 2, provided that when j is 2, the two ligands L are optionally bonded to each other via a divalent group having up to 20 non-hydrogen atoms, and the 2
  • the valent group is a hydrocarbadiyl group having 1 to 20 carbon atoms, a halohydrocarbadiyl group having 1 to 12 carbon atoms, a hydrocarbyleneoxy group having 1 to 12 carbon atoms, and a hydrocarbyleneamino group having 1 to 12 carbon atoms.
  • k is 0 or 1
  • p is 0, 1 or 2
  • X 1 is a monovalent anionic ⁇
  • p is an integer that is at least 1 smaller than the formal oxidation number of M
  • p is an integer that is at least (j+1) smaller than the formal oxidation number of M
  • q is 0, 1 or 2).
  • Examples of the ligand X 1 in the compound of (Formula 3) above are not particularly limited, but include, for example, hydride, halide, hydrocarbon group having 1 to 60 carbon atoms, hydrocarbyloxy group having 1 to 60 carbon atoms, Examples thereof include a hydrocarbylamide group having 1 to 60 carbon atoms, a hydrocarbyl phosphide group having 1 to 60 carbon atoms, a hydrocarbyl sulfide having 1 to 60 carbon atoms, a silyl group, and a composite group thereof.
  • Examples of the neutral Lewis base coordinating compound X 2 in the compound of (Formula 3) above are not particularly limited, but include, for example, phosphine, ether, amine, olefin having 2 to 40 carbon atoms, and olefin having 1 to 40 carbon atoms. and divalent groups derived from these compounds.
  • the structure of the transition metal compound component [B-1] used in this embodiment is not particularly limited, but from the viewpoint of reducing the mobility of branched chains of polyethylene, a compound capable of polymerizing ultra-high molecular weight polyethylene may be used. is preferred.
  • transition metal compound component [B-1] used in this embodiment are not particularly limited, but include, for example, the compounds shown below.
  • transition metal compound component [B-1] used in this embodiment are not particularly limited, but include, for example, the "dimethyl” part (this is , which appears at the end of each compound's name, that is, immediately after the "zirconium” or “titanium” part, and is the name corresponding to the X 1 or X 2 part in (Formula 3) above) Compounds with names that can be replaced with any of the following are also included.
  • transition metal compound component [B-1] bis(pentamethylcyclopentadienyl)titanium dichloride is preferable.
  • the transition metal compound component [B-1] used in this embodiment is not particularly limited, and can be synthesized by a generally known method.
  • the transition metal compound component [B-2] used in this embodiment is not particularly limited, but from the viewpoint of macromonomer uptake efficiency, a compound represented by the following (Formula 4) is preferred.
  • M2 represents a transition metal selected from the group consisting of titanium, zirconium, and hafnium, and whose formal oxidation number is +2, +3, or +4,
  • R 5 each independently represents 1 to 20 groups selected from the group consisting of a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms, a silyl group, a germyl group, a cyano group, a halogen atom, and a composite group thereof.
  • X3 each independently represents a halide, a hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbyloxy group having 1 to 18 carbon atoms, a hydrocarbylamino group having 1 to 18 carbon atoms, a silyl group, or a silyl group having 1 to 18 carbon atoms.
  • two substituents X 3 work together to form a neutral conjugated diene or a divalent group having 4 to 30 carbon atoms
  • Y 1 represents -O-, -S-, -NR 6 - or -PR 6 -, provided that R 6 is a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms, or a hydrocarbyl group having 1 to 8 carbon atoms.
  • transition metal compound component [B-2] used in the present embodiment are not particularly limited, but include, for example, the compounds shown below.
  • transition metal compound component [B-2] used in this embodiment are not particularly limited, but for example, the "dimethyl" part of the name of each titanium compound listed above (this is The last part of the name of the compound, that is, the part that appears immediately after the part "titanium” and is the name corresponding to the part X3 in (Formula 4) above, can be changed to any of the following: Also included are compounds with alternative names.
  • transition metal compound component [B-2] As a specific example of such transition metal compound component [B-2], a [(Nt-butylamide)(tetramethyl- ⁇ 5-cyclopentadienyl)dimethylsilane]titanium complex is preferable.
  • the transition metal compound component [B-2] used in this embodiment is not particularly limited, and can be synthesized by a generally known method.
  • activator [C] and organometallic compound component [D] which are capable of forming a complex that exhibits catalytic activity by reacting with the transition metal compound used in this embodiment, will be explained.
  • the activator [C] in this embodiment is not particularly limited, but includes, for example, a compound (C-1) defined by the following (Formula 5).
  • [L 2 -H] d+ is a protonating Br ⁇ nsted acid
  • L 2 is a neutral Lewis base.
  • [M 3 r Q s ] d- is a compatible non-coordinating anion
  • M 3 is a metal or metalloid selected from Groups 5 to 15 of the periodic table
  • Q is each It is independently a hydride, a dialkylamide group, a halide, an alkoxide group, an allyloxide group, a hydrocarbon group, or a substituted hydrocarbon group having up to 20 carbon atoms
  • the number of Q that is a halide is one or less.
  • r is an integer from 1 to 7
  • s is an integer from 2 to 14
  • non-coordinating anions include, but are not limited to, the following compounds. tetrakis phenylborate, tri(p-tolyl)(phenyl)borate, tris(pentafluorophenyl)(phenyl)borate, tris(2,4-dimethylphenyl)(hydrophenyl)borate, tris(3,5-dimethylphenyl)(phenyl)borate, tris(3,5-di-trifluoromethylphenyl)(phenyl)borate, tris(pentafluorophenyl)(cyclohexyl)borate, tris(pentafluorophenyl)(naphthyl)borate, Tetrakis(pentafluorophenyl)borate, triphenyl (hydroxyphenyl) borate, diphenyl-di(hydroxyphenyl)borate, triphenyl (2,4-dihydroxyphenyl)borate, tri(
  • Examples of other preferred non-coordinating anions include, but are not particularly limited to, borates in which the hydroxy group of the borate exemplified above is replaced with an NHR group.
  • R is preferably a methyl group, an ethyl group or a tert-butyl group.
  • protonating Br ⁇ nsted acids include, but are not particularly limited to, triethylammonium, tripropylammonium, tri(n-butyl)ammonium, trimethylammonium, tributylammonium, tri(n-octyl)ammonium, and the like.
  • Trialkyl group-substituted ammonium cations include N,N-dimethylanilinium, N,N-diethylanilinium, N,N-2,4,6-pentamethylanilinium, N,N-dimethyl N,N-dialkylanilinium cations such as benzylanilinium and the like are also suitable.
  • dialkylammonium cations such as di-(i-propyl)ammonium, dicyclohexylammonium, etc. are also suitable, and triaryl cations such as triphenylphosphonium, tri(methylphenyl)phosphonium, tri(dimethylphenyl)phosphonium, etc.
  • triaryl cations such as triphenylphosphonium, tri(methylphenyl)phosphonium, tri(dimethylphenyl)phosphonium, etc.
  • phosphonium cations or dimethylsulfonium, diethylfluoronium, diphenylsulfonium, and the like.
  • the activator (C-1) used in this embodiment may be a reactant with an organoaluminum compound.
  • the organoaluminum compound is not particularly limited, but includes, for example, trimethylaluminum, triethylaluminum, tributylaluminum, trihexylaluminum, trioctylaluminum, tridecylaluminum, etc., or these alkylaluminums and methyl alcohol, ethyl alcohol, butyl alcohol, pentyl alcohol.
  • reaction products with alcohols such as hexyl alcohol, octyl alcohol, and decyl alcohol, such as dimethylmethoxyaluminum, diethyl ethoxyaluminum, dibutylbutoxyaluminum, and the like.
  • alcohols such as hexyl alcohol, octyl alcohol, and decyl alcohol, such as dimethylmethoxyaluminum, diethyl ethoxyaluminum, dibutylbutoxyaluminum, and the like.
  • the reactants with the above-mentioned organoaluminum compounds may be used alone or in combination.
  • an organometallic oxy compound having a unit represented by the following (Formula 6) can also be used as the activator [C].
  • (Formula 6) (However, M 4 is a metal or metalloid from Group 13 to Group 15 of the periodic table, R 7 is each independently a hydrocarbon group or substituted hydrocarbon group having 1 to 12 carbon atoms, and t is a metal M The valence is 4 , and u is an integer greater than or equal to 2.)
  • the activator (C-2) is not particularly limited, but includes, for example, an organoaluminumoxy compound represented by the following formula (7).
  • R 8 is a hydrocarbon group having 1 to 12 carbon atoms.
  • R 8 is not specifically limited, but includes, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, pentyl group, hexyl group, octyl group, decyl group.
  • organoaluminumoxy compounds composed of one type of alkyl aluminum unit include, but are not particularly limited to, methylalumoxane, ethylalumoxane, n-propylalumoxane, isopropylalumoxane, Examples include n-butylalumoxane, isobutylalumoxane, pentylalumoxane, hexylalumoxane, octylalumoxane, decylalumoxane, cyclohexylalumoxane, and cyclooctylalumoxane. Among these, methylalumoxane and ethylalumoxane are preferred, and methylalumoxan
  • the organoaluminumoxy compounds used in this embodiment include those composed of alkyloxyaluminum units represented by the above formula, but are not necessarily limited to compounds composed of one type of constitutional unit. , may be composed of multiple types of structural units. Specific examples thereof include, but are not limited to, methylethyl alumoxane, methylpropylalumoxane, methylbutylalumoxane, etc., and the ratio of various structural units can be set arbitrarily within the range of 0 to 100%. Alternatively, it may be a mixture of a plurality of types of organoaluminumoxy compounds each consisting of one type of structural unit.
  • v and w can take arbitrary numbers, but from the viewpoint of ease of manufacture, the ratio v/w of v and w is preferably 0.1 or more and 10 or less, more preferably 0.3 or more and 5 or less. .
  • the organoaluminumoxy compound used in this embodiment may contain unreacted chemical substances resulting from its manufacturing method. That is, although organoaluminumoxy compounds are generally obtained by the reaction of trialkylaluminum and H 2 O, it is acceptable for some of these raw materials to remain as unreacted chemical substances. Specifically, although not particularly limited, for example, trimethylaluminum and H 2 O are used as raw materials in the synthesis of methylalumoxane, but one or both of these raw materials may be present as unreacted chemicals in methylalumoxane.
  • Examples include cases where it is included in In the method for producing an organoaluminumoxy compound exemplified above, trialkylaluminum is usually used in a larger amount than H 2 O, and thus trialkylaluminum is often contained in the organoaluminumoxy compound as a residual chemical substance.
  • the organometallic compound component [D] in this embodiment is a compound containing at least one metal selected from the group consisting of Group 1, Group 2, Group 12, and Group 13 of the Periodic Table. are preferred, and organoaluminum compounds and/or organomagnesium compounds are particularly preferred.
  • organoaluminum compound it is preferable to use compounds represented by the following (Formula 8) alone or in combination.
  • (Formula 8) (In formula 8, R 8 is a hydrocarbon group having 1 to 20 carbon atoms, Z 2 is any group belonging to the group consisting of hydrogen, halogen, alkoxy, allyloxy, and siloxy groups, and l is 2 to 3 )
  • the hydrocarbon group having 1 to 20 carbon atoms represented by R 8 is not particularly limited, but may include, for example, an aliphatic hydrocarbon, an aromatic hydrocarbon, or an alicyclic hydrocarbon.
  • Specific examples include trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, tri(2-methylpropyl)aluminum (or triisobutylaluminum), tripentylaluminum, tri(3-methylbutyl) )
  • Trialkylaluminum such as aluminum, trihexylaluminum, trioctylaluminum, tridecylaluminum; halogenation of diethylaluminum chloride, ethylaluminum dichloride, bis(2-methylpropyl)aluminum chloride, ethylaluminum sesquichloride, diethylaluminum bromide, etc.
  • Aluminum compounds such as diethylaluminum ethoxide and bis(2-methylpropyl)aluminum butoxide; siloxyaluminum compounds such as dimethylhydrosiloxyaluminum dimethyl, ethylmethylhydrosiloxyaluminum diethyl, ethyldimethylsiloxyaluminum diethyl, and mixtures thereof are listed as preferred. Particularly preferred are trialkyl aluminum compounds.
  • the organomagnesium compound it is preferable to use the organomagnesium compound (A-1) represented by the above (Formula 1) alone or in combination.
  • ⁇ , ⁇ , e, f, g, M 1 , R 1 , R 2 , and OR 3 in the above (Formula 1) are as described above, but this organomagnesium compound is dissolved in an inert hydrocarbon solvent. Since higher properties are preferable, ⁇ / ⁇ is preferably in the range of 0.5 to 10, and compounds in which M 1 is aluminum are more preferable.
  • organomagnesium compounds (D-2) represented by the following (Formula 9) can be used alone or in combination.
  • (Formula 9) (In formula 9, M 5 is a metal atom belonging to the group consisting of Groups 12, 13 and 14 of the periodic table, and R 9 and R 10 are hydrocarbon groups having 2 to 20 carbon atoms.
  • inorganic solid particles [A], transition metal compound component [B-1], transition metal compound component [B-2], activator [C] and/or organometallic compound component [D] An example of a method for producing a polyethylene polymerization catalyst from.
  • the inorganic solid particles [A], the transition metal compound component [B-1], the transition metal compound component [B-2], the activator [C] and A polyethylene polymerization catalyst is produced by reacting/or the organometallic compound component [D].
  • the reaction is preferably carried out in an inert hydrocarbon solvent.
  • Inert hydrocarbon solvents are not particularly limited, but specifically include aliphatic hydrocarbons such as pentane, hexane, and heptane, aromatic hydrocarbons such as benzene and toluene, and alicyclic carbonates such as cyclohexane and methylcyclohexane. Examples include hydrogen. Among these, it is more preferable to conduct the reaction in an aliphatic hydrocarbon solvent such as hexane or heptane.
  • transition metal compound component [B-1] and transition metal compound component [B-2] may be used in the reaction after being dissolved in an inert hydrocarbon solvent from the viewpoint of reaction efficiency.
  • concentration during dissolution is not particularly limited, but from the viewpoint of avoiding segregation on the surface of the inorganic solid particles [A], it is preferably 0.01 mol/L or more and 5 mol/L or less, and 0.05 mol/L or more. More preferably, it is 2 mol/L or less.
  • the type and amount of the activator [C] and organometallic compound component [D] are preferably changed for each transition metal compound component from the viewpoint of facilitating control of the amount of long chain branching of polyethylene.
  • the concentrations of the activator [C] and the organometallic compound component [D] are not particularly limited, but from the viewpoint of reactivity with the transition metal compound component, it is preferably 0.01 mol/L or more and 5 mol/L or less, More preferably 0.05 mol/L or more and 2 mol/L or less. Note that it is preferable to use an inert hydrocarbon solvent for diluting the activator [C] and the organometallic compound component [D].
  • the method of adding the transition metal compound component [B-1], the transition metal compound component [B-2], the activator [C], and the organometallic compound component [D] is not particularly limited. From the viewpoint of forming a layer between the component and the activator and/or organometallic compound component, a mixture of the transition metal compound component and the activator and/or organometallic compound component in advance is used as inorganic solid particles [A]. It is preferable to add the transition metal compound component and the activator and/or the organometallic compound component to the inorganic solid particles [A] at the same time.
  • the reaction temperature of the reaction is not particularly limited, but from the viewpoint of reaction efficiency, it is preferably -20°C or more and 100°C or less, more preferably 0°C or more and 80°C or less.
  • the molar ratio ([B-2]/[B-1]) between the transition metal compound component [B-1] and the transition metal compound component [B-2] is not particularly limited; From the viewpoint of controlling the amount of chain branching to a very small amount, it is preferably 1 or more and 1000 or less, and more preferably 5 or more and 100 or less.
  • the molar ratio ([C]/[B-1]) between the transition metal compound component [B-1] and the activator [C] is not particularly limited; In the case of C-1), it is preferably 0.1 or more and 1 or less, more preferably 0.1 or more and 0.5 or less, from the viewpoint of controlling the amount of long chain branching of polyethylene to a very small amount.
  • the molar ratio ([C]/[B-1]) between the transition metal compound component [B-1] and the activator [C] is not particularly limited; -2), from the viewpoint of controlling the amount of long chain branching of polyethylene to a minute amount and suppressing the amount of metal residue in polyethylene, it is preferably 1 or more and 60 or less, more preferably 1 or more and 30 or less. preferable.
  • the molar ratio ([D]/[B-1]) of the transition metal compound component [B-1] and the organometallic compound component [D] is not particularly limited; From the viewpoint of controlling and suppressing the amount of metal residue in polyethylene, it is preferably 1 or more and 60 or less, and more preferably 1 or more and 30 or less.
  • the molar ratio ([C]/[B-2]) between the transition metal compound component [B-2] and the activator [C] is not particularly limited; In the case of C-1), from the viewpoint of controlling the amount of long chain branching of polyethylene to a very small amount, it is preferably 0.5 or more and 1.5 or less, and more preferably 0.9 or more and 1.1 or less. .
  • the molar ratio ([C]/[B-2]) between the transition metal compound component [B-2] and the activator [C] is not particularly limited;
  • C-2 from the viewpoint of controlling the amount of long chain branching of polyethylene to a very small amount and suppressing the amount of metal residue in polyethylene, it is preferably 2 or more and 200 or less, and preferably 5 or more and 100 or less. More preferred.
  • the molar ratio ([D]/[B-1]) of the transition metal compound component [B-2] and the organometallic compound component [D] is not particularly limited; From the viewpoint of controlling and suppressing the amount of metal residue in polyethylene, it is preferably 1 or more and 60 or less, and more preferably 1 or more and 30 or less.
  • the impurity scavenger used in the polymerization of the polyethylene powder of this embodiment is not particularly limited, but it is preferable to use the organometallic compound component [D].
  • the impurity scavenger used in the polymerization of the polyethylene powder of this embodiment is not particularly limited, but it is preferable to use the organometallic compound component [D].
  • the organometallic compound component [D] There is no particular restriction on the method of adding the organometallic compound component [D] into the polymerization system under polymerization conditions. It may be added to the polymerization system after the reaction.
  • the concentration of the organometallic compound component [D] in the polymerization system is not particularly limited, but from the viewpoint of completely capturing impurities and the amount of metal residue in the polymer, it is 0.001 mmol/L or more and 10 mmol/L or less. It is preferably 0.01 mmol/L or more and 5 mmol/L or less, and even more preferably 0.05 mmol/L or more and 2 mmol/L or less.
  • the organometallic compound component [D] may be used alone or in combination of two or more types.
  • the method of polymerizing the ethylene polymer constituting the polyethylene powder of this embodiment is not particularly limited, but for example, ethylene is polymerized by a suspension polymerization method or a gas phase polymerization method, or ethylene and a comonomer are copolymerized. One method is to do so. Among these, a suspension polymerization method is preferred since it can efficiently remove polymerization heat.
  • an inert hydrocarbon medium can be used as a solvent, and furthermore, the olefin itself can also be used as a solvent.
  • the inert hydrocarbon medium is not particularly limited, but includes, for example, aliphatic hydrocarbons such as propane, butane, isobutane, pentane, isopentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane, and methyl.
  • aliphatic hydrocarbons such as propane, butane, isobutane, pentane, isopentane, hexane, heptane, octane, decane, dodecane, and kerosene
  • cyclopentane cyclohexane
  • examples include alicyclic hydrocarbons such as cyclopentane; aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated hydrocarbons such as ethyl chloride, chlorobenzene, and
  • the polymerization temperature in the polymerization of ethylene is generally preferably 30°C or higher and 100°C or lower, more preferably 35°C or higher and 95°C or lower, and particularly preferably 40°C or higher and 90°C or lower.
  • the polymerization temperature is set to 30° C. or higher, industrially efficient production becomes possible.
  • the polymerization temperature is set to 100° C. or less, it is possible to suppress the formation of lumpy scales due to melting of a portion of the polymer, and it is possible to perform continuous and stable production without clogging piping.
  • the polymerization pressure of the ethylene polymer is preferably at least normal pressure and at most 2 MPaG, more preferably at least 0.2 MPaG and at most 1.5 MPaG, and even more preferably at least 0.2 MPaG and at most 1.5 MPaG. It is 3 MPaG or more and 0.9 MPaG or less.
  • antistatic agents such as Stadis and STATSAFE manufactured by Innospec (distributed by Maruwa Bussan) are used to suppress static electricity adhesion of the polymer to the polymerization reactor. You can also do that.
  • An antistatic agent such as Stadis or STATSAFE can be diluted in an inert hydrocarbon medium and added to the polymerization reactor using a pump or the like.
  • the antistatic agent can be added by adding it to the solid catalyst in advance or adding it to the polymerization reactor, and the amount added is determined based on the amount of ethylene polymer produced per unit time. , 1 ppm or more and 500 ppm or less, more preferably 10 ppm or more and 100 ppm or less.
  • the molecular weight of the ethylene polymer can be controlled by including hydrogen in the polymerization system or by changing the polymerization temperature, as described in West German Patent Application No. 3127133. .
  • hydrogen as a chain transfer agent into the polymerization system, it is possible to control the molecular weight of the ethylene polymer within an appropriate range.
  • the molar fraction of hydrogen is preferably 0 mol% or more and 50 mol% or less, more preferably 0 mol% or more and 30 mol% or less, and 0 mol% or more and 20 mol% or less. It is even more preferable.
  • the polymerization reaction can be carried out in any of the batch, semi-continuous, and continuous methods, and is preferably carried out in a continuous manner.
  • the polymerization reaction of the ethylene polymer may be a single-stage polymerization method using one polymerization reactor, or a multi-stage polymerization method in which the polymerization is carried out sequentially and continuously in two or more polymerization reactors connected in series. It's okay.
  • the suspension containing the ethylene polymer constituting the polyethylene powder of this embodiment is quantitatively extracted from the polymerization reactor, transferred to a flash tank, and unreacted ethylene, hydrogen, comonomer (unreacted ethylene, hydrogen, comonomer) (limited to cases in which the
  • any of the decantation method, centrifugation method, filter filtration method, etc. can be applied, but the centrifugation method has a high separation efficiency between the ethylene polymer and the solvent. More preferred.
  • the method for deactivating the catalyst used in the polymerization process of the ethylene polymer constituting the polyethylene powder of this embodiment is not particularly limited, but the catalyst may be deactivated after separating the ethylene polymer and the solvent. is preferred.
  • Agents for deactivating the catalyst include, but are not particularly limited to, oxygen, water, alcohols, glycols, phenols, carbon monoxide, carbon dioxide, ethers, carbonyl compounds, alkynes, and the like.
  • the drying step it is preferable to carry out a drying step after separating the ethylene polymer from the solvent.
  • the drying step it is preferable to use a rotary kiln method, a paddle method, a fluidized dryer, or the like.
  • the drying temperature is preferably 50°C or more and 150°C or less, more preferably 70°C or more and 110°C or less.
  • the ethylene polymer constituting the polyethylene powder of this embodiment After drying the ethylene polymer constituting the polyethylene powder of this embodiment, it may be sieved to remove coarse powder.
  • the polyethylene powder of this embodiment may be a mixture of a plurality of polyethylene powders containing the ethylene polymer obtained by the above-mentioned manufacturing method.
  • additives such as slip agents, neutralizers, antioxidants, light stabilizers, antistatic agents, and pigments.
  • slip agent or neutralizing agent examples include, but are not limited to, aliphatic hydrocarbons, higher fatty acids, higher fatty acid metal salts, fatty acid esters of alcohols, waxes, higher fatty acid amides, silicone oils, rosins, and the like.
  • stearates such as calcium stearate, magnesium stearate, and zinc stearate can be mentioned as suitable additives.
  • the antioxidant is not particularly limited, but for example, a phenol compound or a phenol phosphoric acid compound is preferable. Specifically, 2,6-di-t-butyl-4-methylphenol (dibutylhydroxytoluene), n-octadecyl-3-(4-hydroxy-3,5-di-t-butylphenyl)propionate, tetrakis Phenolic antioxidants such as (methylene (3,5-di-t-butyl-4-hisaloxyhydrocinnamate))methane; 6-[3-(3-t-butyl-4-hydroxy-5-methyl) Phenolphosphorus antioxidants such as -2,4,8,10-tetra-t-butyldibenzo[d,f][1,3,2]dioxaphosphepine; tetrakis(2,4 -di-t-butylphenyl)-4,4'-biphenylene-di-phosphonite
  • Light stabilizers include, but are not particularly limited to, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-(3-t-butyl-5-methyl-2-hydroxyphenyl)-5-chloro Benzotriazole light stabilizers such as benzotriazole; bis(2,2,6,6-tetramethyl-4-piperidine) sebacate, poly[ ⁇ 6-(1,1,3,3-tetramethylbutyl)amino- 1,3,5-triazine-2,4-diyl ⁇ (2,2,6,6-tetramethyl-4-piperidyl)imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4- Examples include hindered amine light stabilizers such as piperidyl)imino].
  • the antistatic agent is not particularly limited, but includes, for example, aluminosilicate, kaolin, clay, natural silica, synthetic silica, silicates, talc, diatomaceous earth, and glycerin fatty acid ester.
  • the polyethylene powder of this embodiment can be used as a raw material for various molded bodies such as microporous membranes, fibers, especially high-strength fibers, sintered bodies, press molded bodies, and ram-pressed bodies.
  • the polyethylene powder of this embodiment is suitable as a raw material for microporous membranes for battery separators.
  • the molded body of this embodiment is a molded body of the polyethylene powder of this embodiment described above.
  • molded body examples include, but are not particularly limited to, microporous membranes, especially microporous membranes that are battery separators, fibers, especially high-strength fibers, sintered bodies, press-formed bodies, and ram-pressed bodies.
  • the method for producing the molded body is not particularly limited, but includes, for example, a molding method that involves extruding a resin using a wet extrusion method, stretching, extraction, and drying steps.
  • the above-mentioned battery separator is not particularly limited, but includes, for example, a separator for lithium ion secondary batteries, a separator for lead-acid batteries, and the like.
  • decalin nitrogen-substituted decalin
  • the decalin solution was put into a Cannon-Fenske viscometer (manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd./viscosity meter number: 100) in a constant temperature liquid bath at 135°C, and the falling time (t s ) between the marked lines was measured. It was measured. Further, as a blank, the falling time (t b ) of only decalin without polyethylene powder was measured, and the specific viscosity ( ⁇ sp ) was determined according to the following (formula A).
  • Tm2 end was calculated using the following procedure. ⁇ Tm2 end calculation procedure> (1) Differentiate the amount of endotherm obtained in the second heating process with respect to temperature. (2) Regarding the absolute value of the differential value obtained in (1), the temperature at which it becomes 0.01 or less for the first time counted from Tm2 top was defined as Tm2 end .
  • ⁇ Sample concentration> If Mv is less than 300,000: 10mg/10mL If Mv is 300,000 or more and less than 1 million: 3mg/10mL If Mv is 1 million or more and less than 2 million: 2mg/10mL If Mv is 2 million or more and less than 3 million: 1.5mg/10mL If Mv is 3 million or more: 1.5mg/15mL Further, the prepared sample solution was heated and shaken according to the following ⁇ dissolution conditions>. The sample solution after dissolution was placed in an autosampler heated to 160°C without cooling.
  • ⁇ Dissolution conditions> (1) Let stand for 1 hour while heating to 150°C (2) Shake for 2 hours while heating to 150°C (3) Leave to stand for 30 minutes while heating to 150°C Next, ⁇ GPC measurement conditions> shown below. Measurements were carried out according to the following.
  • RI Differential refractometer
  • PL-BV400 type Detector connection method Connected in parallel
  • g' IV sample /IV linear (Formula H)
  • g' z ⁇ (Conc i ⁇ MW i ⁇ g' i )/ ⁇ (Conc i ⁇ MW i ) (Formula I)
  • Conc i is the solution concentration in the i-th fraction
  • MW i is the molecular weight in the i-th fraction
  • g' i is g' in the i-th fraction.
  • the z-average shrinkage factor g z was calculated using the following (Formula J).
  • z - Average shrinkage factor g z g' z (1/0.75) (Formula J)
  • This measurement sample was measured using a Fourier transform far-infrared spectrometer (manufactured by JASCO Corporation, model: VIR-F4000) under the ⁇ terahertz measurement conditions> shown below.
  • ⁇ Terahertz measurement conditions> Wavenumber region: 50 to 600cm -1
  • the absorption coefficient at each wave number is calculated using the following (formula K), and the absorption coefficient at 400 cm -1 to 450 cm -1 is calculated. did.
  • the elemental content of the polyethylene powder was measured by high frequency plasma mass spectrometry in accordance with JIS K0133.
  • the samples were prepared by pressure acid decomposition with nitric acid using a microwave decomposition device (model ETHOSTC, manufactured by Milestone General Co., Ltd.).
  • ETHOSTC microwave decomposition device
  • the aluminum content and silicon content in the polyethylene powder were determined using an internal standard method using ICP-MS (Inductively Coupled Plasma Mass Spectrometer, Model X Series X7, manufactured by Thermo Fisher Scientific). was quantified.
  • the density of polyethylene powder was determined by methods (1) to (7) shown below.
  • a 20 mm x 20 mm x 2 mm thick section was cut from the obtained press sheet. (5) The cut sections were placed in a test tube and heated at 120° C. for 1 hour in a nitrogen atmosphere.
  • the content (mol) of the central metal M contained in the transition metal compound component [B-1] and/or the transition metal compound component [B-2] in the catalyst component, and the content (mol) of the central metal M and Al molar ratio (Al/M) with the content (mol) of The element content in the catalyst component was measured using a microwave plasma atomic emission spectrometer (manufactured by Agilent, model: 4210 MP-AES/G8007A).
  • a microwave plasma atomic emission spectrometer manufactured by Agilent, model: 4210 MP-AES/G8007A.
  • the content (mol) of the central metal M and the content (mol) of Al contained in the transition metal compound component [B-1] and/or the transition metal compound component [B-2] in the catalyst component are determined by the external standard method. ) was quantified and their molar ratio (Al/M) was calculated.
  • ⁇ MP-AES measurement conditions Standard solution for device calibration: ICP-OES & MP-AES Wavecal: Al, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Se, Sr, Zn (5mg/L); K( 50mg/L) in 5% HNO3 Background correction: Auto Read time: 3s Observation position: 0 Nebulizer flow rate: M (0.5-1.0L/min), Al (0.95L/min) Number of measurement repetitions: 3 Pump speed: 15rpm Intake time: 15s Stabilization time: 15s Number of pixels: 3 Standard solution for creating a calibration curve: Standard solution for atomic absorption spectrometry corresponding to each element (manufactured by Kanto Kagaku Co., Ltd.) Calibration curve concentration: 8 points: 0.5mg/L, 1mg/L, 2mg/L, 5mg/L, 10mg/L, 20mg/L, 50mg/L, 100mg/L
  • the mold was preheated at 1 kg/cm 2 for 3 minutes using a press machine with a set temperature of 180° C., defoaming was performed three times, and pressed at 10 kg/cm 2 for 2 minutes.
  • the gel sheet thus obtained is subjected to simultaneous biaxial stretching at 115°C (when the viscosity average molecular weight of polyethylene is 100,000 to 2,500,000) or 120°C (when the viscosity average molecular weight of polyethylene is 2,500,000 to 4,000,000).
  • a stretched film was obtained by stretching the film to 7 ⁇ 7 times.
  • this stretched film was immersed twice in n-hexane for 20 minutes, and after extracting and removing liquid paraffin, it was air-dried. Further heat setting was performed at 125° C. for 3 minutes to obtain a microporous membrane. However, the stretching temperature and heat setting temperature were adjusted as appropriate for each microporous membrane within the specified temperature range.
  • thermo shrinkage rate of the microporous membrane at high temperatures was evaluated. Specifically, from the microporous membrane obtained by the above-mentioned [microporous membrane manufacturing method], eight 100 mm x 50 mm membranes were punched out from 250 mm x 250 mm, and placed in an oven set at 140°C for 60 minutes. I placed it. After cooling at room temperature for 15 minutes after heating and standing, the dimensions of the microporous membrane were measured, and the thermal shrinkage rate (%) was calculated from the following formula. Then, the average of the measured values at 8 points in total was calculated, and the heat resistance was evaluated using the following evaluation criteria.
  • the thermal shrinkage rate of the microporous membrane was evaluated as an evaluation index of dimensional stability. Specifically, from the microporous membrane obtained by the above-mentioned [microporous membrane manufacturing method], eight 100 mm x 50 mm membranes were punched out from 250 mm x 250 mm, and placed in an oven set at 120°C for 60 minutes. I placed it. After cooling at room temperature for 15 minutes after heating and standing, the dimensions of the microporous membrane were measured, and the thermal shrinkage rate (%) was calculated from the following formula. Then, the average of the measured values at a total of 8 points was calculated, and the dimensional stability was evaluated using the following evaluation criteria.
  • Raw material (A-1) was an organic magnesium compound with a magnesium concentration of 0.704 mol/L.
  • transition metal compound component [B-2] (b-1)
  • Isopar E Exxon Chemical Co., Ltd. 1 mol/L ethylbutylmagnesium (hexane solution) was added thereto.
  • hexane was added to adjust the titanium complex concentration to 0.08 mol/L to obtain a transition metal compound component (b-1).
  • Example 1 Preparation of catalyst component (A)
  • Cp * 2 TiCl 2 bis(pentamethylcyclopentadienyl) titanium dichloride
  • MMAO modified methyl Aluminoxane
  • a-1 to a-3 represent the inorganic solid particles (a-1) to (a-3) prepared above in order, and b-1 represents the transition metal compound component prepared above.
  • b-1 represents [(Nt-butyramide)(tetramethyl- ⁇ 5-cyclopentadienyl)dimethylsilane]titanium dichloride, and c-1 represents the activated activated agent (c-1), c-2 represents N,N'-dimethylanilinium tetrakis(pentafluorophenyl)borate, and d-1 represents the organometallic compound component (d-1) synthesized above.
  • Cp * 2TiCl2 represents bis(pentamethylcyclopentadienyl ) titanium dichloride
  • Cp2TiCl2 represents bis(cyclopentadienyl)titanium dichloride
  • nBuCp2ZrCl2 represents bis ( n -butylcyclopentadienyl) zirconium dichloride
  • Cp * 2 ZrCl 2 represents bis(pentamethylcyclopentadienyl) zirconium dichloride
  • TiCl 4 represents titanium tetrachloride
  • Ti(OBu) 4 It stands for titanium (IV) tetrabutoxide (monomer)
  • EtAlCl 2 stands for ethylaluminum dichloride
  • Et 2 AlCl stands for diethylaluminum chloride
  • MMAO stands for modified methylaluminoxane
  • MAO stands for methylaluminoxane.
  • Polymerization was carried out for 30 minutes while stirring at a stirring speed of 1200 rpm while maintaining an internal pressure of 0.65 MPa and an internal temperature of 60°C.
  • the reaction mixture (polymer slurry) was extracted from the polymerization reactor, and the catalyst was deactivated with methanol. Thereafter, the reaction mixture was filtered, washed, and air-dried to obtain polyethylene powder (A).
  • the polymerization activity in the polymerization reactor was 3,500 g/g of catalyst.
  • Table 5 shows the results of the various evaluations described above for the polyethylene powder (A) and the microporous membrane of the polyethylene powder (A) manufactured by the above-mentioned [method for manufacturing a microporous membrane].
  • Example 12 to 20 and Comparative Examples 7, 8, 11, 12 Polyethylene powder and a microporous membrane thereof were produced in the same manner as in Example 11, except that the polymerization conditions were changed as shown in Tables 3 and 4, and the various evaluations described above were performed. The results are shown in Tables 5 and 6.
  • Example 15 and Comparative Example 12 0.05 mol% of 1-butene was copolymerized as a comonomer.
  • the polymerization slurry was continuously sent to a centrifuge so that the level in the polymerization reactor was kept constant to separate the polyethylene powder and other solvents.
  • the separated polyethylene powder was dried at 78° C. while blowing with nitrogen.
  • steam was sprayed onto the powder after polymerization to deactivate the catalyst and co-catalyst.
  • 1,000 ppm of calcium stearate manufactured by Dainichi Chemical Co., Ltd., C60
  • Polyethylene powder (K) was obtained by using a sieve with an opening of 425 ⁇ m to remove what did not pass through the sieve.
  • the polymerization activity in the polymerization reactor was 20,000 g/g of catalyst.
  • Table 6 shows the results of the various evaluations described above for the polyethylene powder (K) and the microporous membrane of the polyethylene powder (K) manufactured by the above-mentioned [method for manufacturing a microporous membrane].
  • Hydrogen was continuously supplied by a pump so that the gas phase concentration was 2000 ppm.
  • the stirring speed was 230 rpm.
  • a 100 mmol/L hexane solution of n-butanol was supplied so that the amount of n-butanol was 1 ppm/h for a polymerization rate (production rate) of 10 kg/h to obtain a polymerization slurry.
  • the obtained polymerization slurry was sent to a centrifuge to separate the polyethylene powder from other solvents, and then the polyethylene powder was brought into contact with methanol at 60° C. for 1 hour while stirring.
  • a polymerization slurry containing polyethylene powder and methanol was sent to a centrifuge to separate the polyethylene powder and other solvents.
  • the separated polyethylene powder was dried at 70° C. while blowing with nitrogen.
  • Polyethylene powder (L) was obtained by using a sieve with an opening of 425 ⁇ m to remove the polyethylene powder that did not pass through the sieve.
  • the polymerization activity in the polymerization reactor was 30,000 g/g of catalyst.
  • Table 6 shows the results of the various evaluations described above for the polyethylene powder (L) and the microporous membrane of the polyethylene powder (L) manufactured by the above-mentioned [method for manufacturing a microporous membrane].
  • d-1 represents the organometallic compound component (d-1) synthesized above, Et 3 Al represents triethylaluminum, and iBu 3 Al represents triisobutylaluminum.
  • the polyethylene powder of the present invention has excellent heat resistance, film uniformity, dimensional stability, and high heat resistance rate when made into a microporous film, and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

粘度平均分子量が100,000以上4,000,000以下であり、示差走査熱量計(DSC)を用いた測定から得られる結晶厚みパラメータが5℃以上9℃以下である、ポリエチレンパウダー。

Description

ポリエチレンパウダーとその製造方法及び、オレフィン重合用触媒とその製造方法
 本発明は、ポリエチレンパウダーとその製造方法及び、オレフィン重合用触媒とその製造方法に関する。
 エチレン重合体は、フィルム、シート、微多孔膜、繊維、発泡体、パイプ等多種多様な用途に用いられている。エチレン重合体が用いられている理由としては、溶融加工が容易で、得られた成形体は、機械強度が高く、耐薬品性、剛性等にも優れるからである。中でも超高分子量エチレン重合体は、分子量が大きいため、より機械強度が高く、摺動性や耐摩耗性に優れ、化学的安定性や長期信頼性にも優れる。この点から、特に鉛蓄電池やリチウムイオン電池に代表される二次電池セパレータ用微多孔膜の原料として、超高分子量ポリエチレンパウダーが用いられている。
 二次電池セパレータ用微多孔膜等の原料として、特性を改良した様々なエチレン重合体が提案されている。例えば、特許文献1には、極限粘度が所定範囲内にあり、かつ、示差走査熱量計(DSC)の特定の測定条件により得られる融解熱量の特定の割合が特定の下限値以上であることにより、耐酸化性及び耐収縮性に優れた成形体(例えば、延伸成形体、微多孔膜)を提供できるエチレン系重合体が提案されている。また、例えば、特許文献2には、高活性触媒の特性を維持しながら重合体の見かけ密度が向上したポリオレフィン重合体を製造することができる担持メタロセン触媒の製造方法とこれを用いたポリオレフィンの製造方法が提案されている。
特許第6383479号 特表2017-518423号公報
 近年、二次電池セパレータ用微多孔膜への要求レベルが急速に高まっており、ポリエチレン物性の更なる高度化が求められている。具体的には、例えば、耐熱性、膜の均一性、寸法安定性及び高耐熱化率に優れた微多孔膜を提供できるポリエチレンが求められているが、特許文献1及び2に記載のポリエチレンでは、このような物性の点で改善の余地がある。
 本発明は、上記事情に鑑みてなされたものであり、例えば、微多孔膜とした際に、耐熱性、膜の均一性、寸法安定性及び高耐熱化率に優れるポリエチレンパウダーを提供することを目的とする。
 本発明者らは、前記課題を解決するために鋭意研究を進めた結果、所定の粘度平均分子量のポリエチレンパウダーにおいて、所定の物性を特定の範囲に制御することにより、耐熱性、膜の均一性、寸法安定性及び高耐熱化率に優れる微多孔膜を提供できることを見出し、本発明を完成するに至った。
 即ち、本発明は以下のとおりである。
〔1〕
 粘度平均分子量が100,000以上4,000,000以下であり、
 示差走査熱量計(DSC)を用いた測定から得られる結晶厚みパラメータが5℃以上9℃以下である、ポリエチレンパウダー。
〔2〕
 示差屈折計及び粘度検出器を組み合わせたゲルパーミエーションクロマトグラフィー(GPC)測定装置により測定されるz-平均収縮因子gの値が0.600以上1以下である、〔1〕に記載のポリエチレンパウダー。
〔3〕
 示差走査熱量計(DSC)を用いて、下記<測定条件>に示す測定により得られる2回目の昇温過程のDSC曲線において、ピークトップの温度(Tm2top)が135℃以上140℃以下であり、
<測定条件>
(1)50℃で1min静置
(2)10℃/minで50℃から180℃に昇温(1回目の昇温過程)
(3)180℃で5min静置
(4)10℃/minで180℃から50℃に冷却
(5)50℃で5min静置
(6)10℃/minで50℃から180℃に昇温(2回目の昇温過程)
 前記結晶厚みパラメータが6.7℃以上9.0℃以下である、〔1〕に記載のポリエチレンパウダー。
〔4〕
 下記条件で延伸可能である、〔1〕~〔3〕のいずれかに記載のポリエチレンパウダー;
(延伸条件)
30質量%のポリエチレンパウダーと70質量%の流動パラフィンとからなる100mm×100mm×厚み1mmのゲルシートを115℃で7×7倍に延伸する。
〔5〕
 テラヘルツ測定において、400cm-1~450cm-1における吸収係数が1.0以上、4.0以下である、〔1〕~〔4〕のいずれかに記載のポリエチレンパウダー。
〔6〕
 H-NMR測定において、下記に示す領域にピークが存在しない、〔1〕~〔5〕のいずれかに記載のポリエチレンパウダー。
(1)4.8ppm~5.0ppm
(2)5.6ppm~6.0ppm
〔7〕
 アルミニウム含有量が0ppm以上50ppm以下である、〔1〕~〔6〕のいずれかに記載のポリエチレンパウダー。
〔8〕
 ケイ素含有量が0ppm以上30ppm以下である、〔1〕~〔7〕のいずれかに記載のポリエチレンパウダー。
〔9〕
 示差走査熱量計(DSC)測定において、2回目の昇温過程のDSC曲線における、ピークトップの温度が130℃以上140℃以下である、〔1〕又は〔2〕に記載のポリエチレンパウダー。
〔10〕
 密度が920kg/m以上960kg/m以下である、〔1〕~〔9〕のいずれかに記載のポリエチレンパウダー。
〔11〕
 電池セパレータ用である、〔1〕~〔10〕のいずれかに記載のポリエチレンパウダー。
〔12〕
 無機固体粒子[A]に、遷移金属化合物[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを反応させる第一担持反応工程と、
 前記第一担持反応工程で得られた粒子に、遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを反応させる第二担持反応工程を含み、
 前記遷移金属化合物[B-1]は下記の(式3)で表される化合物であり、前記遷移金属化合物[B-2]は下記の(式4)で表される化合物であり、前記活性化剤[C]は下記の(式5)又は(式6)で表される化合物であり、前記有機金属化合物成分[D]は周期律表第1族、第2族、第12族及び第13族からなる群より選択される少なくとも1種の金属を含有する化合物であり、無機固体粒子[A]は多孔質高分子材料又は周期表第2~第4族、第13族及び第14族からなる群より選択される少なくとも1種の元素を含む無機固体粒子であり、
 下記の<条件1>及び/又は<条件2>を満たす、オレフィン重合用触媒の製造方法。
 <条件1>
 前記第一担持反応工程において、遷移金属化合物[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを反応させる事前混合工程と、無機固体粒子[A]に事前混合工程で得られた混合物を反応させる工程とを含む。
 <条件2>
 前記第一担持反応工程において、遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]のモル量[B]に対する、活性化剤[C]及び有機金属化合物成分[D]のモル量([C]+[D])のモル比(([C]+[D])/[B])が1以上60以下である。
・・・(式3)
(式中、Lは、各々独立して、シクロペンタジエニル基、インデニル基、テトラヒドロインデニル基、フルオレニル基、テトラヒドロフルオレニル基、及びオクタヒドロフルオレニル基からなる群より選ばれるη結合性環状アニオン配位子を表し、該配位子は場合によっては1~8個の置換基を有し、該置換基は各々独立して炭素数1~20の炭化水素基、ハロゲン原子、炭素数1~12のハロゲン置換炭化水素基、炭素数1~12のアミノヒドロカルビル基、炭素数1~12のヒドロカルビルオキシ基、炭素数1~12のジヒドロカルビルアミノ基、炭素数1~12のヒドロカルビルフォスフィノ基、シリル基、アミノシリル基、炭素数1~12のヒドロカルビルオキシシリル基及びハロシリル基からなる群より選ばれる、20個までの非水素原子を有する置換基であり、
は、形式酸化数が+2、+3又は+4の周期表第4族に属する遷移金属群から選ばれる遷移金属であって、少なくとも1つの配位子Lにη5結合している遷移金属を表し、
Wは、50個までの非水素原子を有する2価の置換基であって、LとMとに各々1価ずつの価数で結合し、これによりL及びMと共働してメタロサイクルを形成する2価の置換基を表し、
は、各々独立して、1価のアニオン性σ結合型配位子、Mと2価で結合する2価のアニオン性σ結合型配位子、及びLとMとに各々1価ずつの価数で結合する2価のアニオン性σ結合型配位子からなる群より選ばれる、60個までの非水素原子を有するアニオン性σ結合型配位子を表し、
は、各々独立して、40個までの非水素原子を有する中性ルイス塩基配位性化合物を表し、
jは1又は2であり、但し、jが2である時、場合によっては2つの配位子Lが、20個までの非水素原子を有する2価の基を介して互いに結合し、該2価の基は炭素数1~20のヒドロカルバジイル基、炭素数1~12のハロヒドロカルバジイル基、炭素数1~12のヒドロカルビレンオキシ基、炭素数1~12のヒドロカルビレンアミノ基、シランジイル基、ハロシランジイル基、及びシリレンアミノ基からなる群より選ばれる基であり、kは0又は1であり、pは0、1又は2であり、但し、Xが1価のアニオン性σ結合型配位子、又はLとMとに結合している2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数より1以上小さい整数であり、またXがMにのみ結合している2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数より(j+1)以上小さい整数であり、qは0、1又は2である)。
Figure JPOXMLDOC01-appb-C000003
(式中、Mは、チタン、ジルコニウム及びハフニウムからなる群より選ばれる遷移金属であって、形式酸化数が+2、+3又は+4である遷移金属を表し、
 Rは、各々独立して、水素原子、炭素数1~8の炭化水素基、シリル基、ゲルミル基、シアノ基、ハロゲン原子及びこれらの複合基からなる群より選ばれる、1~20個の非水素原子を有する置換基を表し、但し、該置換基Rが炭素数1~8の炭化水素基、シリル基又はゲルミル基である時、場合によっては2つの隣接する置換基Rが互いに結合して2価の基を形成し、これにより該2つの隣接する該置換基Rにそれぞれ結合するシクロペンタジエニル環の2つの炭素原子間の結合と共働して環を形成し、
 Xは、各々独立して、ハライド、炭素数1~20の炭化水素基、炭素数1~18のヒドロカルビルオキシ基、炭素数1~18のヒドロカルビルアミノ基、シリル基、炭素数1~18のヒドロカルビルアミド基、炭素数1~18のヒドロカルビルホスフィド基、炭素数1~18のヒドロカルビルスルフィド基及びこれらの複合基からなる群より選ばれる、1~20個の非水素原子を有する置換基を表し、但し、場合によっては2つの置換基Xが共働して炭素数4~30の中性共役ジエン又は2価の基を形成し、
 Yは、-O-、-S-、-NR-又は-PR-を表し、但し、Rは、水素原子、炭素数1~12の炭化水素基、炭素数1~8のヒドロカルビルオキシ基、シリル基、炭素数1~8のハロゲン化アルキル基、炭素数6~20のハロゲン化アリール基、又はこれらの複合基を表し、
 ZはSiR 、CR 、SiR SiR 、CR CR 、CR=CR、CR SiR 又はGeR を表し、但し、Rは上で定義した通りであり、
nは1、2又は3である。)
(C-1):[L-H]d+[M d-・・・(式5)
(式中、[L-H]d+はプロトン付与性のブレンステッド酸であり、Lは中性ルイス塩基である。また、式中[M d-は相溶性の非配位性アニオンであり、Mは周期律表第5族乃至第15族から選ばれる金属又はメタロイドであり、Qは各々独立にヒドリド、ジアルキルアミド基、ハライド、アルコキサイド基、アリロキサイド基、炭化水素基、炭素数20までの置換炭化水素基であり、またハライドであるQは1個以下である。また、rは1~7の整数であり、sは2~14の整数であり、dは1~7の整数であり、s-r=dである。)
(C-2):-(M t-2-O)-・・・(式6)
(式中、Mは周期律表第13族~第15族の金属又はメタロイドであり、Rは各々独立に炭素数1~12の炭化水素基又は置換炭化水素基であり、tは金属Mの価数であり、uは2以上の整数である。)
〔13〕
 前記無機固体粒子[A]が塩化マグネシウム粒子である、〔12〕に記載のオレフィン重合用触媒の製造方法。
〔14〕
 無機固体粒子[A]と、遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを含み、
 前記遷移金属化合物[B-1]は下記の(式3)で表される化合物であり、前記遷移金属化合物[B-2]は下記の(式4)で表される化合物であり、前記活性化剤[C]は下記の(式5)又は(式6)で表される化合物であり、前記有機金属化合物成分[D]は周期律表第1族、第2族、第12族及び第13族からなる群より選択される少なくとも1種の金属を含有する化合物であり、無機固体粒子[A]は多孔質高分子材料又は周期表第2~第4族、第13族及び第14族からなる群より選択される少なくとも1種の元素を含む無機固体粒子であり、
 前記遷移金属化合物成分[B-1]及び/又は前記遷移金属化合物成分[B-2]に含まれる中心金属Mの含有量(mol)が20μmol以上1000μmol以下であり、当該中心金属Mの含有量(mol)とAlの含有量(mol)とのモル比(Al/M)が1以上30以下である、オレフィン重合用触媒。
・・・(式3)
(式中、Lは、各々独立して、シクロペンタジエニル基、インデニル基、テトラヒドロインデニル基、フルオレニル基、テトラヒドロフルオレニル基、及びオクタヒドロフルオレニル基からなる群より選ばれるη結合性環状アニオン配位子を表し、該配位子は場合によっては1~8個の置換基を有し、該置換基は各々独立して炭素数1~20の炭化水素基、ハロゲン原子、炭素数1~12のハロゲン置換炭化水素基、炭素数1~12のアミノヒドロカルビル基、炭素数1~12のヒドロカルビルオキシ基、炭素数1~12のジヒドロカルビルアミノ基、炭素数1~12のヒドロカルビルフォスフィノ基、シリル基、アミノシリル基、炭素数1~12のヒドロカルビルオキシシリル基及びハロシリル基からなる群より選ばれる、20個までの非水素原子を有する置換基であり、
は、形式酸化数が+2、+3又は+4の周期表第4族に属する遷移金属群から選ばれる遷移金属であって、少なくとも1つの配位子Lにη5結合している遷移金属を表し、
Wは、50個までの非水素原子を有する2価の置換基であって、LとMとに各々1価ずつの価数で結合し、これによりL及びMと共働してメタロサイクルを形成する2価の置換基を表し、
は、各々独立して、1価のアニオン性σ結合型配位子、Mと2価で結合する2価のアニオン性σ結合型配位子、及びLとMとに各々1価ずつの価数で結合する2価のアニオン性σ結合型配位子からなる群より選ばれる、60個までの非水素原子を有するアニオン性σ結合型配位子を表し、
は、各々独立して、40個までの非水素原子を有する中性ルイス塩基配位性化合物を表し、
jは1又は2であり、但し、jが2である時、場合によっては2つの配位子Lが、20個までの非水素原子を有する2価の基を介して互いに結合し、該2価の基は炭素数1~20のヒドロカルバジイル基、炭素数1~12のハロヒドロカルバジイル基、炭素数1~12のヒドロカルビレンオキシ基、炭素数1~12のヒドロカルビレンアミノ基、シランジイル基、ハロシランジイル基、及びシリレンアミノ基からなる群より選ばれる基であり、kは0又は1であり、pは0、1又は2であり、但し、Xが1価のアニオン性σ結合型配位子、又はLとMとに結合している2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数より1以上小さい整数であり、またXがMにのみ結合している2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数より(j+1)以上小さい整数であり、qは0、1又は2である)。
Figure JPOXMLDOC01-appb-C000004
(式中、Mは、チタン、ジルコニウム及びハフニウムからなる群より選ばれる遷移金属であって、形式酸化数が+2、+3又は+4である遷移金属を表し、
 Rは、各々独立して、水素原子、炭素数1~8の炭化水素基、シリル基、ゲルミル基、シアノ基、ハロゲン原子及びこれらの複合基からなる群より選ばれる、1~20個の非水素原子を有する置換基を表し、但し、該置換基Rが炭素数1~8の炭化水素基、シリル基又はゲルミル基である時、場合によっては2つの隣接する置換基Rが互いに結合して2価の基を形成し、これにより該2つの隣接する該置換基Rにそれぞれ結合するシクロペンタジエニル環の2つの炭素原子間の結合と共働して環を形成し、
 Xは、各々独立して、ハライド、炭素数1~20の炭化水素基、炭素数1~18のヒドロカルビルオキシ基、炭素数1~18のヒドロカルビルアミノ基、シリル基、炭素数1~18のヒドロカルビルアミド基、炭素数1~18のヒドロカルビルホスフィド基、炭素数1~18のヒドロカルビルスルフィド基及びこれらの複合基からなる群より選ばれる、1~20個の非水素原子を有する置換基を表し、但し、場合によっては2つの置換基Xが共働して炭素数4~30の中性共役ジエン又は2価の基を形成し、
 Yは、-O-、-S-、-NR-又は-PR-を表し、但し、Rは、水素原子、炭素数1~12の炭化水素基、炭素数1~8のヒドロカルビルオキシ基、シリル基、炭素数1~8のハロゲン化アルキル基、炭素数6~20のハロゲン化アリール基、又はこれらの複合基を表し、
 ZはSiR 、CR 、SiR SiR 、CR CR 、CR=CR、CR SiR 又はGeR を表し、但し、Rは上で定義した通りであり、
nは1、2又は3である。)
(C-1):[L-H]d+[M d-・・・(式5)
(式中、[L-H]d+はプロトン付与性のブレンステッド酸であり、Lは中性ルイス塩基である。また、式中[M d-は相溶性の非配位性アニオンであり、Mは周期律表第5族乃至第15族から選ばれる金属又はメタロイドであり、Qは各々独立にヒドリド、ジアルキルアミド基、ハライド、アルコキサイド基、アリロキサイド基、炭化水素基、炭素数20までの置換炭化水素基であり、またハライドであるQは1個以下である。また、rは1~7の整数であり、sは2~14の整数であり、dは1~7の整数であり、s-r=dである。)
(C-2):-(M t-2-O)-・・・(式6)
(式中、Mは周期律表第13族~第15族の金属又はメタロイドであり、Rは各々独立に炭素数1~12の炭化水素基又は置換炭化水素基であり、tは金属Mの価数であり、uは2以上の整数である。)
〔15〕
 前記無機固体粒子[A]が塩化マグネシウム粒子である、〔14〕に記載のオレフィン重合用触媒。
〔16〕
 〔14〕又は〔15〕に記載のオレフィン重合用触媒を用いて、オレフィンを重合する工程を含む、オレフィン重合体の製造方法。
 本発明のポリエチレンパウダーによれば、例えば、耐熱性、膜の均一性、寸法安定性及び高耐熱化率に優れる微多孔膜を提供できる。
 以下、本発明を実施するための形態(以下、「本実施形態」ともいう。)について詳細に説明する。なお、本発明は、本実施形態に限定されるものではなく、その要旨の範囲内で適宜変形して実施することができる。
 〔ポリエチレンパウダー〕
 本実施形態のポリエチレンパウダーは、粘度平均分子量が100,000以上4,000,000以下であり、
 示差走査熱量計(DSC)を用いた測定から得られる結晶厚みパラメータが5℃以上9℃以下である。
 本実施形態のポリエチレンパウダーは、このような特徴を有することにより、耐熱性、膜の均一性、寸法安定性及び高耐熱化率に優れる微多孔膜を提供できる。
 また、本実施形態のポリエチレンパウダーは、示差屈折計及び粘度検出器を組み合わせたゲルパーミエーションクロマトグラフィー(GPC)測定装置により測定されるz-平均収縮因子gの値(以下、「平均収縮因子g」とも記す)が0.600以上1以下であることが好ましい。
 本実施形態のポリエチレンパウダーは、このような特徴を有することにより、耐熱性、膜の均一性、寸法安定性及び高耐熱化率に一層優れる微多孔膜を提供できる。
 なお、上記結晶厚みパラメータは、下記<測定条件>に示す測定により得られる2回目の昇温過程のDSC曲線において、ピークトップの温度(Tm2top)とピークの収束点の温度(Tm2end)との差(Tm2end-Tm2top)(以下、「DSC曲線における温度差(Tm2end-Tm2top)」とも記す)である。
 <測定条件>
(1)50℃で1min静置
(2)10℃/minで50℃から180℃に昇温(1回目の昇温過程)
(3)180℃で5min静置
(4)10℃/minで180℃から50℃に冷却
(5)50℃で5min静置
(6)10℃/minで50℃から180℃に昇温(2回目の昇温過程)
 また、本実施形態のポリエチレンパウダーは、示差走査熱量計(DSC)を用いて、下記<測定条件>に示す測定により得られる2回目の昇温過程のDSC曲線において、ピークトップの温度(Tm2top)が135℃以上140℃以下であり、
<測定条件>
(1)50℃で1min静置
(2)10℃/minで50℃から180℃に昇温(1回目の昇温過程)
(3)180℃で5min静置
(4)10℃/minで180℃から50℃に冷却
(5)50℃で5min静置
(6)10℃/minで50℃から180℃に昇温(2回目の昇温過程)
 前記結晶厚みパラメータが6.7℃以上9.0℃以下であることが好ましい。
 本実施形態のポリエチレンパウダーは、このような特徴を有することにより、耐熱性、膜の均一性、寸法安定性及び高耐熱化率に一層優れる微多孔膜を提供できる。
 本実施形態のポリエチレンパウダーが上述したような効果を発現するメカニズムは明らかではないが本発明者らは以下のように推定している。示差走査熱量計(DSC)を用いて、上記<測定条件>に示す測定により得られる2回目の昇温過程のDSC曲線は、ポリエチレンパウダーの再結晶化過程で生成した結晶の特徴を示している。このような結晶の特徴は、具体的には、例えば、微多孔膜を製造する実際の工程におけるポリエチレンパウダーの溶融混練後の冷却過程で生成する結晶の特徴が対応し、そして、ここで生成する結晶の特徴が微多孔膜の物性に影響すると考えられる。また、DSC曲線における温度差(Tm2end-Tm2top)が上記範囲内であることは、高融点のポリエチレン成分を含有していること、すなわち厚く成長した結晶部が存在していることを示していると考えられる。結晶部が厚く成長するプロセスとしては、冷却過程において、長鎖分岐のように片末端が拘束された低運動性領域が先に結晶化を開始した後、この低運動性領域を核として結晶化がさらに進むことで、局所的に結晶部の厚みが増しているものと推定している。そして、本実施形態のポリエチレンパウダーについて、このような結晶部が再結晶過程で生成することが、耐熱性、膜の均一性、寸法安定性及び高耐熱化率に優れる微多孔膜を提供できる一因であると推定している。
(粘度平均分子量)
 本実施形態のポリエチレンパウダーは、粘度平均分子量が200,000以上4,000,000以下であることが好ましく、250,000以上3,000,000以下であることがより好ましく、300,000以上2,500,000以下であることがさらに好ましい。本実施形態のポリエチレンパウダーは、粘度平均分子量が前記下限値以上であると、微多孔膜とした際に十分な機械的強度を有する傾向にある。また、本実施形態のポリエチレンパウダーは、粘度平均分子量が前記上限値以下であると、成形加工性に優れ、微多孔膜とした際に、厚みムラや未溶融物の発生が抑えられ(均一性)、また、微多孔膜中に残留する応力が抑えられ(低収縮率)、さらに、他のポリエチレン樹脂と混ざりやすく、ブレンド時にも微多孔膜中に偏析しづらい傾向にある。
 なお、本実施形態において、ポリエチレンパウダーの粘度平均分子量は、後述の実施例に記載の方法により測定することができる。
(DSC曲線における温度差(Tm2end-Tm2top))
 本実施形態のポリエチレンパウダーは、DSC曲線における温度差(Tm2end-Tm2top)が、5℃以上9℃以下であり、6℃以上8.5℃以下であることが好ましく、6.7℃以上8℃以下であることがより好ましい。また、本実施形態のポリエチレンパウダーは、特に、ピークトップの温度(Tm2top)が135℃以上140℃以下である場合は、DSC曲線における温度差(Tm2end-Tm2top)が、6.7℃以上9.0℃以下であることが好ましく、6.7℃以上8.5℃以下であることがより好ましく、6.7℃以上8℃以下であることがさらに好ましい。本実施形態のポリエチレンパウダーは、DSC曲線における温度差(Tm2end-Tm2top)が前記下限値以上であると、高融点成分により、微多孔膜とした際に、耐熱性が向上し、また、他のポリエチレン樹脂にブレンドすることで、微多孔膜とした際に、耐熱性を向上させることができる。また、本実施形態のポリエチレンパウダーは、DSC曲線における温度差(Tm2end-Tm2top)が前記上限値以下であると、二次電池セパレータ用微多孔膜とした際、電池の異常発熱時、微多孔膜の細孔が閉じやすくなる傾向にあり、また、延伸加工時、均一に延伸できる傾向にある。
 DSC曲線における温度差(Tm2end-Tm2top)が前記範囲内のポリエチレンパウダーを得る方法としては、特に限定されないが、例えば、後述する特殊な製造方法で得られる触媒を用いて、微量の長鎖分岐を含むようにポリマーを製造する方法が挙げられる。具体的には、主鎖と側鎖とを別々に制御し、かつ側鎖の割合を微量に抑えるように製造する方法が挙げられる。主鎖と側鎖とを別々に制御する方法としては、特に限定されないが、例えば、2種類の活性種((A)マクロモノマー取り込み用及び(B)マクロモノマー合成用)を含む触媒を使用し、活性種ごとに助触媒の種類を変え、助触媒と活性種とを事前混合してかつ二段階以上で担持することで担体表面上に多層構造を形成させる方法が挙げられる。側鎖の割合を微量に抑える方法としては、特に限定されないが、例えば、上記2種類の活性種の割合((A)マクロモノマー取り込み用/(B)マクロモノマー合成用)を1~1000の範囲に制御し、助触媒(C)とマクロモノマー取り込み用活性種(A)との割合((C)/(A))を0.5~1.5の範囲に制御し、助触媒(D)とマクロモノマー合成用活性種(B)との割合((D)/(B))を1~60の範囲に制御する方法が挙げられる。
 なお、本実施形態において、ポリエチレンパウダーのDSC曲線における温度差(Tm2end-Tm2top)は、後述の実施例に記載の方法により測定することができる。
(平均収縮因子g
 本実施形態のポリエチレンパウダーは、平均収縮因子gが0.600以上1以下であることが好ましく、0.65以上0.985以下であることがより好ましく、0.7以上0.97以下であることがさらに好ましい。本実施形態のポリエチレンパウダーは、平均収縮因子gが前記下限値以上であると、微多孔膜とした際に、微多孔膜中に残留する応力が抑えられ(低収縮率)、また、分岐鎖による絡み合いの発生が一定以下に抑えられ、結晶化が促進される傾向にある。また、本実施形態のポリエチレンパウダーは、平均収縮因子gが前記上限値以下であると、高融点結晶が生成しやすく、溶融時の強度も増すため、微多孔膜とした際に、耐熱性が一層向上し、また、製膜時の安定性が一層向上し、膜ムラの抑制に繋がり、他のポリエチレン樹脂にブレンドすることで、微多孔膜の耐熱性や延伸性を一層向上させることができる傾向にある。
 平均収縮因子gが前記範囲内のポリエチレンパウダーを得る方法としては、特に限定されないが、例えば、後述する特殊な製造方法で得られる触媒を用いて、微量の長鎖分岐を含むようにポリマーを製造する方法が挙げられる。具体的には、主鎖と側鎖とを別々に制御し、かつ側鎖の割合を微量に抑えるように製造する方法が挙げられる。主鎖と側鎖とを別々に制御する方法としては、特に限定されないが、例えば、2種類の活性種((A)マクロモノマー取り込み用及び(B)マクロモノマー合成用)を含む触媒を使用し、活性種ごとに助触媒の種類を変え、助触媒と活性種とを事前混合してかつ二段階以上で担持することで担体表面上に多層構造を形成させる方法が挙げられる。側鎖の割合を微量に抑える方法としては、特に限定されないが、例えば、上記2種類の活性種の割合((A)マクロモノマー取り込み用/(B)マクロモノマー合成用)を1~1000の範囲に制御し、助触媒(C)とマクロモノマー取り込み用活性種(A)との割合((C)/(A))を0.5~1.5の範囲に制御し、助触媒(D)とマクロモノマー合成用活性種(B)との割合((D)/(B))を1~60の範囲に制御する方法が挙げられる。
 なお、本実施形態において、ポリエチレンパウダーの平均収縮因子gは、後述の実施例に記載の方法により測定することができる。
(延伸性の評価)
 本実施形態のポリエチレンパウダーは、下記条件で延伸可能であることが好ましい。
(延伸条件)
  30質量%のポリエチレンパウダーと70質量%の流動パラフィンとからなる100mm×100mm×厚み1mmのゲルシートを115℃で7×7倍に延伸する。
 本実施形態のポリエチレンパウダーは、前記条件で延伸可能であると、微多孔膜とした際の膜厚ムラが抑制される傾向にある。また、高い生産性をもって微多孔膜を製造できる傾向がある。
 前記条件で延伸可能であるポリエチレンパウダーを得る方法としては、特に限定されないが、例えば、触媒組成や重合条件を適宜調整することで、超高分子量成分(分子量>10以上)の割合を一定以下に抑える方法が挙げられる。なお、本実施形態において、上記条件の延伸性は、具体的には後述の実施例に記載の方法により評価することができる。
(400cm-1~450cm-1における吸収係数)
 本実施形態のポリエチレンパウダーは、テラヘルツ測定において、400cm-1~450cm-1における吸収係数が1.0以上、4.0以下であることが好ましく、1.9以上3.5以下であることがより好ましく、2.1以上3.5以下であることがさらに好ましい。
 前記400cm-1~450cm-1におけるテラヘルツ波の吸収ピークの帰属は明らかではないが、テラヘルツ波はポリマー鎖の振動エネルギーとして吸収され、500cm-1~550cm-1におけるテラヘルツ波の吸収ピークはポリエチレンの非晶部の振動に対応することから、400cm-1~450cm-1における吸収ピークは非晶部に存在する長鎖分岐構造に由来する振動に対応するものと推定される。
 本実施形態のポリエチレンパウダーは、テラヘルツ測定において、400cm-1~450cm-1における吸収係数が前記範囲内であると、微多孔膜中に残留する応力が抑えられる傾向にある(低収縮率)。また、微多孔膜とした際の膜厚ムラが抑制される傾向にある。
 テラヘルツ測定において、400cm-1~450cm-1における吸収係数が前記範囲内であるポリエチレンパウダーを得る方法としては、特に限定されないが、例えば、活性種と助触媒の種類やそれらの組み合わせを適宜調整することで、マクロモノマーの取り込み方を均一にする方法が挙げられる。なお、本実施形態において、400cm-1~450cm-1における吸収係数は、後述の実施例に記載の方法により評価することができる。
H-NMR測定)
 本実施形態のポリエチレンパウダーは、H-NMR測定において、下記に示す領域にピークが存在しないことが好ましい。
(1)4.8ppm~5.0ppm
(2)5.6ppm~6.0ppm
 (1)、(2)ともに末端二重結合に相当するシグナルが検出される領域であり、本領域にピークが存在しないことは、ポリエチレンパウダー中にマクロモノマーが残存していないことを意味する。
 本実施形態のポリエチレンパウダーは、H-NMR測定において、上記に示す領域にピークが存在しないと、微多孔膜とした際に、均一に延伸できるため、膜厚ムラが抑制される傾向にあり、また、微多孔膜中に残留する応力が一層抑えられ(低収縮率)、また、他のポリエチレン樹脂にブレンドしたとき、均一な微多孔膜を得られる傾向にある。
 H-NMR測定において、上記に示す領域にピークが存在しないポリエチレンパウダーを得る方法としては、特に限定されないが、例えば、マクロモノマーを取り込み可能な活性種を触媒の最表面に担持することや触媒原料組成及びコモノマー量を適宜調整することで、末端二重結合が残存しないようにする方法が挙げられる。なお、本実施形態において、ポリエチレンパウダーのH-NMRピークは、後述の実施例に記載の方法により測定することができる。
(アルミニウム含有量)
 本実施形態のポリエチレンパウダーは、アルミニウム含有量が0ppm以上50ppm以下であることが好ましく、0ppm以上30ppm以下であることがより好ましく、0ppm以上15ppm以下であることがさらに好ましい。本実施形態のポリエチレンパウダーは、アルミニウム含有量が前記範囲内であると、高融点結晶が生成されやすくなる傾向にあり、また、微多孔膜とした際に高品質なものとなる傾向にあり、さらに、成形加工過程におけるフィルターの目詰まりを抑制でき、生産性の向上に繋がる。
 なお、本実施形態において、ポリエチレンパウダー中のアルミニウム含有量は、後述の実施例に記載の方法により測定することができる。
(ケイ素含有量)
 本実施形態のポリエチレンパウダーは、ケイ素含有量が0ppm以上30ppm以下であることが好ましく、0ppm以上10ppm以下であることがより好ましく、0ppm以上2ppm以下であることがさらに好ましい。本実施形態のポリエチレンパウダーは、ケイ素含有量が前記範囲内であると、高融点結晶が生成されやすくなる傾向にあり、また、微多孔膜とした際に高品質なものとなる傾向にあり、さらに、成形加工過程におけるフィルターの目詰まりを抑制でき、生産性の向上に繋がる。
 なお、本実施形態において、ポリエチレンパウダー中のケイ素含有量は、後述の実施例に記載の方法により測定することができる。
(2回目の昇温過程のDSC曲線におけるピークトップの温度)
 本実施形態のポリエチレンパウダーは、示差走査熱量計(DSC)測定において、2回目の昇温過程のDSC曲線における、ピークトップの温度(以下「Tm2top」とも記す)が130℃以上140℃以下であることが好ましく、133℃以上140℃以下であることがより好ましく、135℃以上140℃以下であることがさらに好ましい。また、本実施形態のポリエチレンパウダーは、特に、前記結晶厚みパラメータが6.7℃以上9.0℃以下である場合は、Tm2topが、135℃以上140℃以下であることが好ましく、136℃以上140℃以下であることがより好ましく、137℃以上140℃以下であることがさらに好ましい。本実施形態のポリエチレンパウダーは、Tm2topが前記範囲内であると、微多孔膜とした際、耐熱性を向上させることができ、また、熱固定工程で温度をかけることができるため、微多孔膜の残留応力を抑制することができ、さらに、微多孔膜の透気性を高める傾向にある。
 Tm2topが前記範囲内のポリエチレンパウダーを得る方法としては、特に限定されないが、例えば、触媒原料組成やコモノマー量を調整する方法が挙げられる。
 なお、本実施形態において、Tm2topは、後述の実施例に記載の方法により測定することができる。
(密度)
 本実施形態のポリエチレンパウダーは、密度が920kg/m以上960kg/m以下であることが好ましく、930kg/m以上955kg/m以下であることがより好ましく、935kg/m以上950kg/m以下であることがさらに好ましい。本実施形態のポリエチレンパウダーは、密度が前記範囲内であると、微多孔膜とした際、透気性や耐熱性に優れる傾向にある。
 なお、本実施形態において、ポリエチレンパウダーの密度は、後述の実施例に記載の方法により測定することができる。
(オレフィン重合用触媒の製造方法)
 本実施形態のオレフィン重合用触媒の製造方法は、無機固体粒子[A]に、遷移金属化合物[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを反応させる第一担持反応工程と、
 前記第一担持反応工程で得られた粒子に、遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを反応させる第二担持反応工程を含み、
 前記遷移金属化合物[B-1]は下記の(式3)で表される化合物であり、前記遷移金属化合物[B-2]は下記の(式4)で表される化合物であり、前記活性化剤[C]は下記の(式5)又は(式6)で表される化合物であり、前記有機金属化合物成分[D]は周期律表第1族、第2族、第12族及び第13族からなる群より選択される少なくとも1種の金属を含有する化合物であり、無機固体粒子[A]は多孔質高分子材料又は周期表第2~第4族、第13族及び第14族からなる群より選択される少なくとも1種の元素を含む無機固体粒子であり、
 下記の<条件1>及び/又は<条件2>を満たす。
 <条件1>
 前記第一担持反応工程において、遷移金属化合物[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを反応させる事前混合工程と、無機固体粒子[A]に事前混合工程で得られた混合物を反応させる工程とを含む。
 <条件2>
 前記第一担持反応工程において、遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]のモル量[B]に対する、活性化剤[C]及び有機金属化合物成分[D]のモル量([C]+[D])のモル比(([C]+[D])/[B])が1以上60以下である。
・・・(式3)
(式中、Lは、各々独立して、シクロペンタジエニル基、インデニル基、テトラヒドロインデニル基、フルオレニル基、テトラヒドロフルオレニル基、及びオクタヒドロフルオレニル基からなる群より選ばれるη結合性環状アニオン配位子を表し、該配位子は場合によっては1~8個の置換基を有し、該置換基は各々独立して炭素数1~20の炭化水素基、ハロゲン原子、炭素数1~12のハロゲン置換炭化水素基、炭素数1~12のアミノヒドロカルビル基、炭素数1~12のヒドロカルビルオキシ基、炭素数1~12のジヒドロカルビルアミノ基、炭素数1~12のヒドロカルビルフォスフィノ基、シリル基、アミノシリル基、炭素数1~12のヒドロカルビルオキシシリル基及びハロシリル基からなる群より選ばれる、20個までの非水素原子を有する置換基であり、
は、形式酸化数が+2、+3又は+4の周期表第4族に属する遷移金属群から選ばれる遷移金属であって、少なくとも1つの配位子Lにη5結合している遷移金属を表し、
Wは、50個までの非水素原子を有する2価の置換基であって、LとMとに各々1価ずつの価数で結合し、これによりL及びMと共働してメタロサイクルを形成する2価の置換基を表し、
は、各々独立して、1価のアニオン性σ結合型配位子、Mと2価で結合する2価のアニオン性σ結合型配位子、及びLとMとに各々1価ずつの価数で結合する2価のアニオン性σ結合型配位子からなる群より選ばれる、60個までの非水素原子を有するアニオン性σ結合型配位子を表し、
は、各々独立して、40個までの非水素原子を有する中性ルイス塩基配位性化合物を表し、
jは1又は2であり、但し、jが2である時、場合によっては2つの配位子Lが、20個までの非水素原子を有する2価の基を介して互いに結合し、該2価の基は炭素数1~20のヒドロカルバジイル基、炭素数1~12のハロヒドロカルバジイル基、炭素数1~12のヒドロカルビレンオキシ基、炭素数1~12のヒドロカルビレンアミノ基、シランジイル基、ハロシランジイル基、及びシリレンアミノ基からなる群より選ばれる基であり、kは0又は1であり、pは0、1又は2であり、但し、Xが1価のアニオン性σ結合型配位子、又はLとMとに結合している2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数より1以上小さい整数であり、またXがMにのみ結合している2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数より(j+1)以上小さい整数であり、qは0、1又は2である)。
Figure JPOXMLDOC01-appb-C000005
(式中、Mは、チタン、ジルコニウム及びハフニウムからなる群より選ばれる遷移金属であって、形式酸化数が+2、+3又は+4である遷移金属を表し、
 Rは、各々独立して、水素原子、炭素数1~8の炭化水素基、シリル基、ゲルミル基、シアノ基、ハロゲン原子及びこれらの複合基からなる群より選ばれる、1~20個の非水素原子を有する置換基を表し、但し、該置換基Rが炭素数1~8の炭化水素基、シリル基又はゲルミル基である時、場合によっては2つの隣接する置換基Rが互いに結合して2価の基を形成し、これにより該2つの隣接する該置換基Rにそれぞれ結合するシクロペンタジエニル環の2つの炭素原子間の結合と共働して環を形成し、
 Xは、各々独立して、ハライド、炭素数1~20の炭化水素基、炭素数1~18のヒドロカルビルオキシ基、炭素数1~18のヒドロカルビルアミノ基、シリル基、炭素数1~18のヒドロカルビルアミド基、炭素数1~18のヒドロカルビルホスフィド基、炭素数1~18のヒドロカルビルスルフィド基及びこれらの複合基からなる群より選ばれる、1~20個の非水素原子を有する置換基を表し、但し、場合によっては2つの置換基Xが共働して炭素数4~30の中性共役ジエン又は2価の基を形成し、
 Yは、-O-、-S-、-NR-又は-PR-を表し、但し、Rは、水素原子、炭素数1~12の炭化水素基、炭素数1~8のヒドロカルビルオキシ基、シリル基、炭素数1~8のハロゲン化アルキル基、炭素数6~20のハロゲン化アリール基、又はこれらの複合基を表し、
 ZはSiR 、CR 、SiR SiR 、CR CR 、CR=CR、CR SiR 又はGeR を表し、但し、Rは上で定義した通りであり、
nは1、2又は3である。)
(C-1):[L-H]d+[M d-・・・(式5)
(式中、[L-H]d+はプロトン付与性のブレンステッド酸であり、Lは中性ルイス塩基である。また、式中[M d-は相溶性の非配位性アニオンであり、Mは周期律表第5族乃至第15族から選ばれる金属又はメタロイドであり、Qは各々独立にヒドリド、ジアルキルアミド基、ハライド、アルコキサイド基、アリロキサイド基、炭化水素基、炭素数20までの置換炭化水素基であり、またハライドであるQは1個以下である。また、rは1~7の整数であり、sは2~14の整数であり、dは1~7の整数であり、s-r=dである。)
(C-2):-(M t-2-O)-・・・(式6)
(式中、Mは周期律表第13族~第15族の金属又はメタロイドであり、Rは各々独立に炭素数1~12の炭化水素基又は置換炭化水素基であり、tは金属Mの価数であり、uは2以上の整数である。)
 前記第一担持反応工程に用いる遷移金属化合物は[B-1]であることが好ましく、前記第二担持反応工程に用いる遷移金属化合物は[B-2]であることが好ましい。また、第二担持反応工程における、遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]のモル量[B]に対する、活性化剤[C]及び有機金属化合物成分[D]のモル量([C]+[D])のモル比(([C]+[D])/[B])は、0.5以上1.5以下であることが好ましく、0.9以上1.1以下であることがより好ましい。さらに、第一担持反応工程で用いられる遷移金属化合物成分([B])に対する第二担持反応工程で用いられる遷移金属化合物成分([B])のモル比([B]/[B])は1以上1000以下であることが好ましく、5以上100以下であることがより好ましい。
 前記第一担持反応工程と前記第二担持反応工程とを含むことで、無機固体粒子[A]の表面に遷移金属化合物と活性化剤との混合物から成る層を二層形成させることができる。この二層構造により、一層目で生成するマクロモノマーが二層目の遷移金属化合物に取り込まれるため、オレフィン重合体の製造において長鎖分岐の制御が容易となる。また、前記モル比(([C]+[D])/[B])及び([B]/[B]))を制御することで、オレフィン重合体の製造において長鎖分岐の量を微量に抑えることが可能となる。
 本実施形態のオレフィン重合用触媒の製造方法は、下記の<条件1>及び/又は<条件2>を満たす。
 <条件1>
 前記第一担持反応工程において、遷移金属化合物[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを反応させる事前混合工程と、無機固体粒子[A]に事前混合工程で得られた混合物を反応させる工程とを含む。
 <条件1>を満たすことで、無機固体粒子[A]の表面に遷移金属化合物と活性化剤が均一に混合された層を形成させることができる傾向にある。均一な混合層を形成させることで、マクロモノマーの取り込まれ方が均一となり、長鎖分岐の偏析の少ないオレフィン重合体を合成することが可能となる。
 <条件2>
 前記第一担持反応工程において、遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]のモル量[B]に対する、活性化剤[C]及び有機金属化合物成分[D]のモル量([C]+[D])のモル比(([C]+[D])/[B])が1以上60以下であり、1以上30以下であることが好ましい。
 <条件2>を満たすことで、生成するマクロモノマーの量を抑制することができるため、オレフィン重合体の製造において長鎖分岐の量を微量に抑えることができる傾向にある。
 本実施形態のオレフィン重合用触媒の製造方法は、前記工程条件を満たすことで、微量の長鎖分岐を含むオレフィン重合体を合成することができる。さらに、オレフィン重合体の製造において長鎖分岐の量や長さの制御が容易となる。
(オレフィン重合用触媒の製造方法に用いる無機固体粒子[A])
 本実施形態のオレフィン重合用触媒の製造方法は、無機固体粒子[A]として塩化マグネシウム粒子を用いることが好ましい。
 本実施形態のオレフィン重合用触媒の製造方法は、無機固体粒子[A]として塩化マグネシウム粒子を用いると、触媒粒子が重合中に割れやすくなり、金属残渣の少ないオレフィン重合体を生成できる傾向にある。
(オレフィン重合用触媒)
 本実施形態のオレフィン重合用触媒は、無機固体粒子[A]、遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを含み、
 前記遷移金属化合物[B-1]は上記の(式3)で表される化合物であり、前記遷移金属化合物[B-2]は上記の(式4)で表される化合物であり、前記活性化剤[C]は上記の(式5)又は(式6)で表される化合物であり、前記有機金属化合物成分[D]は周期律表第1族、第2族、第12族及び第13族からなる群より選択される少なくとも1種の金属を含有する化合物であり、無機固体粒子[A]は多孔質高分子材料又は周期表第2~第4族、第13族及び第14族からなる群より選択される少なくとも1種の元素を含む無機固体粒子であり、
 前記遷移金属化合物成分[B-1]及び/又は前記遷移金属化合物成分[B-2]に含まれる中心金属Mの含有量(mol)が20μmol以上1000μmol以下であり、当該中心金属Mの含有量(mol)とAlの含有量(mol)とのモル比(Al/M)が1以上30以下である。当該中心金属Mの含有量(mol)は、20μmol以上250μmol以下であることが好ましく、当該モル比(Al/M)は、1以上10以下であることが好ましい。
 本実施形態のオレフィン重合用触媒は、前記各成分を含み、かつ中心金属Mの含有量(mol)及び中心金属M含有量(mol)とAl含有量(mol)とのモル比(Al/M)が前記範囲内であると、重合により得られるオレフィン重合体の長鎖分岐の量と長さを制御しやすく、かつオレフィン重合体の長鎖分岐の量を微量に抑えることも可能となる。
 なお、本実施形態において、触媒成分中の中心金属Mの含有量(mol)及び中心金属Mの含有量(mol)とAlの含有量(mol)とのモル比(Al/M)は、後述の実施例に記載の方法により測定することができる。
(オレフィン重合用触媒に含まれる無機固体粒子[A])
 本実施形態のオレフィン重合用触媒は、無機固体粒子[A]が塩化マグネシウム粒子であることが好ましい。
 本実施形態のオレフィン重合用触媒は、無機固体粒子[A]が塩化マグネシウム粒子であると、触媒粒子が重合中に割れやすくなり、金属残渣の少ないオレフィン重合体を生成できる傾向にある。
 なお、本実施形態のオレフィン重合用触媒における、無機固体粒子[A]、遷移金属化合物[B-1]、遷移金属化合物成分[B-2]、活性化剤[C]及び有機金属化合物成分[D]は、後述の〔ポリエチレンパウダーの製造方法〕に記載の無機固体粒子[A]、遷移金属化合物[B-1]、遷移金属化合物成分[B-2]、活性化剤[C]及び有機金属化合物成分[D]の内容を適宜適用することができる。また、本実施形態のオレフィン重合用触媒の製造方法における各条件は、後述の〔ポリエチレンパウダーの製造方法〕に記載の各条件の内容を適宜適用することができる。
 本実施形態のオレフィン重合体の製造方法は、上述のオレフィン重合用触媒を用いて、オレフィンを重合する工程を含む。
 〔ポリエチレンパウダーの製造方法〕
 以下に、本実施形態のポリエチレンパウダーの製造方法の一例を説明する。
(触媒成分)
 本実施形態のポリエチレンパウダーは、例えば、所定の触媒成分を用いてエチレン又はエチレンと他のコモノマーとを重合することにより製造できる。
 本実施形態のポリエチレンパウダーを構成するエチレン系重合体の製造に使用される触媒成分は特に限定されないが、例えば、無機固体粒子[A]と、遷移金属化合物成分[B-1]と、遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とから構成されていることが好ましい。
 本実施形態において、無機固体粒子[A]としては、特に限定されないが、例えば、多孔質高分子材料(但し、マトリックスは例えばポリエチレン、ポリプロピレン、ポリスチレン、エチレン-プロピレン共重合体、エチレン-ビニルエステル共重合体、スチレン-ジビニルベンゼン共重合体、エチレン-ビニルエステル共重合体の部分あるいは完全鹸化物等のポリオレフィンやその変性物、ポリアミド、ポリカーボネート、ポリエステル等の熱可塑性樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂などの熱硬化性樹脂等を含む)、周期表第2~第4族、第13族及び第14族からなる群より選択される少なくとも1種の元素を含む無機固体粒子(例えば、シリカ、アルミナ、マグネシア、塩化マグネシウム、ジルコニア、チタニア、酸化硼素、酸化カルシウム、酸化亜鉛、酸化バリウム、五酸化バナジウム、酸化クロム、酸化トリウム、又はこれらの混合物若しくはこれらの複合酸化物)等が挙げられる。
  シリカを含有する複合酸化物としては、特に限定されないが、例えば、シリカ-マグネシア、シリカ-アルミナ等の、シリカと周期表第2族又は第13族に属する元素から選ばれる元素の酸化物との複合酸化物が挙げられる。本実施形態においては、無機固体粒子[A]は、シリカ、アルミナ、及びシリカと周期表第2族又は第13族に属する元素から選ばれる元素の酸化物との複合酸化物から選ばれることが好ましい。
 無機固体粒子[A]として用いられるシリカ生成物の形状に関しては特に制限はなく、シリカの形状は、顆粒状、球状、凝集状、ヒューム状など、いかなる形状であってもよい。市販のシリカ生成物の好ましい例としては、特に限定されないが、例えば、SD3216.30、SP-9-10046、デビソンサイロイドTM(SyloidTM)245、デビソン948又はデビソン952[以上全て、グレースデビソン社(W.R.デビソン社(米国)の支社)製]、アエロジル812[デグザAG社(ドイツ)製造]、ES70X[クロスフィールド社(米国)製]、P-6、P-10、Q-6[富士シリシア社(日本国)製]等が挙げられる。
 無機固体粒子[A]として用いられる塩化マグネシウムの性状に関しては特に制限はない。また、好ましい塩化マグネシウムの製造例としては、下記(式1)で表される不活性炭化水素溶媒に可溶である有機マグネシウム化合物(A-1)と下記(式2)で表される塩素化剤(A-2)とを反応させる方法が挙げられる。
(A-1):(Mγ(Mg)δ(R(R(ORg ・・・(式1)
(式1中、Mは周期律表第12族、第13族及び第14族からなる群より選ばれるいずれかに属する金属原子であり、R、R及びRはそれぞれ炭素数2以上20以下の炭化水素基であり、γ、δ、e、f及びgは次の関係を満たす実数である。
 0≦γ、0<δ、0≦e、0≦f、0≦g、0<e+f、0≦g/(γ+δ)≦2、kγ+2δ=e+f+g(ここで、kはMの原子価を表す。))
 (A-2):HSiCl (4-(h+i)) ・・・(式2)
(式2中、Rは炭素数1以上12以下の炭化水素基であり、h及びiは次の関係を満たす実数である。0<h、0<i、0<h+i≦4)
 まず、有機マグネシウム化合物(A-1)について説明する。
 有機マグネシウム化合物(A-1)は、不活性炭化水素溶媒に可溶な有機マグネシウムの錯化合物の形として示されており、ジヒドロカルビルマグネシウム化合物及びこの化合物と他の金属化合物との錯体のすべてを包含するものである。
 前記(式1)の記号γ、δ、e、f及びgの、上記関係式kγ+2δ=e+f+gは、金属原子の原子価と置換基との化学量論性を示している。
 上記(式1)中、R、Rで表される炭化水素基は、特に限定されないが、例えば、それぞれ独立して、アルキル基、シクロアルキル基又はアリール基であり、より具体的には、特に限定されないが、例えば、メチル、エチル、プロピル、ブチル、プロピル、ヘキシル、オクチル、デシル、シクロヘキシル、フェニル基等が挙げられる。
 これらの中でも、R及びRは、それぞれアルキル基であることが好ましい。
 γ>0の場合、金属原子Mとしては、周期律表第12族、第13族及び第14族からなる群のいずれかに属する金属原子が使用でき、より具体的には、特に限定されないが、例えば、亜鉛、ホウ素、アルミニウム等が挙げられる。特にアルミニウム、亜鉛が好ましい。
 金属原子Mに対するマグネシウムの比δ/γには特に限定されないが、0.1以上30以下であることが好ましく、0.5以上10以下であることがより好ましい。
 また、(A-1)として、γ=0である所定の有機マグネシウム化合物を用いる場合、例えば、Rが1-メチルプロピル基等の場合には不活性炭化水素溶媒に可溶であり、このような化合物も本実施形態のポリエチレンパウダーの製造において、好ましい結果を与える。
 前記(式1)において、γ=0の場合の炭化水素基R、Rは、次に示す三つの群(1)、群(2)、群(3)のいずれか一つであることが好ましい。
 群(1):
 R、Rの少なくとも一方が炭素数4以上6以下である二級又は三級のアルキル基である。好ましくはR、Rがともに炭素数4以上6以下であり、少なくとも一方が二級又は三級のアルキル基である。
 群(2):
 RとRとが炭素数の互いに相異なるアルキル基である。好ましくはRが炭素数2又は3のアルキル基であり、Rが炭素数4以上のアルキル基である。
 群(3):
 R、Rの少なくとも一方が炭素数6以上の炭化水素基である。好ましくはR、Rに含まれる炭素数の和が12以上になるアルキル基である。
 以下、前記(式1)において、γ=0の場合の炭化水素基R、Rを具体的に示す。
 群(1)において炭素数4以上6以下である二級又は三級のアルキル基としては、特に限定されないが、例えば、1-メチルプロピル、2-メチルプロピル、1,1-ジメチルエチル、2-メチルブチル、2-エチルプロピル、2,2-ジメチルプロピル、2-メチルペンチル、2-エチルブチル、2,2-ジメチルブチル、2-メチル-2-エチルプロピル基等が挙げられる。特に、1-メチルプロピル基が好ましい。
 また、群(2)において炭素数2又は3のアルキル基としては、特に限定されないが、例えば、エチル、1-メチルエチル、プロピル基等が挙げられる。特にエチル基が好ましい。
 また、炭素数4以上のアルキル基としては、特に限定されないが、例えば、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル基等が挙げられる。特に、ブチル、ヘキシル基が好ましい。
 さらに、群(3)において炭素数6以上の炭化水素基としては、特に限定されないが、例えば、ヘキシル、ヘプチル、オクチル、ノニル、デシル、フェニル、2-ナフチル基等が挙げられる。炭化水素基の中ではアルキル基が好ましく、アルキル基の中でもヘキシル、オクチル基がより好ましい。
 一般に、アルキル基に含まれる炭素原子数が増えると不活性炭化水素溶媒に溶けやすくなる傾向にあり、溶液の粘度が高くなる傾向にある。そのため、前記(式1)において、炭化水素基R、Rとしては、適度な長鎖のアルキル基を用いることが取り扱い上好ましい。なお、上記有機マグネシウム化合物(A-1)は、不活性炭化水素溶液として使用されるが、該溶液中に微量のエーテル、エステル、アミン等のルイス塩基性化合物が含有され、或いは残存していても差し支えなく使用できる。
 次に、有機マグネシウム化合物(A-1)の(式1)中のアルコキシ基(OR)について説明する。
 Rで表される炭化水素基としては、炭素原子数1以上12以下のアルキル基又はアリール基が好ましく、3以上10以下のアルキル基又はアリール基がより好ましい。
 Rとしては、特に限定されないが、例えば、メチル、エチル、プロピル、1-メチルエチル、ブチル、1-メチルプロピル、1,1-ジメチルエチル、ペンチル、ヘキシル、2-メチルペンチル、2-エチルブチル、2-エチルペンチル、2-エチルヘキシル、2-エチル-4-メチルペンチル、2-プロピルヘプチル、2-エチル-5-メチルオクチル、オクチル、ノニル、デシル、フェニル、ナフチル基等が挙げられる。
 特に、ブチル、1-メチルプロピル、2-メチルペンチル、及び2-エチルヘキシル基がより好ましい。
 有機マグネシウム化合物(A-1)の合成方法は特に限定しないが、例えば、式:RMgX及び式:R Mg(Rは前述のとおりであり、Xはハロゲン原子である。)からなる群に属するいずれかの有機マグネシウム化合物と、式:M 及び式:M (k-1)H(M、R及びkは前述のとおりである。)からなる群に属するいずれかの有機金属化合物を、不活性炭化水素溶媒中、25℃以上150℃以下の温度で反応させ、必要な場合には、続いてR(Rは前述のとおりである。)で表される炭化水素基を有するアルコール、又は不活性炭化水素溶媒に可溶なRで表される炭化水素基を有するアルコキシマグネシウム化合物、及び/又はアルコキシアルミニウム化合物と反応させることにより合成する方法が挙げられる。
 上述した方法のうち、不活性炭化水素溶媒に可溶な有機マグネシウム化合物とアルコールとを反応させる場合、反応の順序については特に制限はなく、有機マグネシウム化合物中にアルコールを加えていく方法、アルコール中に有機マグネシウム化合物を加えていく方法、又は両者を同時に加えていく方法のいずれの方法も用いることができる。
 不活性炭化水素溶媒に可溶な有機マグネシウム化合物とアルコールとの反応比率については特に限定されないが、反応の結果、得られるアルコキシ基含有有機マグネシウム化合物における、全金属原子に対するアルコキシ基のモル組成比:g/(γ+δ)は、0≦g/(γ+δ)≦2であり、0≦g/(γ+δ)<1であることが好ましい。
 次に、塩素化剤(A-2)について説明する。
 塩素化剤(A-2)は(式2)で表される、少なくとも一つはSi-H結合を有する塩化珪素化合物である。
  (A-2):HSiCl (4-(h+i))・・・(式2)
(式2中、Rは炭素数1以上12以下の炭化水素基であり、hとiは次の関係を満たす実数である。0<h、0<i、0<h+i≦4)
 前記(式2)において、Rで表される炭化水素基としては、特に限定されないが、例えば、脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基が挙げられ、具体的には、メチル、エチル、プロピル、1-メチルエチル、ブチル、ペンチル、ヘキシル、オクチル、デシル、シクロヘキシル、フェニル基等が挙げられる。
 特に、炭素数1以上10以下のアルキル基が好ましく、メチル、エチル、プロピル、1-メチルエチル基等の炭素数1~3のアルキル基がより好ましい。また、h及びiは、h+i≦4の関係を満たす0より大きな数であり、iが2以上3以下であることが好ましい。
 塩素化剤(A-2)としては、特に限定されないが、例えば、HSiCl、HSiClCH、HSiCl、HSiCl(C)、HSiCl(2-C)、HSiCl(C)、HSiCl(C)、HSiCl(4-Cl-C)、HSiCl(CH=CH)、HSiCl(CH)、HSiCl(1-C10)、HSiCl(CHCH=CH)、HSiCl(CH)、HSiCl(C)、HSiCl(CH、HSiCl(C、HSiCl(CH)(2-C)、HSiCl(CH)(C)、HSiCl(C等が挙げられる。
 塩素化剤(A-2)としては、これらの化合物又はこれらの化合物から選ばれた二種類以上の混合物からなる塩化珪素化合物が使用される。
 特に、HSiCl、HSiClCH、HSiCl(CH、HSiCl(C)が好ましく、HSiCl、HSiClCHがより好ましい。
 次に、有機マグネシウム化合物(A-1)と塩素化剤(A-2)との反応について説明する。
 反応に際しては、塩素化剤(A-2)を予め不活性炭化水素溶媒、1,2-ジクロルエタン、o-ジクロルベンゼン、ジクロルメタン等の塩素化炭化水素、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、又はこれらの混合溶媒、を用いて希釈した後に利用することが好ましい。これらのなかでも、触媒の性能上、不活性炭化水素溶媒を用いることがより好ましい。
 有機マグネシウム化合物(A-1)と塩素化剤(A-2)との反応比率は、特に限定されないが、有機マグネシウム化合物(A-1)に含まれるマグネシウム原子1molに対する塩素化剤(A-2)に含まれる珪素原子のmоl数が、0.01mol以上100mol以下であることが好ましく、0.1mol以上10mol以下であることがさらに好ましい。
 有機マグネシウム化合物(A-1)と塩素化剤(A-2)との反応方法については特に制限はなく、有機マグネシウム化合物(A-1)と塩素化剤(A-2)とを同時に反応器に導入しつつ反応させる同時添加の方法、塩素化剤(A-2)を事前に反応器に仕込んだ後に有機マグネシウム化合物(A-1)を反応器に導入させる方法、又は有機マグネシウム化合物(A-1)を事前に反応器に仕込んだ後に塩素化剤(A-2)を反応器に導入させる方法のいずれの方法も使用することができる。特に、塩素化剤(A-2)を事前に反応器に仕込んだ後に有機マグネシウム化合物(A-1)を反応器に導入させる方法が好ましい。
 有機マグネシウム化合物(A-1)と塩素化剤(A-2)との反応温度については特に限定されないが、25℃以上150℃以下であることが好ましく、30℃以上120℃以下であることがより好ましく、40℃以上100℃以下であることがさらに好ましい。
 有機マグネシウム化合物(A-1)と塩素化剤(A-2)とを同時に反応器に導入しつつ反応させる同時添加の方法においては、あらかじめ反応器の温度を所定温度に調整し、同時添加を行いながら反応器内の温度を所定温度に調整することが好ましい。
 塩素化剤(A-2)を事前に反応器に仕込んだ後に有機マグネシウム化合物(A-1)を反応器に導入させる方法においては、当該塩素化剤(A-2)を仕込んだ反応器の温度を所定温度に調整し、有機マグネシウム化合物(A-1)を反応器に導入しながら反応器内の温度を所定温度に調整することが好ましい。
 有機マグネシウム化合物(A-1)を事前に反応器に仕込んだ後に塩素化剤(A-2)を反応器に導入させる方法においては、有機マグネシウム化合物(A-1)を仕込んだ反応器の温度を所定温度に調整し、塩素化剤(A-2)を反応器に導入しながら反応器内の温度を所定温度に調整することが好ましい。
 上記反応により得られる塩化マグネシウムは、ろ過又はデカンテーション法により分離した後、不活性炭化水素溶媒を用いて充分に洗浄し、未反応物又は副生成物等を除去することが好ましい。
 次に本実施形態において用いられる遷移金属化合物成分[B-1]について説明する。
 本実施形態において用いられる遷移金属化合物成分[B-1]の例としては、特に限定されないが、例えば、下記の(式3)で表される化合物を挙げることができる。
・・・(式3)
(式中、Lは、各々独立して、シクロペンタジエニル基、インデニル基、テトラヒドロインデニル基、フルオレニル基、テトラヒドロフルオレニル基、及びオクタヒドロフルオレニル基からなる群より選ばれるη結合性環状アニオン配位子を表し、該配位子は場合によっては1~8個の置換基を有し、該置換基は各々独立して炭素数1~20の炭化水素基、ハロゲン原子、炭素数1~12のハロゲン置換炭化水素基、炭素数1~12のアミノヒドロカルビル基、炭素数1~12のヒドロカルビルオキシ基、炭素数1~12のジヒドロカルビルアミノ基、炭素数1~12のヒドロカルビルフォスフィノ基、シリル基、アミノシリル基、炭素数1~12のヒドロカルビルオキシシリル基及びハロシリル基からなる群より選ばれる、20個までの非水素原子を有する置換基であり、
は、形式酸化数が+2、+3又は+4の周期表第4族に属する遷移金属群から選ばれる遷移金属であって、少なくとも1つの配位子Lにη5結合している遷移金属を表し、
Wは、50個までの非水素原子を有する2価の置換基であって、LとMとに各々1価ずつの価数で結合し、これによりL及びMと共働してメタロサイクルを形成する2価の置換基を表し、
は、各々独立して、1価のアニオン性σ結合型配位子、Mと2価で結合する2価のアニオン性σ結合型配位子、及びLとMとに各々1価ずつの価数で結合する2価のアニオン性σ結合型配位子からなる群より選ばれる、60個までの非水素原子を有するアニオン性σ結合型配位子を表し、
は、各々独立して、40個までの非水素原子を有する中性ルイス塩基配位性化合物を表し、
jは1又は2であり、但し、jが2である時、場合によっては2つの配位子Lが、20個までの非水素原子を有する2価の基を介して互いに結合し、該2価の基は炭素数1~20のヒドロカルバジイル基、炭素数1~12のハロヒドロカルバジイル基、炭素数1~12のヒドロカルビレンオキシ基、炭素数1~12のヒドロカルビレンアミノ基、シランジイル基、ハロシランジイル基、及びシリレンアミノ基からなる群より選ばれる基であり、kは0又は1であり、pは0、1又は2であり、但し、Xが1価のアニオン性σ結合型配位子、又はLとMとに結合している2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数より1以上小さい整数であり、またXがMにのみ結合している2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数より(j+1)以上小さい整数であり、qは0、1又は2である)。
 上記(式3)の化合物中の配位子Xの例としては、特に限定されないが、例えば、ヒドリド、ハライド、炭素数1~60の炭化水素基、炭素数1~60のヒドロカルビルオキシ基、炭素数1~60のヒドロカルビルアミド基、炭素数1~60のヒドロカルビルフォスフィド基、炭素数1~60のヒドロカルビルスルフィド、シリル基、これらの複合基等が挙げられる。
 上記(式3)の化合物中の中性ルイス塩基配位性化合物Xの例としては、特に限定されないが、例えば、フォスフィン、エーテル、アミン、炭素数2~40のオレフィン、炭素数1~40のジエン、これらの化合物から誘導される2価の基等が挙げられる。
 本実施形態において用いられる遷移金属化合物成分[B-1]の構造については特に限定されないが、ポリエチレンの分岐鎖の運動性を低下させる観点から、超高分子量のポリエチレンを重合可能な化合物を用いることが好ましい。
 本実施形態において用いられる遷移金属化合物成分[B-1]の具体例としては、特に限定されないが、例えば、以下に示すような化合物が挙げられる。
ビス(メチルシクロペンタジエニル)ジルコニウムジメチル、
ビス(n-ブチルシクロペンタジエニル)ジルコニウムジメチル、
ビス(インデニル)ジルコニウムジメチル、
ビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジメチル、
(ペンタメチルシクロペンタジエニル)(シクロペンタジエニル)ジルコニウムジメチル、
ビス(シクロペンタジエニル)ジルコニウムジメチル、
ビス(ペンタメチルシクロペンタジエニル)ジルコニウムジメチル、
ビス(フルオレニル)ジルコニウムジメチル、
ビス(メチルシクロペンタジエニル)チタニウムジメチル、
ビス(n-ブチルシクロペンタジエニル)チタニウムジメチル、
ビス(インデニル)チタニウムジメチル、
ビス(1,3-ジメチルシクロペンタジエニル)チタニウムジメチル、
(ペンタメチルシクロペンタジエニル)(シクロペンタジエニル)チタニウムジメチル、
ビス(シクロペンタジエニル)チタニウムジメチル、
ビス(ペンタメチルシクロペンタジエニル)チタニウムジメチル、
ビス(フルオレニル)チタニウムジメチル、
エチレンビス(インデニル)ジルコニウムジメチル、
エチレンビス(4,5,6,7-テトラヒドロ-1-インデニル)ジルコニウムジメチル、
エチレンビス(4-メチル-1-インデニル)ジルコニウムジメチル、
エチレンビス(5-メチル-1-インデニル)ジルコニウムジメチル、
エチレンビス(6-メチル-1-インデニル)ジルコニウムジメチル、
エチレンビス(7-メチル-1-インデニル)ジルコニウムジメチル、
エチレンビス(5-メトキシ-1-インデニル)ジルコニウムジメチル、
エチレンビス(2,3-ジメチル-1-インデニル)ジルコニウムジメチル、
エチレンビス(4,7-ジメチル-1-インデニル)ジルコニウムジメチル、
エチレンビス-(4,7-ジメトキシ-1-インデニル)ジルコニウムジメチル、
メチレンビス(シクロペンタジエニル)ジルコニウムジメチル、
イソプロピリデン(シクロペンタジエニル)ジルコニウムジメチル、
イソプロピリデン(シクロペンタジエニル-フルオレニル)ジルコニウムジメチル、
シリレンビス(シクロペンタジエニル)ジルコニウムジメチル、
ジメチルシリレン(シクロペンタジエニル)ジルコニウムジメチル、
[(N-t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)-1,2-エタンジイル]チタニウムジメチル、
[(N-t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウムジメチル、
[(N-メチルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウムジメチル、
[(N-フェニルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウムジメチル、
[(N-ベンジルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウムジメチル、
[(Nt-ブチルアミド)(η5-シクロペンタジエニル)-1,2-エタンジイル]チタニウムジメチル、
[(N-t-ブチルアミド)(η5-シクロペンタジエニル)ジメチルシラン]チタニウムジメチル、
[(N-メチルアミド)(η5-シクロペンタジエニル)-1,2-エタンジイル]チタニウムジメチル、
[(N-メチルアミド)(η5-シクロペンタジエニル)ジメチルシラン]チタニウムジメチル、
[(N-t-ブチルアミド)(η5-インデニル)ジメチルシラン]チタニウムジメチル、
[(N-ベンジルアミド)(η5-インデニル)ジメチルシラン]チタニウムジメチル、
ジブロモビストリフェニルホスフィンニッケル、
ジクロロビストリフェニルホスフィンニッケル、
ジブロモジアセトニトリルニッケル、
ジブロモジベンゾニトリルニッケル、
ジブロモ(1,2-ビスジフェニルホスフィノエタン)ニッケル、
ジブロモ(1,3-ビスジフェニルホスフィノプロパン)ニッケル、
ジブロモ(1,1’-ジフェニルビスホスフィノフェロセン)ニッケル、
ジメチルビスジフェニルホスフィンニッケル、
ジメチル(1,2-ビスジフェニルホスフィノエタン)ニッケル、
メチル(1,2-ビスジフェニルホスフィノエタン)ニッケルテトラフルオロボレート、
(2-ジフェニルホスフィノ-1-フェニルエチレンオキシ)フェニルピリジンニッケル、
ジクロロビストリフェニルホスフィンパラジウム、
ジクロロジベンゾニトリルパラジウム、ジクロロジアセトニトリルパラジウム、
ジクロロ(1,2-ビスジフェニルホスフィノエタン)パラジウム、
ビストリフェニルホスフィンパラジウムビステトラフルオロボレート、
ビス(2,2’-ビピリジン)メチル鉄テトラフルオロボレートエーテラート等。
 本実施形態において用いられる遷移金属化合物成分[B-1]の具体例としては、特に限定されないが、例えば、さらに、上に挙げた各ジルコニウム及びチタン化合物の名称の「ジメチル」の部分(これは、各化合物の名称末尾の部分、すなわち「ジルコニウム」又は「チタニウム」という部分の直後に現れているものであり、前記(式3)中のXやXの部分に対応する名称である)を、以下に掲げる任意のものに替えてできる名称を持つ化合物も挙げられる。
「ジクロル」、
「ジブロム」、
「ジヨード」、
「ジエチル」、
「ジブチル」、
「ジフェニル」、
「ジベンジル」、
「2-(N,N-ジメチルアミノ)ベンジル」、
「2-ブテン-1,4-ジイル」、
「s-トランス-η4-1,4-ジフェニル-1,3-ブタジエン」、
「s-トランス-η4-3-メチル-1,3-ペンタジエン」、
「s-トランス-η4-1,4-ジベンジル-1,3-ブタジエン」、
「s-トランス-η4-2,4-ヘキサジエン」、
「s-トランス-η4-1,3-ペンタジエン」、
「s-トランス-η4-1,4-ジトリル-1,3-ブタジエン」、
「s-トランス-η4-1,4-ビス(トリメチルシリル)-1,3-ブタジエン」、
「s-シス-η4-1,4-ジフェニル-1,3-ブタジエン」、
「s-シス-η4-3-メチル-1,3-ペンタジエン」、
「s-シス-η4-1,4-ジベンジル-1,3-ブタジエン」、
「s-シス-η4-2,4-ヘキサジエン」、
「s-シス-η4-1,3-ペンタジエン」、
「s-シス-η4-1,4-ジトリル-1,3-ブタジエン」、
「s-シス-η4-1,4-ビス(トリメチルシリル)-1,3-ブタジエン」等。
 このような遷移金属化合物成分[B-1]の具体例としては、ビス(ペンタメチルシクロペンタジエニル)チタニウムジクロリドが好ましい。
 本実施形態において用いられる遷移金属化合物成分[B-1]は、特に限定されず、一般に公知の方法で合成できる。
 次に本実施形態において用いられる遷移金属化合物成分[B-2]について説明する。
 遷移金属化合物成分[B-2]については特に限定されないが、マクロモノマーの取り込み効率の観点から、下記(式4)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000006
(式中、Mは、チタン、ジルコニウム及びハフニウムからなる群より選ばれる遷移金属であって、形式酸化数が+2、+3又は+4である遷移金属を表し、
 Rは、各々独立して、水素原子、炭素数1~8の炭化水素基、シリル基、ゲルミル基、シアノ基、ハロゲン原子及びこれらの複合基からなる群より選ばれる、1~20個の非水素原子を有する置換基を表し、但し、該置換基Rが炭素数1~8の炭化水素基、シリル基又はゲルミル基である時、場合によっては2つの隣接する置換基Rが互いに結合して2価の基を形成し、これにより該2つの隣接する該置換基Rにそれぞれ結合するシクロペンタジエニル環の2つの炭素原子間の結合と共働して環を形成し、
 Xは、各々独立して、ハライド、炭素数1~20の炭化水素基、炭素数1~18のヒドロカルビルオキシ基、炭素数1~18のヒドロカルビルアミノ基、シリル基、炭素数1~18のヒドロカルビルアミド基、炭素数1~18のヒドロカルビルホスフィド基、炭素数1~18のヒドロカルビルスルフィド基及びこれらの複合基からなる群より選ばれる、1~20個の非水素原子を有する置換基を表し、但し、場合によっては2つの置換基Xが共働して炭素数4~30の中性共役ジエン又は2価の基を形成し、
 Yは、-O-、-S-、-NR-又は-PR-を表し、但し、Rは、水素原子、炭素数1~12の炭化水素基、炭素数1~8のヒドロカルビルオキシ基、シリル基、炭素数1~8のハロゲン化アルキル基、炭素数6~20のハロゲン化アリール基、又はこれらの複合基を表し、
 ZはSiR 、CR 、SiR SiR 、CR CR 、CR=CR、CR SiR 又はGeR を表し、但し、Rは上で定義した通りであり、
nは1、2又は3である。)
 本実施形態において用いられる遷移金属化合物成分[B-2]の具体例としては、特に限定されないが、例えば、以下に示すような化合物が挙げられる。
[(N-t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)-1,2-エタンジイル]チタニウムジメチル、
[(N-t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウムジメチル、
[(N-メチルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウムジメチル、
[(N-フェニルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウムジメチル、
[(N-ベンジルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウムジメチル、
[(Nt-ブチルアミド)(η5-シクロペンタジエニル)-1,2-エタンジイル]チタニウムジメチル、
[(N-t-ブチルアミド)(η5-シクロペンタジエニル)ジメチルシラン]チタニウムジメチル、
[(N-メチルアミド)(η5-シクロペンタジエニル)-1,2-エタンジイル]チタニウムジメチル、
[(N-メチルアミド)(η5-シクロペンタジエニル)ジメチルシラン]チタニウムジメチル、
[(N-t-ブチルアミド)(η5-インデニル)ジメチルシラン]チタニウムジメチル、
[(N-ベンジルアミド)(η5-インデニル)ジメチルシラン]チタニウムジメチル等。
 本実施形態において用いられる遷移金属化合物成分[B-2]の具体例としては、特に限定されないが、例えば、さらに、上に挙げた各チタン化合物の名称の「ジメチル」の部分(これは、各化合物の名称末尾の部分、すなわち「チタニウム」という部分の直後に現れているものであり、前記(式4)中のXの部分に対応する名称である)を、以下に掲げる任意のものに替えてできる名称を持つ化合物も挙げられる。
「ジクロル」、
「ジブロム」、
「ジヨード」、
「ジエチル」、
「ジブチル」、
「ジフェニル」、
「ジベンジル」、
「2-(N,N-ジメチルアミノ)ベンジル」、
「2-ブテン-1,4-ジイル」、
「s-トランス-η4-1,4-ジフェニル-1,3-ブタジエン」、
「s-トランス-η4-3-メチル-1,3-ペンタジエン」、
「s-トランス-η4-1,4-ジベンジル-1,3-ブタジエン」、
「s-トランス-η4-2,4-ヘキサジエン」、
「s-トランス-η4-1,3-ペンタジエン」、
「s-トランス-η4-1,4-ジトリル-1,3-ブタジエン」、
「s-トランス-η4-1,4-ビス(トリメチルシリル)-1,3-ブタジエン」、
「s-シス-η4-1,4-ジフェニル-1,3-ブタジエン」、
「s-シス-η4-3-メチル-1,3-ペンタジエン」、
「s-シス-η4-1,4-ジベンジル-1,3-ブタジエン」、
「s-シス-η4-2,4-ヘキサジエン」、
「s-シス-η4-1,3-ペンタジエン」、
「s-シス-η4-1,4-ジトリル-1,3-ブタジエン」、
「s-シス-η4-1,4-ビス(トリメチルシリル)-1,3-ブタジエン」等。
 このような遷移金属化合物成分[B-2]の具体例としては、[(N-t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウム錯体が好ましい。
 本実施形態において用いられる遷移金属化合物成分[B-2]は、特に限定されず、一般に公知の方法で合成できる。
 次に本実施形態において用いられる遷移金属化合物と反応して触媒活性を発現する錯体を形成可能な活性化剤[C]及び有機金属化合物成分[D]について説明する。
 本実施形態における活性化剤[C]として、特に限定されないが、例えば、下記(式5)で定義される化合物(C-1)が挙げられる。
(C-1):[L-H]d+[M d-・・・(式5)
但し、式中[L-H]d+はプロトン付与性のブレンステッド酸であり、Lは中性ルイス塩基である。また、式中[M d-は相溶性の非配位性アニオンであり、Mは周期律表第5族乃至第15族から選ばれる金属又はメタロイドであり、Qは各々独立にヒドリド、ジアルキルアミド基、ハライド、アルコキサイド基、アリロキサイド基、炭化水素基、炭素数20までの置換炭化水素基であり、またハライドであるQは1個以下である。また、rは1~7の整数であり、sは2~14の整数であり、dは1~7の整数であり、s-r=dである。
 非配位性アニオンとしては、特に限定されないが、例えば、以下に示すような化合物が挙げられる。
テトラキスフェニルボレート、
トリ(p-トリル)(フェニル)ボレート、
トリス(ペンタフルオロフェニル)(フェニル)ボレート、
トリス(2,4-ジメチルフェニル)(ヒドフェニル)ボレート、
トリス(3,5-ジメチルフェニル)(フェニル)ボレート、
トリス(3,5-ジ-トリフルオロメチルフェニル)(フェニル)ボレート、
トリス(ペンタフルオロフェニル)(シクロヘキシル)ボレート、
トリス(ペンタフルオロフェニル)(ナフチル)ボレート、
テトラキス(ペンタフルオロフェニル)ボレート、
トリフェニル(ヒドロキシフェニル)ボレート、
ジフェニル-ジ(ヒドロキシフェニル)ボレート、
トリフェニル(2,4-ジヒドロキシフェニル)ボレート、
トリ(p-トリル)(ヒドロキシフェニル)ボレート、
トリス(ペンタフルオロフェニル)(ヒドロキシフェニル)ボレート、
トリス(2,4-ジメチルフェニル)(ヒドロキシフェニル)ボレート、
トリス(3,5-ジメチルフェニル)(ヒドロキシフェニル)ボレート、
トリス(3,5-ジ-トリフルオロメチルフェニル)(ヒドロキシフェニル)ボレート、
トリス(ペンタフルオロフェニル)(2-ヒドロキシエチル)ボレート、
トリス(ペンタフルオロフェニル)(4-ヒドロキシブチル)ボレート、
トリス(ペンタフルオロフェニル)(4-ヒドロキシ-シクロヘキシル)ボレート、
トリス(ペンタフルオロフェニル)(4-(4’-ヒドロキシフェニル)フェニル)ボレート、
トリス(ペンタフルオロフェニル)(6-ヒドロキシ-2-ナフチル)ボレート、
トリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート等。
 他の好ましい非配位性アニオンの例としては、特に限定されないが、例えば、上記例示のボレートのヒドロキシ基がNHR基で置き換えられたボレートが挙げられる。ここで、Rは好ましくは、メチル基、エチル基又はtert-ブチル基である。
 また、プロトン付与性のブレンステッド酸としては、特に限定されないが、例えば、トリエチルアンモニウム、トリプロピルアンモニウム、トリ(n-ブチル)アンモニウム、トリメチルアンモニウム、トリブチルアンモニウム及びトリ(n-オクチル)アンモニウム等のようなトリアルキル基置換型アンモニウムカチオンが挙げられ、また、N,N-ジメチルアニリニウム、N,N-ジエチルアニリニウム、N,N-2,4,6-ペンタメチルアニリニウム、N,N-ジメチルベンジルアニリニウム等のようなN,N-ジアルキルアニリニウムカチオンも好適である。さらに、ジ-(i-プロピル)アンモニウム、ジシクロヘキシルアンモニウム等のようなジアルキルアンモニウムカチオンも好適であり、トリフェニルフォスフォニウム、トリ(メチルフェニル)ホスホニウム、トリ(ジメチルフェニル)ホスホニウム等のようなトリアリールホスホニウムカチオン、又はジメチルスルホニウム、ジエチルフルホニウム、ジフェニルスルホニウム等も好適である。
 本実施形態において用いられる活性化剤(C-1)は、有機アルミニウム化合物との反応物でもよい。有機アルミニウム化合物は、特に限定されないが、例えばトリメチルアルミニウム、トリエチルアルミニウム、トリブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム等、或いはこれらのアルキルアルミニウムとメチルアルコール、エチルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、オクチルアルコール、デシルアルコール等のアルコール類との反応生成物、例えばジメチルメトキシアルミニウム、ジエチルエトキシアルミニウム、ジブチルブトキシアルミニウム等が挙げられる。また、上記の有機アルミニウム化合物との反応物は単一で使用してもよく、混合して使用してもよい。
 また本実施形態において、活性化剤[C]として下記(式6)で表されるユニットを有する有機金属オキシ化合物(C-2)も用いることができる。
(C-2):-(M t-2-O)-・・・(式6)
(但し、Mは周期律表第13族~第15族の金属又はメタロイドであり、Rは各々独立に炭素数1~12の炭化水素基又は置換炭化水素基であり、tは金属Mの価数であり、uは2以上の整数である。)
 活性化剤(C-2)としては、特に限定されないが、例えば、下記(式7)で示される有機アルミニウムオキシ化合物が挙げられる。
[-Al(Me)-O-]-[-Al(R)-O-]・・・(式7)
式中、Rは炭素数1~12の炭化水基である。上記式において、Rは具体的には特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、シクロヘキシル基、シクロオクチル基などが挙げられる。これらの中でメチル基、エチル基が好ましく、特にメチル基が好ましい。上記式において、例えば、1種類のアルキルアルミニウム単位から構成される有機アルミニウムオキシ化合物の例としては、特に限定されないが、例えば、メチルアルモキサン、エチルアルモキサン、n-プロピルアルモキサン、イソプロピルアルモキサン、n-ブチルアルモキサン、イソブチルアルモキサン、ペンチルアルモキサン、ヘキシルアルモキサン、オクチルアルモキサン、デシルアルモキサン、シクロヘキシルアルモキサン、シクロオクチルアルモキサン等が挙げられる。これらの中でメチルアルモキサン、エチルアルモキサンが好ましく、特にメチルアルモキサンが好ましい。
 このように本実施形態に用いる有機アルミニウムオキシ化合物は、上記式で表されるアルキルオキシアルミニウム単位で構成されるものが挙げられるが、必ずしも1種類の構成単位よりなる化合物に限定されるものではなく、複数種類の構成単位よりなっていてもよい。具体的には、特に限定されないが、例えば、メチルエチルアルモキサン、メチルプロピルアルモキサン、メチルブチルアルモキサン等が挙げられ、各種構成単位の比は0~100%の範囲で任意に取り得る。また、1種類の構成単位よりなる複数種類の有機アルミニウムオキシ化合物の混合物であってもよい。具体的には、特に限定されないが、例えば、メチルアルモキサンとエチルアルモキサンの混合物、メチルアルモキサンとn-プロピルアルモキサンの混合物、メチルアルモキサンとイソブチルアルモキサンの混合物等が挙げられる。またv及びwは任意の数字を取ることができるが、製造の容易さの観点からvとwとの比v/wは0.1以上10以下が好ましく、0.3以上5以下がさらに好ましい。
 また本実施形態に用いる有機アルミニウムオキシ化合物は、その製造方法から来る未反応化学物質を含んでいても構わない。すなわち、一般に有機アルミニウムオキシ化合物は、トリアルキルアルミニウムとHOの反応によって得られるが、これら原料の一部が未反応化学物質として残存していても構わない。具体的には、特に限定されないが、例えば、メチルアルキサンの合成の場合は原料としてトリメチルアルミニウム及びHOを使用するが、これら原料の片方あるいは両方が、未反応化学物質としてメチルアルモキサン中に含まれている場合等が挙げられる。上記例示の有機アルミニウムオキシ化合物の製造方法においては、通常トリアルキルアルミニウムをHOよりも多く使用するため、残存化学物質として、トリアルキルアルミニウムが有機アルミニウムオキシ化合物に含まれることが多い。
 本実施形態における有機金属化合物成分[D]としては、周期律表第1族、第2族、第12族及び第13族からなる群より選択される少なくとも1種の金属を含有する化合物であることが好ましく、特に有機アルミニウム化合物及び/又は有機マグネシウム化合物が好ましい。
 有機アルミニウム化合物としては、下記(式8)で表される化合物を単独又は混合して使用することが好ましい。
  (D-1):AlR (3-l) ・・・(式8)
(式8中、Rは炭素数1以上20以下の炭化水素基、Zは水素、ハロゲン、アルコキシ、アリロキシ、シロキシ基からなる群に属するいずれかの基であり、lは2以上3以下の数である。)
 上記の(式8)において、Rで表される炭素数1以上20以下の炭化水素基は、特に限定されないが、例えば、脂肪族炭化水素、芳香族炭化水素、又は脂環式炭化水素を包含するものが挙げられ、具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、トリ(2-メチルプロピル)アルミニウム(又は、トリイソブチルアルミニウム)、トリペンチルアルミニウム、トリ(3-メチルブチル)アルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム等のトリアルキルアルミニウム;ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド、ビス(2-メチルプロピル)アルミニウムクロリド、エチルアルミニウムセスキクロリド、ジエチルアルミニウムブロミド等のハロゲン化アルミニウム化合物;ジエチルアルミニウムエトキシド、ビス(2-メチルプロピル)アルミニウムブトキシド等のアルコキシアルミニウム化合物;ジメチルヒドロシロキシアルミニウムジメチル、エチルメチルヒドロシロキシアルミニウムジエチル、エチルジメチルシロキシアルミニウムジエチル等のシロキシアルミニウム化合物及びこれらの混合物が好ましいものとして挙げられる。特に、トリアルキルアルミニウム化合物がより好ましい。
  有機マグネシウム化合物としては、前記(式1)で表される有機マグネシウム化合物(A-1)を単独又は混合して使用することが好ましい。
 前記(式1)におけるγ、δ、e、f、g、M、R、R、ORについてはすでに述べたとおりであるが、この有機マグネシウム化合物は、不活性炭化水素溶媒に対する溶解性が高い方が好ましいため、β/αは0.5~10の範囲にあることが好ましく、またMがアルミニウムである化合物がさらに好ましい。
 他の有機マグネシウム化合物としては、下記(式9)で表される有機マグネシウム化合物(D-2)を単独又は混合して使用することもできる。
 (D-2):(Mα(Mg)β(R(R10  ・・・(式9)
(式9中、Mは周期律表第12族、第13族及び第14族からなる群に属する金属原子であり、R及びR10は炭素数2以上20以下の炭化水素基であり、Yはアルコキシ、シロキシ、アリロキシ、アミノ、アミド、-N=C-R11,R12、-SR13(ここで、R11、R12及びR13は炭素数1以上20以下の炭化水素基を表す。cが2の場合には、Yはそれぞれ異なっていてもよい。)、β-ケト酸残基のいずれかであり、α、β、a、b及びcは次の関係を満たす実数である。0≦α、0<β、0≦a、0≦b、0≦c、0<a+b、0≦c/(α+β)≦2、mα+2β=a+b+c(ここで、mはMの原子価を表す。))
 次に、無機固体粒子[A]と、遷移金属化合物成分[B-1]と、遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とからポリエチレン重合触媒を製造する方法の一例について説明する。
 本実施形態においては、特に限定されないが、例えば、無機固体粒子[A]に対して、遷移金属化合物成分[B-1]、遷移金属化合物成分[B-2]、活性化剤[C]及び/又は有機金属化合物成分[D]を反応させることによりポリエチレン重合触媒を製造する。
 該反応は、不活性炭化水素溶媒中で行われることが好ましい。不活性炭化水素溶媒としては特に限定されないが、具体的には、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素、ベンゼン、トルエン等の芳香族炭化水素、及びシクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素等が挙げられる。これらの中でもヘキサン、ヘプタン等の脂肪族炭化水素溶媒中で行われることがさらに好ましい。
 該反応において、遷移金属化合物成分[B-1]及び遷移金属化合物成分[B-2]については、反応効率の観点から、不活性炭化水素溶媒中に溶解させた後に、反応に使用することが好ましい。また、溶解させる際の濃度については特に限定されないが、無機固体粒子[A]の表面上での偏析を避ける観点から、0.01mol/L以上5mol/L以下が好ましく、0.05mol/L以上2mol/L以下がより好ましい。
 該反応において、遷移金属化合物成分[B-1]及び遷移金属化合物成分[B-2]については、いずれか一方のみを使用することも可能であるが、ポリエチレンの長鎖分岐量を制御する観点から、どちらも使用することが好ましい。
 該反応において、活性化剤[C]及び有機金属化合物成分[D]については、ポリエチレンの長鎖分岐量制御を容易にする観点から、遷移金属化合物成分毎に種類や量を変えることが好ましい。また、活性化剤[C]及び有機金属化合物成分[D]の濃度については特に限定されないが、遷移金属化合物成分との反応性の観点から、0.01mol/L以上5mol/L以下が好ましく、0.05mol/L以上2mol/L以下がより好ましい。なお、活性化剤[C]及び有機金属化合物成分[D]の希釈には不活性炭化水素溶媒を用いることが好ましい。
 該反応において、遷移金属化合物成分[B-1]、遷移金属化合物成分[B-2]、活性化剤[C]、有機金属化合物成分[D]の添加方法は特に限定されないが、遷移金属化合物成分と活性化剤及び又は有機金属化合物成分との層を形成させる観点から、遷移金属化合物成分と、活性化剤及び/又は有機金属化合物成分とを事前に混合したものを無機固体粒子[A]に添加する方法や、無機固体粒子[A]に対して、遷移金属化合物成分と、活性化剤及び/又は有機金属化合物成分とを同時に添加する方法が好ましい。また、遷移金属化合物成分[B-1]から生成したマクロモノマーを、遷移金属化合物成分[B-2]に取り込ませる観点から、無機固体粒子[A]に対して、活性化剤[C]及び/又は有機金属化合物成分[D]により活性化された遷移金属化合物成分[B-1]を添加した後、活性化剤[C]及び/又は有機金属化合物成分[D]により活性化された遷移金属化合物成分[B-2]を添加することが好ましい。
 該反応の反応温度については特に限定されないが、反応効率の観点から、-20℃以上100℃以下であることが好ましく、0℃以上80℃以下であることがより好ましい。
 該反応において、遷移金属化合物成分[B-1]と遷移金属化合物成分[B-2]とのモル比([B-2]/[B-1])については特に限定されないが、ポリエチレンの長鎖分岐量を微量に制御する観点から、1以上1000以下であることが好ましく、5以上100以下であることがより好ましい。
 該反応において、遷移金属化合物成分[B-1]と活性化剤[C]とのモル比([C]/[B-1])については特に限定されないが、活性化剤[C]が(C-1)である場合、ポリエチレンの長鎖分岐量を微量に制御する観点から、0.1以上1以下であることが好ましく、0.1以上0.5以下であることがより好ましい。
 該反応において、遷移金属化合物成分[B-1]と活性化剤[C]のモル比([C]/[B-1])については特に限定されないが、活性化剤[C]が(C-2)である場合、ポリエチレンの長鎖分岐量を微量に制御し、かつポリエチレン中の金属残渣量を抑える観点から、1以上60以下であることが好ましく、1以上30以下であることがより好ましい。
 該反応において、遷移金属化合物成分[B-1]と有機金属化合物成分[D]のモル比([D]/[B-1])については特に限定されないが、ポリエチレンの長鎖分岐量を微量に制御し、かつポリエチレン中の金属残渣量を抑える観点から、1以上60以下であることが好ましく、1以上30以下であることがより好ましい。
 該反応において、遷移金属化合物成分[B-2]と活性化剤[C]とのモル比([C]/[B-2])については特に限定されないが、活性化剤[C]が(C-1)である場合、ポリエチレンの長鎖分岐量を微量に制御する観点から、0.5以上1.5以下であることが好ましく、0.9以上1.1以下であることがより好ましい。
 該反応において、遷移金属化合物成分[B-2]と活性化剤[C]とのモル比([C]/[B-2])については特に限定されないが、活性化剤[C]が(C-2)である場合、ポリエチレンの長鎖分岐量を微量に制御し、かつポリエチレン中の金属残渣量を抑える観点から、2以上200以下であることが好ましく、5以上100以下であることがより好ましい。
 該反応において、遷移金属化合物成分[B-2]と有機金属化合物成分[D]のモル比([D]/[B-1])については特に限定されないが、ポリエチレンの長鎖分岐量を微量に制御し、かつポリエチレン中の金属残渣量を抑える観点から、1以上60以下であることが好ましく、1以上30以下であることがより好ましい。
 次に、本実施形態のポリエチレンパウダーの重合において用いられる不純物の捕捉剤について説明する。
 本実施形態のポリエチレンパウダーの重合において用いられる不純物の捕捉剤については特に限定されないが、前記有機金属化合物成分[D]を用いることが好ましい。
 有機金属化合物成分[D]を重合条件下である重合系内に添加する方法については特に制限はなく、前記触媒成分と別々に重合系内に添加してもよいし、あらかじめ前記触媒成分と反応させた後に重合系内に添加してもよい。
 重合系内における有機金属化合物成分[D]の濃度については特に限定されないが、不純物を完全に捕捉する観点やポリマー中の金属残渣量の観点から、0.001mmol/L以上10mmol/L以下であることが好ましく、0.01mmol/L以上5mmol/L以下であることがより好ましく、0.05mmol/L以上2mmol/L以下であることがさらにより好ましい。
 本実施形態においては、有機金属化合物成分[D]は単独で使用してもよいし、二種類以上混合して使用してもよい。
(エチレン系重合体の重合方法)
 本実施形態のポリエチレンパウダーを構成するエチレン系重合体の重合方法としては、特に限定されないが、例えば、懸濁重合法又は気相重合法により、エチレンを重合する、又はエチレンとコモノマーとを共重合する方法が挙げられる。これらの中でも、重合熱を効率的に除熱できる懸濁重合法が好ましい。
 懸濁重合法においては、溶媒として不活性炭化水素媒体を用いることができ、さらにオレフィン自身を溶媒として用いることもできる。
 前記不活性炭化水素媒体としては、特に限定されないが、例えば、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;エチルクロライド、クロルベンゼン、ジクロロメタン等のハロゲン化炭化水素又はこれらの混合物等が挙げられる。
 本実施形態において、エチレンの重合における重合温度は、通常、30℃以上100℃以下が好ましく、35℃以上95℃以下がさらに好ましく、40℃以上90℃以下が特に好ましい。重合温度が30℃以上であることにより、工業的に効率的な製造が可能となる。一方、重合温度が100℃以下であることにより、重合体の一部が溶融して生成する塊状のスケールを抑制でき、配管が詰まることなく連続的で安定した製造が可能となる。
 本実施形態のポリエチレンパウダーの製造方法における、エチレン系重合体の重合圧力は、好ましくは常圧以上2MPaG以下であり、より好ましくは0.2MPaG以上1.5MPaG以下であり、さらにより好ましくは0.3MPaG以上0.9MPaG以下である。
 重合圧力が常圧以上であることにより、工業的に効率的な製造が可能となる。一方、重合圧力が2MPaG以下であることにより、重合反応器内での急重合による塊状のスケールを発生させることなく、安定した製造が可能となる傾向にある。
 一般的に、エチレン系重合体を重合する際には、重合反応器へのポリマーの静電気付着を抑制するためにInnospec社製(代理店丸和物産)のStadisやSTATSAFE等の静電気防止剤を使用することもできる。
 StadisやSTATSAFE等の静電気防止剤は、不活性炭化水素媒体に希釈したものをポンプ等により重合反応器に添加することができる。静電気防止剤の添加は、固体触媒に事前に添加する方法や、重合反応器に添加するなどの方法により行うことができ、添加量は、単位時間当たりのエチレン系重合体の生産量に対して、1ppm以上500ppm以下が好ましく、10ppm以上100ppm以下がより好ましい。
 エチレン系重合体の分子量は、西独国特許出願公開第3127133号明細書に記載されているように、重合系内に水素を存在させるか、又は重合温度を変化させること等によって制御することができる。重合系内に連鎖移動剤として水素を添加することにより、エチレン系重合体の分子量を適切な範囲で制御することが可能である。重合系内に水素を添加する場合、水素のモル分率は、0mol%以上50mol%以下であることが好ましく、0mol%以上30mol%以下であることがより好ましく、0mol%以上20mol%以下であることがさらに好ましい。
 また、重合系内に水素を添加する場合、水素は予め触媒と接触させた後、触媒導入ラインから重合系内に添加することも可能である。触媒を重合系内に導入した直後は、導入ライン出口付近の触媒濃度が高くなるために急重合が進行し、局所的な高温状態が生じる可能性が高まる。一方、水素と触媒を重合系内に導入する前に接触させることで、触媒の初期活性を抑制することが可能となり、急重合による塊状のスケールの発生や高温下での触媒の失活等を抑制することができる。
 なお、本実施形態では、上記のような各成分以外にもポリエチレンの製造に有用な他の公知の成分を含むことができる。
 重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができ、連続式で行うことが好ましい。
 エチレンガス、溶媒、触媒等を連続的に重合系内に供給し、生成したエチレン系重合体と共に、これらを連続的に排出することにより、急激なエチレンの反応によって部分的に高温状態になることを抑制することができ、重合系内がより安定化する。
 重合系内で均一な状態でエチレンが反応すると、ポリマー鎖中に分岐や二重結合等が生成されることが抑制され、又はエチレン重合体の分解や架橋によって低分子量成分や、超高分子量体が生成されることが抑制され、エチレン系重合体の結晶性成分が生成しやすくなる。これにより、微多孔膜等に要求される強度を達成するために必要十分な量の結晶性成分が得られやすくなる。
 また、エチレン系重合体の重合反応は、一つの重合反応器を用いる単段重合法であってもよく、直列に接続した二つ以上の重合器で順次連続的に重合する多段重合法であってもよい。
 本実施形態のポリエチレンパウダーを構成するエチレン系重合体を含む懸濁液は、重合反応器から定量的に抜出し、フラッシュタンクへ移送され、未反応のエチレン、水素、コモノマー(反応器で共重合を行う場合に限る)が分離される。
 本実施形態のポリエチレンパウダーの重合工程における溶媒分離方法は、デカンテーション法、遠心分離法、フィルター濾過法等のいずれも適用できるが、エチレン系重合体と溶媒との分離効率がよい遠心分離法がより好ましい。
 本実施形態のポリエチレンパウダーを構成するエチレン系重合体の重合工程で使用した触媒の失活方法は、特に限定されないが、触媒の失活は、エチレン系重合体と溶媒を分離した後に実施することが好ましい。
 ポリエチレンパウダーを溶媒と分離した後に触媒を失活させるための薬剤を導入することにより、溶媒中に含まれる低分子量成分や触媒成分等がエチレン系重合体中で析出することを抑制することができる。
 触媒を失活させる薬剤としては、特に限定されないが、例えば、酸素、水、アルコール類、グリコール類、フェノール類、一酸化炭素、二酸化炭素、エーテル類、カルボニル化合物、アルキン類等が挙げられる。
 本実施形態のポリエチレンパウダーの製造方法において、エチレン系重合体を溶媒から分離した後、乾燥工程を実施することが好ましい。乾燥工程では、ロータリーキルン方式やパドル方式や流動乾燥機等を用いることが好ましい。また、乾燥温度としては50℃以上150℃以下が好ましく、70℃以上110℃以下がより好ましい。
 また、乾燥機に窒素等の不活性ガスを導入し乾燥を促進することも効果的である。その際に、触媒を失活させる薬剤としてスチーム等を同伴させる方法もさらに効果的である。
 本実施形態のポリエチレンパウダーを構成するエチレン系重合体の乾燥後、粗粉を取り除くために篩にかけてもよい。
 本実施形態のポリエチレンパウダーは、上述の製造方法により得られたエチレン系重合体を含む複数のポリエチレンパウダーの混合物であってもよい。
 また、必要に応じて、スリップ剤、中和剤、酸化防止剤、耐光安定剤、帯電防止剤、顔料等の公知の添加剤と組み合わせて用いてもよい。
 スリップ剤又は中和剤としては、特に限定されないが、例えば、脂肪族炭化水素、高級脂肪酸、高級脂肪酸金属塩、アルコールの脂肪酸エステル、ワックス、高級脂肪酸アマイド、シリコーン油、ロジン等が挙げられる。具体的には、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛等のステアリン酸塩は、好適な添加剤として挙げることができる。
 酸化防止剤としては、特に限定されないが、例えば、フェノール系化合物、若しくはフェノールリン酸系化合物が好ましい。具体的には、2,6-ジ-t-ブチル-4-メチルフェノール(ジブチルヒドロキシトルエン)、n-オクタデシル-3-(4-ヒドロキ-3,5-ジ-t-ブチルフェニル)プロピオネート、テトラキス(メチレン(3,5-ジ-t-ブチル-4-ヒサロキシハイドロシンナメート))メタン等のフェノール系酸化防止剤;6-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-t-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン等のフェノールリン系酸化防止剤;テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレン-ジ-ホスフォナイト、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、サイクリックネオペンタンテトライルビス(2,4-t-ブチルフェニルフォスファイト)等のリン系酸化防止剤が挙げられる。
 耐光安定剤としては、特に限定されないが、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール等のベンゾトリアゾール系耐光安定剤;ビス(2,2,6,6-テトラメチル-4-ピペリジン)セバケート、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]等のヒンダードアミン系耐光安定剤が挙げられる。
 帯電防止剤としては、特に限定されないが、例えば、アルミノケイ酸塩、カオリン、クレー、天然シリカ、合成シリカ、シリケート類、タルク、珪藻土等や、グリセリン脂肪酸エステル等が挙げられる。
〔用途〕
 本実施形態のポリエチレンパウダーは、微多孔膜、繊維、特に高強度繊維、焼結体、プレス成形体、ラム押し成形体といった各種成形体の原料として使用することができる。
 特に本実施形態のポリエチレンパウダーは、電池セパレータ用の微多孔膜の原料として好適である。
〔成形体〕
 本実施形態の成形体は、上述した本実施形態のポリエチレンパウダーの成形体である。
 成形体としては、特に限定されないが、例えば、微多孔膜、特に電池セパレータである微多孔膜、繊維、特に高強度繊維、焼結体、プレス成形体、ラム押し成形体等が挙げられる。
 成形体の製造方法としては、特に限定されないが、例えば、湿式押出法を用いた樹脂の押出、延伸、抽出、乾燥の工程を経る成形方法が挙げられる。
 上述の電池セパレータとしては、特に限定されないが、例えば、リチウムイオン二次電池用セパレータや鉛蓄電池用セパレータ等が挙げられる。
 以下に、具体的な実施例及び比較例によって本実施形態をさらに詳細に説明するが、本発明は、以下の実施例及び比較例により何ら限定されるものではない。
 まず、ポリエチレンパウダーの物性の評価方法について説明する。
〔ポリエチレンパウダーの物性〕
(粘度平均分子量(Mv))
 ポリエチレンパウダーの粘度平均分子量は、ISO1628-3(2010)に従って、以下に示す方法によって測定した。
 まず、溶解管に、ポリエチレンパウダーを、4.0~4.5mgの範囲内で秤量した。秤量した質量を下記数式中で「m(単位:mg)」と表記する。次に、溶解管内部の空気を真空ポンプで脱気し窒素で置換した後、20mLのデカヒドロナフタレン(2,6-ジ-t-ブチル-4-メチルフェノールを1g/L加え、真空ポンプで脱気し窒素で置換したもの、以下、デカリンと表記する。)を加え、150℃で90分間攪拌してポリエチレンパウダーを溶解させ、デカリン溶液とした。
 その後、前記デカリン溶液を、135℃の恒温液槽中で、キャノン-フェンスケ粘度計(柴田科学器械工業社製/粘度計番号:100)に投入し、標線間の落下時間(t)を測定した。
 さらに、ブランクとしてポリエチレンパウダーを入れていない、デカリンのみの落下時間(t)を測定し、下記の(数式A)に従って比粘度(ηsp)を求めた。
    ηsp=(t/t)-1  (数式A)
 比粘度(ηsp)と、濃度(C)(単位:g/dL)とから、下記(数式B)、(数式C)を用いて、極限粘度IV([η])を算出した。
    濃度C=m/(20×γ)/10(単位:g/dL) (数式B)
    γ=(デカリン20℃での密度)/(デカリン135℃での密度)
     =0.888/0.802=1.107
    極限粘度IV=(ηsp/C)/(1+0.27×ηsp) (数式C)   
 この極限粘度IVを、下記(数式D)に代入し、粘度平均分子量(Mv)を求めた。
    粘度平均分子量(Mv)=(5.34×10)×[η]1.49  (数式D)
(2回目の昇温過程のDSC曲線におけるピークトップの温度とピークの収束点との温度差(結晶厚みパラメータ))
 示差走査熱量計(パーキンエルマー社製/製品名:DSC8000)を用いて次に示す方法により求めた。
 まず、ポリエチレンパウダー8.5mgを封入したアルミパンをDSC装置内の加熱炉に入れ、次に示す<測定条件>に従って加熱操作を行った。ただし、加熱操作は全て窒素雰囲気下で行った。
<測定条件>
(1)50℃で1min静置
(2)10℃/minで50℃から180℃に昇温(昇温1回目)
(3)180℃で5min静置
(4)10℃/minで180℃から50℃に冷却
(5)50℃で5min静置
(6)10℃/minで50℃から180℃に昇温(昇温2回目)
 そして、2回目の昇温過程で得られた吸熱ピークにおいて、ピークトップを示す温度(Tm2top)とピークの収束点(Tm2end)とを求めた。
 最後に、各温度の値を次に示す(数式E)に代入し、2回目の昇温過程のDSC曲線におけるピークトップの温度とピークの収束点との温度差(結晶厚みパラメータ)を算出した。
(温度差)=Tm2end-Tm2top (数式E)
 なお、Tm2endについては、次に示す手順で算出した。
<Tm2end算出手順>
(1)2回目の昇温過程で得られた吸熱量を温度で微分する。
(2)(1)で得られた微分値の絶対値について、Tm2topから数えて、初めて0.01以下になるときの温度をTm2endとした。
(z-平均収縮因子g
 示差屈折計(RI)及び粘度検出器(Viscometer)を装備したゲルパーミエーションクロマトグラフィー(GPC)測定装置(Agilent社製/製品名:PL-GPC220)を用いて、次に示す方法により算出した。
 まず、所定量のポリエチレンパウダーを1,2,4-トリクロロベンゼン(富士フィルム和光純薬社製、酸化防止剤4,4’-チオビス(2-t-ブチル-5-メチルフェノール)を125mg/Lの濃度で添加)に加えた。このとき、濃度は次の<試料濃度>に示すように調製した。
<試料濃度>
 Mvが30万未満の場合:10mg/10mL
 Mvが30万以上100万未満の場合:3mg/10mL
 Mvが100万以上200万未満の場合:2mg/10mL
 Mvが200万以上300万未満の場合:1.5mg/10mL
 Mvが300万以上の場合:1.5mg/15mL
 さらに、調製した試料溶液を次に示す<溶解条件>に従って加熱振とうした。溶解後の試料溶液は冷却することなく160℃に加熱したのオートサンプラーへ設置した。
<溶解条件>
 (1)150℃に加熱しながら1時間静置
 (2)150℃に加熱しながら2時間振とう
 (3)150℃に加熱しながら30分静置
 次に、下記に示す<GPC測定条件>に従って測定を実施した。
<GPC測定条件>
 示差屈折計(RI):装置内蔵
 粘度検出器(Viscometer):PL-BV400 型
 検出器接続方法:並列に接続
 カラム:PLgel 20μm MIXED-A 300×7.5mm(Agilent社製)
 カラム接続方法:上述のカラムを2本直列に接続
 移動相:1,2,4-トリクロロベンゼン(富士フィルム和光純薬社製、酸化防止剤4,4’-チオビス(2-t-ブチル-5-メチルフェノール)を125mg/Lの濃度で添加)
 カラム温度:160℃
 検出器温度:160℃
 試料溶液温度:160℃
 試料注入部温度:160℃
 サンプル注入量:0.5mL
 流量:1.0mL/min
 なお、次に示す<校正曲線作成用サンプル>を使用して、ユニバーサル校正法によりカラムの校正を実施した。
<校正曲線作成用サンプル>
 Agilent社製 EasiVialTMPS-Hポリスチレン(High MW)
 Agilent社製 PLポリマースタンダード(品番:PL2013-6001)
 Agilent社製 PLポリマースタンダード(品番:PL2014-9001)
 次に、上述の条件により測定して得られたデータについて、Agilent社製CIRRUS GPC/SEC Software(version3.4)を用いて解析を行い、Mark-Houwink Plotを作成した(横軸に分子量MW、縦軸に極限粘度IVをプロットした両対数グラフ)。このプロット図において、ピークトップ分子量よりも低分子量側の領域で、かつ両対数グラフが直線的に動いている領域について、下記の(数式F)でフィッティングを行い、(数式G)で示される直鎖基準線を作成した。
 log10IV=alog10MW+log10C (数式F)
 log10IV=alinearlog10MW+log10linear (数式G)
(数式F及び数式G中、aとCはフィッティング時の変数、alinearとClinearはいずれもフィッティングで得られる定数である)
 続いて、下記(数式H)及び(数式I)を用いて、同分子量におけるサンプルの極限粘度IVsample及び直鎖基準線の極限粘度IVlinearの値を用いてg’及びg’を算出した。
 g’=IVsample/IVlinear (数式H)
 g’=Σ(Conc×MW×g’)/Σ(Conc×MW) (数式I)
(数式I中、Concはi番目の分画における溶液濃度、MWはi番目の分画における分子量、g’はi番目の分画におけるg’である)
 最後に、下記(数式J)を用いて、z-平均収縮因子gを算出した。
 z-平均収縮因子g =g’ (1/0.75) (数式J)
(延伸性評価)
 (株)東洋精機社製、ラボプラストミルミキサー(本体型式:30C150、ミキサー形式:R-60)及び同時二軸延伸機を用いて、次に示す方法により評価した。
 まず、樹脂製の容器中、ポリエチレンパウダー12g、酸化防止剤であるADEKA社製、Pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate](製品名:アデカスタブAO-60G)0.4g、(株)MORESCO製、流動パラフィン(製品名:P-350P)28gをよく混合して混合物を得た。
 次に、温度200℃に設定した(株)東洋精機社製、ラボプラストミルミキサー(本体型式:30C150、ミキサー形式:R-60)に上述の混合物を投入し、回転数5rpmの条件で10分間混練後、さらに続けて、回転数50rpmの条件で10分間混練し、ポリエチレンゲルを得た。このゲルは下記に示す<ゲルシート作製条件>に基づきシート成形した。
<ゲルシート作製条件>
(1)上述のポリエチレンゲルを200mm×200mm×厚み1mmの金型に充填した。
(2)金型を、設定温度180℃のプレス機で、1kg/cmで3分間予熱し、3回脱泡操作を行い、10kg/cmで2分間プレスした。
(3)室温の冷却プレス機で、10kg/cmで10分間、金型を冷却した。
(4)100mm×100mm×厚み1mmに裁断し、ゲルシートを得た。
 こうして得られたゲルシートについて、115℃で同時二軸延伸機を用いて7×7倍に延伸し、延伸フィルムを得た。このとき、次の(延伸性評価基準)に従って延伸性を評価した。
(延伸性評価基準)
  ○(合格):破膜なし
  ×(不合格):破膜あり
(400cm-1~450cm-1における吸収係数)
 フーリエ変換型遠赤外分光装置(日本分光株式会社製、型式:VIR-F4000)を用いて、次に示す方法(テラヘルツ測定)により400cm-1~450cm-1における吸収係数を測定した。
 まず、加熱自動プレス機(株式会社神藤金属工業所製、型式:SFA-37H)及び冷却手動プレス機(王子機械株式会社製、型式:J-37)を用いて、ポリエチレンパウダーを、下記に示す<プレス条件>に基づきシート成形した。
<プレス条件>
(1)ポリエチレンパウダー8gを50mm×50mm×厚み2mmの金型に充填した。
(2)金型を、設定温度210℃の加熱自動プレス機で、5kg/cmで5分間予熱し、3回脱泡操作を行い、15kg/cmで25分間プレスした。
(3)室温の冷却手動プレス機で、10kg/cmで10分間、金型を冷却してシートを得た。
  次に、得られたシートを直径20mmの円盤に打ち抜き、測定サンプルを得た。この測定サンプルについて、フーリエ変換型遠赤外分光装置(日本分光株式会社製、型式:VIR-F4000)を用いて下記に示す<テラヘルツ測定条件>により測定した。
<テラヘルツ測定条件>
 波数領域  :50~600cm-1
 測定環境  :大気中、室温(25℃)
 光源    :セラミック
 ビーム径  :約8~9mm
 ホルダー穴径:10mm
 さらに、上記測定条件により得られた入射光強度Iと透過光強度Iに基づいて、下記(数式K)によって各波数における吸収係数を算出し、400cm-1~450cm-1における吸収係数を算出した。
   α=-log10(I/I)/0.4343x  ・・・ (数式K)
   α :吸収係数[cm-1
   I0 :入射前の電磁波の強度
   I :入射後の電磁波の強度(透過光強度)
   x :試料厚[cm]
H-NMR測定)
 核磁気共鳴装置(Bruker社製/製品名:AvanceNEO600)を用いて、次に示す方法により求めた。
 まず、下記の<NMR測定条件>に従って測定を行った。
<NMR測定条件>
 観測核:
 観測周波数:600MHz
 パルスプログラム:zg30
 パルス待ち時間:1sec
 積算回数:1024回
 測定温度:130℃
 化学シフト基準:7.219ppm(o-DCBz)
 試料濃度:1wt%
 試料菅:5mmΦ
 次に、得られたデータについて、(1)4.8ppm~5.0ppm及び(2)5.6ppm~6.0ppmの2つの領域におけるシグナル(ピーク)の有無を確認した。
(アルミニウム含有量及びケイ素含有量)
 ポリエチレンパウダーを、JISK0133に準拠して、高周波プラズマ質量分析により元素含有量を測定した。試料の調製は、マイクロウェーブ分解装置(型式ETHOSTC、マイルストーンゼネラル(株)製)を用いて、硝酸で加圧酸分解することで実施した。調製した試料について、ICP-MS(誘導結合プラズマ質量分析装置、型式XシリーズX7、サーモフィッシャーサイエンティフィック社製)を用いて、内標準法にて、ポリエチレンパウダー中のアルミニウム含有量及びケイ素含有量の定量を行った。
(2回目の昇温過程のDSC曲線におけるピークトップの温度)
 上述の(2回目の昇温過程のDSC曲線におけるピークトップの温度とピークの収束点との温度差)を求める際のDSC測定において、2回目の昇温過程のDSC曲線におけるピークトップを示す温度(Tm2top)を求めた。
(密度)
 ポリエチレンパウダーの密度を、以下に示す方法(1)~(7)により求めた。
 (1)ポリエチレンパウダーを100mm×100mm×厚み2mmの金型に充填した。
 (2)金型を、設定温度190℃のプレス機で、10kg/cmで3分間予熱し、3回脱泡操作を行い、15kg/cmで2分間プレスした。
 (3)冷却プレスにて金型を室温まで冷却してプレスシートを得た。
 (4)得られたプレスシートから、20mm×20mm×厚み2mmの切片を切り出した。
 (5)切り出した切片を試験管に投入し、窒素雰囲気下、120℃で1時間加熱した。
 (6)加熱後、切片を20℃で1時間冷却し、密度測定用の成形体試料を得た。
 (7)JIS K7112:1999(D法)に準拠して上述の成形体試料の密度を測定し、得られた値をポリエチレンパウダーの密度(kg/m)とした。
(触媒成分中の遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]に含まれる中心金属Mの含有量(mol)及び中心金属Mの含有量(mol)とAlの含有量(mol)とのモル比(Al/M))
 マイクロ波プラズマ原子発光分光分析装置(Agilent社製、型式:4210 MP-AES/G8007A)を用いて、触媒成分中の元素含有量を測定した。
 まず、下記に示す<分解条件>に基づき、触媒成分の酸分解溶液を調製した。
<分解条件>
 (1)窒素雰囲気下、触媒成分100mg~500mgを耐圧容器に量り取る。
 (2)(1)の耐圧容器に、硫酸(1+1)を10mL加え、1時間以上撹拌する。
 (3)(2)で得られた水溶液を100mLにメスアップする。
 (4)(3)で得られた水溶液2mL~20mLを分取し、さらに100mLにメスアップする。分取量は後述の測定における発光量に応じて適宜調整する。
 次に、得られた酸分解溶液について、下記に示す<MP-AES測定条件>に基づき、マイクロ波プラズマ原子発光分光分析装置(Agilent社製、型式:4210 MP-AES/G8007A)を用いて、外部標準法にて、触媒成分中の遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]に含まれる中心金属Mの含有量(mol)及びAlの含有量(mol)の定量を行って、それらのモル比(Al/M)を算出した。
<MP-AES測定条件>
 装置較正用標準液:ICP-OES & MP-AES Wavecal:Al,As,Ba,Cd,Co,Cr,Cu,Mn,Mo,Ni,Pb,Se,Sr,Zn(5mg/L);K(50mg/L) in 5% HNO
 バックグラウンド補正:オート
 リード時間:3s
 観測位置:0
 ネブライザー流量:M(0.5~1.0L/min)、Al(0.95L/min)
 測定繰り返し回数:3
 ポンプ速度:15rpm
 取り込み時間:15s
 安定化時間:15s
 ピクセル数:3
 検量線作成用標準液:各元素に対応する原子吸光分析用標準液(関東化学株式会社製)
 検量線濃度:0.5mg/L、1mg/L、2mg/L、5mg/L、10mg/L、20mg/L、50mg/L、100mg/Lの8点
〔微多孔膜の製造、及び特性の評価〕
(微多孔膜の製造方法)
 まず、樹脂製の容器中、各実施例及び比較例のポリエチレンパウダー12g、酸化防止剤であるADEKA社製、Pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate](製品名:アデカスタブAO-60G)0.4g、(株)MORESCO製、流動パラフィン(製品名:P-350P)28gをよく混合して混合物を得た。
 次に、温度200℃に設定した(株)東洋精機社製、ラボプラストミルミキサー(本体型式:30C150、ミキサー形式:R-60)に上述の混合物を投入し、回転数5rpmの条件で10分間混練後、さらに続けて、回転数50rpmの条件で10分間混練し、ポリエチレンゲルを得た。このゲルは下記に示す<ゲルシート作製条件>に基づきシート成形した。
<ゲルシート作製条件>
(1)上述のポリエチレンゲルを200mm×200mm×厚み1mmの金型に充填した。
(2)金型を、設定温度180℃のプレス機で、1kg/cmで3分間予熱し、3回脱泡操作を行い、10kg/cmで2分間プレスした。
(3)室温の冷却プレス機で、10kg/cmで10分間、金型を冷却してゲルシートを得た。
 こうして得られたゲルシートについて、115℃(ポリエチレンの粘度平均分子量10万以上250万未満の場合)、又は120℃(ポリエチレンの粘度平均分子量250万以上400万以下の場合)で同時二軸延伸機を用いて7×7倍に延伸し、延伸フィルムを得た。その後、この延伸フィルムについて、ノルマルヘキサンへの20分間の浸漬を2回繰り返し、流動パラフィンを抽出除去後、風乾した。さらに125℃、3分で熱固定し、微多孔膜を得た。
 ただし、延伸温度と熱固定温度については、指定した温度内の中で、微多孔膜ごとに適宜調整を行った。
(微多孔膜の耐熱性の評価)
 耐熱性の評価指標として、微多孔膜の高温における熱収縮率を評価した。
 具体的には、上述した〔微多孔膜の製造方法〕により得られた微多孔膜について、250mm×250mmの中から100mm×50mmの膜を8枚打ち抜き、140℃に設定したオーブンに60分間静置した。
 加熱静置後に室温で15分間冷却した後、微多孔膜の寸法を測定し、下記式から熱収縮率(%)を算出した。
 そして、合計で8点の測定値の平均を算出し、下記の評価基準により耐熱性を評価した。
(熱収縮率)=((長辺方向の熱収縮率)+(短辺方向の熱収縮率))/2
(長辺方向の熱収縮率)=(1-D長辺140/D長辺23)×100
(短辺方向の熱収縮率)=(1-D短辺140/D短辺23)×100
 D長辺140:140℃における長辺方向の寸法[mm]
 D長辺23:23℃における長辺方向の寸法[mm]
 D短辺140:140℃における短辺方向の寸法[mm]
 D短辺23:23℃における短辺方向の寸法[mm]
(評価基準)
  ◎(良い):40%未満
  ○(普通):40%以上50%未満
  ×(悪い):50%以上
(微多孔膜の均一性の評価)
 均一性の評価指標として、微多孔膜の厚みの均一性を評価した。
 上述した〔微多孔膜の製造方法〕により得られた微多孔膜について、250mm×250mmの中から100mm×50mmの膜を8枚打ち抜き、各膜について(株)東洋精機製作所製微小測厚機(型式:KBM)を用いて、23℃条件下、膜厚の測定を行った。膜厚の測定は、一枚の打ち抜き膜につき3箇所実施した。
 そして、合計で24点の測定値の標準偏差を算出し、下記の評価基準により均一性を評価した。
(評価基準)
  ◎(良い):0.5μm未満
  ○(普通):0.5μm以上1μm未満
  ×(悪い):1μm以上
(微多孔膜の寸法安定性の評価)
 寸法安定性の評価指標として、微多孔膜の熱収縮率を評価した。
 具体的には、上述した〔微多孔膜の製造方法〕により得られた微多孔膜について、250mm×250mmの中から100mm×50mmの膜を8枚打ち抜き、120℃に設定したオーブンに60分間静置した。
 加熱静置後に室温で15分間冷却した後、微多孔膜の寸法を測定し、下記式から熱収縮率(%)を算出した。
 そして、合計で8点の測定値の平均を算出し、下記の評価基準により寸法安定性を評価した。
(熱収縮率)=((長辺方向の熱収縮率)+(短辺方向の熱収縮率))/2
(長辺方向の熱収縮率)=(1-D長辺120/D長辺23)×100
(短辺方向の熱収縮率)=(1-D短辺120/D短辺23)×100
 D長辺120:120℃における長辺方向の寸法[mm]
 D長辺23:23℃における長辺方向の寸法[mm]
 D短辺120:120℃における短辺方向の寸法[mm]
 D短辺23:23℃における短辺方向の寸法[mm]
(評価基準)
  ◎(良い):10%未満
  ○(普通):10%以上20%未満
  ×(悪い):20%以上
(微多孔膜の高耐熱化率の評価)
 上述の(微多孔膜の製造方法)において、各実施例及び比較例のポリエチレンパウダー12gの代わりに、粘度平均分子量(Mv)30万の高密度ポリエチレン「SH800」(商標、旭化成社製)12gを使用して得られる微多孔膜と、上述の(微多孔膜の製造方法)において、各実施例及び比較例のポリエチレンパウダー12gの代わりに、粘度平均分子量(Mv)30万の高密度ポリエチレン「SH800」(商標、旭化成社製)8.4g並びに各実施例及び比較例のポリエチレンパウダー3.6gを使用して得られる微多孔膜について、上述の(微多孔膜の耐熱性の評価)に記載の方法で評価を行った。そして、下記の評価基準により高耐熱化率を評価した。
(高耐熱化率)=(1-S添加後/S添加前)×100
添加後:各実施例及び比較例のポリエチレンパウダーを添加した微多孔膜の熱収縮率[%]
添加前:高密度ポリエチレン「SH800」のみを使用した微多孔膜の熱収縮率[%]
(評価基準)
  ◎(良い):20%以上
  ○(普通):10%以上20%未満
  ×(悪い):10%未満
〔触媒成分の調製〕
(無機固体粒子[A]:(a-1)~(a-3)の調製)
 下記の(1)~(2)に従い、無機固体粒子(a-1)~(a-3)を調製した。
(無機固体粒子(a-1)の調製)
<(1)有機マグネシウム化合物(A-1)の合成>
 充分に窒素置換された8Lステンレス製オートクレーブに、1mol/LのMg(C12AL(Cのヘキサン溶液2,000mL(マグネシウムとアルミニウムで2000mmol相当)を仕込み、50℃で攪拌しながら、オートクレーブに接続したフィードラインから5.47mol/Lのn-ブタノールヘキサン溶液146mLを3時間かけて滴下し、終了後、前記ラインを300mLのヘキサンで洗浄した。さらに、50℃で2時間かけて攪拌を継続した。反応終了後、常温まで冷却したものを原料(A-1)とした。原料(A-1)はマグネシウムの濃度で0.704mol/Lの、有機マグネシウム化合物であった。
<(2)無機固体粒子(a-1)の合成>
 充分に窒素置換された8Lステンレス製オートクレーブに、1mol/Lのトリクロロシランのヘキサン溶液1,000mLを仕込み、65℃で前記原料(A-1)の有機マグネシウム化合物のヘキサン溶液1340mL(マグネシウム943mmol相当)を3時間かけて滴下し、さらに65℃で1時間攪拌しながら反応を継続させた。反応終了後、上澄み液を除去し、1,800mLのヘキサンで4回洗浄し、無機固体粒子(a-1)(塩化マグネシウム粒子)を得た。この粒子を分析した結果、固体1g当たりに含まれるマグネシウムは7.5mmolであった。
(無機固体粒子(a-2)の調製)
 充分に窒素置換された8Lステンレス製オートクレーブに、加熱処理後のシリカ(富士シリシア社製/製品名:Q-6)130gとヘキサン2500mLとを仕込み、スラリーを得た。得られたスラリーを攪拌下20℃に保ちながら、1mol/Lのメチルアルミノキサン(トルエン溶液、東ソーファインケム社製)を260mL加え、その後2時間攪拌しながら反応を継続させた。反応終了後、上澄み液を除去し、1,800mLのヘキサンで4回洗浄し、無機固体粒子(a-2)を得た。
(無機固体粒子(a-3)の調製)
 充分に窒素置換された300mLガラス製容器に、加熱処理後のシリカ(Grace Davision社製/製品名:Sylopol952)10gとトルエン100mLとを仕込み、スラリーを得た。得られたスラリーを攪拌下80℃に保ちながら、1mol/Lのメチルアルミノキサン(トルエン溶液、東ソーファインケム社製)を90mL加え、その後1時間攪拌した。撹拌後、容器温度を室温まで冷却し、1mol/Lのメチルアルミノキサン(トルエン溶液、東ソーファインケム社製)を40mL加え、さらに1時間攪拌しながら反応を継続させた。反応終了後、上澄み液を除去し、100mLのトルエンで4回洗浄し、無機固体粒子(a-3)を得た。
(遷移金属化合物成分[B-2]:(b-1)の調製)
 充分に窒素置換された3Lガラス製容器中で、200mmolの[(N-t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウム-1,3-ペンタジエンをアイソパーE[エクソンケミカル社製]1000mlに溶解させ、1mol/Lのエチルブチルマグネシウム(ヘキサン溶液)を40ml加えた。さらにヘキサンを加えてチタニウム錯体濃度を0.08mol/Lに調整し、遷移金属化合物成分(b-1)を得た。
(活性化剤[C]:(c-1)の調製)
 充分に窒素置換された500mLガラス製容器中で、17.8gのビス(水素化タロウアルキル)メチルアンモニウム-トリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレートをトルエン156mlに添加して溶解し、ボレートの100mMトルエン溶液を得た。このボレートのトルエン溶液を25℃に保ちながら、1mol/Lのジエチルアルミニウムエトキシド(ヘキサン溶液)を15.6mlを加え、さらにヘキサンを加えてトルエン溶液中のボレート濃度を0.08mol/Lに調節した。その後、25℃で1時間攪拌することにより活性化剤(c-1)を調製した。
(有機金属化合物成分[D]:(d-1)の合成)
 充分に窒素置換された8Lステンレス製オートクレーブに、1mol/LのMg(C12AL(Cのヘキサン溶液2,000mL(マグネシウム及びアルミニウムで2000mmol相当)とを仕込み、80℃で攪拌しながら、8.33mol/Lのメチルハイドロジエンポリシロキサン(信越化学工業社製)のヘキサン溶液240mLを圧送し、さらに80℃で2時間かけて攪拌しながら反応を継続させた。反応終了後、常温まで冷却したものを有機金属化合物成分(d-1)とした。有機金属化合物成分(d-1)はマグネシウムとアルミニウムとの合計濃度で0.786mol/Lであった。
(実施例1)
(触媒成分(A)の調製)
 充分に窒素置換された50mLガラス製容器中で、0.0011mmolのビス(ペンタメチルシクロペンタジエニル)チタニウムジクロリド(Cp TiCl)をトルエン3mLに溶解させ、1.42mol/Lのモディファイドメチルアルミノキサン(MMAO、ヘキサン溶液、東ソーファインケム社製)を加え、25℃にて1時間反応させ、活性種(A1)を得た。
 次に、前記無機固体粒子(a-1)0.44gを含有するヘキサンスラリー10mLを25℃に保ちながら、前記活性種(A1)の溶液を全量加え、1時間反応させた。反応終了後、上澄み液を除去し、ヘキサンで4回洗浄することにより、未反応原料成分を除去した。なお、本反応により、前記無機固体粒子(a-1)の表面に前記活性種(A1)の層が形成された。さらに、前記遷移金属化合物成分(b-1)1.4mLと活性化剤(c-1)1.4mLとを同時に添加し、2時間反応させた。反応終了後、上澄み液を除去し、ヘキサンで4回洗浄することにより、未反応原料成分を除去し、触媒成分(A)を得た。なお、上記の通り、前記活性種(A1)の担持後に前記遷移金属化合物成分(b-1)及び活性化剤(c-1)を担持(複数段担持)することで、前記無機固体粒子(a-1)の表面に二層構造が形成された。
(実施例2~9、比較例2,5,6)
(触媒成分(B)~(H)、(J)、(M)、(N)、(E’)の調製)
 触媒の合成条件を表1及び2のとおりに変更した以外は、触媒成分(A)の調製方法と同様に触媒成分(B)~(H)、(J)、(M)、(N)、(E’)を調製した。
(実施例10)
(触媒成分(O)の調製)
 触媒の合成条件を表1のとおりに変更し、前記活性種(A1)を得る事前混合工程における反応温度を90℃とした以外は、触媒成分(A)の調製方法と同様に触媒成分(O)を調製した。
(比較例1)
(触媒成分(I)の調製)
 充分に窒素置換された50mLガラス製容器中で、前記無機固体粒子(a-3)1gを含有するトルエンスラリー10mLを40℃に保ちながら、あらかじめトルエンに溶解させておいた0.1mmolのビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロリド(nBuCpZrCl)を加え、1時間反応させた。さらに、あらかじめトルエンに溶解させておいた0.1mmolの[(N-t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウムジクロリド(b-2)を加え、1時間反応させた。最後に、あらかじめトルエンに溶解させておいた0.2mmolのN、N’-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(c-2)を加え、1時間反応させた。反応終了後、上澄み液を除去し、トルエンで4回洗浄することにより、未反応原料成分を除去した。そして、真空乾燥によりトルエンを除去し、触媒成分(I)を調製した。
(比較例3)
(触媒成分(K)の調製)
 前記無機固体粒子(a-1)110gを含有するヘキサンスラリー1,970mLに10℃で攪拌しながら、1mol/Lの四塩化チタンのヘキサン溶液103mLと有機金属化合物成分(d-1)131mLとを同時に3時間かけて添加した。添加後、10℃で1時間反応を継続させた。反応終了後、上澄み液を除去し、ヘキサンで4回洗浄することにより、未反応原料成分を除去し、触媒成分(K)を調製した。
(比較例4)
(触媒成分(L)の調製)
 充分に窒素置換された8Lステンレス製オートクレーブにヘキサン1,600mLを添加した。40℃で攪拌しながら1mol/Lの四塩化チタンヘキサン溶液800mLと有機金属化合物成分(d-1)1017mLとを2時間かけて同時に添加した。添加後、ゆっくりと昇温し、40℃で1時間反応を継続させた。反応終了後、上澄み液を1600mL除去し、ヘキサン1,600mLで4回洗浄することにより、触媒成分(L)を調製した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 なお、表1及び2中、a-1~a-3は、順に上記調製した無機固体粒子(a-1)~(a-3)を表し、b-1は、上記調製した遷移金属化合物成分(b-1)を表し、b-2は、[(N-t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウムジクロリドを表し、c-1は、上記調製した活性化剤(c-1)を表し、c-2は、N、N’-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートを表し、d-1は、上記合成した有機金属化合物成分(d-1)を表し、Cp TiClは、ビス(ペンタメチルシクロペンタジエニル)チタニウムジクロリドを表し、CpTiClは、ビス(シクロペンタジエニル)チタニウムジクロリドを表し、nBuCpZrClは、ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロリドを表し、Cp ZrClは、ビス(ペンタメチルシクロペンタジエニル)ジルコニウムジクロリドを表し、TiClは、四塩化チタンを表し、Ti(OBu)は、チタン(IV)テトラブトキシド(モノマー)を表し、EtAlClは、エチルアルミニウムジクロリドを表し、EtAlClは、ジエチルアルミニウムクロリドを表し、MMAOは、モディファイドメチルアルミノキサンを表し、MAOは、メチルアルミノキサンを表す。
〔ポリエチレンパウダー及び微多孔膜の製造〕
(実施例11)
<ポリエチレンパウダー(A)の重合>
 充分に窒素置換された1.5Lステンレス製オートクレーブ重合反応器を使用して、下記に示す方法でポリエチレンパウダーの重合を行った。
 まず、60℃に加熱した重合反応器に溶媒としてヘキサン800mLを仕込み、不純物の捕捉剤として0.4mmolの有機金属化合物成分(d-1)を加えた。次に、内圧が0.65MPaになるようにエチレンを加え、Ti換算で1.25μmolの前記触媒成分(A)を添加した。さらに、エチレン消費量1Lあたり0.5mLの水素を添加した。内圧は0.65MPa、内温は60℃を保ちながら、攪拌速度1200rpmで攪拌しながら、30分重合した。重合終了後、重合反応器から反応混合物(ポリマーのスラリー)を抜き出し、メタノールで触媒を失活させた。その後、反応混合物を濾過、洗浄、風乾し、ポリエチレンパウダー(A)を得た。重合反応器における重合活性は、触媒1g当たり3,500gであった。
 ポリエチレンパウダー(A)、及び上述の〔微多孔膜の製造方法〕により製造したポリエチレンパウダー(A)の微多孔膜について、上述の各種評価を実施した結果を表5に示す。
(実施例12~20及び比較例7,8,11,12)
 重合条件を表3及び4のとおりに変更した以外は、実施例11と同様にポリエチレンパウダー及びその微多孔膜を製造し、上述の各種評価を実施した。結果を表5及び6に示す。なお、実施例15及び比較例12では、コモノマーとして1-ブテンを0.05mol%共重合させた。
(比較例9)
 ヘキサン、エチレン、水素、触媒を、バッフルがないフルゾーン型攪拌翼が付いたベッセル型300L重合反応器に連続的に供給した。重合エチレン分圧は0.5MPaとした。重合温度はジャケット冷却により75℃に保った。ヘキサンは40L/時間で重合器の底部から供給し、平均滞留時間は3時間であった。触媒は重合反応器に供給前に、触媒成分(K)1gに対して、1Mエチルアルミニウムジクロライド2mmolを添加混合し、その後上澄みをデカントしヘキサンで置換した。この事前処理を3回行ったあと触媒として利用した。事前処理した触媒成分(K)1gに対して、不純物の捕捉剤としてトリイソブチルアルミニウム20mmolを重合供給前のバッファータンクにて混合した。混合した触媒成分(K)を0.2g/時間の速度で重合器に添加した。エチレン及び水素は気相に導入し、水素を、気相のエチレンに対する水素濃度が5mol%になるようにポンプで連続的に供給した。また、攪拌速度は230rpmとした。
 重合反応器のレベルが一定に保たれるように連続的に圧力0.05MPa、温度70℃のフラッシュドラムに抜き、未反応のエチレン及び水素を分離した。
 次に、重合スラリーは、重合反応器のレベルが一定に保たれるように連続的に遠心分離機に送り、ポリエチレンパウダーとそれ以外の溶媒等を分離した。
 分離されたポリエチレンパウダーは、78℃で窒素ブローしながら乾燥した。なお、この乾燥工程で、重合後のパウダーに対し、スチームを噴霧して、触媒及び助触媒の失活を実施した。得られたポリエチレンパウダーに対し、ステアリン酸カルシウム(大日化学社製、C60)を1,000ppm添加し、ヘンシェルミキサーを用いて、均一混合した。得られたポリエチレンパウダーを目開き425μmの篩を用いて、篩を通過しなかったものを除去することでポリエチレンパウダー(K)を得た。重合反応器における重合活性は、触媒1g当たり20,000gであった。
 ポリエチレンパウダー(K)、及び上述の〔微多孔膜の製造方法〕により製造したポリエチレンパウダー(K)の微多孔膜について、上述の各種評価を実施した結果を表6に示す。
(比較例10)
 ヘキサン、エチレン、水素、及び触媒を、攪拌装置が付いたベッセル型300L重合反応器に連続的に供給した。重合圧力は0.35MPaであった。重合温度はジャケット冷却により75℃に保った。ヘキサンは40L/時間で重合器の底部から供給し、平均滞留時間は3時間であった。前記触媒として触媒成分(L)を使用し、不純物の捕捉剤としてトリイソブチルアルミニウムを使用した。トリイソブチルアルミニウムは10mmol/hの速度で重合器に添加した。触媒成分(L)は、0.2g/時間の速度で供給した。水素を、気相濃度が2000ppmになるようにポンプで連続的に供給した。撹拌速度は230rpmとした。ノルマルブタノールの100mmol/Lヘキサン溶液をノルマルブタノールの量が重合速度(製造速度)10kg/hに対して1ppm/hとなるように供給し、重合スラリーを得た。得られた重合スラリーを遠心分離機に送り、ポリエチレンパウダーとそれ以外の溶媒等を分離した後に、ポリエチレンパウダーと、60℃のメタノールとを1時間撹拌しながら接触させた。ポリエチレンパウダー及びメタノールを含む重合スラリーを遠心分離機に送り、ポリエチレンパウダーとそれ以外の溶媒等を分離した。分離されたポリエチレンパウダーは、70℃で窒素ブローしながら乾燥した。これにより得られたポリエチレンパウダーを目開き425μmの篩を用いて、篩を通過しなかったものを除去することでポリエチレンパウダー(L)を得た。重合反応器における重合活性は、触媒1g当たり30,000gであった。
 ポリエチレンパウダー(L)、及び上述の〔微多孔膜の製造方法〕により製造したポリエチレンパウダー(L)の微多孔膜について、上述の各種評価を実施した結果を表6に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 なお、表3及び4中、d-1は、上記合成した有機金属化合物成分(d-1)を表し、EtAlは、トリエチルアルミニウムを表し、iBuAlは、トリイソブチルアルミニウムを表す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 本出願は、2022年3月31日出願の日本特許出願(特願2022-059266号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のポリエチレンパウダーは、例えば、微多孔膜とした際に、耐熱性、膜の均一性、寸法安定性及び高耐熱化率に優れ、産業上の利用可能性を有する。

Claims (16)

  1.  粘度平均分子量が100,000以上4,000,000以下であり、
     示差走査熱量計(DSC)を用いた測定から得られる結晶厚みパラメータが5℃以上9℃以下である、ポリエチレンパウダー。
  2.  示差屈折計及び粘度検出器を組み合わせたゲルパーミエーションクロマトグラフィー(GPC)測定装置により測定されるz-平均収縮因子gの値が0.600以上1以下である、請求項1に記載のポリエチレンパウダー。
  3.  示差走査熱量計(DSC)を用いて、下記<測定条件>に示す測定により得られる2回目の昇温過程のDSC曲線において、ピークトップの温度(Tm2top)が135℃以上140℃以下であり、
    <測定条件>
    (1)50℃で1min静置
    (2)10℃/minで50℃から180℃に昇温(1回目の昇温過程)
    (3)180℃で5min静置
    (4)10℃/minで180℃から50℃に冷却
    (5)50℃で5min静置
    (6)10℃/minで50℃から180℃に昇温(2回目の昇温過程)
     前記結晶厚みパラメータが6.7℃以上9.0℃以下である、請求項1に記載のポリエチレンパウダー。
  4.  下記条件で延伸可能である、請求項2又は3に記載のポリエチレンパウダー;
    (延伸条件)
    30質量%のポリエチレンパウダーと70質量%の流動パラフィンとからなる100mm×100mm×厚み1mmのゲルシートを115℃で7×7倍に延伸する。
  5.  テラヘルツ測定において、400cm-1~450cm-1における吸収係数が1.0以上、4.0以下である、請求項2又は3に記載のポリエチレンパウダー。
  6.  H-NMR測定において、下記に示す領域にピークが存在しない、請求項2又は3に記載のポリエチレンパウダー。
    (1)4.8ppm~5.0ppm
    (2)5.6ppm~6.0ppm
  7.  アルミニウム含有量が0ppm以上50ppm以下である、請求項2又は3に記載のポリエチレンパウダー。
  8.  ケイ素含有量が0ppm以上30ppm以下である、請求項2又は3に記載のポリエチレンパウダー。
  9.  示差走査熱量計(DSC)測定において、2回目の昇温過程のDSC曲線における、ピークトップの温度が130℃以上140℃以下である、請求項2に記載のポリエチレンパウダー。
  10.  密度が920kg/m以上960kg/m以下である、請求項2又は3に記載のポリエチレンパウダー。
  11.  電池セパレータ用である、請求項2又は3に記載のポリエチレンパウダー。
  12.  無機固体粒子[A]に、遷移金属化合物[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを反応させる第一担持反応工程と、
     前記第一担持反応工程で得られた粒子に、遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを反応させる第二担持反応工程を含み、
     前記遷移金属化合物[B-1]は下記の(式3)で表される化合物であり、前記遷移金属化合物[B-2]は下記の(式4)で表される化合物であり、前記活性化剤[C]は下記の(式5)又は(式6)で表される化合物であり、前記有機金属化合物成分[D]は周期律表第1族、第2族、第12族及び第13族からなる群より選択される少なくとも1種の金属を含有する化合物であり、無機固体粒子[A]は多孔質高分子材料又は周期表第2~第4族、第13族及び第14族からなる群より選択される少なくとも1種の元素を含む無機固体粒子であり、
     下記の<条件1>及び/又は<条件2>を満たす、オレフィン重合用触媒の製造方法。
     <条件1>
     前記第一担持反応工程において、遷移金属化合物[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを反応させる事前混合工程と、無機固体粒子[A]に事前混合工程で得られた混合物を反応させる工程とを含む。
     <条件2>
     前記第一担持反応工程において、遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]のモル量[B]に対する、活性化剤[C]及び有機金属化合物成分[D]のモル量([C]+[D])のモル比(([C]+[D])/[B])が1以上60以下である。
    ・・・(式3)
    (式中、Lは、各々独立して、シクロペンタジエニル基、インデニル基、テトラヒドロインデニル基、フルオレニル基、テトラヒドロフルオレニル基、及びオクタヒドロフルオレニル基からなる群より選ばれるη結合性環状アニオン配位子を表し、該配位子は場合によっては1~8個の置換基を有し、該置換基は各々独立して炭素数1~20の炭化水素基、ハロゲン原子、炭素数1~12のハロゲン置換炭化水素基、炭素数1~12のアミノヒドロカルビル基、炭素数1~12のヒドロカルビルオキシ基、炭素数1~12のジヒドロカルビルアミノ基、炭素数1~12のヒドロカルビルフォスフィノ基、シリル基、アミノシリル基、炭素数1~12のヒドロカルビルオキシシリル基及びハロシリル基からなる群より選ばれる、20個までの非水素原子を有する置換基であり、
    は、形式酸化数が+2、+3又は+4の周期表第4族に属する遷移金属群から選ばれる遷移金属であって、少なくとも1つの配位子Lにη5結合している遷移金属を表し、
    Wは、50個までの非水素原子を有する2価の置換基であって、LとMとに各々1価ずつの価数で結合し、これによりL及びMと共働してメタロサイクルを形成する2価の置換基を表し、
    は、各々独立して、1価のアニオン性σ結合型配位子、Mと2価で結合する2価のアニオン性σ結合型配位子、及びLとMとに各々1価ずつの価数で結合する2価のアニオン性σ結合型配位子からなる群より選ばれる、60個までの非水素原子を有するアニオン性σ結合型配位子を表し、
    は、各々独立して、40個までの非水素原子を有する中性ルイス塩基配位性化合物を表し、
    jは1又は2であり、但し、jが2である時、場合によっては2つの配位子Lが、20個までの非水素原子を有する2価の基を介して互いに結合し、該2価の基は炭素数1~20のヒドロカルバジイル基、炭素数1~12のハロヒドロカルバジイル基、炭素数1~12のヒドロカルビレンオキシ基、炭素数1~12のヒドロカルビレンアミノ基、シランジイル基、ハロシランジイル基、及びシリレンアミノ基からなる群より選ばれる基であり、kは0又は1であり、pは0、1又は2であり、但し、Xが1価のアニオン性σ結合型配位子、又はLとMとに結合している2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数より1以上小さい整数であり、またXがMにのみ結合している2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数より(j+1)以上小さい整数であり、qは0、1又は2である)。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Mは、チタン、ジルコニウム及びハフニウムからなる群より選ばれる遷移金属であって、形式酸化数が+2、+3又は+4である遷移金属を表し、
     Rは、各々独立して、水素原子、炭素数1~8の炭化水素基、シリル基、ゲルミル基、シアノ基、ハロゲン原子及びこれらの複合基からなる群より選ばれる、1~20個の非水素原子を有する置換基を表し、但し、該置換基Rが炭素数1~8の炭化水素基、シリル基又はゲルミル基である時、場合によっては2つの隣接する置換基Rが互いに結合して2価の基を形成し、これにより該2つの隣接する該置換基Rにそれぞれ結合するシクロペンタジエニル環の2つの炭素原子間の結合と共働して環を形成し、
     Xは、各々独立して、ハライド、炭素数1~20の炭化水素基、炭素数1~18のヒドロカルビルオキシ基、炭素数1~18のヒドロカルビルアミノ基、シリル基、炭素数1~18のヒドロカルビルアミド基、炭素数1~18のヒドロカルビルホスフィド基、炭素数1~18のヒドロカルビルスルフィド基及びこれらの複合基からなる群より選ばれる、1~20個の非水素原子を有する置換基を表し、但し、場合によっては2つの置換基Xが共働して炭素数4~30の中性共役ジエン又は2価の基を形成し、
     Yは、-O-、-S-、-NR-又は-PR-を表し、但し、Rは、水素原子、炭素数1~12の炭化水素基、炭素数1~8のヒドロカルビルオキシ基、シリル基、炭素数1~8のハロゲン化アルキル基、炭素数6~20のハロゲン化アリール基、又はこれらの複合基を表し、
     ZはSiR 、CR 、SiR SiR 、CR CR 、CR=CR、CR SiR 又はGeR を表し、但し、Rは上で定義した通りであり、
    nは1、2又は3である。)
    (C-1):[L-H]d+[M d-・・・(式5)
    (式中、[L-H]d+はプロトン付与性のブレンステッド酸であり、Lは中性ルイス塩基である。また、式中[M d-は相溶性の非配位性アニオンであり、Mは周期律表第5族乃至第15族から選ばれる金属又はメタロイドであり、Qは各々独立にヒドリド、ジアルキルアミド基、ハライド、アルコキサイド基、アリロキサイド基、炭化水素基、炭素数20までの置換炭化水素基であり、またハライドであるQは1個以下である。また、rは1~7の整数であり、sは2~14の整数であり、dは1~7の整数であり、s-r=dである。)
    (C-2):-(M t-2-O)-・・・(式6)
    (式中、Mは周期律表第13族~第15族の金属又はメタロイドであり、Rは各々独立に炭素数1~12の炭化水素基又は置換炭化水素基であり、tは金属Mの価数であり、uは2以上の整数である。)
  13.  前記無機固体粒子[A]が塩化マグネシウム粒子である、請求項12に記載のオレフィン重合用触媒の製造方法。
  14.  無機固体粒子[A]と、遷移金属化合物成分[B-1]及び/又は遷移金属化合物成分[B-2]と、活性化剤[C]及び/又は有機金属化合物成分[D]とを含み、
     前記遷移金属化合物[B-1]は下記の(式3)で表される化合物であり、前記遷移金属化合物[B-2]は下記の(式4)で表される化合物であり、前記活性化剤[C]は下記の(式5)又は(式6)で表される化合物であり、前記有機金属化合物成分[D]は周期律表第1族、第2族、第12族及び第13族からなる群より選択される少なくとも1種の金属を含有する化合物であり、無機固体粒子[A]は多孔質高分子材料又は周期表第2~第4族、第13族及び第14族からなる群より選択される少なくとも1種の元素を含む無機固体粒子であり、
     前記遷移金属化合物成分[B-1]及び/又は前記遷移金属化合物成分[B-2]に含まれる中心金属Mの含有量(mol)が20μmol以上1000μmol以下であり、中心金属Mの含有量(mol)とAlの含有量(mol)とのモル比(Al/M)が1以上30以下である、オレフィン重合用触媒。
    ・・・(式3)
    (式中、Lは、各々独立して、シクロペンタジエニル基、インデニル基、テトラヒドロインデニル基、フルオレニル基、テトラヒドロフルオレニル基、及びオクタヒドロフルオレニル基からなる群より選ばれるη結合性環状アニオン配位子を表し、該配位子は場合によっては1~8個の置換基を有し、該置換基は各々独立して炭素数1~20の炭化水素基、ハロゲン原子、炭素数1~12のハロゲン置換炭化水素基、炭素数1~12のアミノヒドロカルビル基、炭素数1~12のヒドロカルビルオキシ基、炭素数1~12のジヒドロカルビルアミノ基、炭素数1~12のヒドロカルビルフォスフィノ基、シリル基、アミノシリル基、炭素数1~12のヒドロカルビルオキシシリル基及びハロシリル基からなる群より選ばれる、20個までの非水素原子を有する置換基であり、
    は、形式酸化数が+2、+3又は+4の周期表第4族に属する遷移金属群から選ばれる遷移金属であって、少なくとも1つの配位子Lにη5結合している遷移金属を表し、
    Wは、50個までの非水素原子を有する2価の置換基であって、LとMとに各々1価ずつの価数で結合し、これによりL及びMと共働してメタロサイクルを形成する2価の置換基を表し、
    は、各々独立して、1価のアニオン性σ結合型配位子、Mと2価で結合する2価のアニオン性σ結合型配位子、及びLとMとに各々1価ずつの価数で結合する2価のアニオン性σ結合型配位子からなる群より選ばれる、60個までの非水素原子を有するアニオン性σ結合型配位子を表し、
    は、各々独立して、40個までの非水素原子を有する中性ルイス塩基配位性化合物を表し、
    jは1又は2であり、但し、jが2である時、場合によっては2つの配位子Lが、20個までの非水素原子を有する2価の基を介して互いに結合し、該2価の基は炭素数1~20のヒドロカルバジイル基、炭素数1~12のハロヒドロカルバジイル基、炭素数1~12のヒドロカルビレンオキシ基、炭素数1~12のヒドロカルビレンアミノ基、シランジイル基、ハロシランジイル基、及びシリレンアミノ基からなる群より選ばれる基であり、kは0又は1であり、pは0、1又は2であり、但し、Xが1価のアニオン性σ結合型配位子、又はLとMとに結合している2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数より1以上小さい整数であり、またXがMにのみ結合している2価のアニオン性σ結合型配位子である場合、pはMの形式酸化数より(j+1)以上小さい整数であり、qは0、1又は2である)。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Mは、チタン、ジルコニウム及びハフニウムからなる群より選ばれる遷移金属であって、形式酸化数が+2、+3又は+4である遷移金属を表し、
     Rは、各々独立して、水素原子、炭素数1~8の炭化水素基、シリル基、ゲルミル基、シアノ基、ハロゲン原子及びこれらの複合基からなる群より選ばれる、1~20個の非水素原子を有する置換基を表し、但し、該置換基Rが炭素数1~8の炭化水素基、シリル基又はゲルミル基である時、場合によっては2つの隣接する置換基Rが互いに結合して2価の基を形成し、これにより該2つの隣接する該置換基Rにそれぞれ結合するシクロペンタジエニル環の2つの炭素原子間の結合と共働して環を形成し、
     Xは、各々独立して、ハライド、炭素数1~20の炭化水素基、炭素数1~18のヒドロカルビルオキシ基、炭素数1~18のヒドロカルビルアミノ基、シリル基、炭素数1~18のヒドロカルビルアミド基、炭素数1~18のヒドロカルビルホスフィド基、炭素数1~18のヒドロカルビルスルフィド基及びこれらの複合基からなる群より選ばれる、1~20個の非水素原子を有する置換基を表し、但し、場合によっては2つの置換基Xが共働して炭素数4~30の中性共役ジエン又は2価の基を形成し、
     Yは、-O-、-S-、-NR-又は-PR-を表し、但し、Rは、水素原子、炭素数1~12の炭化水素基、炭素数1~8のヒドロカルビルオキシ基、シリル基、炭素数1~8のハロゲン化アルキル基、炭素数6~20のハロゲン化アリール基、又はこれらの複合基を表し、
     ZはSiR 、CR 、SiR SiR 、CR CR 、CR=CR、CR SiR 又はGeR を表し、但し、Rは上で定義した通りであり、
    nは1、2又は3である。)
    (C-1):[L-H]d+[M d-・・・(式5)
    (式中、[L-H]d+はプロトン付与性のブレンステッド酸であり、Lは中性ルイス塩基である。また、式中[M d-は相溶性の非配位性アニオンであり、Mは周期律表第5族乃至第15族から選ばれる金属又はメタロイドであり、Qは各々独立にヒドリド、ジアルキルアミド基、ハライド、アルコキサイド基、アリロキサイド基、炭化水素基、炭素数20までの置換炭化水素基であり、またハライドであるQは1個以下である。また、rは1~7の整数であり、sは2~14の整数であり、dは1~7の整数であり、s-r=dである。)
    (C-2):-(M t-2-O)-・・・(式6)
    (式中、Mは周期律表第13族~第15族の金属又はメタロイドであり、Rは各々独立に炭素数1~12の炭化水素基又は置換炭化水素基であり、tは金属Mの価数であり、uは2以上の整数である。)
  15.  前記無機固体粒子[A]が塩化マグネシウム粒子である、請求項14に記載のオレフィン重合用触媒。
  16.  請求項14又は15に記載のオレフィン重合用触媒を用いて、オレフィンを重合する工程を含む、オレフィン重合体の製造方法。
PCT/JP2023/013646 2022-03-31 2023-03-31 ポリエチレンパウダーとその製造方法及び、オレフィン重合用触媒とその製造方法 WO2023191080A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-059266 2022-03-31
JP2022059266 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023191080A1 true WO2023191080A1 (ja) 2023-10-05

Family

ID=88202421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013646 WO2023191080A1 (ja) 2022-03-31 2023-03-31 ポリエチレンパウダーとその製造方法及び、オレフィン重合用触媒とその製造方法

Country Status (1)

Country Link
WO (1) WO2023191080A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131210A (ja) * 1988-07-09 1989-05-24 Mitsui Petrochem Ind Ltd エチレン共重合体フイルム
JPH06298825A (ja) * 1993-02-22 1994-10-25 Idemitsu Kosan Co Ltd エチレン系重合体の製造方法及びその方法により得られたエチレン系重合体
JP2012140606A (ja) * 2010-12-14 2012-07-26 Japan Polyethylene Corp オレフィン重合触媒の製造方法、オレフィン重合触媒およびオレフィンの重合方法
JP2014159591A (ja) * 2006-12-19 2014-09-04 Mitsui Chemicals Inc オレフィン重合体粒子の製造方法
JP2015212373A (ja) * 2014-04-18 2015-11-26 旭化成ケミカルズ株式会社 繊維用ポリエチレンパウダー、繊維、及び物品
WO2021101457A1 (en) * 2019-11-20 2021-05-27 Scg Chemicals Co., Ltd. Ultra-high molecular weight polyethylene
JP2021091896A (ja) * 2019-12-10 2021-06-17 旭化成株式会社 ポリエチレン樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131210A (ja) * 1988-07-09 1989-05-24 Mitsui Petrochem Ind Ltd エチレン共重合体フイルム
JPH06298825A (ja) * 1993-02-22 1994-10-25 Idemitsu Kosan Co Ltd エチレン系重合体の製造方法及びその方法により得られたエチレン系重合体
JP2014159591A (ja) * 2006-12-19 2014-09-04 Mitsui Chemicals Inc オレフィン重合体粒子の製造方法
JP2012140606A (ja) * 2010-12-14 2012-07-26 Japan Polyethylene Corp オレフィン重合触媒の製造方法、オレフィン重合触媒およびオレフィンの重合方法
JP2015212373A (ja) * 2014-04-18 2015-11-26 旭化成ケミカルズ株式会社 繊維用ポリエチレンパウダー、繊維、及び物品
WO2021101457A1 (en) * 2019-11-20 2021-05-27 Scg Chemicals Co., Ltd. Ultra-high molecular weight polyethylene
JP2021091896A (ja) * 2019-12-10 2021-06-17 旭化成株式会社 ポリエチレン樹脂組成物

Similar Documents

Publication Publication Date Title
JP6117303B2 (ja) 高分子量ポリエチレンパウダー、微多孔膜、及び高強度繊維
JP6578124B2 (ja) 繊維用ポリエチレンパウダー、繊維、及び物品
JP5830187B2 (ja) ポリエチレンパウダー、微多孔膜、及び繊維
US7829641B2 (en) Process for the preparation of multimodal polyethylene resins
JP5782558B1 (ja) ポリエチレンパウダー
KR102368240B1 (ko) 초고분자량 폴리에틸렌 파우더
JP5890408B2 (ja) 弾性及び加工性に優れたエチレン共重合体
KR101485566B1 (ko) 저온 실링성이 우수한 필름용 폴리에틸렌, 및 이의 제조방법
JP6702731B2 (ja) エチレン−α−オレフィン共重合体
JP6387176B2 (ja) ポリエチレンパウダー
JP2019104871A (ja) 超高分子量ポリエチレンパウダー及び超高分子量ポリエチレン繊維
JP2005029731A (ja) 超高分子量ポリエチレン
JP4868853B2 (ja) 超高分子量エチレン系重合体
CN108752607B (zh) 高分子量聚乙烯粉体、微孔膜以及高强度纤维
JP6539329B2 (ja) 超高分子量ポリエチレン繊維
JP2021091896A (ja) ポリエチレン樹脂組成物
WO2023191080A1 (ja) ポリエチレンパウダーとその製造方法及び、オレフィン重合用触媒とその製造方法
KR101953512B1 (ko) 폴리에틸렌 파우더 및 그의 성형물
JP2009120748A (ja) エチレン系重合体および製造方法
WO2019022058A1 (ja) ポリエチレン組成物
JPH0782322A (ja) エチレン重合体及びそれを含有する熱可塑性樹脂組成物
JP2005239750A (ja) パイプ用エチレン系重合体及び該エチレン系重合体からなるパイプ
JP7051395B2 (ja) エチレン重合体、及びその成形体
WO2023054514A1 (ja) 超高分子量ポリエチレンパウダー及びこれを成形してなる成形体
JPH072942A (ja) エチレン/α−オレフィン共重合体及びそれを含有する熱可塑性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781088

Country of ref document: EP

Kind code of ref document: A1