CN1279341C - 用于检查光学设备的方法和系统 - Google Patents

用于检查光学设备的方法和系统 Download PDF

Info

Publication number
CN1279341C
CN1279341C CNB03800495XA CN03800495A CN1279341C CN 1279341 C CN1279341 C CN 1279341C CN B03800495X A CNB03800495X A CN B03800495XA CN 03800495 A CN03800495 A CN 03800495A CN 1279341 C CN1279341 C CN 1279341C
Authority
CN
China
Prior art keywords
wavelength band
optical device
light
lens
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB03800495XA
Other languages
English (en)
Other versions
CN1518662A (zh
Inventor
A·J·迪斯彭扎
M·F·维曼
K·H·吉尔斯
J·埃贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Vision Care Inc
Original Assignee
Johnson and Johnson Vision Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Vision Care Inc filed Critical Johnson and Johnson Vision Care Inc
Publication of CN1518662A publication Critical patent/CN1518662A/zh
Application granted granted Critical
Publication of CN1279341C publication Critical patent/CN1279341C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0278Detecting defects of the object to be tested, e.g. scratches or dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • G01M11/0214Details of devices holding the object to be tested

Abstract

一种检查光学设备的方法包括(a)利用光照明所述光学设备及环境背景,其中所述光包括第一波长带和第二波长带,其中所述第一波长带和所述第二波长带是不同的波长,以及其中所述第一波长带具有第一强度且所述第二波长带具有第二强度;(b)将所述光透射通过所述光学设备,其中大多数所述第一波长带被所述光学设备吸收且大多数所述第二波长带被透射通过所述光学设备,以及在感光性象素阵列上捕捉所述透镜透射光;(c)将所述光透射通过所述环境背景,其中大多数所述第一波长带和所述第二波长带被透射,以及在感光性象素阵列上捕捉所述背景透射光;(d)读取从步骤(b)和(c)所产生的象素并且比较所述读数的灰度标度值,其中从所述背景透射光以及从所述透镜透射光所产生象素的灰度标度值之间的差异是一个足以区分所述光学设备内孔与所述环境背景内泡的值。

Description

用于检查光学设备的方法和系统
相关申请
这个申请根据于2003年2月21日提交的题为“用于检查光学设备的方法和系统”的临时申请U.S.序号60/359,074提出优先权要求。
发明领域
这个发明总体上涉及检查光学设备或介质,如眼透镜。更具体而言,本发明涉及用于自动地检查光学设备的这种系统以及涉及完好适用在这种系统中的技术和程序。
在过去的几年里,已经成功地开发出用于检查眼透镜,尤其是接触透镜的自动化技术。这种技术被公开于例如于2001年12月29日提交的U.S.专利5,500,732和U.S.专利申请序号09/751,875。
总体上,在这些技术中,可为紫外光、可见光、或激光的辐射被导引通过透镜以在象素阵列上形成图象。表示阵列象素上辐射强度的数字数据值被产生,且使用计算机来处理这些数据值以确定透镜是否具有任何不可接受的瑕疵或缺陷。具有这样瑕疵或缺陷的任何透镜于是被加以识别且被拒绝。
许多这些技术在确保具有不可接受的瑕疵或缺陷的任何透镜被拒绝时是非常高效的。与此同时,这些技术有时拒绝可接受的透镜,即被称为误拒绝的结果。其原因之一是许多程序不能够区分某些类型的透镜缺陷和可能出现在象素阵列上但并不是透镜缺陷的其它特点。
当检查系统探测出象素阵列上的一个特点、但不能够确定那个特点是透镜缺陷还是另一个难区分的但却可接受的特点时,所述透镜被拒绝。例如,对于几个检查技术,当透镜被浸入在液体溶液中的同时被加以检查,并且区分透镜中的孔(其是不可接受的)和那种液体溶液中的泡(其并不是透镜的缺陷)是非常困难的。结果是,由于液体溶液中泡的缘故可接受的透镜可被加以拒绝。
作为另一实例,对于现有技术的自动化透镜检查系统,区分具有撕裂或孔的模制接触透镜与简单地已经略微地从模段中被拔出的模制接触透镜是非常困难的。进而详细描述,通过在两个塑料模段之间模制一适宜的聚合体,接触透镜可例如如U.S.专利5,540,410所公开的那样被制作。在聚合体部分硬化之后,模段之一被从另一模段中拔出以提供对透镜的接近。
在这个过程中,当透镜被制作时,在透镜中可产生孔或撕裂。同样,当模段被拔分离时,透镜可变成剥离,即透镜的边缘可从透镜所停留在的模段中略微拔出。对于自动化的检查系统,区分刚刚略微从模段中拔出的透镜(其并不是透镜的缺陷)与具有孔或被撕裂的透镜(其为透镜缺陷)是非常困难的。由此,可接受的透镜可被拒绝。
附图的详细说明
图1是总体上示例可被用在本发明实践中的透镜检查系统的方框图。
图2示出图1所示检查系统的照明及成像子系统的部分。
图3示出可被用来照明图1和2系统中透镜的光谱带。
图4示出在图1和2系统中所生成、且利用第一光谱掩蔽技术的透镜图象。
图5是用于分析利用第一光谱掩蔽技术而生成的透镜图象的优选程序流程图。
分别类似于图1和2的图6和7示出也可被用于这个发明实践中的第二透镜检查系统。
图8示例可被用来提供第二光谱掩蔽技术的滤光器元件,其可被用来照明图6和7的检查系统中的透镜。
图9示出利用第二光谱掩蔽技术而生成的透镜图象。
本发明的目的
这个发明的目的是改善用于检查光学设备的系统。本发明的另一目的是降低自动化透镜检查系统中误拒绝的百分比。
本发明另外一个目的是提供一种用于检查光学设备的自动化系统,所述系统能够更准确地识别某些特点。本发明的另一个目的是提供一种自动化的透镜检查系统,所述系统具有改善的区分透镜中孔与透镜所浸入的流体溶液中泡的能力。
这个发明的另一目的是以这样的方式照明被浸入在液体中的透镜,以为了便利于区分透镜中的孔与流体中的泡。本发明的另外一个目的是提供一种图象分析技术,所述技术可以区分眼透镜中孔的图象与透镜所浸入溶液中泡的图象。这个发明的另一个目的是以这样的方式照明透镜,以便于并不示出透镜的剥离,而示出透镜的孔和撕裂。
本发明的另一个目的是提供一种被称为光谱掩蔽的照明技术,其利用处于不同的分开波长带中的光来照明物体。另外,所述物体可被由分开的波长带和附加带所组成的光照明;然而,成像系统仅对分开的波长带敏感,或并不需要的光的波长在成像系统之前被滤掉。这个发明的另外目的是提供光谱掩蔽技术,所述光谱掩蔽技术可被用来使透镜检查系统能够更精确地识别某些特点。
本发明的另一目的是利用不同的波长带照明光学设备的不同部分。本发明的另外目的是以这样的方式照明模制接触透镜的中央部分,以便于示出在透镜的那个部分是存在孔还是撕裂,而不需要照明透镜的外面部分。
利用在此所公开的检查和分析程序可以获得这些和其它的目的。总体上,这些程序采用或利用被称为光谱掩蔽的独特照明技术,其中利用多个波长带对光学设备进行照明。对于一个光谱掩蔽技术,利用可为连续光谱一部分的两个分开的带对整个光学设备进行照明;以及在另一光谱掩蔽技术中,利用不同的带对光学设备的不同区域进行照明。前者技术可被用来区别溶液中的泡与光学设备中的孔,其尤其完美地适用于分析溶液内处于组件中的透镜;然而,所述技术还可被用来发现在模段中的透镜内的孔。这个发明有益于检查非常厚的透镜,例如厚度太厚以致于单独利用uv检查程序无法加以分析的-6透镜或更高透镜。利用不同带在光学设备的不同区域照明设备的光谱掩蔽技术尤其完美地适合于分析模段中的接触透镜,且可被用来避免仅仅因为可接受的透镜被剥离而对其加以拒绝。
更具体而言,根据本发明的第一方面,提供一种用于对光学设备如眼透镜进行成像的方法和系统。在利用这个程序而形成的图象中,泡和孔的图象具有可辩识的差别。鉴于物体具有变化的光谱吸收水平,这个方法是所述物体的多光谱成像/检查方法,所述方法包括至少一个照明源,所述照明源包括至少被物体部分吸收、优选地大部分被吸收的波长以及至少被部分透射、优选地被大部分透射的波长,以产生部分半透明的图象。
对于所优选的实施例,所述技术依赖于透镜中紫外线抑制剂的紫外线吸收质量,以产生所希望的半透明/阴影效应。这个效应是通过将处于适当比率和强度的经滤光的紫外线和可见光的特定带穿过透镜而实现。光谱带以这样的方式被加以选择,以便于紫外线部分被透镜吸收,而可见光部分被允许穿过光学设备。
根据本发明的第二方面,提供一程序来区分光学设备内的孔与液体溶液中的泡。在这个程序中,所述设备的图像被形成,并且所形成的图象可包括不是孔就是泡的特点。将孔的图象与泡的图象相区分的特征被加以识别。根据预先确定的程序,表示所形成图象的数据值集合被加以处理,以搜索那个区分特征,并且如果已经找到它,则所述特征被用来将所述特点不是归类为光学设备内的孔就是液体溶液中的泡。下述被详细说明的所述程序的优选实施例利用三个主要元素以将泡区分于孔:对称性、壁厚、以及强度和强度率。
根据本发明的另一方面,提供光谱掩蔽技术,其可被用来避免仅仅因为可接受的模制接触透镜被剥离而对其加以拒绝。尤其是,这个技术有效地消除、或基本上降低了由于没有能力区分被剥离的透镜与具有孔或撕裂的透镜所造成的误否决。在下面还被加以详细说明的优选应用中,透镜的外部区域被以这样的方式加以照明,以便于不示出透镜的任何剥离,而以示出在透镜那个部分内的孔或撕裂的波长来照明透镜的中央区域。
从参考所附的规定且示出本发明优选实施例的附图而进行的下述详细说明的考虑来看,本发明进一步的益处及优点将变得显而易见。
本发明的详细说明
本发明包括一种检查光学设备的方法,其包括:
(a)利用光照明光学设备及环境背景,其中所述光包括第一波长带和第二波长带,
其中所述第一波长带和所述第二波长带是不同的波长,以及
其中所述第一波长带具有第一强度且所述第二波长带具有第二强度;
(b)将所述光透射通过所述光学设备,其中大多数所述第一波长带被所述光学设备吸收且大多数所述第二波长带被透射通过所述光学设备,以及在感光性象素阵列上捕捉所述透镜透射光;
(c)将所述光透射通过所述环境背景,其中大多数所述第一波长带和所述第二波长带被透射,以及在感光性象素阵列上捕捉所述背景透射光;
(d)读取从步骤(b)和(c)所产生的象素并且比较所述读数的灰度标度值,其中从所述背景透射光以及从所述透镜透射光所产生象素的灰度标度值之间的差异是一个足以区分所述光学设备内孔与所述背景内泡的值。
在此所使用的术语“光学设备”包括但不局限于硬接触透镜、软接触透镜、可浸透气的刚性接触透镜、内接目镜、显微镜透镜、相机透镜以及眼镜用透镜。在这个发明中被加以检查的光学设备可包含或可不包含视觉校正。优选的光学设备是具有或不具有视觉校正的软接触透镜。软透镜可由传统的水凝胶制成且通常由包括但不局限于羟乙基丙烯酸羟(HEMA)、乙烯基吡咯烷酮、丙三醇丙烯酸脂、甲基丙烯酸酸及酸性脂的单体;或硅酮水凝胶而制备。软接触透镜的实例包括但不局限于如同按照U.S.专利号5,998,498、US专利申请号09/532,943、于2000年8月30日提交的US专利申请号09/532,943的部分继续申请、于2001年9月20日提交的U.S.专利序号09/957,299、U.S.专利号6,087,415、U.S.专利号5,760,100、U.S.专利号5,776,999、U.S.专利号5,789,461、U.S.专利号5,849,811、U.S.专利号5,965,631、于2001年9月10日提交的题为“BiomedicalDevices Containing Internal Wetting Agents”U.S.专利申请号60/318,536以及于2002年9月6日提交的相同题目的其非临时副本而制备的etafilcon A、genfilcon A、lenefilcon A、polymacon、acquafilcon A、balafilcon A、lotrafilcon A以及硅酮水凝胶。这些专利以及在这个申请中所公开的所有其它专利在此被全部引入作为参考。
除了软接触透镜的单体混合物以外,所述透镜还包含其它材料。没有局限地,其它材料在这点上优选地包括一种或更多种紫外线(UV)吸收添加剂。这些可以被包括在单体混合物内,由此提供所带来的具有特定吸收特性的光学设备。仅作为实例,这种类型的UV吸收剂包括NORBLOCK(从JANSSEN在市场上可购买到)。虽然这种吸收剂的数量还取决于所探寻的最终吸收性能的种类可以变化,但是典型地是这种吸收剂以这样的数量而存在,即每百个等分单体中大约有1个等分吸收剂。其它的吸收性材料包括色调(tint),其颜色可以由本领域中的那些普通技术人员进行关联,以获取对其它特定波长的吸收,例如黄光将被具有蓝色调的透镜吸收。
如在此所使用的那样,术语“环境背景”是指在检查期间透射光且物理上支撑光学设备的任何物体。如果所述光学设备是软接触透镜,则环境背景的实例包括但不局限于透镜的封装或用来制备透镜的模子。用来制备光学设备,尤其是软接触透镜的大部分处理为湿法处理,其中填充溶液、去离子水及其它溶液在贯穿整个处理步骤中被使用。典型地当检查软接触透镜时,透镜被浸入或漂浮在液体中。因此为了本发明的目的,如果光学设备在被浸入或漂浮在液体之际被加以检查,则术语环境背景包括这种液体。有关透镜的模子,它们由耐用的塑料如包括但不局限于下述材料所构造成:聚烯烃,如低密度聚乙烯、中密度聚乙烯、高密度聚乙烯、聚丙烯,以及上述聚丙烯和聚乙烯的共聚物;聚苯乙烯;聚-4-甲基戊烯;聚缩醛树脂;polyacrylether;聚芳醚;磺基(sulfones);尼龙6;尼龙66;尼龙11;热塑性聚酯;以及各种氟化材料如氟化的乙烯丙烯共聚物及乙烯氟乙烯共聚物。透镜的模子经常为包含对应的凹及凸体部分(分别为前曲线和后曲线)的两部分结构。如果透镜在模子内被加以检查,则优选地模子被分开成其所述部分并且透镜在前曲线内被加以检查。
在此使用的术语“第一波长带”是指在光谱的紫外区域内由光学设备所吸收的波长的光。所述光不需要完全被光学设备吸收,仅是大多数所述第一波长带必须被吸收。优选地是所述第一波长带的大约51%至大约100%被吸收;更优选地,大约80%至大约100%、甚至更优选地大约90%至大约99%、且最优选地大约99%被吸收。
有关所述第一波长带的波长,这是由光学设备的组成及其光吸收特性所决定的。例如,如果光学设备吸收具有约340nm至360nm波长光的大约98%至99%,则所述第一波长带将为从340nm至大约360nm。
在此所使用的术语“第二波长带”是指在光谱可见光区域内由光学设备所透射的波长的光。所述光不需要完全被光学设备透射,仅是大多数所述第二波长带必须被透射。优选地是所述第二波长带的大约51%至大约100%被透射;更优选地,大约80%至大约100%、甚至更优选地大约90%至大约99%、且最优选地大约98至大约99%被透射。
这个第二波长带的波长由光学设备的透射特性来决定,其中使用对应于适当的光透射率百分比的波长。例如,光学设备透射了大于98%的处于约385-405波长的入射光,则第二波长带所优选的波长是大约385nm至大约405nm。
利用所述第一波长带和所述第二波长带光学设备可由两个分开的光源进行照明,其中一个光具有所述的第一波长且另一光源具有所述的第二波长。然而,通过使用包含一波长范围的一个光源并且使用一个或更多个滤光器以发射所希望的第一和第二波长的光,也可以取得相同的结果。
在此使用的“第一强度”是第一波长带的,且“第二强度”是所述第二波长带的。平均第一强度带与平均第二强度带的比率被加以调节,以便于平均第一强度与平均第二强度的比率在约1∶1至2∶1之间,且更优选地为约1.5∶1。
在此使用的术语“感光性象素阵列”具有其公用的工业定义。在此使用的术语“灰度标度值”是指图象或它们对应的象素读数的亮度标度,其中所述数字越高则图象越亮(或越白),以及所述数字越低则图象越暗(或越黑)。正如在这个发明中所使用的那样,白色环境背景的灰度标度值为约255且黑色图象的灰度标度值为约0。光学设备无缺陷区域(没有孔、撕裂或碎片)的灰度标度值与环境背景的灰度标度值之间的差异为约120至约180,优选地为约130-160,最优选地为约140。在环境背景与光学设备无缺陷区域的灰度标度值之间具有上述提到差异的图象(或对应的象素读数)具有半透明/阴影外观,所述外观区分光学设备内的孔与环境溶液中泡的外观。
在此使用的“孔”是指光学设备内其中组成光学设备的材料缺少的区域。在此使用的“泡”是具有包围或相反弄湿光学设备的流体介质的气体小体。
此外本发明包括一种检查光学设备的方法,其包括:
(a)利用光照明光学设备及环境背景,其中所述光包括第一波长带和第二波长带,
其中所述第一波长带和所述第二波长带是不同的波长,以及
其中所述第一波长带具有第一强度且所述第二波长带具有第二强度;
(b)将所述光透射通过所述光学设备,其中大多数所述第一波长带被所述光学设备吸收以及大多数所述第二波长带被透射通过所述光学设备,以及在感光性象素阵列上捕捉所述透镜透射光;
(c)将所述光透射通过所述环境背景,其中大多数所述第一波长带和所述第二波长带被透射,以及在感光性象素阵列上捕捉所述背景透射光;
(d)产生所述光学设备和所述环境背景的图象,其中通过步骤(b)和(c)所产生图象的灰度标度值之间的差异是足以区分所述光学设备内孔与所述环境背景内泡的值。在此使用的术语光学设备、环境背景、第一波长带、第二波长带、第一强度、第二强度、感光性象素阵列、灰度标度值、孔及泡全部都具有其上述提到的含义及所优选的范围。
在此使用的术语“图象”是指人类可读取的或机器可读取的所述光学设备和所述环境背景的光学对应物。所述图象可被投影在图象平面、计算机屏幕或其它观看设备上。此外所述图像可被放大,或相反被聚焦以改善阅读器观看所述图象的能力。本发明由下述附图进一步详细地加以示例。
图1示例出用于检查接触透镜的检查系统10。系统10通常包括运输子系统12、照明子系统14、成像子系统16和处理子系统20。图1还示出拒绝机构22、拒绝控制器24、和其每个用于支撑一个或更多个透镜组件的多个透镜载体或托盘30。优选地,成像子系统16包括相机32;以及处理子系统20包括图象处理器装置34、操作员界面装置36、和管理计算机40;以及更具体地,处理器装置34包括多个处理器和存储器板42,以及界面装置36包括监视器44和主机46。
通常,提供运输子系统12以沿着预先确定的路径移动许多眼透镜且进入图1中参考号为50的透镜检查位置。提供照明子系统14以产生包括由至少被部分吸收的一个或更多个带及至少被部分透射的一个或更多个不同带组成的光的光束,并且将那个光束导引通过透镜且移动通过透镜检查位置。成像子系统16产生表示被透射过每个被检查透镜的光束或其部分的信号集合,并且随后将这些信号传递到处理子系统20。
处理子系统20接收来自成像子系统16的那些信号且根据预先确定的程序处理那些信号。通过使用这个程序,处理子系统20产生指明每个被检查的透镜是否适合于用户使用的信号。如果经发现透镜是不可接受的,则信号被传递到控制器24,所述控制器24随后操纵机构22以将不可接受的透镜从可接受的透镜流中撤除。可被用在系统10中的具体设备或元件在上述提到的U.S.专利5,500,732和U.S.专利申请序号09/751,875中被公开且被加以详细说明,所述两个专利在此被全部引入作为参考。
图2更详细地示例出优选的照明及成像子系统的部分。在使用中,触发传感器(未示出)检测出沿着组合件输送机52移动的载体组合件30,并且向照明子系统发送一电信号,所述电信号依次激发氙气闸门54(光源)。由所述闸门产生的光经过散光玻璃56且迁移通过光延伸管60,在此它遇到位于滤光器支架内的滤光器62和64的组合。新近经过滤的光继续其行程通过初级组件70,在此所述光遇到去离子水72中的接触透镜。从接触透镜出来的光被多元件石英透镜74接收且在它照射相机CCD阵列76之前被光处理。随后作为结果的图象数据被处理子系统加以处理。图2还示出相机透镜f-光阑调节环80、透镜延伸管82和透镜聚焦环84。
滤光器62和64将未处于第一波长带或第二波长带内的光的波长去除。优选地滤光器之一是在540nm 300FWHM(在半最大时的全宽,或在50%峰值透射时所测量的滤光器透射带的宽度)下具有峰值透射的IR滤光器。优选地第二滤光器是uv滤光器,其不是在350nm 53FWHM(UG1滤光器)下滤光的UV透射黑玻璃滤光器就是在324nm 112FWHM(UG11)下滤光的黑玻璃滤光器。在优选的实施例中被置于光源和待被检查的设备之间的滤光器被加以说明并被示出;然而,作为选择地所述滤光器可被置于待被检查的设备与相机之间。
参考图1,在系统10的这个操作中,优选地包括键盘和视频终端的主机46被连接到处理器装置34上,以从视觉上显示被输入进入处理器的数据或消息。监视器44也被连接到处理器装置34上且被提供用来从存储于处理器装置内的数据值产生视频图象,并且监视器44还可被用来显示检查结果和总计。
如上所提到,处理子系统20对从象素阵列76接收到的数据加以处理,以确定每个透镜70是否可接受。通常,这是通过下述来实现的,即搜索每个透镜的图象以寻找任何缺陷的存在,或更精确地,搜索任何缺陷的图象。如果发现缺陷,则所述透镜被拒绝。
一种类型的缺陷是透镜内的孔,并且现有技术检查程序典型地搜索这样的孔。然而,现有技术工艺的主要缺点是其不具有准确地鉴别溶液72中的泡与接触透镜70内的孔的能力。这种能力缺乏是由于这样的事实,即这些泡42和孔43当被成像时其具有类似的特征。这一不足是误拒绝产品的主导原因。
照明子系统14被设计且操纵成在象素阵列76上形成图象,其中泡和孔具有可鉴别的差异,且处理子系统20被提供有可以识别那些差异且由此区分透镜内孔与溶液中泡的例行程序。更具体地,鉴于透镜具有变化的吸收水平,照明子系统提供透镜的多波长成像方法,所述方法包括由至少被透镜部分吸收的波长及至少被透镜部分透射的波长组成的至少一个照明源以产生部分半透明的图象。
除了接触透镜的光谱品质以外,这个技术还可向剩余的接触透镜组分中添加紫外线抑制剂的数量,用来调节波长带的吸收率程度以取得所期望的半透明效应。参考图3,通过将处于适当比率和强度的经过滤的紫外线和可见光带穿过透镜可以取得所述效应,并且最终结果是带86和88。光谱带以如此方式被加以选择,以便于紫外线光的一部分被透镜吸收且可见光的一部分被允许穿过透镜。到达相机且作为形成CCD阵列上图象的光的一部分的光的uv部分优选地包括340-365nm。(光的这个uv部分在穿过滤光器和接触透镜之后被加以测量。)到达相机且作为形成CCD阵列上图象的光的一部分的光的可视部分优选地包括385-405nm。(光的这个可视部分在穿过滤光器和接触透镜之后被加以测量。)吸收的(紫外光组分)与未吸收的(可见光组分)的比率优选地在约1∶1至1.5∶1之间且更优选地为1.5∶1。
同样,所述系统被加以调节以便于入射到感光性象素阵列上、包括所述第一波长带和所述第二波长带的光的平均强度处于所述阵列感光度的中值范围。例如,如果感光性象素阵列对应的灰度标度读数范围例如处于0至255,则入射到感光性象素阵列的光的平均强度被调节到这个范围的中间,优选为约140。在图3中,线92(“———”)表示相机/滤光器的透射率,线90(“—-—-—”)表示未存在滤光器时的透镜吸收数据,且包括带86和88的线94(“----”)表示穿过透镜和滤光器之后在相机处的净透射率光谱(net transmittancespectra)。图4示例利用这个多光谱成像技术在象素阵列上形成的接触透镜图象96。接触透镜图象是部分半透明的图象,即灰色图象97。这个图象清晰地区分出泡42与孔43。通过对照,亮场检查系统建立接触透镜的亮图象,其中边缘和缺陷是暗象素,而暗场检查系统建立接触透镜的暗图象,其中边缘和缺陷是亮象素。
图5示出由处理系统利用计算机程序所执行的用来分析象素信息的例行程序或程序100的流程图。当所述程序用于以上述说明方式所形成的透镜图象时,其能够有效地区分透镜内的孔与透镜所浸入的液体中的泡。通常,这个程序利用三个主要元素以将泡区分于孔:对称性、壁厚、以及强度和强度率。所有的区分特点可以被用在任何检查系统,例如在US专利6,154,274;5,995,213;5,943,436;5,828,446;5,814,134;5,812,254;5,805,276;5,748,300;5,745,230;5,717,781;5,675,962;5,649,410;5,640,464;5,568,715;及5,500,732中所公开的亮场和暗场检查系统中,所述专利在此被全部引用作为参考。然而,利用强度和强度率的第三个区分特点尤其完好地适用于在此所说明的系统。
泡具有作为对称性度量的接近1.0的长宽比,其中长宽比被定义成泡的高度除以宽度。泡内部还具有对称的结构。泡的惯性质心(类似于质量中心的强度中心)几乎总是在其几何质心的一个或两个象素的内部。惯性质心由下述方程式定义:
列:Xi=(象素强度)*(列的位置)/(总强度计数)
排:Yi=(象素强度)*(排的位置)/(总强度计数)
几何质心是其中心且由下述方程式定义:
列:Xg=(列的起始点)+(泡的宽度)/2.0
排:Yg=(排的起始点)+(泡的高度)/2.0
同样,泡具有针对其大小的最小壁厚度。这个壁厚度是包括泡边缘的暗环。孔经常具有非常薄的边缘,但是泡边缘的厚度可以随着透镜的规定、孔在透镜中的位置及孔的深度而变化。在下面被加以详细说明的优选例行程序100中,针对相隔开45o的八个搜索矢量确定泡或孔壁的厚度,从外部到中心进行处理且将象素与根据局部背景所形成的阈值进行比较。对于每个矢量,基于它们与阈值的比较,暗象素与亮象素被加以计数。暗象素表示泡或孔壁的厚度且亮象素的计数被用来确定材料损失量(如果存在的话)。
上述说明的多光谱成像技术提供了附加的区分特点:泡和孔相对其相应的局部背景的强度。在这个成像技术优选实施例中的重要特点是:透镜吸收超过99%的VU光而通过几乎所有的可见光。由此,接触透镜作为灰色物体(较低的灰度标度值)而出现,且透镜中任何明显的材料损失将作为白色显现在被捕捉的图象中。利用这点,通过将孔的灰度标度值与相邻象素的灰度标度值相比较,可以轻易地在图象中检测到孔。在这个区分中的一个局限性是泡的发现,其起到微小透镜的作用且反射可见光,从而引起泡作为孔而显现。由于它们比其相邻象素具有较亮的中心,所以它们看起来是透镜内的孔。鉴于此点,优选地,亮象素阈值被线性地加以调节,以便于暗与亮阈值的比率被放宽,以允许亮的泡更靠近透镜的边缘但是未能使亮泡更靠近于透镜的中心。
具体参考图5,优选地,在开始程序100之前,图象数据被加以处理以识别潜在的从种属上被称为斑(blob)的孔和泡。任何适合的工序可被用来实现这一点,例如,见US专利6,154,274;5,995,213;5,943,436;5,828,446;5,814,134;5,812,254;5,805,276;5,748,300;5,745,230;5,717,781;5,675,962;5,649,410;5,640,464;5,568,715;以及5,500,732。所有这些专利在此被全部引用作为参考。典型地象素接象素的分析被加以执行,其比较邻近象素的强度以首先对透镜边缘加以定位且随后确定在透镜内部透镜是否具有任何缺陷。在透镜内部的象素与阈值进行比较,且如果象素强度小于阈值,则那个象素可是孔或缺陷。具有低于阈值的强度的邻近象素被分组到一起且将被称为斑。在每个斑周围的矩形区域被加以限定,其包括具有小于阈值强度值的斑的所有象素。在程序100的步骤102中,斑的总数量与阈值相比较;且如果那个数量超出这个阈值,则透镜被拒绝且例行程序结束。这是在下述前提下进行的,即如果存在许多斑,则非常有可能至少一个斑是孔,或甚至如果所有的斑是泡,则这些泡可能已经遮掩或掩盖了透镜中的孔。在这些情形下,拒绝这些透镜较分析所有的斑来讲可简直是更为经济。例如,如图5所示阈值可为50。
如果斑的总数量小于阈值,则例行程序继续一次一个地分析斑。具体地,在步骤104,将斑之一的大小与表示孔可能将具有的最小大小的最小值进行比较。如果斑不大于这个最小的孔大小,则所述斑不被视为是孔,且例行程序继续分析下一个斑。对于优选的系统,小于3个象素,47微米的斑不被视为是孔。
相对照,如果斑的大小使其可能是孔,则例行程序进行到步骤106且斑的长宽比被加以计算。如上所提到,这个长宽比简单地为斑的高度除以其宽度。在步骤110中,这个长宽比与范围进行比较,且如果所述长宽比在规定的范围以外,则所述斑被识别为孔,且例行程序继续分析下一个泡。然而,如果长宽比处于所述范围之内,则例行程序转移到步骤112。长宽比通常被设定在0.8至1.2的范围内。
可注意到:在步骤110与长宽比进行比较的范围并没有必要一定是永久、固定的范围,但是可取决于斑的大小从斑到斑而变化。例如,如果斑大于给定大小,则一个值可被用于这个比较,而如果斑小于给定大小,则第二值可被使用。同样,如果斑小于给定大小,则比较值可作为斑大小的函数被加以确定。大的斑通常具有较厚的边缘,所以程序可提供接近于1被定中的更窄长宽比范围,以通过更多依赖对它们边缘厚度的分析来优化大泡的区分。
在步骤112和114中,几个值被加以计算。尤其地,在步骤112中,两个阈值被加以计算。这些值中的第一值,被称为孔阈值,其表示用于与斑内部象素做比较的背景相对强度;以及被称为环阈值的第二值表示用于与斑的边缘或环上的象素做比较的背景相对强度。
对于每个被处理的斑,局部背景的估算被加以执行,以支持对用于评价斑大小、形状和特征的阈值的更佳确定。根据局部背景而确定的阈值包括孔阈值、环阈值、及碎片阈值。孔阈值被用来识别其中斑内部并不是处于饱和水平的、但比局部背景灰度标度亮的部分孔。斑壁阈值被用来评价潜在的泡壁厚度,由于泡图象作为相当象环形物的暗圆环形状而显现。泡内部其强度通常类似于其局部的背景水平,但是泡斑通常展示出暗环,其明显地比局部背景水平暗。碎片的阈值还被单独地加以确定,其典型地比泡壁强度暗。使用局部背景来设定这些阈值意味着处理将更为适用且每个被处理的斑将被更好地进行表征。
任何适合的程序可被用来确定每个斑的适当局部背景值。优选地,这个值可基于在相邻于斑的限定区域内以及限定斑分析区域的矩形内部的象素的强度值。通过使用这个刚刚被确定的背景值(BgMean),孔环及碎片阈值可由下述方程式加以计算:
holeThrs=BgMean+(C_smHTFactor*BgSigma)
ringThrs=BgMean+(C_smDTFactor*BgSigma)
其中BgMean是在给定区域内象素的平均强度值,BgSigma是这些象素强度值与平均值的标准偏差,且C_smHTFactor及C_smDTFactor是参数。通过使用被已知为在图象内具有孔和泡的接触透镜的图象,这些参数根据经验由系统的迭代过程导出。
在步骤114中,斑的每个象素的斑梯度值(在下面被说明为两维的一阶导数)被加以确定。在步骤102之前,即在图5流程图中所示的泡处理软件之前,初始斑分析的一个重要部分是通过计算斑的两维一阶导数或梯度对斑边缘的确定。这些梯度被用来跟踪外部及内部的边缘以形成斑用于随后的处理。然而,在初始斑分析中这些梯度值被象素色编码取代,所述象素色编码被用来将相邻象素一起缝合进一个邻接的斑中。作为泡识别过程的一部分,在步骤114中斑边缘梯度被重新评价。斑梯度的重新评价包括计算每个斑所增加面积大小的两维一阶导数(在初始斑矩形区域每一侧上的2个附加象素),以努力增强被初始斑分析可能已经忽略的弱边缘,其中当斑被定位时在步骤102之前进行初始斑分析。在斑梯度被重新计算的同时,梯度的平均值和标准偏差被加以计算。梯度阈值被确定为梯度平均值减去一个梯度标准偏差。在随后的处理中梯度阈值被利用以确定斑大小、长宽比、对称性和斑壁(环)厚度,它们被用来将斑归类为泡或缺陷。在泡识别软件内的步骤102之前所执行的初始斑分析中,静态梯度阈值被用于斑的分析中。在泡处理软件中通过计算每个斑的局部梯度阈值,可以执行对斑特征的更佳评定。
在步骤112和114之后,在步骤116例行程序确定斑是小还是大。这是通过比较斑的大小与预先确定的参数而进行的。如果所述大小小于这个恒量,则斑被视为小,并且例行程序继续到步骤120;以及如果所述斑大小大于这个恒量,则斑被视为大且例行程序转移到步骤122。
小于由参数C_bubMinBlob所规定的值(例如具有象素面积大于15的斑)且具有在参数C_smBubRat所规定范围内长宽比的小斑得到评价,以确定它们是否具有小孔的亮象素特征。同样,暗象素和全部象素的比率(通过将象素强度与根据局部背景计算出的孔及环阈值进行比较(对于每个斑)而被确定)与参数C_minDPPer进行比较。如果在斑内的暗象素与全部象素的比率大于参数C_minDPPer,则斑是泡或小的部分孔。C_minDPPer是根据经验针对一给定系统和透镜而被确定的。对于本系统它具有52的值。
在步骤120中,暗象素与全部象素的比率被加以计算,且随后在步骤124,这个比率被用来确定斑是孔还是泡。更具体而言,在步骤124中,必须满足两个标准以便于斑被识别为泡。第一个标准是暗象素与总象素的比率必须满足给定的条件。例如,这个条件可是暗象素与总象素的比率大于一被定义值。应该注意到这个被定义值可是其它因子如斑的大小的函数。在步骤124所应用的第二标准是亮象素的总数量是否小于给定数量如2。如果在步骤124所应用的两个标准均得到满足,则斑被识别为泡,否则斑被确定为孔。
在步骤120中,任何适合的测试可用来将象素识别为暗或亮的。例如,其强度值小于第一给定值的那些象素可被视为暗的,而其强度值大于第二值的象素可被视为亮的。对于本系统,优选地是暗象素是具有强度值小于环阈值(ringThr)的象素,以及亮象素是具有强度值大于孔阈值(holeThr)的象素。
如果在步骤116中,斑被确定为大斑,则例行程序从步骤116继续到步骤122,其中斑的大小与表示泡最大大小的给定值(其为具有11000象素平方(power)缺省值的参数)进行比较。如果斑不小于这个值,则斑被识别为孔。然而,如果斑小于这个大小,则例行程序转移到步骤126,其中斑的环或外部边缘的厚度被加以确定。
较大斑使其壁厚度得到评价,以确定它们是否展示出其相似于环形的泡特征性特性。在步骤126中沿着靠45°相隔开的八个搜索矢量中的每一个矢量对斑壁厚度加以确定,从斑外部向中心进行处理,且将在矢量上的象素的强度值与根据每个孔的局部背景计算出的孔和环阈值进行比较。沿着每个矢量,基于暗象素与亮象素与环或孔阈值的比较,暗象素与亮象素被加以计数。暗象素表示斑壁(边缘或环)的厚度,且亮象素计数可被用来确定材料的损失量(如果存在的话)。
在步骤130中,延伸通过大于高出最小厚度的给定数量象素例如大于两个象素的壁厚度的矢量数量与给定值(C_bubNEdge)进行比较。如果斑未通过这个测试,则斑被归类成孔(缺陷)。如果斑具有可接受数量的测试矢量,则它被进一步处理以确定它是否是泡。
如果斑在步骤130中通过环矢量测试,则它的象素被与根据局部背景而确定的附加阈值进行比较且被计数。同样几何平均数和象素加权平均数被加以确定。附加的阈值是:
darkThr=BgMean-(darkfac*BgSigma)
brightThr=BgMean+(holefac*BgSigma)
verybrightThr=holeThr
如上所述参数darkfac和holefac如前期所说明的那样根据经验得以确定。
在步骤132中,计数由斑内部为暗、亮以及非常亮的象素数量组成。具体地,为了做到这一点,将象素的灰度标度值与刚刚定义的表示暗、亮及非常亮值的三个阈值进行比较。如果象素的灰度标度值小于暗阈值(darkThr),则象素被视为暗。如果象素的灰度标度值大于亮阈值(brightThr),则象素被视为亮的;以及如果象素的灰度标度大于非常亮阈值(verybrightThr),则象素被视为非常亮。利用这个程序,可注意到:非常亮的象素也被计数为亮象素。
在步骤134中,例行程序检验确定斑是否具有任何亮的象素。如果没有,则斑被视为泡;然而如果斑具有任何亮的象素,则例行程序继续到步骤136以测试斑是否是具有亮中心的泡,因为泡充当透镜。在这个步骤中,基于暗和亮象素的数量、以及几何中心与以前所说明且可被称为象素加权平均值的惯性质心的比较做出评定,以确定斑是否是泡、孔、碎片或一些其它类型的缺陷。当泡在其中心区域展示出亮象素时,它们的惯性质心典型地非常接近于它们的几何中心,而孔经常将显现出具有与其几何中心相比较倾斜的惯性质心。碎片通常也是非对称的且也将未能通过这个测试。
在步骤140中,将惯性质心和几何中心之间的距离与被定义值进行比较,所述被定义值可为常数或可根据定义的函数被加以确定。如果这个距离不小于被定义的值,则斑被视为是非对称的且因此被视为孔。然而,如果惯性与几何质心之间的距离小于被定义值,则斑被视为是对称的。斑可是泡且例行程序转移到步骤142。
在这个步骤142中,例行程序检验确定是否暗象素与亮象素的比率指示斑是否是泡。为了做到这点,例行程序比较那个比率与被定义值,所述定义值可是参数或可根据定义的函数而被加以计算。如果暗象素与亮象素的比率小于被定义值,则斑被视为是泡,但是如果这个比率不小于被定义值,则斑被视为是孔。被定义值优选地大约为5。
利用图5中所示的例行程序100的优选实施例,所有的斑可被分析,尽管一个孔的存在可足以拒绝透镜。优选地是所有的斑被加以分析,因为这可提供用于制作透镜程序方面的有用信息。
图6和7示例出具体表达这个发明另一系统和方法的检查系统200。如将意识到的那样,图6和7分别类似于图1和2,且图中相似的参考数字标识出相同的或相对应的子系统或元件。因此,图6和7的子系统200包括运输子系统12、照明子系统14、成像子系统16和处理子系统20。尤其参考图7,在系统200中,照明子系统包括氙气闸门54、以及成像子系统包括相机32(相机32包括CCD阵列76)。图1与图6中所示系统的差异在于接触透镜被示出在半模或前曲线模206内进行检查,而不是在图1和2所示系统中所说明的最终组件。利用部分被透射且部分被吸收的光的这个系统尤为有用,因为与其它系统,尤其是单独利用uv光可以用来检查薄透镜但是不能够通过厚透镜建立图象的检查系统相比,它可被用来检查厚和薄的接触透镜。
正如本领域的那些普通技术人员将理解到的,系统200被设计成检查模制接触透镜,所述模制接触透镜被模制在两个模段之间,之后不久一个模段被取走。透镜被留在剩余的模段206内,所述模段携带透镜通过检查系统。在极大多数时间中,两个模段被拔离开而不影响透镜。然而,在一些情况下当模段被拔离时,透镜可从剩余模段中被略微地拔离开。这并不是透镜中的缺陷。然而,典型的现有技术自动化透镜检查系统并不能够有效地区分已经从模段中拔离开的透镜与具有孔或撕裂缺陷的透镜。
因此本发明包括一种检查光学设备的方法,其包括:
(a)利用具有第一带宽的光照明所述光学设备的中心区域;
(b)利用具有第二带宽的光照明所述光学设备的边缘;
(c)将步骤(a)和(b)中的光透射通过所述光学设备并且在感光性象素阵列上捕捉所述光;
(d)读取根据步骤(c)产生的象素以检查所述光学设备。
在此所使用的术语光学设备和感光性象素阵列具有上述提到的含义和优选的范围。术语“中心区域”是指同心地从所述光学设备的几何中心延伸到不大于距所述光学设备边缘约1mm半径处的所述光学设备区域。在此所使用的术语“边缘”是指同性地从所述光学设备的周长延伸且结束于所述中心区域的所述光学设备区域。例如如果所述光学设备是具有直径为12.6mm的接触透镜,则中心区域是从沿着半径测量时从所述几何中心延伸5.3mm的面积。这个接触透镜的边缘是沿着这个半径测量出的6.3mm。
在此所使用的术语“具有第一带宽的光”是指具有照明光学设备中缺陷如孔、泡、撕裂及碎片的波长的光。优选地所述具有第一波带的光处于可见光范围(约370nm至约410nm),然而,所述具有第一带宽的光可包括处于可见光范围及紫外区域的光。例如如在此所定义的所述术语具有第一带宽的光可具有第一波长带和第二波长带。术语“具有第二波长带的光”是指具有这样波长的光,即其并不产生因透镜边缘从模子载体中略微分离而导致的任何图象特点。优选地是所述具有第二带宽的光处于光谱的紫外线区域(约330nm至约367nm)。
本发明还进一步包括一种检查光学设备的方法,其包括:
(a)利用具有第一带宽的光照明所述光学设备的中心区域;
(b)利用具有第二带宽的光照明所述光学设备的边缘;
(c)将步骤(a)和(b)中的光透射通过所述光学设备并且在感光性象素阵列上捕捉所述光;
(d)产生所述光学设备的图象。
在此所使用的术语光学设备、感光性象素阵列、图象、中心区域、边缘、具有第一带宽的光及具有第二带宽的光具有其上述提到的含义和优选的范围。
本发明还进一步包括一种用于检查光学设备的装置,其包括:
(a)利用具有第一带宽的光用于照明所述光学设备中心区域的装置;
(b)利用具有第二带宽的光用于照明所述光学设备边缘的装置;
(c)用于将步骤(a)和(b)中的光透射通过所述光学设备并且在感光性象素阵列上捕捉所述光的装置;
(d)用于读取根据步骤(c)产生的象素以检查所述光学设备的装置。
在此所使用的术语光学设备、感光性象素阵列、图象、中心区域、边缘、具有第一带宽的光及具有第二带宽的光具有其上述提到的含义和优选的范围。
在此所使用的用于照明所述中心区域的装置包括但其并不局限于将来自光源的光透射通过第一滤光器元件,其中所述滤光器透射显示出所述光学设备中孔和撕裂的光。优选地所述第一滤光器元件透射处于光谱可见光范围,更优选地处于约370nm至约410nm的光。在此所使用的用于照明所述边缘的装置包括但并不局限于将来自光源的光透射通过第二滤光器元件,其中所述滤光器并不产生因透镜边缘从模子载体中略微分离而导致的任何图象特点。优选地所述第二滤光器元件透射具有约330nm至约367nm波长的处于紫外线区域的光。这个发明参考下述图及说明被更详细地加以示例。
在图6和7所示系统的另一优选实施例中,系统200可以被修改成将位于光源54与透镜204之间的滤光器设备202互换成图8中所示的另一滤光器设备220。另外,滤光器设备220可位于透镜204与相机之间。
借助于滤光器设备220,系统200被设计成避免仅因于透镜被剥离而被拒绝。通常,这是通过利用这样的事实来完成,即透镜中的大多数孔和撕裂出现在透镜的中心区域,而已经从模子载体206中被拔离开的透镜效果显然是主要出现在透镜的周长区域。更具体地,系统200的照明子系统被设计且操作成在象素阵列76上形成图象,所述图象有效地示出透镜中的孔或撕裂而且还不示出因透镜从模子载体中略微分离而导致的任何效果。
优选地这是通过下述完成的,即利用处于显示出透镜中孔或撕裂的至少一个带宽的光照明透镜206的中心区域,并且利用处于并不产生因透镜边缘从模子载体中略微分离而导致的任何图象特点的第二带宽的光照明透镜的外部区域。这反过来是通过将处于照明光束路径中的滤光器设备220定位在光源54和透镜204之间而实现。
滤光器设备220包括支架或支柱构件,以及被牢固地支撑在支柱构件中的第一和第二滤光器元件。特别参考图8,第一滤光器元件212具有圆形形状,且第二滤光器元件214具有较大的圆形形状且被这样加以定位以便于214与所述第一滤光器元件212同心,这样所述第二滤光器元件214与所述第一滤光器元件212重叠,并且具有从延伸出滤光器元件212圆周的环形形状。作为另一选择地,圆形的第一滤光器元件与环形的第二滤光器元件可被用来取得相同的效果。
滤光器设备220被定位在系统200中,以便于穿过透镜204中央部分的光穿过所述第一滤光器元件212,并且穿过透镜204外部周长部分的光已经穿过所述第二滤光器元件214。此外,优选地,穿过所述第一滤光器元件212的任何光绝不穿过外部透镜区域,并且同样地,穿过所述第二滤光器元件214的光绝不穿过中央透镜区域。
滤光器元件212和214可透射任何适合的带宽。例如,所述第二滤光器元件214透射处于光谱紫外线区域,优选地处于约340nm或357nm(+/-10FWHM)的光,以为透镜周界提供紫外线形式的照明。所述第一滤光器元件212透射大多数处于可见光区域的光,但是如图3所示可以透射处于第一波长带86和第二波长带88的光。通过使能够被透射到透镜外面部分且最终到达CCD阵列的光的带宽变窄,透镜外面部分的图象是掩盖剥离假象的较暗图象。
图9示例出在系统200的象素阵列76上所形成的透镜图象。任何适合的图象分析算法可被用来分析象素数据,以确定透镜是否可被接受。本发明这个方面的显著优点在于:现存的图象分析算法可以被用来确定透镜是否具有孔或撕裂。这是由于这样的事实,即仅在透镜边缘上使用uv光掩盖了作为剥离而显现的脱模过程假象。应用于系统200的光谱掩蔽技术消除了,或者至少基本上降低了因透镜从模子载体中分离而出现在象素阵列76上的特点的可能性。因此,算法可以精确地识别具有孔或撕裂的透镜,即使所述算法并不能够有效地区分上述这样的透镜与其边缘已经从模子载体中分离出的透镜。
正如本领域中的那些普通技术人员将意识到的,系统10、例行程序100和系统200可被用来检查大量类型及大小的光学透镜和其它光学设备,以及系统10和200尤其很好地适合于检查接触透镜。此外,取决于系统中待被检查及/或被组装物体的吸收/透射特征,通过使用各种光谱的组合,在此所公开的多光谱成像程序还可以被应用到其它物体中。利用这个发明可以被检查的其它物体包括柔性焦距透镜组、相机透镜、光学滤光器、薄膜以及玻璃。
在此所公开的本发明的附加方面包括但并不局限于下述内容。一种读取从感光性阵列所产生的象素的方法,通过利用光学设备的对称性程度、壁厚度及灰度标度值用来评价所述光学设备是否包括孔。一种由机器可读取的程序存储设备,有形地将机器可执行的指令程序具体化,以执行用于处理表示光学设备、区分所述光学系统被定义特征的图象数据的方法步骤。
虽然很显然地是在此所公开的本发明被准确地加以计算以实现上面所阐明的目的,但是将要意识到本领域中的普通技术人员可以设想出众多修改及具体实施,以及旨在所附加的权利要求涵盖属于本发明真实实质及范围内的所有这样的修改和具体实施。

Claims (24)

1.一种检查光学设备的方法包括:
(a)利用光照明光学设备及环境背景,其中所述光包括第一波长带和第二波长带,
其中所述第一波长带和所述第二波长带是不同的波长,以及
其中所述第一波长带具有第一强度且所述第二波长带具有第二强度;
(b)将所述光透射通过所述光学设备,其中多数所述第一波长带被所述光学设备吸收且多数所述第二波长带被透射通过所述光学设备,以及在感光性象素阵列上捕捉所述光学设备透射光;
(c)将所述光透射通过所述环境背景,其中多数所述第一波长带和所述第二波长带被透射,以及在感光性象素阵列上捕捉所述背景透射光;
(d)读取从步骤(b)和(c)所产生的象素并且比较所述读数的灰度标度值,其中从所述背景透射光以及从所述光学设备透射光所产生象素的灰度标度值之间的差异是一个足以区分所述光学设备内孔与所述环境背景内泡的值。
2.根据权利要求1的方法,其中所述第一波长带被所述光学设备吸收80%至100%。
3.根据权利要求1的方法,其中所述第一波长带被吸收98%至100%。
4.根据权利要求1的方法,其中所述第一波长带处于340nm至360nm。
5.根据权利要求1的方法,其中所述第二波长带被透射80%至100%。
6.根据权利要求1的方法,其中所述第二波长带被透射98%至100%。
7.根据权利要求1的方法,其中所述第二波长带处于385nm至405nm。
8.根据权利要求1的方法,其中所述第一强度与第二强度的比率为2∶1。
9.根据权利要求1的方法,其中所述第一强度与第二强度的比值为1.5∶1。
10.根据权利要求1的方法,其中环境背景与所述光学设备无缺陷区域的灰度标度之间的差异为120至180。
11.根据权利要求1的方法,其中环境背景与所述光学设备无缺陷区域的灰度标度之间的差异为140。
12.根据权利要求1的方法,其中在步骤(b)和步骤(a)中被透射且入射到所述感光性象素阵列上的光的强度被进一步加以调节,以便于所述光学设备无缺陷区域的被捕捉图象处于感光性象素阵列灵敏度的中值范围。
13.根据权利要求1的方法,其中所述第一波长带和所述第二波长带由一个光源和一个或更多个适当的滤光器而产生。
14.根据权利要求1的方法,其中步骤(a)还包括:利用具有第一带宽的光照明所述光学设备的中心区域,以及利用具有第二带宽的光照明所述光学设备的边缘。
15.根据权利要求14的方法,其中所述中心区域延伸直至距所述光学设备的边缘2mm。
16.根据权利要求14的方法,其中所述中心区域延伸直至距所述光学设备的边缘4mm。
17.根据权利要求14的方法,其中具有第一带宽的所述光包括具有波长为370nm至405nm的可见光。
18.根据权利要求14的方法,其中具有第二带宽的所述光包括具有波长为330nm至367nm的紫外光。
19.一种检查光学设备的方法包括:
(a)利用光照明光学设备及环境背景,其中所述光包括第一波长带和第二波长带,
其中所述第一波长带和所述第二波长带是不同的波长,以及
其中所述第一波长带具有第一强度且所述第二波长带具有第二强度;
(b)将所述光透射通过所述光学设备,其中多数所述第一波长带被所述光学设备吸收且多数所述第二波长带被透射通过所述光学设备,以及在感光性象素阵列上捕捉所述光学设备透射光;
(c)将所述光透射通过所述环境背景,其中多数所述第一波长带和所述第二波长带被透射,以及在感光性象素阵列上捕捉所述背景透射光;
(d)产生所述光学设备和所述环境背景的图象,其中通过步骤(b)和(c)所产生图象的灰度标度值之间的差异是足以区分所述光学设备内孔与所述背景内泡的值。
20.根据权利要求19的方法,其中所述第一波长带被吸收98%至100%。
21.根据权利要求19的方法,其中所述第二波长带被透射80%至100%。
22.根据权利要求19的方法,其中所述第二波长带处于385nm至405nm。
23.根据权利要求19的方法,其中所述第一强度与第二强度的比值为1.5∶1。
24.根据权利要求19的方法,其中所述第一波长带和所述第二波长带由一个光源和一个或更多个适当的滤光器而产生。
CNB03800495XA 2002-02-21 2003-02-21 用于检查光学设备的方法和系统 Expired - Fee Related CN1279341C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35907402P 2002-02-21 2002-02-21
US60/359,074 2002-02-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN2006101155147A Division CN1896708B (zh) 2002-02-21 2003-02-21 用于检查光学设备的方法和系统
CN2009102604908A Division CN101793595B (zh) 2002-02-21 2003-02-21 用于检查光学设备的装置

Publications (2)

Publication Number Publication Date
CN1518662A CN1518662A (zh) 2004-08-04
CN1279341C true CN1279341C (zh) 2006-10-11

Family

ID=27766039

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2006101155147A Expired - Fee Related CN1896708B (zh) 2002-02-21 2003-02-21 用于检查光学设备的方法和系统
CNB03800495XA Expired - Fee Related CN1279341C (zh) 2002-02-21 2003-02-21 用于检查光学设备的方法和系统
CN2009102604908A Expired - Fee Related CN101793595B (zh) 2002-02-21 2003-02-21 用于检查光学设备的装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2006101155147A Expired - Fee Related CN1896708B (zh) 2002-02-21 2003-02-21 用于检查光学设备的方法和系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2009102604908A Expired - Fee Related CN101793595B (zh) 2002-02-21 2003-02-21 用于检查光学设备的装置

Country Status (13)

Country Link
US (1) US6882411B2 (zh)
EP (1) EP1476738B1 (zh)
JP (1) JP2005518537A (zh)
KR (1) KR100972945B1 (zh)
CN (3) CN1896708B (zh)
AU (2) AU2003225591B2 (zh)
BR (1) BRPI0303222B1 (zh)
CA (1) CA2444517C (zh)
DE (1) DE60323207D1 (zh)
HK (2) HK1066857A1 (zh)
SG (1) SG135070A1 (zh)
TW (1) TWI294031B (zh)
WO (1) WO2003073061A2 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE370799T1 (de) * 2000-05-01 2007-09-15 Fujifilm Corp Vorrichtung zur abgabe eines fluids
WO2006039192A1 (en) * 2004-09-29 2006-04-13 Telco Testing Solutions, Llc Apparatus and method for detection of contaminant particles or component defects
US20060244954A1 (en) * 2005-03-29 2006-11-02 Daley Wayne D System and method for inspecting packaging quality of a packaged food product
US20060232766A1 (en) * 2005-03-31 2006-10-19 Watterson Robert J Jr Methods of inspecting ophthalmic lenses
CN101512323B (zh) * 2006-09-08 2012-08-22 大日本印刷株式会社 污染性评价方法、污染性评价装置、光学部件的检查方法、光学叠层体以及显示器产品
US8107696B2 (en) * 2006-10-02 2012-01-31 Johnson & Johnson Consumer Companies, Inc. Calibration apparatus and method for fluorescent imaging
US8122878B1 (en) * 2006-10-20 2012-02-28 Energy Innovations, Inc. Solar concentrator with camera alignment and tracking
SG173233A1 (en) * 2010-01-28 2011-08-29 Visionxtreme Pte Ltd Inspection of defects in a contact lens
US8358830B2 (en) * 2010-03-26 2013-01-22 The Boeing Company Method for detecting optical defects in transparencies
US8736828B2 (en) * 2011-02-23 2014-05-27 Visionxtreme Pte Ltd Method and apparatus for inspecting ophthalmic lens
JP2014517914A (ja) * 2011-04-18 2014-07-24 イスメカ セミコンダクター ホールディング エス アー 検査装置
AU2012262324B2 (en) * 2011-06-03 2016-02-11 Johnson & Johnson Vision Care, Inc. Multiple radiation inspection of ophthalmic lenses
US8634068B2 (en) 2011-06-16 2014-01-21 Johnson & Johnson Vision Care, Inc. Method of determining the optimal wavelength for inspecting ophthalmic lenses
US20120320374A1 (en) 2011-06-17 2012-12-20 Sites Peter W Method of imaging and inspecting the edge of an ophthalmic lens
CN103162940B (zh) * 2013-02-22 2016-01-06 宁波舜宇光电信息有限公司 一种手机摄像模组自动测试机
SG11201602776PA (en) * 2013-10-08 2016-05-30 Emage Vision Pte Ltd System and method for inspection of wet ophthalmic lens
WO2015134449A1 (en) * 2014-03-05 2015-09-11 Novartis Ag Method for automatic inspection of contact lenses
SG11201603018PA (en) 2014-05-15 2016-05-30 Emage Vision Pte Ltd System and method for inspecting opthalmic lenses
EP3062130B1 (de) * 2015-02-26 2022-03-30 Wincor Nixdorf International GmbH Verfahren zur steuerung mindestens einer lichtschranke, steuerungsschaltung und damit ausgestattetes selbstbedienungsterminal
FR3039660B1 (fr) * 2015-07-30 2017-09-08 Essilor Int Methode de verification d'une caracteristique geometrique et d'une caracteristique optique d'une lentille ophtalmique detouree et dispositif associe
SG10201509497VA (en) * 2015-11-18 2017-06-29 Emage Vision Pte Ltd Contact lens defect inspection using uv illumination
EP3309603B1 (en) * 2016-10-11 2019-01-02 Essilor International Method for determining a parameter of an optical equipment
EP3502769A1 (en) * 2017-12-21 2019-06-26 Essilor International A method for determining an optical parameter of a lens
US10634618B2 (en) * 2018-01-23 2020-04-28 Hong Kong Applied Science and Technology Research Institute Company Limited Apparatus and a method for inspecting a light transmissible optical component
KR20200134913A (ko) * 2019-05-24 2020-12-02 엘지이노텍 주식회사 액체 렌즈 제조 장치 및 방법
CN111855156B (zh) * 2020-07-29 2022-07-26 杭州海康微影传感科技有限公司 用于镜头检测的采样控制方法和测试装置以及采样工装
US20230122214A1 (en) * 2021-10-19 2023-04-20 Johnson & Johnson Vision Care, Inc. Defect detection using synthetic data and machine learning

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD145805B1 (de) * 1979-08-27 1982-06-30 Johannes Grosser Beleuchtungsanordnung fuer mikroskope
AU649291B2 (en) * 1990-12-19 1994-05-19 Bodenseewerk Geratetechnik Gmbh Process and apparatus for examining optical components, especially optical components for the eye and device for illuminating clear-transparent test-objects
DE4236928A1 (de) * 1992-10-31 1994-05-05 Bodenseewerk Geraetetech Verfahren und Vorrichtung zur Reihenprüfung von Bildinformationen
IL107603A (en) * 1992-12-21 1997-01-10 Johnson & Johnson Vision Prod Ophthalmic lens inspection method and apparatus
US5649410A (en) * 1994-06-10 1997-07-22 Johnson & Johnson Vision Products, Inc. Post-hydration method and apparatus for transporting, inspecting and packaging contact lenses
US5578331A (en) * 1994-06-10 1996-11-26 Vision Products, Inc. Automated apparatus for preparing contact lenses for inspection and packaging
US5500732A (en) * 1994-06-10 1996-03-19 Johnson & Johnson Vision Products, Inc. Lens inspection system and method
DE29901791U1 (de) * 1999-02-02 2000-07-06 Novartis Ag Linsenmesseinrichtung
JP3544892B2 (ja) * 1999-05-12 2004-07-21 株式会社東京精密 外観検査方法及び装置
EP1213568B1 (de) * 2000-12-08 2005-12-28 Gretag-Macbeth AG Vorrichtung zur bildelementweisen Ausmessung eines flächigen Messobjekts
US6577387B2 (en) * 2000-12-29 2003-06-10 Johnson & Johnson Vision Care, Inc. Inspection of ophthalmic lenses using absorption
US6765661B2 (en) * 2001-03-09 2004-07-20 Novartis Ag Lens inspection

Also Published As

Publication number Publication date
AU2008237532A1 (en) 2008-11-13
BRPI0303222B1 (pt) 2017-03-28
KR100972945B1 (ko) 2010-07-30
CN101793595A (zh) 2010-08-04
WO2003073061A3 (en) 2003-10-30
AU2003225591B2 (en) 2008-12-11
EP1476738B1 (en) 2008-08-27
KR20040082271A (ko) 2004-09-24
BR0303222A (pt) 2004-12-21
TWI294031B (en) 2008-03-01
TW200532166A (en) 2005-10-01
HK1070131A1 (en) 2005-06-10
HK1066857A1 (en) 2005-04-01
AU2008237532B2 (en) 2012-05-17
CN1896708B (zh) 2010-08-04
AU2003225591A1 (en) 2003-09-09
JP2005518537A (ja) 2005-06-23
US20040042003A1 (en) 2004-03-04
CN1896708A (zh) 2007-01-17
CN101793595B (zh) 2012-05-16
CA2444517A1 (en) 2003-09-04
CN1518662A (zh) 2004-08-04
CA2444517C (en) 2011-01-11
SG135070A1 (en) 2007-09-28
US6882411B2 (en) 2005-04-19
EP1476738A2 (en) 2004-11-17
WO2003073061A2 (en) 2003-09-04
DE60323207D1 (de) 2008-10-09

Similar Documents

Publication Publication Date Title
CN1279341C (zh) 用于检查光学设备的方法和系统
US6577387B2 (en) Inspection of ophthalmic lenses using absorption
JP3553114B2 (ja) 眼レンズを自動的に検査する方法およびシステム
US5633504A (en) Inspection of optical components
KR100202215B1 (ko) 광학부품 특히 눈을 위한 광학부품의 검사방법 및 장치와 청정하고 투명한 검사 물체의 조명장치
KR100239259B1 (ko) 렌즈 검사 시스템
US5828446A (en) Method of inspecting ophthalmic lenses
US6201600B1 (en) Method and apparatus for the automatic inspection of optically transmissive objects having a lens portion
MXPA04007320A (es) Sistemas y metodos para inspeccion de lentes oftalmicos.
CN106537110A (zh) 用于检查眼镜镜片的系统和方法
JP2016540994A (ja) 濡れた眼用レンズの検査システムおよび検査方法
JPH06229877A (ja) 眼レンズを検査するためのレンズ検査装置
JPH06258180A (ja) 眼レンズを搬送するための装置
JP2017166903A (ja) 欠陥検査装置及び欠陥検査方法
JP4201532B2 (ja) 透明体の検査装置および検査方法
US20070121109A1 (en) Lens inspection
JPH1164240A (ja) 透明板中の気泡検出装置
JP3149336B2 (ja) 光学部材検査装置
CN115656216A (zh) 镜片表面缺陷检测方法及装置
KR100249962B1 (ko) 안과용렌즈검사방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1066857

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061011

Termination date: 20200221