CN1255368C - 大环酮的制备方法 - Google Patents

大环酮的制备方法 Download PDF

Info

Publication number
CN1255368C
CN1255368C CNB028044630A CN02804463A CN1255368C CN 1255368 C CN1255368 C CN 1255368C CN B028044630 A CNB028044630 A CN B028044630A CN 02804463 A CN02804463 A CN 02804463A CN 1255368 C CN1255368 C CN 1255368C
Authority
CN
China
Prior art keywords
nmr
cdcl
ring
ketone
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028044630A
Other languages
English (en)
Other versions
CN1489566A (zh
Inventor
G·弗拉特
M·纳戈尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Givaudan SA
Original Assignee
Givaudan SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Givaudan SA filed Critical Givaudan SA
Publication of CN1489566A publication Critical patent/CN1489566A/zh
Application granted granted Critical
Publication of CN1255368C publication Critical patent/CN1255368C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/607Unsaturated compounds containing a keto groups being part of a ring of a seven-to twelve-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
    • C07C29/40Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones with compounds containing carbon-to-metal bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
    • C07C29/42Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones with compounds containing triple carbon-to-carbon bonds, e.g. with metal-alkynes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/511Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/511Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups
    • C07C45/512Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition involving transformation of singly bound oxygen functional groups to >C = O groups the singly bound functional group being a free hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/413Saturated compounds containing a keto group being part of a ring of a seven- to twelve-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • C07C2601/20Systems containing only non-condensed rings with a ring being at least seven-membered the ring being twelve-membered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及一种新的快速和简单制备式Ia或Ib大环酮的热-同分异构化方法。在500℃之内的温度下将该大环酮快速地转化为气相,并以简单的方式以高产率制备式IIa和IIb的醇。在式Ia、Ib、IIa和IIb中,R1-R5和n具有说明书中定义的含义。

Description

大环酮的制备方法
本发明涉及一种快速和简单地制备大环酮的热-异构化方法。
大环酮由于其麝香味而在香料界具有显著的重要性。因此迄今为止特别是环十五烷酮(Exalton_)、3-甲基环十五烷酮(Muskon)、环十七烷-9-烯-1-酮(Zibeton)和(E/Z)-环十六烷-5-烯-1-酮(Ambretone_,MuskTM II_)作为麝香酮在商业上具有意义。正如由专业文献已知的,这些大环酮可以通过多步合成来制备,该合成主要以二个基本方法为基础:
a)大环化反应(例如随后进行还原或者分子内烯烃复分解(环合复分解,RCM)的所谓的α,ω-二酯的偶姻缩合等)。因为应该避免聚合反应过程,所以大多数的大环化反应仅在采用较多的稀释剂下进行,因此对于大规模反应来说成本太高。
b)扩环反应,该反应或者基于多步骤的Anellierungs-和碎裂-反应过程,或者以σ移位[3.3]-重排反应(例如1,2-二乙烯基环烷-1-醇烯的氧基-Cope-反应),或者在1-乙烯基环-3-烯-1-醇烯的[1.3]-置换反应为基础的(W.Thies,P.Daruwala,《有机化学杂志》(J.Org.Chem.)1987,52,3798-3806)。
在许多科学论文中描述了按照[1.3]-置换反应的原理增加2个碳原子的扩环反应(例如Tetrahedron Lett.1970,513-516)。在具有9至13元的环体系和在3位上具有桥环、高烯丙双键的1-乙烯基-环-3-烯-1-醇烯下,在氧基-Cope-重排的热条件下,观察到优选[1.3]-置换反应(增加二个碳原子的扩环反应)意义上的扩环反应,而不是[3.3]-重排产物(增加4个碳原子的扩环反应)。产率最大为25%,因为发生了所不希望的反应即水的消除。已经描述了在加热前将乙烯醇转化为相应的三甲基甲硅烷基醚可以明显改善产率(50-80%)。当在强的阴离子条件下(2摩尔-当量于HMPA中的氢化钾,在25-100℃下),使用相应的加倍不饱和醇钾进行重排反应时,获得同样产物。
在J.Am.Chem.Soc.1974,964,200-203中明确地指出,一旦消除高烯丙的桥环双键(在3位上),不但在三甲基甲硅烷基醚衍生物的情况下而且特别地在未衍生的乙烯醇本身的情况下,在最高达320℃的温度下就不再观察到类似的[1.3]-置换反应。在这二种情况下,采用额外的强行施加的反应条件(反应温度达420℃)导致主要形成烯烃(消除了水)。在J.Chem.Soc.1978,43,1050-1057中描述了同样在采用阴离子重排条件下,通过在室温下用HMPA中的氢化钾处理环体系饱和的乙烯醇4或24小时,不能观察到任何扩环反应的产物。
与乙烯基环丙烷结构相近的1-乙烯基环丙醇在加热仅至100℃下短时间内在[1.2]-迁移下已经不可逆地重排为2-经取代的环丁酮。然而,如果对此加热三甲基甲硅烷基醚衍生物(1-三甲基甲硅氧基-1-乙烯基环丙烷)而不是该乙烯基环丙醇,那么其重新在[1.3]-迁移下转化为环戊酮(J.Am.Chem.Soc.1973,95,5311-5321;《有机化学杂志》(J.Org.Chem.)1981,46,506-509)。
在《有机化学杂志》(J.Org.Chem)1978,43,4903-4905以及在《有机化学杂志》(J.Org.Chem)1980,45,2460-2468中同样描述了在特殊官能化的大环二噻螺酮衍生物的情况下增加二个碳原子的扩环反应(例如1.5-二噻螺[5.12]十八烷-7-酮)。所描述的方法不能用于小的环体系,例如不能用于环十二烷酮作为原料。
本发明的任务是一种简单和低成本制备大环酮的方法。
令人惊奇地发现,通过本发明的热-同分异构化方法,可以在高于500℃的温度下在气相中以高产率快速和简单地直接制备式Ia或Ib的大环酮。在式Ia和Ib的大环酮中
Figure C0280446300051
R1、R2、R3相互独立地表示氢或C1-C6-烷基,R4表示氢、直链或支链的C1-C4-烷基,
其中n是整数,并且
n是7至14,以及
在式Ia中,R1和R2或者R2和R3相互独立地是构成环。
式Ia或Ib的环增加了2个碳原子的酮是如下制备的,即在减压下,在100-300℃下将式IIa或IIb的大环的叔烯丙醇或炔丙醇转化为气相,
Figure C0280446300061
其中R1、R2、R3、R4和n具有上述相同的含义,且R5或者表示氢或三烷基甲硅烷基或者碱金属阳离子,
通过将式IIa或IIb的转化为气相的大环的叔烯丙醇或炔丙醇加热至500-700℃,并且在R5是三烷基甲硅烷基的情况下,该三烷基甲硅烷基醚水解为相应的式Ia或Ib的酮。
环体系的大小是通过n描述的。如果n=7,那么10-元环酮由8-元环醇制备。在n=14的情况下,17-元环酮相应地由15-元环醇获得。
C1-C6-烷基例如是甲基、乙基、丙基、异丙基、丁基、仲或叔丁基、戊基或己基,其中甲基是特别优选的。
所述方法能够分别根据作为原料使用的式IIa的叔环醇的乙烯基上的取代基的种类(有别于氢的取代基)同时制备扩环的并附加地局部选择取代的大环酮。该取代基在大环酮中的位置如式Ia所示位于二个连续的、与羰基的碳原子(被看作是C(1))相邻的碳原子上,并且以下面的方式分布:R1位于C(2)直接在与羰基(即α-位)相邻的碳原子上,不但R2而且R3分别处于大环酮的相同的半环上在直接与C(2)相邻的C(3)上(即β-位)以便除去羰基的二个碳原子。如果在所描述的方法中使用相应的式IIb大环炔丙醇代替叔环状烯丙醇,那么获得包含直接与羰基共轭的双键(α,β-不饱和酮)的大环酮。如果附加的取代基R4位于环状醇的环体系上,只要R4不是氢,就此可以获得局部异构化的经扩环的大环酮,这取决于原料的初始乙烯基的这二个碳原子根据先前描述的方式并入环体系的哪一半上。当R4表示多个取代基时,在意义上也是如此。
因为采用上述热-同分异构化方法可以由叔环状烯丙醇或炔丙醇制备大环酮,其可以有效并按照已知的方法以简单的方式重新转化为环状叔烯丙醇或炔丙醇,然后其又可以重新作为原料再次在所述的热-同分异构化方法中使用,所以所述方法通过重复使用还提供了这种可能性,即分别通过重复可以制备环增加4、6、8等碳原子的大环酮,其中每个重复的周期仅需要二个合成步骤。
所述的方法可以相同的方式应用在以大环叔醇为基础的类似醚化的衍生物上,例如应用在三烷基甲硅烷基醚,特别是三甲基甲硅烷基醚上(即当式IIa或IIb中的R5表示三甲基甲硅烷基时),然而这里在每种情况下首先以类似的方式获得相应扩环的环状三甲基甲硅烷基烯醇醚的混合物。然后同样将该三甲基甲硅烷基烯醇醚混合物水解以再次转化为相同的酮,该酮由相应的基础性醇以直接方式即无事先通过适合的甲硅烷基衍生化以及无因此附加要求的水解步骤便可获得。
通过在气相中实施该热-同分异构化方法可以在不使用溶剂并因此有利于环境保护下进行本发明的方法,只要将原料直接气化为气相并在反应器单元中转化。适合的设备设计应当允许所述的热-同分异构化方法也能够连续进行并因此潜在地使工艺自动化成为可能。在学科的专业文献中记载了许多关于在采用最高达约1000℃的温度下在气相中实施不同种类的类似的化学转化工艺的不同设备(气相-流体热分解设备或短时-真空-热解设备)。
本发明制备大环酮的方法是以叔大环烯丙醇或炔丙醇在500-700℃的气相中的热-同分异构化为基础的。为了实施本发明的方法,将作为原料使用的醇或者事先置于蒸发单元中,或者经计量装置例如计量泵或喷射泵从贮存容器中优选以未稀释或者溶解在适合的惰性溶剂(例如二甲苯等)中的形式连续加入,且在减压下根据所使用原料的沸点加热至约100-300℃,优选120-250℃的温度,并就此转化为气相。使在蒸发单元中预热的醇以气相的形式,如果需要在使用可调节的惰性气流(例如该惰性气体是氮气、氩气或氦气)下,并在减压下通过具有适合尺寸和适宜形状的被加热至500-700℃的反应器单元中,在该反应器单元中所使用的大环叔烯丙醇或炔丙醇按照先前描述的本发明的热-同分异构化方法转化为相应的大环酮。
该反应器单元以适宜的方式通常是管状的,有利地由热稳定并不干扰同分异构化反应进程的惰性材料制成,例如具有一定高熔点的玻璃管,并且可以水平或垂直或者随意倾斜地布置,而且在不依赖蒸发单元的情况下以已知的常规方式,例如借助于电加热套加热。所述的热-同分异构化方法所需的温度范围同时取决于多个因素,例如反应器中的主导压力、反应器容器的形状和尺寸、惰性气流(流体)的量以及原料的加入速度或蒸发速度或者原料的溶液以及溶剂的加入速度和蒸发速度,并且该温度优选是500-700℃。在低于约450℃的温度下,该热-同分异构化过程太缓慢以致于发现大量未转化的原料和可能的脱水产物,而在高于700℃的温度下,观察到分解产物的量增大,并且发现有害副反应。对在所述的热-同分异构化方法中使用的原料的尽可能完全的转化来说,优选的温度范围通常直接根据上述单独的反应器参数是550℃以上,特别地最佳是570-670℃,特别是当含少量惰性气体而无溶剂或者在无惰性气体和无填充料填充的高真空中操作时。优选所述的热-同分异构化方法在减压下进行,特别有利地在约1-10毫巴(1-10hPa)的真空下进行,不管怎样有利地在低于作为原料使用的醇类的饱和蒸汽压下进行,然而在惰性气流中同样也在稍弱的减压下例如在喷水空气泵抽真空下或者使用实验室薄膜真空泵时观察到形成所需的产物。在该设备中的压力以及因此同时在反应器单元中的接触时间可以附加地通过调节惰性气体或在注入液态原料时通过加入速度或者在首先是固态原料的情况下通过蒸发速度来影响。
在随后的冷凝器单元中,将通过该热-异构化方法获得的气态反应产物借助于适合的介质按照已知的方法冷却至室温或室温以下,其因此再次被液化(或者在个别情况下被再升华),随后被收集在收集器中。在收集器上的出气阀和在从收集器上可卸下的贮蓄池上的另一个阀(开关)允许按照Normag-Thiele-Vorstosses的原理即使在所描述的热-异构化设备内(特别是在蒸发单元、反应器单元和冷凝器单元中)的持续存在的减压下收集和排放至少呈液态的反应产物,所以可以保证该设备的不间断地连续运转。该设备中的减压是通过具有适合的抽吸容量的真空泵单元,特别有利地是借助于高真空泵产生的,其中在真空泵和设备之间还可以连接另一具有适宜的冷却介质的用于收集易挥发副产物成分的冷凝捕集器。
通过本发明的方法可以新制备下面的产物:
2-甲基环十四烷酮
3-甲基环十七烷酮
5-甲基环十七烷酮
3-甲基环十七烷酮
4-乙基环十四烷酮
3,4-二甲基环十四烷酮
作为热-异构化方法所需的原料的式IIa的大环叔烯丙基醇可以简单地按照已知的方法,例如优选通过适合的有机金属链烯基化合物如1-烯烃镁或1-烯烃锂(Magnesium-oder Lithium-1-alkenylen)加成在相应的大环酮上来制备。用于通用的乙烯基-格利雅试剂(例如乙烯基氯化镁或乙烯基溴化镁)或者例如还有相应的1-或2-取代的乙烯基格利雅化合物或者金属-炔烃化合物-衍生物(例如其是作为式IIa的大环叔醇的C(1)上的取代基,并且其中R1-R3具有说明书中给出的含义)的加成反应的大环烯丙基或炔丙基醇的产率,对于大环酮来说(只要已经有相应化合物的描述并在提供的文献中有说明,所获得的产率)最高达约70%。
在将一种预配合方法(Vorkomplexierungsmethode)套用在大环酮上的情况下可以提高式IIa大环烯丙基醇的产率(大部分为约90℃或以上)。这可以借助于催化剂量的或低于化学计算量的或者化学计算量的无水路易斯酸例如象氯化铈(CeCl3)在约0-40℃下实现,其中在随后的所使用的有机金属-烯烃的加成反应中获得改善的叔烯丙基醇的产率。在无水THF中加入1.01至约2摩尔当量,优选1.5-1.8摩尔当量的有机金属烯烃(Organometall alkenyl)溶液来悬浮以所述的方式预配合的大环酮一般是在伴随着明显的热效应下进行的,并且因此有利地可以这样进行,即加入速度根据现存的反应器体系的冷却能力这样选择,即事先冷却的反应混合物的温度不超过30至约40℃。随后在搅拌下将该温度在35-40℃下再保持约10-120分钟,并在例如通过反应混合物的气相色谱法控制反应进程之后,如果需要再次加入0.1-0.2摩尔当量链烯基或炔基化合物直至所使用的酮尽可能完全转化。将在反应混合物水解之后获得的大环叔烯丙基醇或炔丙基醇或者在该真空中蒸馏或者再结晶或者色谱法纯化,或者将其作为粗产物直接用于随后的热-异构化方法中作为原料使用。
通过上面描述的方法可以新制备下列用于热-异构化方法所需的式IIa的大环叔烯丙醇或式IIb的炔丙醇的原料:
1-乙烯基-1-环十一烷醇
1-乙烯基-1-环十三烷醇
1-乙烯基-1-环十四烷醇
1-乙烯基-1-环十五烷醇
(顺式/反式)-2-甲基-1-乙烯基-1-环十二烷醇
(顺式/反式)-3-甲基-1-乙烯基-1-环十五烷醇
(E/Z)-1-(1-丙烯-1-基)环十二烷醇
(E/Z)-1-(1-丙烯基)环十三烷醇
(E/Z)-1-(1-丙烯基)环十四烷醇
(E/Z)-1-(1-丙烯-1-基)环十五烷醇
1-(1-甲基乙烯基)环十一烷醇
1-(2-甲基-1-丙烯基)环十二烷醇
(E/Z)-1-(2-丁烯-2-基)环十二烷醇
1-乙炔基环十三烷醇
1-(1-丙炔基)十二烷醇
(E/Z)-1-(三甲基甲硅氧基)-1-(1-丙烯基)环十二烷醇。
实施例
I.链烯基-和1-炔基-格利雅反应:
a)三氯化铈的干燥:
将100g氯化铈(III)七水合物(Fluka)(0.268摩尔)在高真空下在Büchi-球形管式炉中在持续转动下干燥,即首先在70-80℃的空气浴中加热5-6小时,然后在110-120℃下加热3-4小时,随后经过夜(约12小时)加热至150-160℃。将分离的水收集在冷凝捕集器(液氮冷却)中,其中多次更换该冷凝捕集器,直至最后不再观察到冷凝物的形成。在融化之后,分别收集该冷凝捕集器的液态物,如此最后获得约34毫升水以及65克干燥的粉状氯化铈(III)。在惰性气体气氛下将其输送到储存容器中,并在氩气下储存。同样在室温下储存数月之后,确定在随后描述的格利雅反应中无活性损失。
b)酮类的预配合(一般性常规方式):
将36.4g环十二烷酮(0.2mol)与5g无水CeCl3(0.02mol,0.1摩尔当量)一起在室温下悬浮在100ml无水THF中,并在惰性气体下剧烈搅拌1-2小时,直至获得白色至强黄色的部分呈凝胶状的均匀悬浮液。
1.乙烯基-格利雅反应(一般性的常规方式):
1.1 1-乙烯基-1-环十二烷醇:由环十二烷酮制备:
在搅拌下,在约5分钟内,在通过与CeCl3预配合而活化的酮悬浮液中这样加入320毫升乙烯基溴化镁于无水THF中的1摩尔溶液(相当于约0.32mol乙烯基溴化镁,约1.6摩尔当量),即在短时的冷却浴(冰冷)作用下使反应容器中的内部温度不超过35-40℃的温度范围。在该发热反应消退之后,将现在呈灰绿色的反应混合物再在35-40℃下搅拌约30分钟,并通过气相色谱分析法跟踪反应进程。根据经使用的氯化铈(III)的活性表明在15分钟之后一般已经明显超过70%的原料转化,其中必要时通过重新加入另外的约0.1-0.2摩尔当量的乙烯基溴化镁使还未完全反应的酮进行反应(约80%转化率)。
处理:将该反应混合物冷却至室温,并倾倒在1升冰水中,在其上覆盖一层提取剂(甲苯或TBME),并在搅拌下缓慢加入约5-10%的盐酸水溶液,直至该混合物的粘的或凝胶状粘稠态消失(约pH3或以下),并且最后在出现黄色至棕色时观察到清楚的相界限。除去含水相,并首先用水多次洗涤该有机相,然后用碳酸氢钠溶液或者约5%的NaOH溶液,随后再用水洗涤,浓缩NaCl的水溶液,随后经硫酸钠或硫酸镁干燥。在减压下蒸除提取剂之后,获得41.3g粗产物1-乙烯基-1-环十二烷醇(粗产率:理论值的97%,GC-纯度>86%,包含约12-14%环十二烷酮),其是浅黄色固体。其或者直接用于随后的热-同分异构化反应中,或者首先通过在高真空下的球形管式蒸馏和从己烷/TBME(95∶5,v∶v)中结晶出或者通过在硅胶上的色谱法(己烷∶TBME 9∶1)纯化:无色的蜡状固体,熔点是53℃。
1H-NMR(300MHz,CDCl3):5.98(dd,J=10.8,17.4Hz,1H),5.20(dd,J=1.4,17.4Hz,1H),5.01(dd,J=1.4,10.8Hz,1H),1.9-1.2(m,23H).13C-NMR(75MHz,CDCl3):145.3(d);111.0(t);75.3(s);34.6(2),26.3(2),25.9,22.5(2),22.1(2),19.5(2)(6t).EI-MS(GC/MS):210.2(2,M+·),192.2(50,M-18),77.7(98),67(100),55(97).
以类似的方式例如也可以由相应的酮通过加入乙烯基氯化镁来制备下列的大环叔丙烯基醇:
1.2.1-乙烯基-1-环辛醇:由环辛酮制备:
产率:94%,GC-纯度>90%
1H-NMR(300MHz,CDCl3):6.01(dd,J=10.8,17.4Hz,1H);5.23(dd,J=1.3,17.4Hz,1H);5.13(dd,J=1.3,10.8Hz,1H);1.92-1.25(m,15H).13C-NMR(75MHz,CDCl3):145.8(d);111.1(t);75.1(s);36.2(2),28.1(2),24.6,21.9(2)(4t).EI-MS(GC/MS):154(2,M+·),136(100,M-H2O).
1.3.1-乙烯基-1-环癸醇:由环癸酮制备:
1H-NMR(300MHz,CDCl3):5.99(dd,J=10.8,17.4Hz,1H);5.21(dd,J=1.4,17.4Hz,1H);5.01(dd,J=1.4,10.8Hz,1H);1.85-1.25(m,19H).13C-NMR(75MHz,CDCl3):145.5(d);110.9(t);76.2(s);34.2(2),26.7,26.1(2),23.5(2),21.1(2)(4t).EI-MS(GC/MS):182(1,M+·),164(42,M-H2O),149(31),135(42),79(95),68(100),55(68).
1.4.1-乙烯-1-环十一烷醇:由环十一烷酮制备:
产率84%.
1H-NMR(300MHz,CDCl3):5.98(dd,J=10.8,17.4Hz,1H);5.20(dd,J=1.4,17.4Hz,1H);5.01(dd,J=1.3,10.8Hz,1H);1.76-1.20(m,21H).13C-NMR(75MHz,CDCl3):145.4(d);111.1(t);75.8(s);36.2,27.0,25.9,25.4,21.1(5t,各2CH2).EI-MS(GC/MS):196.1(1,M+·),178(15,M-H2O),169(18),149(17),135(20),111(55),97(80),83(100),70(95),55(100).
1.5.1-乙烯基-1-环十三烷醇:由环十三酮制备:
产率84%,根据GC的含量92%.
1H-NMR(300MHz,CDCl3):5.98(dd,J=10.8,17.4Hz,1H);5.21(dd,J=1.4,17.4Hz,1H);5.01(dd,J=1.4,10.8Hz,1H);1.65-1.2(m,25H).13C-NMR(75MHz,CDCl3):145.4(d);111.1(t);75.1(s);37.4,27.8,26.6,25.4,25.3,20.9(5t).EI-MS(GC/MS):224(1,M+·),206(100,M-H2O).
1.6.1-乙烯基-1-环十四烷醇:由环十四酮制备:
产率:98%.
1H-NMR(300MHz,CDCl3):5.99(dd,J=10.8,17.4Hz,1H);5.22(dd,J=1.4,17.4Hz,1H);5.03(dd,J=1.4,10.8Hz,1H);1.6-1.2(m,27H).13C-NMR(75MHz,CDCl3):145.4(d);111.3(t);75.0(s);37.2(2),26.43(2),26.38,25.9,24.0,23.5,20.3(7t).EI-MS(GC/MS):224(1,M+·),206(100,M-H2O).
1.7.1-乙烯基-1-环十五烷醇:由环十五烷酮制备:
产率:92%.
1H-NMR(300MHz,CDCl3):5.97(dd,J=10.8,17.4Hz,1H);5.22(dd,J=1.4,17.4Hz,1H);5.03(dd,J=1.4,10.8Hz,1H);1.6-1.2(m,29H).13C-NMR(75MHz,CDCl3):145.4(d);111.3(t);75.0(s);37.2(2),26.43(2),26.38,25.9,24.0,23.5,20.3(7t).EI-MS(GC/MS):252.1(1,M+·),234(10,M-H2O).
1.8.(顺式/反式)-2-甲基-1-乙烯基-1-环十二烷醇:由(R/S)-2-甲基环癸酮制备:
产率:98%。
1H-NMR(300MHz,CDCl3):5.93/5.88(dd,J=10.8,17.3Hz,1H);5.24/5.23(dd,J=1.6,17.3Hz,1H);5.08/5.06(dd,J=1.6,10.8Hz,1H);2.1-1.1(m,22H),0.85/0.81(d,J=6.6Hz,3H).13C-NMR(75MHz,CDCl3):144.7/142.4(d);112.2/111.0(t);78.0/77.9(s);38.4/35.9(t);35.5/34.4(d);28.7,26.8,26.5,26.3(2),25.0,24.8,23.4,23.1,23.0,22.9,22.8(2),22.7,22.2,22.1,20.4,18.4(18t);14.6/13.6(q).EI-MS(GC/MS):224.1(7,M+·),209(9,M-15),206(6,M-18).
1.9.(顺式/反式)-3-甲基-1-乙烯基-1-环十五烷醇;由外消旋3-甲基环十五烷酮制备:
产率93%
A的1H-NMR(300MHz,CDCl3):5.93(dd,J=10.7,17.3Hz,1H);5.18(dd,J=1.3,17.3Hz,1H);5.0(dd,J=1.3,10.7Hz,1H);1.8-1.0(m,28H),0.99(d,J=6.6Hz,3H);B的:5.97(dd,J=10.8,17.4Hz,1H);5.21(dd,J=1.4,17.4Hz,1H);5.0(dd,J=1.4,10.8Hz,1H);1.8-1.0(m,28H),0.88(d,J=6.5Hz,3H).A的13C-NMR(75MHz,CDCl3)(主要同分异构体):146.0(d);110.9(t);75.7(s);46.0,38.9,37.2(3t),27.0(d)22.2(q),26.6(t);B的:146.0(d);110.9(t);75.7(s);46.0,38.9,37.2(3t),27.0(d)22.2(q),26.6(t);A或B的:27.4,27.2,27.1,27.0,26.9,26.7,26.6,26.4,26.3,26.2,26.0,25.9(2),25.8,25.0,24.9(16t);A的:22.2(q),22.6(t);B的:21.7(q),21.2(t).
A的EI-MS(GC/MS):266(2,M+·),248(28,M-H2O),233(7),219(11),121(40),107(55),94(58),67(83),55(100);B的:266(4,M+·),248(100,M-H2O),233(12),219(16),121(30),107(42),67(55),55(100).
1.10.(顺式/反式)-2-乙基-1-乙烯基-1-环十二烷醇:由(R/S)-2-乙基环癸酮制备:
产率:98%。
非对映异构体混合物的1H-NMR(300MHz,CDCl3):5.93/5.88(dd,J=10.8,17.3Hz,1H);5.24/5.23(dd,J=1.6,17.3Hz,1H);5.08/5.06(dd,J=1.6,10.8Hz,1H);2.1-1.1(m,24H),0.97/0.91(2t,J=7.3Hz,3H).13C-NMR(75MHz,CDCl3):144.7/143.0(d);111.7/110.7(t);78.7/78.6(s);43.0/41.4(d);39.2,37.0,28.2,26.7,26.6,25.9,25.7(2),24.8,23.8,23.7,23.6,23.5,23.4,23.2,23.1,23.0,22.8,22.4,22.2,20.6,18.6(22t);14.7/13.2(q).
2.与烷基-取代的乙烯基卤化物的格利雅反应:
a)1-丙烯基-格利雅反应
2.1.(E/Z)-1-(1-丙烯-1-基)-环十二烷醇:
在搅拌下,在18.2g环十二烷酮(0.1mol)(事先类似于上述实施例Ib与2.5g CeCl3(10mmol,0.1摩尔当量)预配合)中经注射针头加入事先由3.9g镁(0.16mol)和20.6g 1-溴-1-丙烯(E/Z-混合物,0.17mol)按照常规方法在160ml无水THF中配制的格利雅试剂的溶液,其中与实施例1.1相同的方式继续进行。(E/Z)-1-(1-丙烯基环十二烷醇):21g(94%),蜡状固体,GC-纯度92%(包含约6%环十二烷酮)。通过从己烷∶乙醚95∶5(v∶v)中结晶出来进行纯化。E-和Z-同分异构体的分离通过柱色谱法(硅胶,己烷,乙醚9∶1)进行,其中首先洗脱出少量的极性Z-同分异构体(白色固体):
Z-同分结异构体:1H-NMR(300MHz,CDCl3):5.50-5.36(m,2H;在600MHz下的分析表明5.46(dq,J=11.8Hz,7.0Hz),5.39dq(J=11.8Hz,1.6Hz)),1.87(dd,J=7Hz,1.6Hz,3H),1.75-1.55(m,4H),1.49-1.2(m,19H).13C-NMR(75MHz,CDCl3):136.4(d);125.8(d);76.1(s);35.8(2);26.5(2),26.1,22.6(2),22.3(2),19.7(2)(6t);14.5(q).
E-同分异构体(无色蜡状固体):1H-NMR(300MHz,CDCl3):5.68-5.55(m,2H;在600MHz下的分析表明5.64(dq,J=15.6,6Hz),5.59(dq,J=15.6,1.1Hz)),1.69(dd,J=6,1Hz,3H),1.68-1.22(m,23H).13C-NMR(75MHz,CDCl3):138.4(d);122.2(d);74.9(s);35.0(2);26.5(2),25.9,22.6(2),22.2(2),19.6(2)(6t);17.7(q).
以类似的方式例如同样可以由相应的酮通过加入(E/Z)-1-(1-丙烯基)溴化镁来制备下面的大环叔烯丙醇:
2.2.(E/Z)-1-(1-丙烯基)环十三烷醇:由环十三烷酮制备:
产率82%。
Z-同分异构体(白色固体):1H-NMR(300MHz,CDCl3):5.50-5.39(m,2H),1.87(dd,J=6.5,1.8Hz,3H),1.70-1.60(m,4H),1.35(br.s-artiges m,21H).13C-NMR(75MHz,CDCl3):136.5(d);125.7(d);76.0(s);38.8(2);27.8(2),26.6(2),25.4(4),21.1(6t);14.3(q).
E-同分异构体(无色粘性油,主要的同分异构体):1H-NMR(300MHz,CDCl3):5.65-5.55(m,2H),1.69(d,J=5,3H),1.68-1.46(m,4H),1.35(br.s-artiges m,21H).13C-NMR(75MHz,CDCl3):138.2(d);122.2(d);74.6(s);37.8(2);27.9(2),26.7(2),25.5(2)25.4(2),21.0(2),(6t);17.7(q).
2.3.(E/Z)-1-(1-丙烯-1-基)环十四烷醇:由环十四烷酮制备:
产率93%。
Z-同分异构体(白色固体):1H-NMR(300MHz,CDCl3):5.52-5.39(m,2H;在600MHz下的分析表明5.46(dq,J=12,6.7Hz),5.43dq(J=12,1.3Hz)),1.87(dd,J=5.6Hz,1.9Hz,3H),1.68-1.51(m,4H),1.39-1.18(m,21H).13C-NMR(75MHz,CDCl3):136.6(d);125.7(d);75.9(s);38.8(2);27.8(2),26.5(2),26.4,26.0(2),23.5(2),20.4(2)(7t);14.3(q).
E-同分异构体(主要的同分异构体,无色粘性油,其在放置不动时逐渐地凝结为固体):1H-NMR(300MHz,CDCl3):5.71-5.56(m,2H;在600MHz下的分析表明5.65(dq,J=16Hz,6Hz),5.59dq(J=16Hz,1.1Hz)),1.70(d,J=5Hz,3H),1.63-1.18(m,27H).13C-NMR(75MHz,CDCl3):138.5(d);122.4(d);74.6(s);37.5(2);26.5(2),26.4,26.0(2),24.0(2)23.5(2),20.4(2),(7t);17.7(q).
2.4.(E/Z)-1-(1-丙烯-1-基)-环十五烷醇:由环十五烷酮制备:
产率90%。
E/Z-同分异构体混合物:1H-NMR(300MHz,CDCl3):5.68-5.44(m)/5.50-5.39(m,2H);1.87(d,J=5.8Hz)/1.69(d,J=5.2Hz,3H),1.67-1.20(m,29H).13C-NMR(75MHz,CDCl3):138.4/136.5(d);125.8/122.5(d);75.9/74.6(s);39.5/38.8;26.9,26.6(3),26.24,26.20,21.9,21.8;17.7/14.3(q).
b)2-丙烯基-格利雅反应(一般性的类似方法):
2.5.1-(1-甲基乙烯基)-环十二烷醇:由环十二烷酮制备:
14.5g环十二烷酮(80mmol),用1g CeCl3(4mmol=0.05摩尔当量)预配合;约100mmol 1-丙烯-2-基溴化镁(由2.43g镁和14g 2-溴-1-丙烯在THF中新配制的)。在2小时之后根据GC仍然存在约15%原料。在常规加工和在高真空下的球形管式蒸馏之后获得16.8g(93%)无色的粘性油,其在放置不动时逐渐凝结(根据GC还包含15%环十二烷酮)。在-15℃下己烷中二次结晶之后获得12.9g(72%)白色晶体状固体。
1H-NMR(300MHz,CDCl3):4.84-4.82(m,2H);1.79(d,0.6Hz,3H),1.63(mc,4H);1.4-1.2(m,19H).13C-NMR(75MHz,CDCl3):150.6(s);110.4(t);76.8(s);32.8(2),26.5(2),26.1,22.5(2),22.2(2),19.9(2)(6t);18.8(q).
EI-MS(GC/MS):224.1(4,M+·),206.1(28,M-H2O),55.0(100).
2.6.1-(1-甲基乙烯基)-环十一烷醇:由环十一烷酮制备:
产率88%。
1H-NMR(300MHz,CDCl3):4.83(d,J=16.4Hz,2H);1.78(d,0.6Hz,3H),1.74-1.70(m,4H);1.64-1.2(m,17H).13C-NMR(75MHz,CDCl3):150.6(s);110.1(t);77.3(s);34.1(2),27.1(2),26.1(2),25.4(2),21.5(2),(5t);18.8(q).
EI-MS(GC/MS):210.1(1,M+·),192.0(95,M-H2O),148.8(100).
c)与烷基-二次取代的乙烯基卤化物的格利雅反应:
2.7.1-(2-甲基-1-丙烯基)环十二烷醇:由环十二烷酮制备
3.0g环十二烷酮(16.5mmol),用1g CeCl3(4mmol=0.25摩尔当量)预配合的;约25mmol 2-甲基-1-丙烯-1-基溴化镁(由0.6g镁和3.5g 1-溴-2-甲基-1-丙烯(异丁烯基溴)在THF中新配制的)。在2小时之后,根据GC还存在约3%原料。在常规加工和在高真空下球形管式蒸馏之后获得2.9g(74%)无色粘性油,其在放置不动时逐渐凝结为蜡状。
1H-NMR(300MHz,CDCl3):5.22(br.s-artiges m,1H);1.87(d,J=1.2Hz,3H),1.69(d,J=1.2Hz 3H);1.63-1.5(m,4H);1.48-1.2(m,19H).13C-NMR(75MHz,CDCl3):134.2(s);130.7(d);75.1(s);36.0(2)(t),27.2(q);26.4(2),25.9,22.5(2),22.2(2),19.6(2)(5t);18.9(q).
EI-MS(GC/MS):238.1(8,M+·),220.1(45,M-H2O),96.0(100).
2.8.(E/Z)-1-(2-丁烯-2-基)环十二烷醇:由环十二烷酮制备:
9.1g环十二烷酮(50mmol),与2g CeCl3(8mmol=0.16摩尔当量)预配合;约80mmol(E/Z)-2-丁烯-2-基溴化镁(由2.0g镁和10.8g 1-溴-2-甲基-1-丙烯在THF中新配制的)。在2小时之后根据GC,除2种主要产物(31或15%)外还存在约30%原料。在常规加工之后获得11.3g(95%)浅黄色蜡状固体。在-20℃下从己烷中二次结晶获得4.3g(36%)E/Z-同分异构体混合物(约4∶1)的无色晶体。
通过在硅胶上的柱色谱法分离该同分异构体(Hexan/TBME94∶6):
1H-NMR(300MHz,CDCl3)同分异构体A(首先洗脱,无色晶体):5.37(dq,J=7.3,1.3Hz,1H),1.84(dd,J=7.3,1.3Hz,3H),1.72-1.70(m,7H),1.45-1.25(m,19H).13C-NMR(75MHz,CDCl3):140.9(s),122.8(d),77.8(s),34.6(2),26.4(2),26.0(3t),23.2(q),22.4(2),22.1(2),19.6(3t),15.1(q).
1H-NMR(300MHz,CDCl3)同分异构体B(稍后洗脱,无色晶体):5.43(mc,1H),1.67(m,3H),1.62-1.55(m,7H),1.45-1.1(m,19H).13C-NMR(75MHz,CDCl3):140.8(s),118.2(d),77.1(s),32.7(2),26.3(2),26.0,22.4(2),22.1(2)(6t),13.3(q),11.6(q).
2.9.(E/Z)-2-甲基-1-(1-丙烯-1-基)环十二烷醇:由2-甲基环十二烷酮制备:
同分异构体混合物:在13C-NMR(75MHz,CDCl3)中特征信号:137.4,135.4,135.1,133.2,125.7,124.8,122.8,121.4(8d);79.6,79.2,77.3,77.2(4s);37.1,36.2,35.6,34.8(4d);14.5,14.4,13.9,13.5(4q).EI-MS(GC/MS):238.1(M+·).
3.环状链烯-1-基-衍生物的加成反应
3.1.1-(1-环己烯基)环十二烷-1-醇
根据公开文献(参见Marson等《有机化学杂志》(J.Org.Chem.)1993,58,5944-5951,特别是第5948页;和Adam,《合成》(Synthesis)1994,176-180)用1-氯-1-环己烯制备。
1H-NMR(300MHz,CDCl3):5.62-5.59(m,1H),2.11-2.01(m,4H),1.66-1.52(m,8H),1.37-1.22(m,19H).13C-NMR(75MHz,CDCl3):142.5(s),121.1(d),76.8(s),32.8(2),26.5(2),26.2,25.4,23.9,23.2,22.5(2),22.2(2),19.9(2).
4.炔基-衍生物的加成反应
4.1.1-乙炔基环十二烷醇:由环十二烷酮制备:
5.5g环十二烷酮(30mmol),与1g CeCl3(4mmol=0.13摩尔当量)预配合的;约60mmol乙炔基溴化镁(120ml于THF中的0.5M溶液)。在2小时之后根据GC还存在约2-5%的原料和约90%的主要产物。在常规加工之后获得5.3g(85%)浅黄色固体。在4℃下从己烷/TBME(9∶1,v∶v)结晶出获得4.5g(72%)无色透明晶体。同样通过在高真空下蒸馏和从己烷/TBME 9∶1(GC-含量>97%)结晶出来纯化该乙炔基环十二烷醇(工业质量,Fa.GIVAUDAN)。
1H-NMR(300MHz,CDCl3):2.44(s,1H),2.12(s,1H),1.91-1.80(m,2H),1.75-1.63(m,2H),1.60-1.2(m,18H).13C-NMR(75MHz,CDCl3):88.5(s),71.4(d),70.8(s),35.8(2),26.1(2),25.9,22.5(2),22.2(2),19.6(2)(6t).
EI-MS:208(1,M+·),190(15),175(4),161(10),147(20),133(25),119(30),105(50),93(60),91(100),79(75),67(35),55(32).
4.2.1-乙炔基环十三烷醇:由环十三烷酮制备:
1H-NMR(300MHz,CDCl3):2.44(s,1H),1.93(s,1H),1.83-1.67(m,4H),1.53-1.34(m,20H).13C-NMR(75MHz,CDCl3):88.2(s),71.3(d),70.7(s),38.8(2),27.2(2),26.4(2),25.4(2),25.3(2),21.1(2)(6t).EI-MS:222(1,M+·),221(1,M-1),207(5),196(6),179(5),165(8)161(7),151(15)137(20),123(36),109(45),97(50),68(100)55(99).
4.3.1-(1-丙炔基)环十二烷醇:由环十二烷酮制备:
3.64g环十二烷酮(20mmol),与2mmol CeCl3在30ml THF中预配合,30mmol 1-丙炔基溴化镁(相当于60ml于THF中的约0.5M的溶液),仅略微放热。在常规加工之后获得3.8g(85%)黄色油状物(GC-含量>92%,其在静置时结晶。通过球形管式蒸馏纯化:3.6g(81%)无色油状物,凝结为晶体。
1H-NMR(300MHz,CDCl3):1.83(s,3H),1.81-1.48(m,5H),1.35(br.s-artiges m,18H).13C-NMR(75MHz,CDCl3):83.8(s),79.1(s),70.8(s),36.2(2),26.0(2),25.8,22.4(2),22.2(2),19.7(2)(6t)3.3(q).EI-MS(GC/MS):224.1(0.5,M+2),223.1(2,M+1),222.1(3,M+·),204.1(30,M-18),189.0(8),175(9),161(18),147(32),98(62),95(90),91(100),83(85),67(95),55(98).
4.4.1-(1-丙炔基)环十三烷醇:由环十三烷酮制备:
1H-NMR:1.83(s,3H),1.78-1.62(m,5H),1.50-1.26(br.s-artiges m,20H).
13C-NMR(75MHz,CDCl3):83.7(s),79.1(s),70.9(s),39.2(2),27.3(2),26.5(2),25.4(2),25.3(2),21.3(2)(6t)3.3(q).EI-MS(GC/MS):236(2,M+·),235(1,M-1),221(22),207(5),196(10),179(11),165(15),151(22),137(35),123(45),109(51),95(75),82.5(100),67.8(62),56(98).
II.热-同分异构化反应
装置和常规做法:
在每种情况下将环状叔醇与小的磁力搅拌器一起放置在球形管式烧瓶(50或100ml,具有二个相对布置的磨口颈部)。在后面的磨口颈上安装惰性气体输入管道(熔化在标准磨口分馏管中的不锈钢-毛细管)之后,将该烧瓶借助于前面的磨口与略微倾斜布置的反应器(石英玻璃-反应器,内径25或40mm,长度40cm,用Thermolyne管式炉加热,35cm)接通。在反应器相对的端部具有冷凝捕集器(冷却介质液氮或干冰/丙酮),其与高真空泵-单元连接。在反应器温度平衡在650-660℃(在反应器外壁上测量的平均值)、整个装置抽真空和调节压力为约1毫巴(1hPa)之后,将事先放置了醇的烧瓶在空气浴(改进的Büchi-球形管式炉的加热套)中加热,以致原料在搅拌下蒸发,并通过反应器蒸馏。在此借助于精调针孔阀调节稀薄的惰性气体流量(氮气,根据V_gtlin型V100-流量计1-5l/h)并经毛细管通过该装置。在每种情况下,在反应器的出口,无色油状物随即开始冷凝,将其收集在捕集器下方的接受器中,并在那里部分凝结。在约15-45分钟之后,原料大部分几乎无残留地被蒸发。在冷却该装置并用惰性气体吹扫之后,将来自冷凝捕集器的冷凝物用己烷洗涤。所有给出的产率通常在每种情况下均是由至少三个分开进行的热-同分异构化反应的典型平均值。
A.未取代的单环体系:
1.1环十四烷酮:由1-乙烯基环十二烷醇制备:
5g(23.8mmol)1-乙烯基环十二烷醇,石英玻璃反应器25/400mm,温度660℃±10,在125-135℃(空气浴温度)下蒸发约30分钟。氮气流量约1-2l/h,真空度4-6毫巴。该油状冷凝物已经开始在冷凝捕集器中结晶。获得4.4g(88%粗产率)蜡状固体,根据GC-和GC/MS分析,除80-85%主要产物外还包含约5%环十二烷酮以及约5-10%其它成分,其中根据测定的分子量涉及脱氢产物。通过分别在0℃和-20°下从己烷中二次结晶获得3.6g(72%)环十四烷酮(GC-纯度>98%),其是无色针状物,熔点56℃。
1H-NMR(300MHz,CDCl3):2.44(t-artiges zentr.m,4H),1.71-1.32(m,4H),1.29(br.,s-artiges m,18H).13C-NMR(75MHz,CDCl3):212.2(s),40.9,26.1,25.8,25.35,25.30,24.5,22.9(7t,各2CH2).EI-MS(GC/MS):211.2(28),210.2(27,M+,152.1(18),125.1(22),111.1(28),96.1(47),71(96),55(100).
以类似的方式制备:
1.2.环癸酮:由1-乙烯基环辛醇制备
粗产率87%。
1H-NMR(300MHz,CDCl3):2.44(t-artiges zentr.m,4H),1.71-1.32(m,4H),1.29(br.,s-artiges m,10H).13C-NMR(75MHz,CDCl3):212.2(s),40.9,26.1,25.8,25.35,25.30,24.5,22.9(7t,各2CH2).EI-MS(GC/MS):156.1(8),155.1(58),154.0(75,M+·),125.0(65),110.9(100).
1.3.环十二烷酮:由1-乙烯基环癸醇制备
0.5g(2.7mmol)1-乙烯基-1-环癸醇(参看I.1.3,还包括约8-10%环癸酮),石英玻璃反应器25/400mm,温度670℃±10,在95-100℃(空气浴温度)下蒸发约10min。氮气流量约2-2.5l/h,真空度5-6毫巴。获得0.45g(90%粗产率)纯白色冷凝物,其部分结晶为细针状物。GC-和GC/MS分析该混合物包括约70%环十二烷酮作为主要产物,还包括6-8%环癸酮和2-3%原料。通过在硅胶上的色谱法(己烷/TBME 97∶3)分离该混合物获得0.26g环十二烷酮(52%分离产率)。其具有同商购可得的化合物(Fluka)相同的滞留时间和光谱学性能。
1H-NMR(300MHz,CDCl3):2.46(mc,4H),1.71(mc,4H),1.30(br.,s-artiges m,14H).13C-NMR(75MHz,CDCl3):214.8(s),40.4(2),24.8(2),24.7(2),24.3(2),22.6(2),22.4(6t).EI-MS(GC/MS):183.1(4),182.1(10,M+·),139.0(8),125.0(13),111.0(25),98.0(33),71(35),55.0(100).
1.4.环十三烷酮;由1-乙烯基环十一烷醇制备
1H-NMR(300MHz,CDCl3):2.44(mc,4H),1.67(mc,4H),1.31-1.2(br.,s-artiges m,16H).13C-NMR(300MHz,CDCl3):212.7(s),41.9(2),26.4(2),25.7(2),25.6(2),24.4(2),23.2(6t).EI-MS(GC/MS):198.2(5),197.1(33),196.0(40,M+·),153.0(15),149.0(25),138(30)125.0(35),111.0(35),98.0(33),71(35),55.0(100).
1.5.环十五烷酮:由1-乙烯基环十三烷醇制备
1H-NMR(300MHz,CDCl3):2.41(t-artiges mc,4H),1.64(mc,4H),1.37-1.30(br.,s-artiges m,20H).13C-NMR(75MHz,CDCl3):212.5(s),42.0(2),27.5(2),26.70(2),26.66(2),26.4(2),26.2(2),23.4(2)(7t).EI-MS(GC/MS):226.1(2),225.1(8),224.1(13,M+·),166.1(8),149.0(8),135(10)125.0(15),111.0(18),98.0(21),71(66),55.0(100).
1.6.环十六烷酮:由1-乙烯基环十四烷醇制备
1H-NMR(300MHz,CDCl3):2.40(mc,4H),1.64(mc,4H),1.32-1.25(br.,s-artiges m,22H).13C-NMR(75MHz,CDCl3):212.2(s),41.9,27.5,27.1,26.9,26.5(2),26.4,23.3(8t).EI-MS(GC/MS):239.2(10,M+1),238.1(43,M+·),223.1(8),209.1(5),163.0(12),149(18),135(28),125.0(53),111.0(45),98.0(76),82.0(72),71.0(100),58.0(95),55.0(99).
1.7.环十七烷酮:由1-乙烯基环十五烷醇制备
1H-NMR(300MHz,CDCl3):2.39(mc,4H),1.62(mc,4H),1.32-1.25(br.,s-artiges m,24H).13C-NMR(75MHz,CDCl3):212.0(s),42.2,28.1,27.7,27.5,27.2,27.1,26.8,23.6,(16t).EI-MS(GC/MS):253.2(4,M+1),252.1(20,M+·),237.1(3),234.1(4),223.1(4),210.1(5),194.1(6),163.0(7),152(8),149.0(8),135(17),125.0(32),111.0(25),98.0(58),82.0(45),71.0(100),58.0(97),55.0(99).
B.在环周长(Ringperimeter)上取代的单环体系
1.8.4-甲基环十四烷酮和2-甲基环十四烷酮:由(顺式/反式)-2-甲基-1-乙烯基-1-环十二烷醇制备
0.8g(4.4mmol)2-甲基-1-乙烯基-1-环十二烷醇,石英玻璃反应器25/400mm,温度670℃±10,在约120-135℃(空气浴温度)下蒸发约15分钟。氮气流约1.5-2l/h,真空度3-5毫巴。获得0.7g(87%粗产率)透明如水的几乎无色的冷凝物,根据GC-和GC/MS分析除2-8%环十二烷酮和其它的脱氢和裂解产物外,其包含约60%的作为主要产物的4-甲基环十四烷酮以及5%的2-甲基环十四烷酮(在每种情况下m/z 224)。使用长度为1米和内径为25毫米的石英反应器在570℃±10下也可以获得相同的产物。
1H-NMR(300MHz,CDCl3)主要成分A:2.61-2.24(m,4H),1.82-0.95(m,21H);0.88(d,3J=6.3Hz,3H).13C-NMR(75MHz,CDCl3):211.9(s),40.9,38.9,32.2,29.7(4t),29.5(d),25.7,25.6,25.5,25.2,24.9,24.5,23.1(8t),19.9(q).
在混合物的1H-NMR-光谱中,次要成分B(2-甲基环十四烷酮,比例约1∶12)的特征是在1.06ppm(J=6.7Hz)下的双峰,以及在13C-NMR-光谱中在215ppm下的羰基谱带以及在45.4ppm下的双峰和在17.0ppm下的四重峰。
1.9.3-甲基环十七烷酮和5-甲基环十七烷酮:由(顺式/反式)-3-甲基-1-乙烯基-1-环十五烷醇制备
0.5g(2.1mmol)3-甲基-1-乙烯基-1-环十五烷醇、石英反应器25/400mm,温度670℃±10,在145-170℃(空气浴温度)下蒸发约15分钟。氮气流量约2-2.5l/h,真空度5-8毫巴。获得约0.4g透明如水的几乎无色的冷凝物,根据GC-和GC/MS分析除少量脱氢和裂解产物外其包含2种主要成分(约34%和28%)3-甲基环十七烷酮以及5-甲基环十七烷酮,二者m/z 266)。
混合物的1H-NMR-光谱(300MHz,CDCl3):2.51-2.4(m),1.7-1.1(m);0.92(d,J=6.7Hz),0.86(d,J=6.3Hz),积分比例约1∶1.13C-NMR(75MHz,CDCl3):211.2,211.6(2s);31.529.0(2d);20.6,20.1(2q).
成分A的EI-MS(GC/MS):266.1(25,M+·),248.1(48),208.1(12),149.0(15),125.0(19),109.0(45),97.0(52),69.0(76),55.0(100).成分B的:266.1(30,M+·),251.1(18),237.1(38),223.0(15),208.1(12),149.0(10),125.0(45),111.0(32),97.0(53),85(72),69.0(78),55.0(100).(Vgl.II.2.4)
1.10.4-乙基环十四烷酮:由2-乙基-1-乙烯基-1-环十二烷醇制备:
1g(4.2mmol)2-乙基-1-乙烯基-1-环十二烷醇,石英反应器25/1000mm,温度570℃±10,在135-155℃(空气浴温度)下蒸发约15分钟。氮气流量约1.5-2l/h,真空度3-5毫巴。获得0.8g(80%粗产率)透明如水的几乎无色的冷凝物,根据GC-和GC/MS分析除其它脱氢和裂解产物外,其包含60%以上的4-乙基环十四烷酮以及5%2-乙基环十四烷酮(m/z各是238)。
1H-NMR(300MHz,CDCl3)2.65-2.2(m,4H),1.85-1.10(m,23H);0.88(t,3J=7Hz,3H).13C-NMR(75MHz,CDCl3):212.2(s);41.5,38.3(2t);36.5(d);29.4,26.3,26.1,25.7(2),25.6(2),25.0,24.7,23.6,22.6(11t),11.0(q).EI-MS(GC/MS):238.1(M+·).
2.1.(R/S)-3-甲基环十四烷酮(Normuskon)由(E/Z)-1-(1-丙烯基)环十二烷醇制备
2.3g(10.2mmol)(E/Z)-1-(1-丙烯基)环十二烷醇,石英反应器25/400mm,温度660℃±10,在120-135℃(空气浴温度)下蒸发约15分钟。氮气流量约0.5-1l/h,真空度3-5毫巴。获得2.0g(87%粗产率)透明如水的几乎无色的冷凝物,根据GC-和GC/MS分析除2-8%环十二烷酮和4-10%原料以及少量脱氢和裂解产物外,其包括约45-55%作为主要成分的3-甲基环十四烷酮。通过在硅胶上色谱法(己烷/TBME 97∶3)分离该混合物获得0.77g 3-甲基环十四烷酮(33%分离产率),其是无色的,在4℃下的冷柜中储存时获得逐渐结晶的具有典型麝香气味的油状物。
1H-NMR(300MHz,CDCl3):2.45-2.36(m,3H;精确分析表明2.43(dd,2J=15Hz,3J=5Hz,1H,Ha-C(2)),2.41(t,3J=6.7Hz,2H,H2-C(14));2.19(dd,2J=15Hz,3J=5Hz,1H,Hb-C(2);2.10(mc,1H,H-C(3)),1.64(mc,2H,H2C(13)),1.37-1.20(br.m,18H);0.93(d,3J=6.7Hz,3H,H3C-C(2)).13C-NMR(75MHz,CDCl3):212.0(s),49.5,41.0,33.7(3t),28.8(d),26.3,26.1,25.6,25.4,25.3,25.1,24.7,23.4,22.3(9t),20.7(q).MS(GC/MS):226.2(2,M+2),225.1(13,M+1),224.1(50,M+·),209.1(28),195.1(30),181.0(15),166.0(38),125.0(52),111.0(48),97.0(50),85(100),71(52),55(51).
2.2.(R/S)-3-甲基环十五烷酮(Muskon):由(E/Z)-1-(1-丙烯基)环十三烷醇
2.4g(10mmol)(E/Z)-1-(1-丙烯基)环十三烷醇,石英反应器25/400mm,温度660℃±10,在140-155℃(空气浴温度)下蒸发约15分钟。氮气流量约1.5-2.5l/h,真空度4-6毫巴。获得1.9g(79%粗产率)透明如水的几乎无色的冷凝物,根据GC-和GC/MS分析除2-6%环十二烷酮和4-10%原料以及少量脱氢以及裂解产物外,其包含约45-55%作为主要成分的3-甲基环十五烷酮。通过在硅胶上的色谱法(己烷/TBME 97∶3)分离该混合物获得0.68g 3-甲基环十五烷酮(28%分离产率),其是具有显著麝香气味的无色油状物,其具有与外消旋Muskon的对照试样相同的滞留时间和光谱学性能。
1H-NMR(300MHz,CDCl3):2.46-2.38(m,3H;精确分析表明2.43(d,2J=15Hz,Ha-C(2)),2.41(t,3J=6.7Hz,2H,H2-C(15));2.17(dd,2J=15Hz,3J=5.2Hz,1H,Hb-C(2);2.04(mc,1H,H-C(3)),1.64(mc,2H,H2C(14)),1.36-1.22(br.,s-artiges m,20H);0.94(d,3J=6.7Hz,3H,H3C-C(2)).13C-NMR(75MHz,CDCl3):212.0(s),50.4,42.1,35.6(3t),29.0(d),27.6,27.1,26.8,26.7,26.6,26.5,26.3,26.2,25.1,23.0(10t),21.0(q).MS(GC/MS):240.2(3),239.1(9),238.1(21,M+·),223.1(12),209.1(18),195.1(5),180.1(8),125.0(25),111.0(18),97.0(35),85(45),69(48),55(100).
2.3(R/S)-3-甲基环十六烷酮:由(E/z)-1-(1-丙烯基)环十四烷醇制备
分离产率29%。
1H-NMR(300MHz,CDCl3):2.44-2.36(m,3H);2.17(dd,2J=15Hz,3J=5.2Hz,1H),2.07(mc,1H),1.58(mc,2H),1.30-1.22(m,22H);0.93(d,3J=6.7Hz,3H).13C-NMR(75MHz,CDCl3):211.5(s),50.1,42.0,35.4(3t),29.0(d),27.4(2),26.9,26.8,26.5,26.4,26.3,26.2(2),25.3,22.8(11t),20.6(q).MS(GC/MS):253.1(33,M+1),252.1(52,M+·),223.1(60),194.0(30),149(35)135(52),125.0(88),111.0(88),97.0(30),69.0(95),55.0(100).
2.4(R/S)-3-甲基环十七烷酮:由(E/Z)-1-(1-丙烯基)环十五烷醇制备
分离产率27%。
1H-NMR(300MHz,CDCl3):2.43-2.35(m,3H);2.17(dd,2J=15Hz,3J=5.2Hz,1H),2.04(mc,1H),1.58(mc,2H),1.30-1.22(m,24H);0.94(d,3J=6.7Hz,3H).13C-NMR(75MHz,CDCl3):211.5(s),50.3,42.4,35.8(3t),29.0(d),28.0(2),27.6,27.5,27.3,27.1,26.9,26.8(2),26.7,25.7,23.3(12t),20.6(q).MS(GC/MS):267.2(5,M+1),266.1(24,M+·),237.1(12),136(13),125.0(18),111.0(18),97.0(30),85.0(45),81.0(42),69.0(53),55.0(100).
2.5.(R/S)-2-甲基环十四烷酮:由1-(1-甲基乙烯基)环十二烷醇制备
分离产率70%.
1H-NMR(300MHz,CDCl3):2.70-2.34(m,3H),1.81-1.15(m,22H),1.05(d,J=7Hz,3H).13C-NMR(75MHz,CDCl3):215.3(s),45.6(d),38.4,33.0,26.4(2),26.1,25.7,25.4,24.9,24.8,24.7,24.6,21.8(12t),17.2(q).EI-MS(GC/MS):226.2(5,M+2),225.1(35,M+1),224.1(60,M+·),195.1(18),139.0(30),111.0(43),98.0(50),85(68),70(90),55(100).
2.6.(R/S)-2-甲基环十三烷酮;由1-(1-甲基乙烯基)-环十一烷醇制备
分离产率60%。
1H-NMR(300MHz,CDCl3):2.70-2.56(m,2H),2.39-2.29(m,1H),1.86-1.10(m,20H),1.04(d,J=6.9Hz,3H).13C-NMR(75MHz,CDCl3):215.4(s),46.3(d),40.3,33.0,26.6,26.3,26.2,25.6,25.0,24.7,24.4,24.3,22.7(11t),17.0(q).EI-MS(GC/MS):212.2(5,M+2),211.1(33,M+1),210.1(45,M+·),181(33),153(35),139(32),111(34),97(35),72(38),55(100).
2.7.3,3-二甲基环十四烷酮;由1-(2-甲基-1-丙烯基)环十二烷醇
1H-NMR(300MHz,CDCl3):2.42-2.38(t-artiges m,2H),2.34(s,2H),1.64-1.59(m,16H),1.55-1.23(m,2H),1.14-1.09(m,2H),1.00(s,6H).13C-NMR(75MHz,CDCl3):210.4(s),51.0,42.3(2t),41.0(s),38.8,33.3(2t),29.5(2)(q),27.0,26.2(2),25.6,25.1,24.1,22.6,22.1(8t).EI-MS(GC/MS):239.1(3),238.0(8,M+·),223.1(5),125.0(18),111.0(22),97.0(22),83(35),69(59),55(100).
经鉴定第二成分(29%)是2-甲基-2-十五烯-4-酮。
2.8.(顺式/反式)-2,3-二甲基环十四烷酮:由1-(2-丁烯-2-基)环十二烷醇制备
1H-NMR(300MHz,CDCl3):2.86-2.7(m,1H),2.64-2.48(m,2H),2.27-1.1(m,21H),1.01(d,J=6.9Hz,3H),0.95(d,J=6.9Hz,3H).13C-NMR(75MHz,CDCl3):213.0(s),51.0(d),38.1(t),34.3(d),29.3,27.9,26.2,25.8,24.9,24.8,24.4,24.3,24.1,20.4(10t),17.4,(q)8.8(q).EI-MS(GC/MS):238.1(35,M+·),223.1(38),209.1(80),191.1(34),181.0(38),166(25),139.0(100)125(80),111(85),98(88),83(95),69(92),55(98).
2.9.3,4-二甲基环十四烷酮:由(E/Z)-2-甲基-1-(1-丙烯-1-基)-环十二烷醇制备
1g(4.2mmol)(E/Z)-2-甲基-1-(1-丙烯-1-基)-环十二烷醇(参见I.2.9)包含约2-4%2-甲基环十二烷酮),石英反应器25/1000mm,温度570℃±10,在135-155℃(空气浴温度)下蒸发约15分钟。氮气流量约1.5-2l/h,真空度3-5毫巴。获得0.8g(80%粗产率)透明如水的无色的冷凝物,根据GC-和GC/MS分析其除其它的脱氢和裂解产物外还包括50%以上的作为主要成分的同分异构体3,4-二甲基环十四烷酮(无基线分离)以及约5%2-甲基环十四烷酮(m/z各为238)。
非对映异构体混合物(顺式/反式-化合物),特征峰:1H-NMR(300MHz,CDCl3):0.84-0.83(3d,J=6.5-7Hz),0.78(d,J=6.6Hz).13C-NMR(75MHz,CDCl3)211.6/211.3(s);49.3,44.9,41.8,39.8(4t);34.0,33.3,32.6,31.2(4q);32.8(t);28.6-24.4 CH2-信号(t)不能完全分辨开;16.7,16.1,14.8,13.4(4q).EI-MS(GC/MS):产物峰没有完全分开,238.1/238.1(M+·)。
B.双环体系:
3.1.(顺式/反式)-双环[10.4.0]十六烷-2-酮:由1-(1-环己烯基)环十二烷-1-醇制备
将0.5g 1-(1-环己烯基)环十二烷-1-醇(1.9mmol)在140-170℃下迅速均匀地蒸发(反应器温度690-700℃)。获得0.45g作为冷凝物的浅黄色油状物,根据GC-和GC/MS分析除此以外其还具有三个新的m/z为264的质量异构(massenisomeren)的主要成分(36、9和12%)。通过在硅胶上的色谱法(己烷/TBME 98∶2)仅部分地分离这些成分,并获得具有不同组成的级份(部分结晶)。
分离的结晶级份在GC中显示出比例约是9∶1(反式/顺式-同分异构体)的二种信号。
1H-NMR(300MHz,CDCl3):2.82-2.70(m,1H),2.63-2.56(m,1H),2.25-2.12(m,1H),2.08-1.48(m,7H),1.47-1.0(m,22H).13C-NMR(75MHz,CDCl3)同分异构体A(主要的同分异构体):213.2(s),52.6(d),37.9(t),37.0(d),28.4,26.2,26.0 25.9,25.5,25.0,24.5(2),24.4,24.1,24.0,23.5,21.5,20.7(14t).同分异构体B(微量的):215.1(s),57.3(d),38.7(d).EI-MS(GC/MS):265.1(35,M+1),264.1(58,M+·),246.1(10),209(15),137(18),125(40),96(48),81(52),67(55),55(100).
经鉴定,同样产生的油状产物是环己烯-1-基-十一烷酮(约20%,m/z 264)。
C.不饱和体系:
4.1.环十四-2-烯酮:由1-乙炔基-环十二烷醇制备
将2.1g 1-乙炔基-环十二烷醇(9mmol)在120-135℃下在约15分钟内蒸发(反应器温度660-670℃)。分离出1.8g冷凝物,根据GC/MS分析其除约10%原料和约20%环十二烷酮外还具有多种具有m/z 208作为分子离子-信号(Molekülion-Signal)的成分。通过在硅胶上的柱色谱法(己烷/TBME 98∶2)分离出UV-活性的主要级份(0.6g,29%),其是无色油状物:
1H-NMR(300MHz,CDCl3):6.83(td,J=15.8,7.4Hz,1H);6.20(dt J=15.8,1.3Hz,1H);2.53-2.48(m,2H);2.30-2.26(m,2H);1.80-1.67(m,2H),1.58-1.52(m,2H),1.45-1.2(m,14H).13C-NMR(75MHz,CDCl3):202.1(s),148.2,130.3(2d),40.4,31.4,26.6,26.3,26.2,26.0,25.8,25.7,25.4,25.0,24.9(11t).EI-MS(GC/MS):209.1(5,M+1),208.1(15,M+·),165(10),98(40),95(50),81(90),67(65),55(100).
4.2.环十五-2-烯酮:由1-乙炔基-环十三烷醇
将2.0g 1-乙炔基-环十三烷醇(9mmol)在125-130℃下在约15分钟内蒸发(反应器温度670-690℃)。分离出1.8g冷凝物,根据GC/MS分析其除约10%原料和约15%环十三烷酮外具有多个具有m/z 222作为分子离子-信号的成分。通过在硅胶上的柱色谱法(己烷/TBME 98∶2)分离出UV-活性的主要级份0.44g(22%):
1H-NMR(300MHz,CDCl3):6.81(td,J=15.7,7.5Hz,1H);6.19(dt J=15.7,1.3Hz,1H);2.52-2.47(m,2H);2.30-2.23(m,2H);1.72-1.44(m,4H),1.4-1.2(m,16H).13C-NMR(75MHz,CDCl3):201.7(s),147.9,130.7(2d),40.0,31.6,26.9,26.8,26.7,26.6(2),26.5,26.2,26.0,25.4,25.2(12t).EI-MS(GC/MS):223.1(5,M+1),222.1(15,M+·),164(10),109(50),96(52),95(50),81(80),68(55),55(100).
4.3.(E/Z)-3-甲基环十五-2-烯-1-酮:由1-(1-丙炔基)环十三烷醇制备
将0.8g 1-(1-丙炔基)环十二烷醇(3.3mmol)在130-140℃下蒸发(反应器温度660-670℃),其中获得0.5g冷凝物,其是黄色油状物。GC和GC-MS分析表明是一种复合的产物混合物,其除约12%环十三烷酮(m/z 196)、约15-20%烯烃级份(m/z 218)之外还包含三种具有质量异构的分子离子峰(m/z 236)的级份(约18、15、11%)。通过在硅胶上的色谱法(己烷/TBME 98∶2)在分离烯烃级份之后分离出部分首先洗脱的酮级份(无色油状物):
1H-NMR(300MHz,CDCl3):6.09(br.s,1H),2.76(t,J=6.8Hz,2H),2.46-2.35(m,2H),1.86(d,J=1.3Hz,3H),1.74-1.2(m,20H).1H-NMR(75MHz,CDCl3):201.8(s),158.4(s),125.0(d),41.8(t),31.6,29.3,27.0,26.9,26.8,26.7,26.5,26.3,26.1,25.3,(10t)25.1(q),23.8(t).EI-MS(GC/MS):237.1(5,M+1),236.0(18,M+·),221.0(12),123.0(13),109(46),98(87),95(100),83(90),67(52),55(80).
纯化随后的通过在硅胶上的柱色谱法未充分分离的产物级份。在乙酸乙酯中在活性炭上用钯(10%)催化氢化该混合物,随后再次在硅胶上进行柱色谱法(己烷/TBME 98∶2),最后获得三种主要级份,其中一种(0.15g,19%)通过GC-、GC/MS分析和NMR光谱证明与3-甲基-环十五烷酮(Muskon)相同(参见II.2.2.)。经鉴定其它的产物(含量约10和15%)是环十三烷酮和十六烷-4-酮。
4.4.(E/Z)-3-甲基环十四-2-烯-1-酮:由1-(1-丙炔基)环十二烷醇制备
将1.1g 1-(1-丙炔基)环十二烷醇(5mmol)在130-140℃下蒸发(反应器温度660-680℃),其中获得0.9g冷凝物,其是黄色油状物。GC和GC-MS分析表明是一种复合的产物混合物,其除约15%环十二烷酮(m/z 182)、约15-20%烯烃级份(m/z 204)外还包含三种具有质量异构的分子离子峰(m/z 222)的级份(约25、20、15%)。
该混合物的1H-NMR-光谱:6.21(s),6.09(s),2.78(t,J=6.8Hz),2.6-2.35(m),2.13(d,J=1Hz),2.02(s),1.95-1.15(m),0.88(t,J=6.8Hz).
在乙酸乙酯中在活性炭上用钯(10%)催化氢化该混合物,随后在硅胶上进行柱色谱法(己烷/TBME 98∶2),最后获得二种主要级份,其中的一种(0.35g,32%)通过GC-、GC/MS分析和NMR光谱学证明与3-甲基-环十四烷酮相同。第二种产物(Anteil ca.15%)经鉴定是十五烷-4-酮。
5.1.(R/S)-3-甲基-环十四烷酮:由(E/Z)-1-(三甲基甲硅氧基)-1-(1-丙烯基)-环十二烷醇制备,并且随后水解该环状三甲基甲硅烷基烯醇醚-中间步骤:
将1.5g(E/Z)-1-丙烯-1-基-1-三甲基甲硅氧基环十二烷醇(5mmol,根据1H-NMR和GC E∶Z-异构体比例约3∶2)在120-130℃下15分钟内蒸发(反应器温度660-670℃)。获得1.3g冷凝物(86%),其是无色油状物。根据GC/MS分析约90%转化,其中除总计约30-40%烯烃级份(脱甲硅基作用,M+·=206)外,观察到分别约25和15%的二种新的放宽的具有m/z 296的产物-信号对(M+,三甲基甲硅烷基烯醇醚-异构体)。
EI-MS:297.2(5),296.2(15,M+·),281.2(20),253.1(10),197.0(18),169.0(60),73.0(100).
将获得的粗冷凝物溶解在20ml THF中,并在搅拌下掺入几滴稀释的硫酸和稀释的氟化钾水溶液。在搅拌过夜之后,倾倒在水上,用己烷萃取,在常规加工之后在硅胶上进行色谱法(己烷/TBME 97∶3)。除UV-活性的预级份(烯烃级份)外还获得0.42g(28%)无色油状物,通过GC-、GC/MS分析和NMR光谱制备其与前面已经制备的3-甲基环十四烷酮相同。

Claims (7)

1、制备式Ia或Ib的大环酮的热-同分异构化方法,
Figure C028044630002C1
其中
R1、R2、R3相互独立地表示氢或C1-C6烷基,
在式Ia中,R1和R2或者R2和R3可以相互独立地构成环,
R4表示氢、直链或支链的C1-C4烷基,
n是整数,并且
n是7-14,
通过
(a)在100-300℃减压下将式IIa的大环叔烯丙醇或IIb的炔丙醇转化为气相,
Figure C028044630002C2
其中
R1、R2、R3、R4和n具有上述相同的含义,
R5或者表示氢或三烷基甲硅烷基或者碱金属阳离子,
(b)将转化为气相的式IIa的大环叔烯丙醇或式IIb的炔丙醇加热至500-700℃,并且
(c)在R5是三烷基甲硅烷基的情况下,将在(b)中形成的三烷基甲硅烷基醚水解为相应的式Ia或Ib的酮。
2、权利要求1的热-同分异构化方法,其中R1、R2和R3各自表示甲基。
3、根据权利要求1的热-同分异构化方法,其特征在于,将式IIa的大环叔烯丙醇或式IIb的炔丙醇在转化为气相之前溶解在惰性溶剂中。
4、根据权利要求1的热-同分异构化方法,其特征在于,将式IIa的大环叔烯丙醇或式IIb的炔丙醇连续地转化为气相。
5、根据权利要求1的热-同分异构化方法,其特征在于,将式IIa的大环叔烯丙醇或式IIb的炔丙醇在120至250℃下转化为气相。
6、根据权利要求1的热-同分异构化方法,其特征在于,在转化为气相的式IIa的大环叔烯丙醇或式IIb的炔丙醇中加入惰性气体。
7、根据权利要求1的热-同分异构化方法,其特征在于,将转化为气相的式IIa的大环叔烯丙醇或式IIb的炔丙醇加热至500-670℃。
CNB028044630A 2001-02-22 2002-02-15 大环酮的制备方法 Expired - Fee Related CN1255368C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01103613.4 2001-02-22
EP01103613A EP1236707A1 (de) 2001-02-22 2001-02-22 Verfahren zur Herstellung makrocyclischer Ketone

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100682788A Division CN100371311C (zh) 2001-02-22 2002-02-15 大环酮的制备方法

Publications (2)

Publication Number Publication Date
CN1489566A CN1489566A (zh) 2004-04-14
CN1255368C true CN1255368C (zh) 2006-05-10

Family

ID=8176502

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB028044630A Expired - Fee Related CN1255368C (zh) 2001-02-22 2002-02-15 大环酮的制备方法
CNB2006100682788A Expired - Fee Related CN100371311C (zh) 2001-02-22 2002-02-15 大环酮的制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB2006100682788A Expired - Fee Related CN100371311C (zh) 2001-02-22 2002-02-15 大环酮的制备方法

Country Status (8)

Country Link
US (1) US6951964B2 (zh)
EP (2) EP1236707A1 (zh)
JP (1) JP4229365B2 (zh)
CN (2) CN1255368C (zh)
AT (1) ATE428680T1 (zh)
DE (1) DE50213445D1 (zh)
ES (1) ES2324338T3 (zh)
WO (1) WO2002068372A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236707A1 (de) 2001-02-22 2002-09-04 Givaudan SA Verfahren zur Herstellung makrocyclischer Ketone
CN103787856B (zh) * 2010-10-22 2015-07-29 安徽中天方生物科技有限公司 3-甲基环十四酮的用途及制备方法
US8940940B2 (en) * 2012-06-13 2015-01-27 Basf Se Process for preparing macrocyclic ketones
JP6502884B2 (ja) * 2016-03-14 2019-04-17 株式会社 東邦アーステック 3−メチルシクロアルケノン類の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2852344A1 (de) * 1978-12-04 1980-06-26 Basf Ag In 1-stellung substituierte cyclododecane und cyclododecene und ihre verwendung als duftstoffe
JPH11322662A (ja) * 1998-05-07 1999-11-24 Takasago Internatl Corp 5−シクロヘキサデセン−1−オンの製造法および製造装置
EP1236707A1 (de) 2001-02-22 2002-09-04 Givaudan SA Verfahren zur Herstellung makrocyclischer Ketone

Also Published As

Publication number Publication date
ATE428680T1 (de) 2009-05-15
CN100371311C (zh) 2008-02-27
JP2004527497A (ja) 2004-09-09
CN1824636A (zh) 2006-08-30
ES2324338T3 (es) 2009-08-05
EP1362023B1 (de) 2009-04-15
WO2002068372A1 (de) 2002-09-06
EP1236707A1 (de) 2002-09-04
EP1362023A1 (de) 2003-11-19
CN1489566A (zh) 2004-04-14
JP4229365B2 (ja) 2009-02-25
DE50213445D1 (zh) 2009-05-28
US6951964B2 (en) 2005-10-04
US20040082816A1 (en) 2004-04-29

Similar Documents

Publication Publication Date Title
CN1125805C (zh) 制备6-甲基-3-庚烯-2-酮和6-甲基-2-庚烷酮类似物的方法和制备植酮或异植醇的方法
CN1118448C (zh) 苄基-醚的制备方法
CN1090601C (zh) (e)-(r)-2-烷基-4-(2,2,3-三甲基环戊-3-烯-1-基)-2-丁烯-1-醇,及其制备方法和用途
CN1288130C (zh) 4,4'-二酮基类胡萝卜素的制备
CN1628087A (zh) 链烯酮的制备方法
CN1255368C (zh) 大环酮的制备方法
CN1319596A (zh) 3,6-二烷基5,6-二氢-4-羟基-2h-吡喃-2-酮的合成
US10858370B2 (en) Process for preparing bicyclic enolether
CN1261411C (zh) 类视色素的制备
CN1034277C (zh) α-(烷基环己氧基)-β-链烷醇以及含此种成分的香精
CN1036013A (zh) 抗血胆甾醇过高的四唑化合物及其中间体的制备
CN1213010C (zh) 取代的环己烯
CN1124261C (zh) 多烯酯和酸的制备方法
US10494322B2 (en) Method for producing 3,7-dimethyl-7-octenol and method for producing 3,7-dimethyl-7-octenyl carboxylate compound
WO2008092655A1 (en) Process for preparing dienones
CN1026579C (zh) 萜烯类的制备方法
KR100236667B1 (ko) 4-히드록시메틸테트라히드로피란의 제조방법
CN1127466C (zh) 多烯(二)醛的制备方法
CN1784378A (zh) 4-羟基异亮氨酸及其衍生物的合成方法
CN100341865C (zh) 2-(ω-烷氧羰基链烷酰)-4-丁内酯、ω-羟基-(ω-3)-酮脂肪酸酯及其衍生物的制造法
CN1184216C (zh) 制备5-氧代-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸酯的方法
CN1256335C (zh) 制备三酮双(肟醚)衍生物方法中所获得的缩酮中间体
JPS5826330B2 (ja) 立体規制されたファルネシル酢酸エステルの製造方法
CN101056843A (zh) 大环状酮类的制造方法及其中间体
CN1733690A (zh) 2-(ω-烷氧羰基链烷酰)-4-丁内酯、ω-羟基-(ω-3)-酮脂肪酸酯及其衍生物的制造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: GIVAUDAN CO., LTD.

Free format text: FORMER NAME: GIVAUDAN SA

CP01 Change in the name or title of a patent holder

Address after: Swiss Wei Ernie

Patentee after: Givaudan SA

Address before: Swiss Wei Ernie

Patentee before: Givaudan S. A.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060510

Termination date: 20200215

CF01 Termination of patent right due to non-payment of annual fee