CN1247618C - 催化剂体系的制备方法和它在聚合方法中的用途 - Google Patents

催化剂体系的制备方法和它在聚合方法中的用途 Download PDF

Info

Publication number
CN1247618C
CN1247618C CN01819398.6A CN01819398A CN1247618C CN 1247618 C CN1247618 C CN 1247618C CN 01819398 A CN01819398 A CN 01819398A CN 1247618 C CN1247618 C CN 1247618C
Authority
CN
China
Prior art keywords
load
activator
metallic compound
metal
catalyst system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN01819398.6A
Other languages
English (en)
Other versions
CN1476450A (zh
Inventor
高珊爵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Univation Technologies LLC
Original Assignee
Univation Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univation Technologies LLC filed Critical Univation Technologies LLC
Publication of CN1476450A publication Critical patent/CN1476450A/zh
Application granted granted Critical
Publication of CN1247618C publication Critical patent/CN1247618C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/902Monomer polymerized in bulk in presence of transition metal containing catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明涉及负载的催化剂组合物和制备负载组合物的方法及它在聚合烯烃方法中的用途。特别地,本发明涉及通过接触负载的活化剂与大体积配体和金属化合物制备负载催化剂组合物的方法。

Description

催化剂体系的制备方法和它 在聚合方法中的用途
本发明涉及制备催化剂体系的方法和它在聚合烯烃方法中的用途。特别地,本发明涉及制备负载活化剂和金属化合物及大体积配体的催化剂组合物的方法。
聚合和催化的进步导致了生产具有改进物理和化学性能的许多新聚合物的能力,该聚合物用于各种优异的产品和应用。随着新催化剂的开发,极大地扩展了对用于生产特定聚合物的聚合类型(溶液、淤浆、高压或气相)的选择。同样,聚合技术的进步提供了更有效,高产和经济增强的方法。这些进步特别说明的是采用大体积配体金属茂催化剂体系的技术开发。特别地,在其中典型地使用负载催化剂体系的淤浆或气相方法中,在本领域中描述了用于负载大体积配体金属茂催化剂体系的各种不同方法。
生产负载大体积配体金属茂催化剂体系的说明性方法包括:U.S.专利Nos.5,332,706和5,473,028已经采取通过初始浸渍形成催化剂的特定技术;U.S.专利Nos.5,427,991和5,643,847描述了非配位阴离子活化剂对载体的化学键合;U.S.专利No.5,492,975讨论了聚合物结合的金属茂催化剂体系;1997年2月20日公开的PCT公开WO97/06186教导了在金属茂催化剂自身形成之后除去无机和有机杂质;1997年5月1日公开的PCT公开WO97/15602讨论了容易负载的金属配合物;U.S.专利No.4,937,217一般性地描述了加入到未脱水二氧化硅中的三甲基铝和三乙基铝混合物,然后加入金属茂催化剂;EP-B1-0 308 177一般性地描述了向包含金属茂,三烷基铝和未脱水二氧化硅的反应器中加入潮湿单体;U.S.专利Nos.4,912,075、4,935,397和4,937,301一般性地涉及加入三甲基铝到未脱水的二氧化硅中和然后加入金属茂以形成干燥的负载催化剂;U.S.专利No.4,914,253描述了加入三甲基铝到未脱水二氧化硅中,加入金属茂和然后采用一定数量的氢气干燥催化剂以生产聚乙烯蜡;U.S.专利Nos.5,008,228、5,086,025和5,147,949一般性地描述了通过向水浸渍的二氧化硅中加入三甲基铝以原位形成铝氧烷和然后加入金属茂,形成干燥的负载催化剂;U.S.专利Nos.4,808,561、4,897,455和4,701,432描述了用于形成负载催化剂的技术,其中将惰性载体,典型地二氧化硅,煅烧和与金属茂和活化剂/助催化剂组分接触;U.S.专利No.5,238,892描述了通过混合金属茂与烷基铝然后加入未脱水的二氧化硅,形成干燥的负载催化剂;和U.S.专利No.5,240,894一般性地涉及通过形成金属茂/铝氧烷反应溶液,加入多孔载体,和蒸发获得的淤浆以从载体除去残余溶剂,形成负载的金属茂/铝氧烷催化剂体系。
有许多关于用于制备负载活化剂的技术和它在聚合烯烃的催化剂体系中的用途的讨论。讨论负载活化剂的专利公开的如下非限制性例子包括:U.S.专利No.5,728,855涉及在水解之前通过采用二氧化碳处理三烷基铝,形成负载的低聚物烷基铝氧烷;U.S.专利No.5,831,109和5,777,143讨论使用非水解工艺制备的负载甲基铝氧烷;U.S.专利No.5,731,451涉及通过采用三烷基甲硅烷氧基部分的氧合制备负载铝氧烷的方法;U.S.专利No.5,856,255讨论了在升高的温度和压力下形成负载的辅助催化剂(铝氧烷或有机硼化合物);U.S.专利No.5,739,368讨论了热处理铝氧烷和将它放置在载体上的方法;EP-A-0 545 152涉及加入金属茂到负载的铝氧烷中以及加入更多的甲基铝氧烷;U.S.专利Nos.5,756,416和6,028,151讨论了铝氧烷浸渍的载体和金属茂和大体积烷基铝和甲基铝氧烷的催化剂组合物;EP-B1-0 662 979讨论了含有与铝氧烷反应的二氧化硅的催化剂载体的金属茂的用途;PCT WO96/16092涉及采用铝氧烷处理的受热载体和洗涤以除去未固定的铝氧烷;U.S.专利Nos.4,912,075、4,937,301、5,008,228、5,086,025、5,147,949、4,871,705、5,229,478、4,935,397、4,937,217、5,057,475和PCT WO94/26793都涉及加入金属茂到负载的活化剂中;U.S.专利No.5,902,766涉及在二氧化硅粒子上具有特定铝氧烷分布的负载活化剂;U.S.专利No.5,468,702涉及老化负载的活化剂和加入金属茂;U.S.专利No.5,968,864讨论了采用铝氧烷处理固体和引入金属茂;EP 0 747430A1涉及在负载的甲基铝氧烷和三甲基铝上使用金属茂的方法;EP0 969 019A1讨论了金属茂和负载活化剂的用途;EP-B2-0 170059涉及使用金属茂和有机铝化合物的聚合方法,通过反应三烷基铝与含水载体形成有机铝化合物;U.S.专利No.5,212,232讨论了负载的铝氧烷的用途和用于生产苯乙烯类聚合物的金属茂;U.S.专利No.5,026,797讨论了使用锆化合物固体组分和采用铝氧烷初步处理的水不溶性多孔无机氧化物的聚合方法;U.S.专利No.5,910,463涉及通过结合脱水的载体材料,铝氧烷和多官能有机交联剂制备催化剂载体的方法;U.S.专利Nos.5,332,706、5,473,028、5,602,067和5,420,220讨论了制备负载活化剂的方法,其中铝氧烷溶液的体积小于载体材料的孔体积;WO98/02246讨论了采用包含铝来源和金属茂的溶液处理的二氧化硅;WO99/03580涉及负载的铝氧烷和金属茂的用途;EP-A1-0 953 581公开了负载的铝氧烷和金属茂的多相催化体系;U.S.专利No.5,015,749讨论了使用多孔有机或无机吸收材料制备多烃基铝氧烷的方法;U.S.专利Nos.5,446,001和5,534,474涉及固定在固体、粒状惰性载体上的一种或多种烷基铝氧烷的制备方法;和EP-A1-0 819 706涉及采用铝氧烷处理的固体二氧化硅的制备方法。同样,目的在于公开有用的负载活化剂和它们的制备方法的如下文献包括:W.Kaminsky等人,“采用负载的半夹心配合物的苯乙烯聚合”, Journal of Polymer Science,37卷,2959-2968(1999)描述了吸附甲基铝氧烷到载体上随后进行金属茂吸附的方法;JuntingXu等人,“采用负载在甲基铝氧烷预处理的二氧化硅上的二甲基甲硅烷基双(1-茚基)二氯化锆制备的等规聚丙烯的表征,” European Polymer Journal 35(1999)1289-1294,讨论了采用甲基铝氧烷和金属茂处理的二氧化硅的用途;Stephen O’Brien等人,“在中孔硅酸酯MCM-41中引入的手性烯烃聚合催化剂的EXAFS分析”Chem.Commun.1905-1906(1997)公开了在改性中孔二氧化硅上的固定铝氧烷;和F.Bonini等人,“通过负载的金属茂/MAO催化剂的丙烯聚合:动力学分析和模型化” Journal of Polymer Science,33卷,2393-2402(1995)讨论了使用甲基铝氧烷负载的二氧化硅与金属茂。
尽管在本领域中已经描述了所有这些方法,但发现需要制备负载的大体积配体金属茂催化剂的改进方法。
本发明提供制备新的和改进的负载大体积配体金属茂催化剂体系的方法和它在聚合方法中的用途。
在一个实施方案中,本发明涉及一种负载催化剂体系的制备方法,包括如下步骤:(a)形成负载的活化剂;(b)引入大体积配体;和引入金属化合物。
在另一方面,本发明涉及一种负载催化剂体系的制备方法,包括如下步骤:(a)结合载体材料与活化剂;(b)加入大体积配体;和(c)加入金属化合物。在此实施方案中,优选在步骤(b)和(c)之前完成步骤(a)以形成负载的活化剂。
在另一个实施方案中,本发明涉及采用由上述方法制备的负载催化剂体系,特别是在气相或淤浆相工艺中聚合烯烃的方法。
在一个实施方案中,本发明涉及在催化剂体系存在下聚合烯烃的方法,该催化剂体系包括负载的活化剂,大体积配体,和金属化合物的结合物。在此实施方案中,优选在将它们引入聚合反应器之前,将负载的活化剂与大体积配体和金属化合物结合。
在仍然另一个实施方案中,本发明涉及在反应器中,在催化剂体系存在下聚合烯烃的方法,催化剂体系包括活化剂,载体材料,大体积配体和金属化合物。优选在此实施方案中,首先结合活化剂和载体材料以形成负载的活化剂。
本发明涉及制备和使用负载的催化剂体系的方法。令人惊奇地发现接触负载的活化剂与大体积配体和金属化合物导致了活性聚合催化剂。尽管不希望受任何特定理论的约束,相信在负载的活化剂的存在下,大体积配体和金属化合物,配合,或“自装配”成活性烯烃聚合催化剂。然而,对于本专利说明书和所附权利要求的目的,大体积配体和金属化合物是单独的组分且不等同于预形成的大体积配体金属茂-类型化合物。本发明的方法提供生产负载的催化剂体系而不需要合成,例如,大体积配体金属茂催化剂化合物的简单途径。此外,本发明提供容易改变大体积配体而不需要合成另一种大体积配体金属类型催化剂化合物的灵活性。此能力具有许多优点,包括混合的催化剂技术,特别是其中采用两种或多种大体积配体金属茂-类型催化剂。
本发明的大体积配体一般由一种或多种开放,无状,或稠环或环体系或其结合表示。优选合适大体积配体的环或环体系典型地由选自如下的原子组成:元素周期表第13-16族原子,和更优选选自碳、氮、氧、硅、硫、磷、锗、硼和铝或其结合的原子。最优选环或环体系由碳原子组成,但不限于能够形成大体积配体的那些环链二烯或其它相似官能前体如环戊二烯基配体或环戊二烯基类型配体结构或其它特定相似的官能配体结构如戊二烯、环戊二烯、茚、五甲基环戊二烯、氟、富烯、环辛四烯基或亚氨配体(imide ligand)。
金属原子优选选自元素周期表第3-15族和镧系或锕系元素。
大体积配体是开放,无环,或稠环或环体系如未取代或取代的环戊二烯基配体或环戊二烯基类型配体、杂原子取代的或含杂原子的环戊二烯基类型配体(或两者)。大体积配体的非限制性例子包括环戊二烯基配体、环戊菲基配体、茚基配体、苯并茚基配体、芴基配体、八氢芴基配体、环辛四烯基配体、环戊环十二碳烯配体、氮烯基、薁配体、并环戊二烯配体、磷酰基配体、吡咯基配体、吡唑基配体、咔唑基配体、和硼苯配体,包括其氢化变体,例如四氢茚基配体。
在一个实施方案中,大体积配体是能优选与下述金属化合物的金属η-结合,优选η3-结合和最优选η5-结合的任何配体结构。
在仍然另一个实施方案中,大体积配体的原子分子量(MW)超过60a.m.u.,优选大于65a.m.u.。
在另一个实施方案中,大体积配体可包括与碳原子结合的一个或多个杂原子,例如,氮、硅、硼、锗、硫和磷以形成开放,无环,或优选稠环或环体系,例如,杂环戊二烯基辅助配体。其它大体积配体包括但不限于大体积酰胺、磷化物、醇盐、芳醚、酰亚胺、carbolides、borollides、卟啉、酞菁、咕啉和其它多偶氮大环物质。
在一个实施方案中,采用两个或多个大体积配体。在此实施方案中,大体积配体可以相同或不同。
每个大体积配体可以未取代或由取代基R的结合取代。取代基R的非限制性例子包括一种或多种选自如下的基团:氢、或线性,支化烷基、或链烯基、炔基、环烷基或芳基、酰基、芳酰基、烷氧基、芳氧基、芳基硫代、二烷基氨基、烷氧基羰基、芳氧基羰基、氨基甲酰基、烷基或二烷基氨基甲酰基、酰氧基、酰基氨基、芳酰基氨基、直链,支化或环状亚烷基、或其结合。在优选的实施方案中,取代基R含有至多50个非氢原子,优选1-30个碳,它也可由氢或杂原子取代。烷基取代基R的非限制性例子包括甲基、乙基、丙基、丁基、戊基、己基、环戊基、环己基、苄基或苯基,包括所有它们的异构体,例如叔丁基和异丙基。其它烃基包括氟甲基、氟乙基、二氟乙基、碘丙基、溴己基、氟苄基和烃基取代的有机准金属基团,包括三甲基甲硅烷基、三甲基甲锗烷基、和甲基二乙基甲硅烷基;和卤代二价碳基(halocarbyl)取代的有机准金属基团,包括三(三氟甲基)甲基硅烷、甲基双(二氟甲基)甲硅烷基、和溴甲基二甲基甲锗烷基;和二取代的硼基团,例如包括二甲基硼;和二取代的磷属元素基团,包括二甲基胺、二甲基膦、二苯基胺、甲基苯基膦,硫属元素基团,包括甲氧基、乙氧基、丙氧基、苯氧基、甲基硫化物和乙基硫化物。非氢取代基R包括原子碳、硅、硼、铝、氮、磷、氧、锡、硫、和锗,包括烯烃如但不限于烯属不饱和取代基,包括乙烯基封端的配体,例如丁-3-烯基、丙-2-烯基、和己-5-烯基。同样,至少两个R基团,优选两个相邻的R基团,结合以形成含有3-30个选自如下的原子的环结构:碳、氮、氧、磷、硅、锗、铝、硼或其结合。同样,取代基R基团如1-丁基可对金属M形成碳σ键。
在另一个实施方案中,两个或多个大体积配体可以通过桥接基团彼此桥接。桥接基团的非限制性例子包括含至少一个第13-16族原子的桥接基团,通常称为二价部分如但不限于如下的至少一个:碳、氧、氮、硅、硼、锗和锡原子或其结合。优选桥接基团包含碳、硅或锗原子,最优选至少一个硅原子或至少一个碳原子。桥接基团也可包含如上定义的包括卤素的取代基R。桥接基团的非限制性例子可以由R’2C、R’2Si、R’2SiR’2Si、R’2Ge、R’P表示,其中R’独立地是,如下的基团:氢、烃基、取代烃基、卤代二价碳基、取代的卤代二价碳基、烃基取代的有机准金属、卤代二价碳基取代的有机准金属、二取代的硼、二取代的磷属元素、取代的硫属元素、或卤素。
本发明的金属化合物优选是过渡金属化合物,其中金属选自第4-12族,优选第4,5和6族,更优选过渡金属来自第4族,最优选钛、锆或铪。在另一个实施方案中,本发明的金属化合物是过渡金属化合物,其中金属选自锆、钛、铪、铬和钒。
其它配体可以键合到金属上,例如,单阴离子配体,其σ键合到金属上。键合或配合到金属上的配体的非限制性例子包括弱碱如胺、膦、醚、羧酸酯、二烯烃、含有1-50个碳原子的烃基,氢或卤素或其结合。在另一个实施方案中,键合到金属上的两个或多个这些配体形成稠环或环体系的一部分。键合到金属上的配体的其它例子包括对于R如上定义的那些取代基且包括环丁基、环己基、庚基、甲苯基、三氟甲基、四亚甲基、五亚甲基、亚甲基(methylidene)、甲氧基、乙氧基、丙氧基、苯氧基、双(N-甲基-酰苯胺)、二甲基酰胺、和二甲基磷化物基团。
其它大体积配体和金属化合物描述于U.S.专利Nos.5,064,802、5,145,819、5,149,819、5,243,001、5,239,022、5,276,208、5,296,434、5,321,106、5,329,031、5,304,614、5,677,401、5,723,398、5,753,578、5,854,363、5,856,547、5,858,903、5,859,158和5,900,517和PCT公开WO93/08221、WO93/08199、WO95/07140、WO98/11144、WO98//41530、WO98/41529、WO98/46650、WO99/02540、WO99/14221、WO00/35973和WO00/35928和欧洲公开EP-A-0 578 838、EP-A-0 638 595、EP-B-0 513 380、EP-A1-0 816 372、EP-A2-0 839 834、EP-B1-0 632 819、EP-B1-0748 821和EP-B1-0 757 996。
同样大体积配体和金属化合物进一步讨论于PCT公开WO92/00333、WO94/07928、WO91/04257、WO94/03506、WO96/00244、WO97/15602、WO96/33202、WO96/34021、WO97/17379、WO98/22486、WO99/20637和WO00/11006(准金属盐催化剂)和U.S.专利Nos.5,057,475、5,096,867、5,055,438、5,198,401、5,227,440、5,637,660、5,539,124、5,554,775、5,756,611、5,233,049、5,744,417、5,856,258、5,264,405、6,066,704、6,069,237(开放戊二烯基配体)、6,072,067(由杂原子取代的大体积配体)、6,087,515和6,090,739和欧洲公开EP-A-0420 436和EP-A1-0 874 005。
在另一个实施方案中,大体积配体包括含有吡啶或喹啉部分的那些双齿配体,如在1998年6月23日提交的U.S.申请No.09/103,620(现发布为US专利No.6,103,657)中描述的那些,或在PCT公开WO99/01481和WO98/42664中描述的那些大体积配体。
在本发明范围内的是,在一个实施方案中,大体积配体和金属化合物包括在如下文献中描述的Ni2+和Pd2+的那些配合物:文章Johnson等人,“用于乙烯和α-烯烃聚合的新Pd(II)-和Ni(II)基催化剂”, J.Am.Chem.Soc.1995,117,6414-6415和Johnson等人,“由Pd(II)催化剂的乙烯和丙烯与官能化乙烯基单体的共聚”, J.Am.Chem.Soc.1996,118,267-268,和1996年8月1日公开的WO96/23010、WO99/02472,U.S.专利Nos.5,852,145、5,866,663和5,880,241。
同样包括为大体积配体的是在如下文献中公开的第8-10族金属化合物的那些二亚胺类配体:PCT公开WO96/23010、WO97/48735和WO98/40374和Gibson等人, Chem.Comm.,849-850页(1998)。
其它大体积配体和金属化合物描述于EP-A2-0 816 384和U.S.专利No.5,851,945。此外,大体积配体包括由D.H.McConville等人在 Organometallics 1195,14,5478-5480页中描述的桥接双(芳基酰氨基)配体和在U.S.专利No.5,852,146中描述的双(羟基芳族氮配体)。
在一个实施方案中,本发明的金属化合物由如下通式表示:MLx
其中M是元素周期表第3-12族,优选第4-10族,更优选第4-6族,和最优选第4族金属,和特别是锆、钛或铪;L相同或不同且选自氢、卤素、烃基、醇盐、芳醚、羧酸盐、碳二酸盐(carbodionate)、酰胺、氨基甲酸盐和磷化物;和“x”是依赖于金属价态的整数,优选使得金属化合物是中性化合物,其中“x”等于金属的价态。
非限制性优选的金属化合物包括:ZrCl4、ZrBr4、ZrI4、Zr(CH2C6H5)4、Zr[CH2C(CH3)2C6H5]4、Zr[CH2Si(CH3)3]4、Zr(乙酰丙酮)4、Zr(2,2,6,6-四甲基-3,5-庚烷二酸)4、Zr(F)3(乙酰丙酮)、Zr(乙醇)4、Zr(叔丁醇)4、Zr(苯酚)4、Zr(NMe2)4(Me是甲基)、Zr(NEt2)4(Et是乙基)、Zr(二乙基氨基甲酸)4、Zr(二甲基氨基甲酸)4、Zr(新戊酸)4、Zr(苯甲酸)4
对于此专利说明书和所附权利要求的目的,术语“活化剂”定义为任何化合物或组分或方法,它可活化用于烯烃聚合的本发明的任何大体积配体和金属化合物结合物。
非限制性活化剂,例如包括路易斯酸或非配位离子活化剂或离子化活化剂或任何其它化合物,包括路易斯碱、烷基铝、常规类型助催化剂及其结合物。在本发明范围内使用铝氧烷或改性铝氧烷作为活化剂,或使用中性或离子的离子化活化剂,如三(正丁基)铵四(五氟苯基)硼、三全氟苯基硼准金属前体或三全氟萘基硼准金属前体、多卤化杂硼烷阴离子(WO98/43983)或其结合物(或使用铝氧烷或改性铝氧烷和离子化活化剂两者)。
存在制备铝氧烷和改性铝氧烷的各种方法,它们的例子描述于U.S.专利Nos.4,665,208、4,952,540、5,091,352、5,206,199、5,204,419、4,874,734、4,924,018、4,908,463、4,968,827、5,308,815、5,329,032、5,248,801、5,235,081、5,157,137、5,103,031、5,391,793、5,391,529、5,693,838、5,731,253、5,731,451、5,744,656、5,847,177、5,854,166、5,856,256和欧洲公开EP-A-0 561 476、EP-B1-0 279 586、EP-A-0 594 218和EP-B1-0 586 665、和PCT公开WO94/10180。其它铝氧烷包括在EP-B1-0 621 279和U.S.专利No.6,060,418中描述的甲硅烷氧基铝氧烷,和在WO00/09578中描述的化学官能化羧酸酯铝氧烷。
作为活化剂的有机铝化合物包括三甲基铝、三乙基铝、三异丁基铝、三正己基铝、和三正辛基铝。
离子化化合物可包含活性质子,或与离子化化合物的剩余离子缔合但不配位或仅松驰地配位到离子化化合物的剩余离子上的一些其它阳离子。这样的化合物描述于欧洲公开EP-A-0 570 982、EP-A-0520 732、EP-A-0 495 375、EP-B1-0 500 944、EP-A-0 277 003和EP-A-0 277 004、和U.S.专利Nos.5,153,157、5,198,401、5,066,741、5,206,197、5,241,025、5,384,299、5,502,124、和6,078,460以及1994年8月3日提交的U.S.专利申请No.08/285,380(便于1995年6月7日提交的部分继续中请号08/474,948放弃,现公开为US专利No.5,643,847)。
其它活化剂包括在PCT公开WO98/07515中描述的那些如三(2,2’,2”-九氟联苯)氟铝酸酯。活化剂的结合物也由本发明设想,例如,结合的铝氧烷和离子化活化剂,参见例如,EP-B1-0 573 120、PCT公开WO94/07928和WO95/14044和U.S.专利Nos.5,153,157和5,453,410。WO98/09996描述了采用高氯酸盐、高碘酸盐和碘酸盐,包括它们的水合物活化金属化合物。WO98/30602和WO98/30603描述了锂(2,2’-双苯基-双三甲基硅酸酯)·4THF作为活化剂的用途。EP-A2-0 103 675描述了氟化有机化合物活化剂。WO99/18135描述了有机硼-铝活化剂的用途。EP-B1-0 781 299描述了使用与非配位相容阴离子结合的甲硅烷基鎓盐。其它活化剂描述于例如,U.S.专利Nos.5,849,852、5,859,653、5,869,723和6,030,917(镓类阴离子活化剂)和PCT WO98/32775、WO00/09513(三种配位铝活化剂)以及WO00/20115。
任何常规载体材料可用于本发明。优选载体材料是多孔载体材料,例如,滑石、无机氧化物和无机氯化物。其它载体材料包括树脂载体材料如聚苯乙烯、官能化或交联有机载体,如聚苯乙烯二乙烯基苯聚烯烃或聚合物复合物、沸石、粘土、或任何其它有机或无机载体材料及其混合物。
优选的载体材料是无机氧化物,它包括那些第2、3、4、5、13或14族金属氧化物。优选的载体材料包括二氧化硅、氧化铝、二氧化硅-氧化铝、氯化镁、及其混合物。其它有用的载体材料包括氧化镁、二氧化钛、氧化锆、蒙脱石(EP-B1 0 511 665)和水滑石。同样,可以使用这些载体材料的结合物,例如,二氧化硅-铬、二氧化硅-氧化铝和二氧化硅-二氧化钛。
优选载体材料,最优选无机氧化物的表面积为约10-约700m2/g,孔体积为约0.1-约4.0cc/g和平均孔径为约5-约500μm。更优选,载体材料的表面积为约50-约500m2/g,孔体积为约0.5-约3.5cc/g和平均孔径为约10-约200μm。最优选载体材料的表面积为约100-约400m2/g,孔体积为约0.8-约3.0cc/g和平均孔径为约5-约100μm。本发明载体的平均孔径典型地具有如下范围的孔径:10-1000埃,优选50-约500埃,和最优选75-约350埃。
载体材料可以化学处理,例如在WO00/12565中所述采用氟化物化合物处理。
可以使用本领域公知的一种或多种负载方法,将上述活化剂与同样上述的一种或多种载体材料结合。例如,在最优选的实施方案中,将活化剂沉积到载体材料上,与载体材料接触,或引入载体材料中,蒸发到载体材料上,与载体材料反应,在载体裁材料中或在载体材料上吸附或吸收。
其它负载的活化剂描述于例如WO00/13792,它提及包含固体酸配合物的负载硼。
在形成负载活化剂的优选方法中,其中存在活化剂的液体数量是如下数量:小于载体材料孔体积的四倍,更优选小于三倍,甚至更优选小于两倍;优选的范围是1.1倍-3.5倍范围和最优选为1.2-3倍范围。在另外的实施方案中,其中存在活化剂的液体数量是1-小于1倍的用于形成负载活化剂的载体材料孔体积。
测量多孔载体的总孔体积的程序在本领域是公知的。这些程序的一种详细情况讨论于卷1, 催化研究中的试验方法(AcademicPress,1968)(特别参见67-96页)。此优选的程序包括使用用于氮吸收的经典BET设备。本领域公知的另一种方法描述于Innes, 由液体 滴定的流体催化剂的总孔隙率和粒子密度,28卷,No.3,AnalyticalChemistry 332-334(1956年3月)。
在一个实施方案中,负载的活化剂是处于干燥状态的固体。在另一个实施方案中,负载的活化剂处于基本干燥状态或淤浆,优选处于矿物油淤浆中。
在另一个实施方案中,使用两种或多种单独的负载活化剂,或者,使用在单一载体上的两种或多种不同活化剂,与大体积配体和金属化合物结合。
本发明的负载催化剂体系一般包括上述负载的活化剂,大体积配体和金属化合物以任何顺序的结合,接触,蒸发,共混,粘合或混合(或其任何结合)。
在本发明方法的一个实施方案中,将负载的活化剂在加入到金属化合物中之前,与大体积配体结合。在另一个实施方案中,将大体积配体和金属化合物首先接触,且然后与负载的活化剂结合。在另外的实施方案中,将活化剂与大体积配体或金属化合物(或两者)结合以形成混合物,且然后将混合物加入到载体材料中。
在一个实施方案中,将负载的活化剂与两种或多种大体积配体及一种或多种金属化合物接触。在一个实施方案中,两种大体积配体相同且使用一种类型的金属化合物。在另一个实施方案中,与一种金属化合物,或两种不同的金属化合物结合使用两种类型不同或含有不同取代基的大体积配体。
在另一个实施方案中,负载的活化剂对大体积配体和金属化合物的结合数量(重量百分数)是99.9wt%-50wt%,优选约99.8wt%-约60wt%,更优选约99.7wt%-约70wt%,和最优选约99.6wt%-约80wt%。
在仍然另一个实施方案中,金属化合物对大体积配体的摩尔比是0.01-100,优选0.02-50,更优选0.05-20,最优选0.1-10。
在仍然另一个实施方案中,活化剂的金属对金属化合物的金属的摩尔比为5000-1,优选约2000-2,更优选约1000-约5,和最优选约500-约10。
当活化剂包含铝,优选铝氧烷时,活化剂组分的金属对金属化合物的金属的摩尔比为0.3∶1-1000∶1,优选20∶1-800∶1,和最优选50∶1-500∶1。
当活化剂是离子化活化剂如基于阴离子四(五氟苯基)硼的那些时,活化剂组分的金属对大体积配体金属茂催化剂的金属组分的摩尔比优选为0.3∶1-3∶1。
在本发明的其它实施方案中,当与大体积配体和金属化合物接触时,负载的活化剂处于干燥或基本干燥的状态,或在溶液中。将获得的负载催化剂体系以干燥或基本干燥状态,或作为淤浆,优选在矿物油中使用。同样,可以在它引入聚合反应器中之前,将本发明的干燥负载催化剂体系在液体如矿物油、甲苯、或任何烃中再淤浆化。
此外,设想负载的活化剂,大体积配体,和金属化合物可用于相同的溶剂或不同溶剂中。例如,大体积配体可以在甲苯中,金属化合物在异戊烷中和负载的活化剂在矿物油,或任何溶剂的结合中。
在一个实施方案中,在与负载的活化剂接触之前,大体积配体和金属化合物在液体中结合。优选地,该液体是脂族烃。
优选结合负载的活化剂,大体积配体和金属化合物的接触温度为0℃-约100℃,更优选15℃-约75℃,最优选在约环境温度和压力下。
优选,将负载的活化剂与大体积配体和金属化合物接触大于1秒,优选约1分钟-约48小时,更优选约10分钟-约10小时,和最优选约30分钟-约6小时的时间。接触时间仅表示混合时间。在一个实施方案中,负载的活化剂是包括表面羟基的载体材料和有机铝化合物的反应产物。
抗静电剂或表面改性剂可用于与本发明的负载活化剂,大体积配体和金属化合物结合。参见例如在PCT公开WO96/11960中描述的那些试剂和改性剂。同样,如在1998年7月10日提交的U.S.申请系列No.09/113,216中描述的金属酯的羧酸盐,例如羧酸铝如单,二和三硬脂酸铝,辛酸铝,油酸铝和环己基丁酸铝可用于与负载的活化剂,大体积配体和金属化合物结合。
在本发明的一个实施方案中,在主聚合之前在负载的活化剂,大体积配体和金属化合物结合物存在下,预聚烯烃,优选C2-C30烯烃或α-烯烃,优选乙烯或丙烯或其结合物。可以在气相、溶液或淤浆相中,包括在高压下间歇或连续进行预聚。预聚可以采用任何烯烃单体或结合物或在任何分子量控制剂如氢气存在下进行。对于预聚程序的例子,参见U.S.专利No s.4,748,221、4,789,359、、4,923,833、4,921,825、5,283,278和5,705,578和欧洲公开EP-B1-0 279 863和PCT公开WO97/44371。
上述本发明的负载催化剂体系或组合物在宽范围温度和压力下适用于任何聚合方法。温度可以为-60℃~约280℃,优选50℃-约200℃,和采用的压力可以为1大气压-约500大气压或更高。
聚合方法包括溶液、气相、淤浆相和高压方法或其结合。特别优选是一种或多种烯烃的气相或淤浆相聚合,烯烃的至少一种是乙烯或丙烯。
在一个实施方案中,本发明的方法涉及如下物质的溶液、高压、淤浆或气相聚合方法:含有2-30个碳原子,优选2-12个碳原子,和更优选2-8个碳原子的一种或多种烯烃单体。本发明特别适用于如下两种或多种烯烃单体的聚合:乙烯、丙烯、丁烯-1、戊烯-1、4-甲基-戊烯-1、己烯-1、庚烯-1、辛烯-1和癸烯-1。
用于本发明方法的其它单体包括烯属不饱和单体、含有4-18个碳原子的二烯烃、共轭或非共轭二烯、多烯、乙烯基单体和环烯烃。用于本发明的非限制性例子可包括降冰片烯、降冰片二烯、异丁烯、异戊烯、乙烯基苯并环丁烷、苯乙烯、烷基取代的苯乙烯、亚乙基降冰片烯、二环戊二烯和环戊烯。
在本发明方法的最优选实施方案中,生产乙烯的共聚物,其中在气相工艺中聚合与乙烯一起的如下物质:含有至少一种具有4-15个碳原子,优选4-12个碳原子,和最优选4-8个碳原子的α-烯烃的共聚单体。
在本发明方法的另一个实施方案中,将乙烯或丙烯与至少两种不同的共聚单体聚合,非必要地一种共聚单体可以是二烯烃,以形成三元共聚物。
在一个实施方案中,本发明涉及聚合单独的丙烯或丙烯与如下物质的聚合方法,特别是气相或淤浆相方法:包括乙烯的一种或多种其它单体,或含有4-12个碳原子的其它烯烃(或两者)。可以使用如在U.S.专利Nos.5,296,434和5,278,264描述的特定桥接大体积配体和金属化合物生产聚丙烯聚合物。
典型地在气相聚合方法中,采用连续循环,其中在反应器系统循环的一个部分中,将循环气体流,另外称为循环流或流化介质,在反应器中由聚合热加热。由反应器外部的冷却系统在循环的另一部分中从循环组合物中除去此热量。一般情况下,在生产聚合物的气体流化床工艺中,在催化剂存在下在反应条件下将包含一种或多种单体的气体流通过流化床连续循环。将气体流从流化床抽出和循环回反应器。同时,将聚合物产物从反应器抽出和将新鲜单体加入以替换聚合的单体。参见例如U.S.专利Nos.4,543,399、4,588,790、5,028,670、5,317,036、5,352,749、5,405,922、5,436,304、5,453,471、5,462,999、5,616,661和5,668,228。
气相方法中的反应器压力可以在如下范围变化:约100psig(690kPa)-约500psig(3448kPa),优选约200psig(1379kPa)-约400psig(2759kPa),更优选约250psig(1724kPa)-约350psig(2414kPa)。
气相方法中的反应器温度可以在如下范围变化:约30℃-约120℃,优选约60℃-约115℃,更优选约70℃-约110℃,和最优选约70℃-约95℃。
由本发明方法设想的其它气相方法包括串联或多阶段聚合方法。同样由本发明设想的气相方法包括在如下文献中描述的那些:U.S.专利Nos.5,627,242、5,665,818和5,677,375,和欧洲公开EP-A-0794 200、EP-B1-0 649 992、EP-A-0 802 202和EP-B-0 634 421。
在优选的实施方案中,在本发明中采用的反应器是有能力的且本发明的方法生产大于500磅聚合物每小时(227Kg/hr)-约200,000磅/hr(90,900Kg/hr)或更高的聚合物,优选大于1000磅/hr(455Kg/hr),更优选大于10,000磅/hr(4540Kg/hr),甚至更优选大于25,000磅/hr(11,300Kg/hr),仍然更优选大于35,000磅/hr(15,900Kg/hr),仍然甚至更优选大于50,000磅/hr(22,700Kg/hr)和最优选大于65,000磅/hr(29,000Kg/hr)-大于100,000磅/hr(45,500Kg/hr)。
淤浆聚合方法一般使用约1-约50大气压和甚至更大的压力和0℃-约120℃的温度。在淤浆聚合中,在液体聚合稀释剂介质中形成固体、粒状聚合物的悬浮液,向其中加入乙烯和共聚单体和通常与催化剂一起的氢气。将包括稀释剂的悬浮液间歇或连续地从反应器除去,其中将挥发性组分从聚合物分离,且非必要地在蒸馏之后,循环到反应器。在聚合介质中采用的液体稀释剂典型地是含有3-7个碳原子的烷烃,优选支化烷烃。采用的介质在聚合条件下应当是液体和相对惰性的。当使用丙烷介质时,工艺必须在反应稀释剂临界温度和压力以上操作。优选,采用己烷或异丁烷介质。
本发明的优选聚合技术称为粒子形式聚合,或淤浆方法,其中将温度保持在聚合物进入溶液的温度以下。这样的技术在本领域是公知的,且例如描述于U.S.专利No.3,248,179。其它淤浆方法包括采用环管反应器的那些和以串联、并联、或其结合采用多个搅拌反应器的那些。淤浆方法的非限制性例子包括连续环管或搅拌罐方法。同样,淤浆方法的其它例子描述于U.S.专利No.4,613,484。
在实施方案中,在本发明淤浆方法中使用的反应器是有能力的且本发明的方法生产大于2000磅聚合物每小时(907Kg/hr),更优选大于5000磅/hr(2268Kg/hr),和最优选大于10,000磅/hr(4540Kg/hr)。在另一个实施方案中,在本发明方法中使用的淤浆反应器生产大于15,000磅聚合物每小时(6804Kg/hr),优选大于25,000磅/hr(11,340Kg/hr)-约100,000磅/hr(45,500Kg/hr)。
溶液方法的例子描述于U.S.专利Nos.4,271,060、5,001,205、5,236,998和5,589,555。
本发明的优选方法是其中方法,优选淤浆或气相方法在本发明大体积配体金属茂催化剂体系存在下和在不存在或基本没有任何清除剂,如三乙基铝、三甲基铝、三异丁基铝、三正己基铝、氯化二乙基铝、和二丁基锌的情况下操作。此优选方法描述于PCT公开WO96/08520和U.S.专利No.5,712,352和5,763,543。
由本发明方法生产的聚合物可用于很多种产物和最终用途应用。由本发明方法生产的聚合物包括线性低密度聚乙烯、弹性体、塑性体、高密度聚乙烯、低密度聚乙烯、聚丙烯和聚丙烯共聚物。
聚合物,典型地乙烯类聚合物的密度为0.86g/cc-0.97g/cc,优选0.88g/cc-0.965g/cc,更优选0.900g/cc-0.96g/cc,甚至更优选0.905g/cc-0.95g/cc,仍然甚至更优选0.910g/cc-0.940g/cc,和最优选大于0.915g/cc,优选大于0.920g/cc,和最优选大于0.925g/cc。根据ASTM D1505和D2839测量密度。
由本发明方法生产的聚合物的分子量分布,重均分子量对数均分子量(Mw/Mn)典型地为大于1.5-约15,特别地大于2-约10,更优选大于约2.2-小于约8,和最优选2.5-8。
同样,本发明的聚合物典型地具有由组成分布宽度指数(CDBI)测量的窄组成分布。确定共聚物CDBI的进一步详细情况对本领域技术人员是已知的。参见,例如,1993年2月18日公开的PCT专利申请WO93/03093。
本发明大体积配体金属茂催化的聚合物在一个实施方案中的CDBI一般为大于50%-100%,优选99%,优选55%-85%,和更优选60%-80%,甚至更优选大于60%,仍然甚至更优选大于65%。
在另一个实施方案中,使用本发明大体积配体金属茂催化剂体系生产的聚合物的CDBI小于50%,更优选小于40%,和最优选小于30%。
本发明的聚合物在一个实施方案中由ASTM-D-1238-E测量的熔融指数(MI)或(I2)为0.01dg/min-1000dg/min,更优选约0.01dg/min-约100dg/min,甚至更优选约0.1dg/min-约50dg/min,和最优选约0.1dg/min-约10dg/min。
本发明的聚合物在实施方案中的熔融指数比(I21/I2)(I21由ASTM-D-1238-F测量)为10-小于25,更优选约15-小于25。
本发明的聚合物在优选实施方案中的熔融指数比(I21/I2)(I21由ASTM-D-1238-F测量)优选为大于25,更优选大于30,甚至更优选大于40,仍然甚至更优选大于50和最优选大于65。在实施方案中,本发明的聚合物可具有窄分子量分布和宽组成分布或反之亦然,和可以由在U.S.专利No.5,798,427中描述的那些聚合物。
在仍然另一个实施方案中,在本发明方法中生产丙烯类聚合物。这些聚合物包括无规聚丙烯、等规聚丙烯、半等规和间规聚丙烯。其它丙烯聚合物包括丙烯嵌段或冲击共聚物。这些类型的丙烯聚合物在本领域是公知的。参见,例如,U.S.专利Nos.4,794,096、3,248,455、4,376,851、5,036,034、和5,459,117。
可以将本发明的聚合物与任何其它聚合物共混或共挤出(或两者)。其它聚合物的非限制性例子包括通过常规Ziegler-Natta或大体积配体金属茂催化(或两者)生产的线性低密度聚乙烯、弹性体、塑性体、高压低密度聚乙烯、高密度聚乙烯、和聚丙烯。
由本发明方法生产的聚合物及其共混物可用于如膜、片、和纤维挤出和共挤出的成形操作以及吹塑、注塑和旋转模塑。膜包括由共挤出或由层压形成的吹制或流延膜,其在食品接触和非食品接触应用中用作收缩膜、粘着膜、拉伸膜、密封膜、取向膜、快餐包装、重负荷袋、杂货袋、烘制和炸制食品包装、医疗包装、工业衬里、膜等。纤维包括用于织造或非织造形式的熔体纺丝、溶液纺丝和熔喷纤维操作以制备过滤器、尿布织物、医用服装、地用纺织品(geotextile)等。挤出制品包括医用管、电线和电缆涂层、地用膜、和池塘衬里。模塑制品包括形式为瓶子、罐子、大中空制品、刚性食品容器和玩具等的单和多层构造物。
实施例
为提供包括其代表性优点的本发明的更好理解,给出以下实施例。
活性数值是根据催化剂中每mmol过渡金属每小时每100psi(690kPa)乙烯聚合压力生产的聚合物克数归一化的数值。MI是熔融指数,且报导为按照ASTM D-1238,条件E的每10分钟克数。FI是流动指数,且在用于以上熔融指数中使用10倍重量下按照ASTM D-1238,条件F测量。MFR是熔体流动比,且是FI∶MI的比例。
MAO是甲苯中的甲基铝氧烷(30wt%),购自AlbemarleCorporation,Baton  Rogue,Louisiana。
Kaydol,白色矿物油,购自Witco Corporation,Memphis,Tennessee,且由首先采用氮气脱气1小时,然后由在80℃下在真空下加热10小时而精制。
四苄基锆(Zr(CH2C6H5)4)和双(茚基)二氯化锆购自BoulderScientific Company。
茚和五甲基环戊二烯购自Aldrich Chemical Company。
实施例1
负载MAO(SMAO)的制备
通过在2.7升干燥、脱气的甲苯中混合960g的30wt%MAO(MAO购自Albemarle Corporation,Baton Rogue,Louisiana)制备甲基铝氧烷(MAO)的甲苯溶液。将此溶液在环境温度下搅拌同时加入850g硅胶(Davison 955,在600℃下脱水,购自W.R.Grace,DayisonDivision,Baltimore,Maryland)。将获得的淤浆在环境温度下搅拌1小时且将溶剂在减压下采用氮气流在85℃下除去。继续干燥直到材料温度已经恒定2小时。获得的自由流动白色粉末具有每克固体4.1mmol Al的铝加载量。
实施例2
负载四苄基锆(TBZ)(组合物A)的制备
在干燥箱内,向装配有磁力搅拌棒的60ml瓶子中加入0.050g四苄基锆(0.110mmol)和19.1g干燥、脱气的Kaydol油。将获得的黄色淤浆在环境温度下搅拌2小时,然后加入3.43g实施例1的上述SMAO。然后将此混合物在用于聚合之前在环境温度下搅拌12小时。
实施例3
本发明负载茚(IN)和四苄基锆(TBZ)混合物(组合物B)的制备
在干燥箱内,向装配有磁力搅拌棒的60ml瓶子中加入0.100g四苄基锆(0.220mmol),0.110g茚(0.948mmol),和38.0g干燥、脱气的Kaydol油。将获得的淡橙色混合物在环境温度下搅拌2小时,然后加入6.70g实施例1的上述SMAO。然后将获得的淤浆在用于聚合之前在环境温度下搅拌12小时。
实施例4
本发明采用茚的负载TBZ的处理(组合物C)
在干燥箱内,将实施例2的Kaydol油中的二氧化硅负载的TBZ在环境温度下搅拌同时加入0.043g(0.371mmol)纯茚。将获得的橙色淤浆在用于聚合之前在环境温度下搅拌12小时。
实施例5
本发明负载五甲基环戊二烯(Cp * )和四苄基锆(TBZ)混合物(组合物D) 的制备
在干燥箱内,向装配有磁力搅拌棒的60ml瓶子中加入0.049g四苄基锆(0.108mmol),0.061g五甲基环戊二烯(0.449mmol),和18.1g干燥、脱气的Kaydol油。将此混合物在环境温度下搅拌2小时,然后加入3.19g实施例1的上述SMAO。然后将获得的橙色淤浆在用于聚合之前在环境温度下搅拌12小时。
实施例6
本发明二氧化硅负载的五甲基环戊二烯(Cp * )和四苄基锆(TBZ)混合物 (组合物E)的制备
按照实施例5的相同程序,区别在于使用0.028g五甲基环戊二烯(0.206mmol)。
对比例7
二氧化硅负载的双(茚基)二氯化锆(INZ)的制备
在干燥箱内,向装配有磁力搅拌棒的60ml瓶子中加入0.046g的INZ和20.42g干燥、脱气的Kaydol油。将获得的红色淤浆在环境温度下搅拌2小时,然后加入3.0g实施例1的上述SMAO。然后将此混合物在用于聚合之前在环境温度下搅拌12小时。
实施例8
二新戊酸双(五甲基环戊二烯基)锆的制备
在40℃下,采用搅拌向双(五甲基环戊二烯基)二氯化锆(0.865g,2.001mmol)和新戊酸(0.685g,6.710mmol)在甲苯(30ml)的溶液中加入三乙胺(0.726g,7.174mmol)。立即形成白色沉淀物,通过过滤除去该沉淀物。通过在真空下在65℃下蒸发溶剂和过量新戊酸,将标题化合物分离为灰白色粉末(以90%)。根据NMR结果,如所述制备的标题化合物显示大于98%的纯度。1H NMR(甲苯d8)(s,30H),1.30(s,18H)。
对比例9
负载二新戊酸双(五甲基环戊二烯基)锆的制备
在干燥箱内,向装配有磁力搅拌棒的60ml瓶子中加入0.062g二新戊酸双(五甲基环戊二烯基)锆(0.110mmol)和15.0g干燥、脱气的Kaydol油。将此混合物在环境温度下搅拌2小时,然后加入2.890g实施例1的上述SMAO。然后将获得的淤浆在用于聚合之前在环境温度下搅拌12小时。
聚合方法
实施例10-16
在实施例10-16每一个中,在淤浆相反应器中使用下表1规定的催化剂组合物生产聚乙烯。
对于实施例10-16每一个,制备本发明或对比例催化剂组合物之一的Kaydol油淤浆。将此淤浆混合物的等分试样加入到包含100ml己烷的8盎司(250ml)瓶子中。然后将己烯-1(20ml)加入到预混合的催化剂组合物中。保持无水条件。实施例10-16的聚合时间是30分钟。
淤浆反应器是装配有机械搅拌器的1升,不锈钢高压釜。首先通过在96℃下在干燥氮气流下加热40分钟而干燥反应器。在冷却反应器到50℃之后,将500ml己烷加入到反应器中,随后加入0.25ml在己烷中的三异丁基铝(TIBA)(0.86摩尔,用作杂质清除剂),且将反应器组分在温和氮气流下搅拌。然后在氮气流下将预混合的催化剂组合物转移到反应器中并密封反应器。将反应器的温度逐渐升高到75℃且将反应器采用乙烯加压到150psi(1034kPa)。继续加热直到达到85℃的聚合温度。除非另外说明,继续聚合30分钟,在该时间内将乙烯连续加入到反应器中以保持恒定的压力。在30分钟结束时,将反应器排气和打开。
表1给出实施例10-16的活性,MI,FI,和MFR。如表1所示,本发明的催化剂组合物(实施例11,12,13和14)显示与对比例(实施例15和16)相似的活性。
                                 表1
  实施例   使用的组合物   Zr加载量(mmol)   活性   MI   FI   MFR
  10   A   0.001   5714
  11   B   0.001   91726   1.4   25.5   19
  12   C   0.001   66496   1.2   22   18
  13   D   0.001   14586   0.9
  14   E   0.001   9624   1.4
  15   对比例7   0.001   74211   1   20   20
  16   对比例9   0.001   14977   2
尽管已经参考特定的实施方案描述和说明了本发明,本领域技术人员会理解本发明导引它自身到不必须在此说明的变化。例如,设想负载的活化剂,大体积配体和金属化合物可以与一种或多种大体积配体金属茂催化剂,或传统Zielger-Natta或Phillips类型催化剂一起使用。

Claims (12)

1.一种负载催化剂组合物的制备方法,包括如下步骤:
(a)形成负载的活化剂,其中负载的活化剂在矿物油中;
(b)在所述矿物油中,使负载的活化剂与配体和金属化合物接触,条件是配体和金属化合物是单独的组分且不等同于预形成的配体金属茂-类型化合物;
其中所述配体选自环戊二烯基配体、茚基配体、苯并茚基配体、芴基配体、八氢芴基配体、环戊烯环十二碳烯配体、并环戊二烯配体、及其氢化变体;
所述活化剂是铝氧烷;和
所述金属化合物由如下通式表示:
                     MLx
其中M是元素周期表第4族金属,L是卤素;和“x”是依赖于金属价态的整数。
2.权利要求1的方法,其中在与负载的活化剂接触之前,配体和金属化合物在液体中结合。
3.权利要求1的方法,其中负载的活化剂包括载体材料和所述铝氧烷。
4.权利要求2的方法,其中液体是脂族烃。
5.权利要求1的方法,其中负载的活化剂是包括表面羟基的载体材料和所述铝氧烷的反应产物。
6.一种在负载催化剂体系存在下聚合烯烃的方法,其中该负载催化剂体系通过使负载的活化剂、配体、金属化合物在矿物油中接触而制备,条件是配体和金属化合物是单独的组分且不等同于预形成的配体金属茂-类型化合物;且
其中所述配体选自环戊二烯基配体、茚基配体、苯并茚基配体、芴基配体、八氢芴基配体、环戊烯环十二碳烯配体、并环戊二烯配体、及其氢化变体;
所述活化剂是铝氧烷;和
所述金属化合物由如下通式表示:
                      MLx
其中M是元素周期表第4族金属,L是卤素;和“x”是依赖于金属价态的整数。
7.权利要求6的方法,其中该方法是气相方法。
8.权利要求6的方法,其中负载的活化剂包括载体材料和所述铝氧烷。
9.权利要求6的方法,其中负载催化剂体系处于淤浆状态。
10.一种活化烯烃聚合的负载催化剂体系,包括在矿物油中结合的配体、金属化合物、和负载的活化剂,条件是配体和金属化合物是单独的组分且不等同于预形成的配体金属茂-类型化合物;
其中所述配体选自环戊二烯基配体、茚基配体、苯并茚基配体、芴基配体、八氢芴基配体、环戊烯环十二碳烯配体、并环戊二烯配体、及其氢化变体;
所述活化剂是铝氧烷;和
所述金属化合物由如下通式表示:
                     MLx
其中M是元素周期表第4族金属,L是卤素;和“x”是依赖于金属价态的整数。
11.权利要求10的负载催化剂体系,其中负载的活化剂包括载体材料和所述铝氧烷。
12.权利要求10的负载催化剂体系,其中负载的活化剂对配体和金属化合物的重量百分数是99.6-80。
CN01819398.6A 2000-10-13 2001-09-27 催化剂体系的制备方法和它在聚合方法中的用途 Expired - Fee Related CN1247618C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/687,734 2000-10-13
US09/687,734 US7220804B1 (en) 2000-10-13 2000-10-13 Method for preparing a catalyst system and its use in a polymerization process

Publications (2)

Publication Number Publication Date
CN1476450A CN1476450A (zh) 2004-02-18
CN1247618C true CN1247618C (zh) 2006-03-29

Family

ID=24761633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN01819398.6A Expired - Fee Related CN1247618C (zh) 2000-10-13 2001-09-27 催化剂体系的制备方法和它在聚合方法中的用途

Country Status (8)

Country Link
US (2) US7220804B1 (zh)
EP (2) EP1806368A3 (zh)
JP (1) JP3872757B2 (zh)
CN (1) CN1247618C (zh)
AU (2) AU2001294810B2 (zh)
BR (1) BR0114645A (zh)
CA (1) CA2425588C (zh)
WO (1) WO2002032968A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220804B1 (en) * 2000-10-13 2007-05-22 Univation Technologies, Llc Method for preparing a catalyst system and its use in a polymerization process
US7094848B2 (en) 2003-05-13 2006-08-22 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system
EP2510019A2 (en) 2009-12-07 2012-10-17 Univation Technologies, LLC Methods for reducing static charge of a catalyst and methods for using the catalyst to produce polyolefins
US20120116034A1 (en) 2010-11-08 2012-05-10 Dow Global Technologies, Inc. Solution polymerization process and procatalyst carrier systems useful therein
EP2750797B1 (en) 2011-11-08 2020-04-01 Univation Technologies, LLC Methods of preparing a catalyst system
US11111154B2 (en) 2012-09-28 2021-09-07 Scg Chemicals Co., Ltd. Aqueous miscible organic-layered double hydroxide
GB201217351D0 (en) * 2012-09-28 2012-11-14 Scg Chemicals Co Ltd Catalyst systems
CN106795229B (zh) 2014-12-12 2020-01-14 Lg化学株式会社 金属茂-负载型催化剂以及使用该催化剂制备聚烯烃的方法
US10550207B2 (en) 2015-12-04 2020-02-04 Lg Chem, Ltd. Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR101949456B1 (ko) * 2015-12-04 2019-02-18 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조 방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684703A (en) * 1979-02-27 1987-08-04 Union Carbide Corporation Polymerization catalyst for ethylene homopolymerization
DE3424697C2 (de) 1984-07-05 1999-07-08 Targor Gmbh Verfahren zur Polymerisation von Ethylen oder von Mischungen von Ethylen mit anderen 1-Olefinen
US4808561A (en) 1985-06-21 1989-02-28 Exxon Chemical Patents Inc. Supported polymerization catalyst
US4897455A (en) 1985-06-21 1990-01-30 Exxon Chemical Patents Inc. Polymerization process
US4701432A (en) 1985-11-15 1987-10-20 Exxon Chemical Patents Inc. Supported polymerization catalyst
US5015749A (en) 1987-08-31 1991-05-14 The Dow Chemical Company Preparation of polyhydrocarbyl-aluminoxanes
IL87717A0 (en) 1987-09-14 1989-02-28 Exxon Chemical Patents Inc Preparation of an active metallocene-alumoxane catalyst in situ during polymerization
US5212232A (en) 1987-09-28 1993-05-18 Idemitsu Kosan Co., Ltd. Process for production of styrene-based polymers
US5026797A (en) 1987-10-22 1991-06-25 Mitsubishi Petrochemical Co., Ltd. Process for producing ethylene copolymers
US4912075A (en) 1987-12-17 1990-03-27 Exxon Chemical Patents Inc. Method for preparing a supported metallocene-alumoxane catalyst for gas phase polymerization
US4937217A (en) 1987-12-17 1990-06-26 Exxon Chemical Patents Inc. Method for utilizing triethylaluminum to prepare an alumoxane support for an active metallocene catalyst
US4937301A (en) 1987-12-17 1990-06-26 Exxon Chemical Patents Inc. Method for preparing a supported metallocene-alumoxane catalyst for gas phase polymerization
US5086025A (en) 1988-03-29 1992-02-04 Exxon Chemical Patents Inc. Method for preparing a silica gel supported metallocene-alumoxane catalyst
US5008228A (en) 1988-03-29 1991-04-16 Exxon Chemical Patents Inc. Method for preparing a silica gel supported metallocene-alumoxane catalyst
US5147949A (en) 1988-03-29 1992-09-15 Exxon Chemical Patents Inc. Polymerization process using a silica gel supported metallocene-alumoxane catalyst
US5229478A (en) 1988-06-16 1993-07-20 Exxon Chemical Patents Inc. Process for production of high molecular weight EPDM elastomers using a metallocene-alumoxane catalyst system
US4871705A (en) 1988-06-16 1989-10-03 Exxon Chemical Patents Inc. Process for production of a high molecular weight ethylene a-olefin elastomer with a metallocene alumoxane catalyst
US4935397A (en) 1988-09-28 1990-06-19 Exxon Chemical Patents Inc. Supported metallocene-alumoxane catalyst for high pressure polymerization of olefins and a method of preparing and using the same
US4914253A (en) 1988-11-04 1990-04-03 Exxon Chemical Patents Inc. Method for preparing polyethylene wax by gas phase polymerization
US5057475A (en) 1989-09-13 1991-10-15 Exxon Chemical Patents Inc. Mono-Cp heteroatom containing group IVB transition metal complexes with MAO: supported catalyst for olefin polymerization
US5331071A (en) * 1991-11-12 1994-07-19 Nippon Oil Co., Ltd. Catalyst components for polymerization of olefins
CA2124187C (en) 1991-11-25 2001-08-07 Howard William Turner Polyonic transition metal catalyst composition
DE4139262A1 (de) 1991-11-29 1993-06-03 Basf Ag Getraegerte katalysatorsysteme zur polymerisation von c(pfeil abwaerts)2(pfeil abwaerts)- bis c(pfeil abwaerts)1(pfeil abwaerts)(pfeil abwaerts)0(pfeil abwaerts)-alkenen
US5240894A (en) 1992-05-18 1993-08-31 Exxon Chemical Patents Inc. Method for making and using a supported metallocene catalyst system
US5238892A (en) 1992-06-15 1993-08-24 Exxon Chemical Patents Inc. Supported catalyst for 1-olefin(s) (co)polymerization
KR100287389B1 (ko) 1992-10-02 2001-04-16 그래햄 이. 테일러 올레핀 중합반응을 위한 지지된 균일한 촉매(supported homogeneous catalyst complexes for olefin polymerization)
US5332706A (en) 1992-12-28 1994-07-26 Mobil Oil Corporation Process and a catalyst for preventing reactor fouling
US5420220A (en) 1993-03-25 1995-05-30 Mobil Oil Corporation LLDPE films
US5602067A (en) 1992-12-28 1997-02-11 Mobil Oil Corporation Process and a catalyst for preventing reactor fouling
WO1994026793A1 (en) 1993-05-13 1994-11-24 Exxon Chemical Patents Inc. Polymerization catalyst systems, their production and use
DE4336659A1 (de) 1993-10-27 1995-05-04 Witco Gmbh Verfahren zur Herstellung von Alkylaluminoxanen auf inerten Trägermaterialien
JP3223191B2 (ja) 1994-01-11 2001-10-29 エクソンモービル・ケミカル・パテンツ・インク アルモキサン、アルモキサンを用いる触媒及びその触媒により製造されるポリマー
DE4409249A1 (de) 1994-03-18 1995-09-21 Witco Gmbh Verfahren zur Herstellung von Alkylaluminoxan auf inerten Trägermaterialien
EP0685494B1 (de) 1994-06-03 1998-10-07 PCD Polymere AG Katalysatorträger, geträgerte Metallocenkatalysatoren und deren Verwendung für die Herstellung von Polyolefinen
US5473020A (en) 1994-06-30 1995-12-05 Phillips Petroleum Company Polymer bound ligands, polymer bound metallocenes, catalyst systems, preparation, and use
US5468702A (en) 1994-07-07 1995-11-21 Exxon Chemical Patents Inc. Method for making a catalyst system
CN1095848C (zh) * 1994-08-03 2002-12-11 埃克森美孚化学专利公司 催化剂组合物、聚合方法及催化剂活化剂组合物
US5643847A (en) 1994-08-03 1997-07-01 Exxon Chemical Patents Inc. Supported ionic catalyst composition
JP3355572B2 (ja) * 1994-08-23 2002-12-09 新日本石油株式会社 オレフィン類重合触媒およびそれを用いたポリオレフィンの製造方法
US6124230A (en) * 1995-07-13 2000-09-26 Exxon Chemical Patents, Inc. Polymerization catalyst systems, their production and use
WO1996013531A1 (en) 1994-10-31 1996-05-09 W.R. Grace & Co.-Conn. Preparation of modified polyolefin catalysts and in situ preparation of supported metallocene and ziegler-natta/metallocene polyolefin catalysts
MX9703592A (es) 1994-11-17 1997-08-30 Dow Chemical Co Componente de catalizador soportado, catalizador soportado, su preparacion y proceso de polimerizacion por adicion.
US6407177B1 (en) 1995-06-07 2002-06-18 Fina Technology, Inc. Polypropylene blend
CA2181413A1 (en) 1995-07-18 1998-01-18 Edwar S. Shamshoum Process for the syndiotactic propagation of olefins
US5648308A (en) 1995-08-10 1997-07-15 Albemarle Corporation Process for upgrading metallocene catalysts
US5728855A (en) 1995-10-19 1998-03-17 Akzo Nobel Nv Modified polyalkylaluminoxane composition formed using reagent containing carbon-oxygen double bond
EP0857180B1 (en) 1995-10-27 1999-11-24 The Dow Chemical Company Readily supportable metal complexes
US5756416A (en) 1995-11-28 1998-05-26 Union Carbide Chemicals & Plastics Technology Corporation Catalyst composition having improved comonomer reactivity
US5777143A (en) 1995-12-22 1998-07-07 Akzo Nobel Nv Hydrocarbon soluble alkylaluminoxane compositions formed by use of non-hydrolytic means
US5831109A (en) 1995-12-22 1998-11-03 Akzo Nobel Nv Polyalkylaluminoxane compositions formed by non-hydrolytic means
US5856255A (en) 1996-01-22 1999-01-05 Albemarle Corporation Preparation of supported auxiliary catalysts at elevated temperature and pressure in a closed vessel
US6218330B1 (en) * 1996-05-09 2001-04-17 Fina Research, S. A. Process for preparing and using a supported metallocene-alumoxane catalyst
US5739368A (en) 1996-05-10 1998-04-14 Albemarle Corporation Use of heat treated alumoxanes in preparing supported catalysts
KR100490714B1 (ko) 1996-07-11 2005-05-24 엑손모빌 오일 코포레이션 올레핀 중합반응에 사용되는 지지된 메탈로센 촉매
US5731451A (en) 1996-07-12 1998-03-24 Akzo Nobel Nv Modified polyalkylauminoxane composition formed using reagent containing aluminum trialkyl siloxide
US5968864A (en) 1996-12-20 1999-10-19 Fina Technology, Inc. Catalyst efficiency for supported metallocene catalyst
US6153551A (en) 1997-07-14 2000-11-28 Mobil Oil Corporation Preparation of supported catalyst using trialkylaluminum-metallocene contact products
EP0953581B1 (en) 1998-04-27 2004-01-07 Repsol Quimica S.A. Catalytic systems for the polymerization and copolymerization of alpha-olefins
EP0969019A1 (en) 1998-07-02 2000-01-05 Fina Research S.A. Polyolefin production
US6180735B1 (en) * 1998-12-17 2001-01-30 Univation Technologies Catalyst composition and methods for its preparation and use in a polymerization process
US6380328B1 (en) * 1999-12-10 2002-04-30 Univation Technologies, Llc Catalyst systems and their use in a polymerization process
US7220804B1 (en) 2000-10-13 2007-05-22 Univation Technologies, Llc Method for preparing a catalyst system and its use in a polymerization process
US6852659B1 (en) * 2000-11-16 2005-02-08 Univation Technologies, Llc Method for preparing a catalyst composition and its use in a polymerization process

Also Published As

Publication number Publication date
EP1806368A2 (en) 2007-07-11
BR0114645A (pt) 2004-02-10
US7776977B2 (en) 2010-08-17
EP1325039A1 (en) 2003-07-09
CA2425588C (en) 2007-08-14
AU2001294810B2 (en) 2006-05-04
EP1806368A3 (en) 2008-03-19
JP2004511634A (ja) 2004-04-15
US7220804B1 (en) 2007-05-22
WO2002032968A1 (en) 2002-04-25
CA2425588A1 (en) 2002-04-25
AU9481001A (en) 2002-04-29
CN1476450A (zh) 2004-02-18
JP3872757B2 (ja) 2007-01-24
US20050131169A1 (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP3760130B2 (ja) 担持された触媒系の製造方法及び重合方法でのその使用
RU2241717C2 (ru) Каталитические системы и их применение в процессе полимеризации
RU2296135C2 (ru) Смешанные металлоценовые каталитические системы, содержащие компонент, обеспечивающий плохое включение сомономера, и компонент, обеспечивающий хорошее включение сомономера
KR100470577B1 (ko) 촉매 조성물, 그의 제조 방법 및 중합반응 공정에서의 용도
CN1301271C (zh) 双位烯烃聚合催化剂组合物
US7776977B2 (en) Method for preparing a catalyst system and its use in a polymerization process
CN1288161C (zh) 连接金属茂配合物,催化剂体系和使用该催化剂体系的烯烃聚合方法
ZA200203053B (en) Catalyst systems and their use in a polymerization process.
CN1300183C (zh) 用于调节金属茂催化的烯烃共聚物的熔体性能的方法
CN1487956A (zh) 催化剂组合物及其制备方法和在聚合方法中的用途
CN1263773C (zh) 制备负载催化剂体系的方法及其在聚合方法中的用途
JP2003501523A (ja) 担持された触媒系の製造方法及び重合方法におけるその使用
CN1235919C (zh) 聚合方法
CN1478105A (zh) 催化剂组合物的制备方法及其在聚合过程中的应用
US20020137861A1 (en) Polymerization process
AU2001294810A1 (en) A method for preparing a catalyst system and its use in a polymerization process
JP3798694B2 (ja) 触媒化合物、それらを含む触媒系及びそれらの重合法への使用
CN1527842A (zh) 催化剂体系和它在聚合方法中的用途
CN1348471A (zh) 催化剂改性剂及其在烯烃聚合中的应用
CN1478106A (zh) 催化剂组合物的制备方法及其在聚合过程中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060329

Termination date: 20140927

EXPY Termination of patent right or utility model