CN1244265A - 在镀金薄膜上的接触印刷方法 - Google Patents
在镀金薄膜上的接触印刷方法 Download PDFInfo
- Publication number
- CN1244265A CN1244265A CN97180838A CN97180838A CN1244265A CN 1244265 A CN1244265 A CN 1244265A CN 97180838 A CN97180838 A CN 97180838A CN 97180838 A CN97180838 A CN 97180838A CN 1244265 A CN1244265 A CN 1244265A
- Authority
- CN
- China
- Prior art keywords
- film
- integrated
- unimolecular layer
- gold
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/28—Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
- B05D1/283—Transferring monomolecular layers or solutions of molecules adapted for forming monomolecular layers from carrying elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M3/00—Printing processes to produce particular kinds of printed work, e.g. patterns
- B41M3/003—Printing processes to produce particular kinds of printed work, e.g. patterns on optical devices, e.g. lens elements; for the production of optical devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/028—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/032—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
- G03F7/033—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
- G03F7/0388—Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/161—Coating processes; Apparatus therefor using a previously coated surface, e.g. by stamping or by transfer lamination
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/165—Monolayers, e.g. Langmuir-Blodgett
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249982—With component specified as adhesive or bonding agent
- Y10T428/249983—As outermost component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2804—Next to metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31703—Next to cellulosic
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
本发明包括在金属化热塑性薄膜上接触印刷烷烃硫醇、羧酸、异羟肟酸和磷酸的图案化的自集成单分子层的方法,由此生产的复合体,和这些复合体的用途。图案化的自集成单分子层便于控制液体布置,该液体可以含有化学活性的官能度指示剂。当薄膜暴露在分析物和光下,由此产生的光学传感装置可以产生光学衍射图,其根据自集成单分子层与研究中的分析物的反应而不同。光可以是可见光,和或者从薄膜上反射的光,或者是透射光,分析物可以是与自集成单分子层反应的任何化合物。本发明也提供一种在金或其它金属上的自集成单分子层的柔性基体。
Description
技术领域
本发明属于接触印刷领域,具体地说,本发明属于在金属薄膜如金上的微接触印刷。
发明背景
微接触印刷是形成具有μm和亚微米侧尺寸的有机单分子层图案的技术。在形成某种类型图案中它具有试验上的简明性和灵活性。它依靠长链烷烃硫羟酸盐的自集成单分子层的显著能力在金和其它金属上形成。这些图案可以充当纳米保护层保护基底金属避免合适配方的蚀刻剂的腐蚀,或者在图案的亲水区可以为液体的选择放置创造条件。通过使用烷烃硫醇作为“油墨”和使用弹性“模具”(stamp)在金属基底上印刷它们来形成尺寸可以小于1μm的自集成单分子层图案。使用光学或X射线微晶技术或其它技术制备的母体通过成型硅氧烷弹性体而制造该模具。
图案自集成单分子层的微接触印刷给微制造带来了许多新的性能。首先,微接触印刷可以形成仅由其构成的官能团区别的图案;此性能允许用较高的精度控制表面性能如界面自由能。第二,因为微接触印刷依赖于分子自集成,所以它产生一个(至少在局部)接近于热力学最小值和本质上存在缺陷和自愈合的体系。通过吸附材料或颗粒以最小保护表面污染的简单方法,在最终的组织中可以显著地降低缺陷。在未保护的实验室大气中于大气压下可以进行该方法。因此,该微接触印刷在实验室中是特别有用,该实验室中没有条件获得在微制造中正常使用的设备,或者设备的基本费用是非常高的。第三,可以设计图案自集成单分子层充当具有许多湿化学蚀刻剂的保护层。
使用与液体蚀刻剂带来处理溶剂和处置废物的缺点,但是也具有大量的优点:高度控制表面的污染;减小原子或离子的高能相互作用对基体的损害;能够利用复杂的和敏感的有机官能度。因为自集成单分子层仅有1-3nm厚,由于保护层的厚度原因在边缘清晰度有少量的损失,边缘分辨率的主要决定因素似乎是接触印刷的逼真度和蚀刻下面金属的各向异性。在目前最好的情况下,可以印制尺寸为0.2μm的细节,体系中表示该细节尺寸分辨率的边缘分辨率低于50nm。
在现有技术中,5-2000纳米厚的金膜一般承载在涂钛的Si/SiO2晶片或玻璃板上。钛用作金和基体之间的粘结促进剂。然而,硅晶片是坚硬的、易碎的,和不能透光。这些硅晶片也不适合大规模的连续印刷工艺如活版印刷、照相凹版印刷、胶版印刷和丝网印刷(参看印刷基础,A.Glassman,Ed.(Tappi Press Atlanta,GAl981);不列颠百科全书,26卷第76-92、110-111页(Encyclopedia Britannica,Inc.1991))。另外,必须在分离的步骤中用粘结剂促进剂如Cr或Ti处理硅,否则Au不能足够地粘结,阻碍了稳定的良好有序的自集成单分子层的形成。最后,因为硅是不透明的,所以任何衍射图样必须用反射光而不是透射光生成。所需要的事情是在透明的柔性基体上容易有效且简单的接触印刷方法,即经得起连续处理的考验。
发明简述
本发明包括在金属化的热塑性薄膜上接触印刷烷烃硫羟酸盐、羧酸、异羟肟酸和磷酸的图案化的自集成单分子层的方法,由此生产的复合体,和这些复合体的用途。
图象自集成单分子层便于控制液体布置,该液体可以含有化学活性的官能度指示剂。当薄膜暴露在分析物和光下,由此产生的光学传感装置可以产生光学衍射图,这种衍射图根据自集成单分子层与研究中的分析物的反应而不同。光可以是可见光,和或者从薄膜上反射的光,或者是透射光,分析物可以是与自集成单分子层反应的任何化合物。本发明也提供一种用于在金或其它金属上形成自集成单分子层的柔性基体。
本发明包括用于在金或其它适合材料上形成自集成单分子层的基体,该基体无需形成井然有序的自集成单分子层所需要的粘结剂促进剂。本发明也提供在金或其它材料上形成自集成单分子层的基体,它适合于连续、而不是批量地制造。最后本发明提供一种可以大量生产的低成本、容易处理的传感器。
本发明的这些和其它目的、特点和优点在下面公开的技术方案的详细描述之后将变得清楚。
附图简述
图1是自集成单分子层的接触印刷示意图。在含预定图案的硅母体上聚合聚二甲基硅氧烷(PDMS,硅氧烷弹性体184,Dow Corp.,Midland,MI)。将PDMS脱离母体,然后暴露在含HS(CH2)15CH3的溶液中。然后将涂烷烃硫醇的压印机盖在镀金基体上。之后,将基体的表面暴露于含不同烷烃硫醇如HS(CH2)11OH的溶液中。
图2是在MYLAR(从Courtaulds Performance Films(Canoga Park,CA)购买的)上的蒸发金的原子力显微镜图象。金层的平均粗糙度为3-4纳米,最大粗糙度为9纳米。
图3a、3b和3c是实施例1描述的16巯基十六酸的亲水自集成单分子层环的原子力显微镜图象。图3a是拓扑图象,图3b是侧向力图象,图3c是拓扑图象的三维图象。
图4是下面实施例1中描述的通过印刷16疏基十六酸形成的亲水自集成单分子层的直径10微米环的场致发射二次电子显微镜图象。
图5a是亲水自集成单分子层的直径10微米环的放大300倍的光学显微照片,该单分子层是通过印刷如下面实施例1中描述的16巯基十六酸,然后暴露于高表面能、可固化的光学粘合剂中而形成的。该粘合剂是通过紫外线照射而固化的。
图5b是可见光通过图5a描述的自集成单分子层图案形成的衍射图的照片。
图6是在亲水的自集成单分子层上印刷自集成可光致固化的聚合物而形成的直径为10微米环的场致发射二次电子显微镜图象。
图7a和7b是如实施例1中描述的在亲水自集成单分子层上印刷自集成可光致固化的聚合物而形成的1.5微米直径环的场致发射二次电子显微镜图象。
发明详述
本发明提供在金属化的聚合物薄膜(希望是热塑性聚合物薄膜)上接触印刷烷烃硫醇、羧酸、异羟肟酸和膦酸的图案化的自集成单分子层的方法、由此产生的复合体和这些复合体的用途。图案化的自集成单分子层便于控制其上可以含有化学反应指示器官能度的流体的分布。这里使用的术语“图案化的自集成单分子层”是指在金属化的聚合物薄膜上以任何图案包括整体图案的自集成单分子层。
在一技术方案中,按照本发明可以生产光学传感装置。当在其上自集成单分子层的薄膜暴露于能够与自集成单分子层反应的分析物时,薄膜将产生光学衍射图,该衍射图根据自集成单分子层与分析物的反应而不同。该液体可以是高表面张力的流体如水。该光可以是可见光,和或者是从表面上反射的光,或者透射光,且分析物可以是与自集成单分子层反应的任何化合物。
在材料科学的许多领域中,在无机或金属表面上的无机化合物的自集成单分子层逐渐变得越来越重要。虽然基于不同的有机组份和基体有许多不同体系的自集成单分子层,但是在金薄膜上理想的体系是烷烃硫羟酸盐、HS(CH2)nR体系。一般地,在以涂钛的Si/SiO2晶片或玻璃板上承载有5-2000nm厚的金膜。钛用作金和基体之间的粘结促进剂。烷烃硫醇从金膜浸入的溶液中化学吸附在金表面上,和形成损失氢的吸附的烷烃硫羟酸盐。吸附也可以从蒸汽中发生。在金上由结构为X(CH2)nY(CH2)mS的长链烷烃硫羟酸盐形成的自集成单分子层是高度有序的,且可以被认为是晶体或类似晶体的分子排列。许多种有机官能团(X,Y)可以引入到单分子层的表面和内部。
因此,可以修整自集成单分子层以提供许多材料特性:可润湿性和防止化学蚀刻剂的腐蚀性特别与μCP相关。
图1概述了用于微接触印刷的方法。使用弹性模具通过接触将烷烃硫醇“油墨”传递到金表面,如果模具是有图案,则形成花样自集成单分子层。通过在具有所希望的图案的母体上浇注聚二甲基硅氧烷(PDMS)而制备该模具。使用标准的照相平版印刷技术制备母体,或者由具有微观表面特征的现有材料构成。
在一般的试验方法中,将照相平版印刷生产的母体放在玻璃盘或塑料培特利式培养皿中,在其上倒入比例为10∶1(重量比或体积比)的SYLGARD硅氧烷弹性体和SYLGARD硅氧烷弹性体固化剂混合物。该弹性体在室温和压力下静置脱气大约30分钟,然后在60℃下固化1-2小时,轻轻地从母体中剥落下来。通过将模具暴露于在无水乙醇中0.1-1.0mM烷烃硫醇的溶液中,或者将该溶液倒入模具的表面上,或者用与油墨溶液饱和的Q尖端轻轻涂模具来完成弹性体模具的“上墨”。将模具在室温下或暴露于氮气流中干燥直到在模具的表面上肉眼看不见液体(一般大约60秒)。涂油墨之后,(一般用手)将模具应用到金表面上。使用非常轻的手压帮助完成模具和表面的接触。然后将模具从表面轻轻脱开。移走模具之后,冲洗表面多余的硫醇,并将花样的金表面进行蚀刻剂处理(见下面),该蚀刻剂可选择地去除金表面和底层基体(如果需要)的转化区域。另一方面,或者使用第二个模具,或者通过用不同的烷烃硫醇冲洗整个表面也可以完成未压印区域的转化。
模具的弹性体特性对方法的成功是必要的。即使对带有巨大起伏的表面而言,聚二甲基硅氧烷(PDMS)固化时具有足够弹性,使模具和表面有好的相互接触,此接触对有效地将烷烃硫醇“油墨”接触传递到金膜上是必要的。当从母体中移走模具时,PDMS的弹性性能也是重要的:如果模具是刚性的(母体也是刚性的),固化后不损害两种基体之一就很难将模具和母体分开。即使对于具有亚微米尺寸的细节:我们已经成功地产生线宽度小到200nm的图案,PDMS也有足够刚度保持其形状。PDMS的表面有低的界面自由能(y=22.1达因/cm),模具不会粘结到金膜上。模具是经久耐用的:我们已经使用同一个模具历时几个月超过100次而在性能上没有明显的降低。在上墨过程中,由于膨胀使模具吸附烷烃硫醇油墨,PDMS的聚合性质也起着至关重要的作用。
在金表面上的微接触印刷可以用各种烷烃硫醇“油墨”进行。对于形成高分辨率的小细节而言需要不经历反应扩展(应用到金膜后)的烷烃硫醇。对于在空气中压印而言,可以使用自憎烷烃硫醇如十六烷硫醇。在液体如水中可以通过压印进行其它非自憎烷烃硫醇如HS(CH2)15COOH的微接触印刷。在金上的烷烃硫醇的图案化的自集成单分子层提供极好的耐许多湿化学蚀刻剂的特性。
在本发明的技术方案中,自集成单分子层是由羧基封端的烷烃硫醇形成的,其是用图案化的弹性模具压印在金表面热塑性薄膜如MYLAR上而成的。用烷烃硫醇在乙醇中的溶液将烷烃硫醇上墨、干燥并与金表面接触。烷烃硫醇仅仅传递到模具和表面接触的区域表面上,产生由模具图案定义的自集成单分子层图案。任选地,与压印区域邻近的未改性的金表面的区域可以通过与甲基封端的链烷硫醇反应而具有憎水性。
下面更详细地描述本发明的方法和复合体。这里引用的所有出版物全部作为参考。
可以沉积在金属基体上的任何热塑性薄膜均适合本发明。这些包括,但不局限于聚合物如:聚对苯二酸乙二酯(MYLAR),丙烯腈-丁二烯-苯乙烯共聚物、丙烯腈-丙烯酸甲酯共聚物,玻璃纸,纤维素聚合物如乙基纤维素、乙酸纤维素、乙酸丁酸纤维素、丙酸纤维素、三乙酸纤维素、三乙酸纤维素、聚乙烯、聚乙烯-乙酸乙烯酯共聚物、离子交联聚合物(乙烯聚合物)聚乙烯-尼龙共聚物、聚丙烯、甲基戊烯聚合物、聚氟乙烯和芳香族聚砜。优选地,热塑性薄膜具有大于80%的透光度。在参考书如现代熟料全书(McGraw-Hill出版公司,纽约1923-1996)中也可以发现其它适合的热塑性塑料和供应厂商。
在本发明的另一个技术方案中,其上具有金属涂层的热塑性薄膜具有大约5%-95%的透光度。在本发明中使用的热塑性薄膜的更理想的透光度是大约20%-80%。在本发明理想的技术方案中,热塑性薄膜具有至少大约80%的透光度,且金属涂层的厚度为保持透光度大于大约20%,以便通过反射光或透射光可以产生衍射图。此相对应于大约20nm的金属涂层厚度。然而,在本发明的其它技术方案中,金的厚度可以为大约1nm-1000nm。
用于沉积在薄膜上的优选金属为金。然而,可以使用银、铝、铜、铁、锆、铂、镍和其它金属。优选金属为不形成氧化物的金属,这样有助于形成可预测的自集成单分子层。
原则上,可以使用具有适当尺寸皱褶的任何表面作为母体。微接触印刷的方法开始于适当刚性的结构,弹性模具由此浇注而成。此“母体”模板可以通过照相平版印刷术或者其它方法如市场上可买到的衍射光栅产生。在一个技术方案中,模具可以用聚二甲基硅氧烷制成。
在本发明的另一个技术方案中,自集成单分子层具有下列通式:
X-R-Y
X是对金属或金属氧化物具有反应性的物质。例如,X可以是不对称的或对称的二硫化物(-R′SSR,-RSSR),硫化物(-R′SR,-RSR),联硒化物(-R′SeSeR),硒化物(-R′SeR,-RSeR),硫醇(-SH),腈(-CN),异腈、硝基(-NO2),硒醇(-SeH),三价磷化合物,异硫氰酸酯,黄原酸酯,硫代氨基甲酸酯,磷化氢、硫代酸或二硫代羧酸,羧酸,羟酸和异羟肟酸。
R和R′是可以任意由杂原子中断的和为了最佳的密实度优选非支链的烃链。在室温下,R在长度上为大于或等于7个碳原子,以便克服自集成单分子层的天然随机化。在较冷的温度下,R可以较短。在优选的技术方案中,R为-(CH2)n-,其中n为10-12(包括10-12)。碳链可以任选是过氟化的。
Y可以具有任何表面特性。例如,Y可以是在液体套色技术中用于固定的许多官能团的基团如羟基、羧基、氨基、醛基、酰肼基、羰基、环氧基或乙烯基。在“用微接触印刷使自集成单分子层图案化:用于生物传感器的新技术?”(由Milan Mrksich和George M.Whitesides著,TIBTECH出版,1995,6(13卷))中第228-235页提出了传感层材料的例子,在此引入作为参考。
烷基膦酸、异羟肟酸和羧酸的自集成单分子层也可以用于本发明的方法和复合体。因为链烷硫醇不会吸附到多数金属氧化物的表面上,所以对于这些金属氧化物而言,可以优选羧酸、膦酸和异羟肟酸。参看J.P.Folkers,G.M.Whitesides等人著的Langmuir,1995年第11卷第813-824页。
R也可以是式(CH2)a-Z-(CH2)b,其中a≥0,b≥7和Z是任何特性官能团如砜、脲、内酰胺等。
可以在空气或流体如水中使用该模具防止链烷硫醇的过量扩散。对于大规模或连续印刷方法,最理想的是在空气中印刷,因为对于这种方法而言较短的接触时间较好。
在本发明的一个技术方案中,用自集成单分子层在金属化的热塑性聚合物上形成图案。在本发明的另一个技术方案中,用自集成单分子层形成图案的起伏。压印处理之后,在塑料上的金属化区可以选择用甲基封端的自集成单分子层如十六烷基硫醇来钝化。
通过下面的实施例进一步说明本发明,不是以任何方式解释为对本发明的范围进行限制。相反,十分清楚,读过这里的描述之后,对本领域的技术人员而言,可以提示他们有手段进行各种其它的技术方案、改进等,而不会脱离本发明内容。实施例1
用16-巯基十六酸和十六烷基硫醇的图案印刷镀金MYLAR(聚对苯二酸乙二酯)。
用16-巯基十六酸和十六烷基硫醇的图案印刷镀金MYLAR(聚对苯二酸乙二酯)的图案,如图1所示,和下面描述。
从Courtaulds性能薄膜(21034 Osborne Street,Canoga Park,CA91304)获得用等离子体沉积金表层涂层改性的MYLAR薄膜。图2表示了此MYLAR薄膜的原子力显微镜图象。使用厚度为2-7毫英寸的聚合物薄膜和产生每平方厘米65欧姆的表面电阻且20%-65%的可见光透光度的金表层涂层。
通过下面方法使用16-巯基十六酸将亲水的羧基封端的链烷硫醇压印在镀金薄膜上。在硅晶片上10微米直径环的暴露光且产生的感光树脂图案用作母体。在母体上聚二甲基硅氧烷(PDMS,硅氧烷弹性体184,Dow CorningCo.,Midland,MI)聚合产生间距为5微米的直径为10微米的环的模具。将该模具通过暴露于16-巯基十六酸的溶液(在乙醇中1-10mM的)中上墨,接着空气干燥。将基体与模具接触50秒和用十六烷基硫醇(在乙醇中1-10mM)的溶液冲洗2-4秒。最后在乙醇中将该基体冲洗10秒和在氮气流中干燥。在图3和图4中表示了直径为10微米环的羧酸封端的自集成单分子层的印刷结果。
这些亲水自集成单分子层环,可选性分布高表面张力的流体如水、三甘醇、或可紫外光固化的尿烷丙烯酸粘合剂选择放置。这些液体可含有与目标分析物发生化学或物理反应的溶解的和悬浮的试剂,由此使10微米的微型反应器的涂覆塑料薄膜集合体成为适用于低成本的易处理的化学传感器。在图5a、图6和图7a和7b中表示了此装置的例子。
用这些复合体显示可见光的衍射。然后当使用5mM,670nM激光照射时可观察到反射和透射衍射图。图5b是通过图5a的自集成单分子层图案表示的可见光形成的衍射图照片。用透射白光观察到彩虹衍射色彩。实施例2
用16-羧基十六酸和十六烷羧酸酯印刷涂覆铝的MYLAR。
用1,16-十六烷二异羟肟酸和1-十六烷异羟肟酸分别代替实施例1中的亲水和憎水的硫醇,用35%可见光透光率对100标准的涂覆铝的MYLAR进行实施例1的方法。产生可见光衍射。使用5mM,670nM激光照射时可观察到反射和透射衍射图。用透射白光可观察到彩虹衍射色彩。实施例3
将镀金MYLAR与镀金硅晶片进行比较。
通过电子束蒸发,在硅晶片上沉积金薄膜(100埃到1微米),该硅晶片上已预涂覆钛(5-50埃),以促进硅和金之间的粘合。按照实施例1那样在镀金薄膜和镀金硅晶片上进行压印。
接触角的测量
在室温和环境湿度下用Rame-Hart100型测角计测量接触角。在玻璃和塔夫纶仪器中将用于接触角的水去离子和蒸馏。在每个载物片两侧测量至少三滴每种液体的前进接触角和后退接触角,图中的数据表示这些测量的平均值。使用下面方法测量接触角: 在吸移管(Micro-Electrapettesyringe,Matrix Technologies,Lowell,MA)末端形成一滴体积为1-2微升的滴液。然后将末端降低到表面直到液滴与表面接触。慢慢地增加液滴的体积(速度大约为1微升/秒)使液滴前进。在液滴的前端平滑地在表面上移动短距离后,立即测量水的前进接触角。在减少液滴体积使液滴平滑地后退后测量后退接触角。
X-射线光电子能谱法(XPS)
在使用单色的Al K-α源(hv=1486.6电子伏特)的表面科学SSX-100分光仪上收集X射线光电子能谱。使用直径为600微米的光点和通过50电子伏特的检波器的能量记录光谱(一次扫描需要时间为大约1.5分钟)。对于单分子层而言,分别在285和530eV的第一峰收集对碳和氧光谱,由于烃在碳第一区中,在单分子层中元素的结合能以该峰作为参考,为此我们将结合能固定在284.6eV。在样品中使用4.5eV的电子流枪放电收集固体异羟肟酸的光谱。下面的信号被用来作基体,在73eV的Al2p用于Al(0),和在75eV的用于Al(III)。用于基体的结合能对于参考样品而言不是标准的。使用80%高斯/20%洛伦兹峰形和Shirley本底校准所有的光谱。参看J.P.Folkers,G.M.Whitesides等人著的Langmuir,第11卷第3期第813-824页(1995)。冷凝图
冷凝图(CFs)是蒸汽冷凝在固体表面形成的液滴的排列图。检测冷凝图是表征在不同均匀表面上的污染程度的方法。通过将冷凝液滴下面的表面划分为不同固-液界面能区域,可将冷凝液滴的排列图案化,并且通过显微照相和光学衍射表征图案化的CFs。它表明适合的图案化CFs可以用作光学衍射移植法,并检测衍射图提供了表征花样的自集成单分子层和感觉环境的快速无破坏性的方法。因为CFs的形成,即,液滴的尺寸、密度和分布,对环境因素、适当大小的CFs和图案衍射光是敏感的,且可以用作传感器。在相对固定湿度的大气中,将划分为亲水和憎水区的基体的温度与在这些区域中的从CFs的衍射光的强度联系起而言明这种原理。
通过在金上的结合使用十六烷硫醇[CH3((CH2)15SH],16-巯基十六酸[HS(CH2)14COOH]和11-巯基十一烷醇而由已自集成的单分子层(正在自集成的单分子层)可形成适当的图案。现在可以使用几种技术制备具有0.1-10μm大小的两个或多个自集成单分子层的图案。
在20℃下,因为在表面上没有水冷凝,和用不同自集成单分子层覆盖的区域的透过率不能有效地辨别,所以来自激光(氦-氖激光,波长=632.8nm)的偶然的光束产生了透过光斑的信号。当表面暴露在温暖的潮湿的空气中,在亲水区优先出现冷凝的小水滴。在从表面透射的光中出现衍射图。在这些条件下,光线从没有水冷凝的区域相干地透过,而从已经冷凝的区域透过。随着在自集成单分子层上的冷凝水蒸发,冷凝图在几秒中内消失。
形成冷凝图的能力可以由水在亲水和憎水的自集成单分子层上的相对接触角来确定。将基体浸入稀释的溶液中1小时,接着用乙醇冲洗和空气干燥来制备适当硫醇未形成图案的单分子层。
表I
镀金的MYLAR与镀金的硅晶片比较:
ω-官能化烷烃硫醇的反应
XPS结果 | 水接触角 | ||
未处理的对照 | %C | %O | %Au |
在MYLAR上镀Au | 47.4 | 3.9 | 48.8 |
在MYLAR*上镀Au(第2个样品) | 42.6 | ND | 57.4 |
在SiOX **上镀Au | 47.5 | ND | 52.5 |
与CH3(CH2)15SH反应 | |||
在SiOX上镀Au | 72.7 | ND | 27.3 |
72.7 | ND | 27.3 | |
在MYLAR上镀Au | 71.4 | ND | 28.6 |
71.8 | ND | 28.2 | |
与HOC(O)(CH2)14SH反应 | |||
在SiOX上镀Au | 64.9 | 8.5 | 26.6 |
65.4 | 8.2 | 26.4 | |
在MYLAR上镀Au | 68.9 | 7.2 | 23.9 |
*镀金MYLAR基体
**二氧化硅基体
“ND”意思是“没有检测到”即低于0.2原子百分比。
相对于使用Au∶SiOX的已知技术而言,在Au∶MYLAR上可以形成具有相同的光学衍射的冷凝图[科学,第263卷,第60期(1994),这里引入作为参考]。与Au∶MYLAR反应的烷烃硫醇的化学过程与文献中对Au∶SiOX报道的相同。实施例4
镀Al/AlOX的MYLAR与镀Al/AlOX的硅晶片比较:异羟肟酸CH3-(CH2)16-CONH(OH)的反应。
使用实施例2的方法,通过将基体浸入到稀释的溶液中1小时,接着用乙醇冲洗和空气干燥来制备未形成图案的适当的异羟肟酸的单分子层。结果列在下面表II中。
表II
镀Al/AlOX的MYLAR与镀Al/AlOX的硅晶片比较:
异羟肟酸CH3-(CH2)16-CONH(OH)的反应
XPS结果 | %C | %O |
未处理的对照 | ||
在MYLAR上镀AlOX(重复分析) | 28.930.3 | 41.238.6 |
在SiOX上镀AlOX | 49.748.7 | 24.624.3 |
水接触角(未处理的对照) | |
在MYLAR上镀AlOX | 68-74° |
在SiOX上镀AlOX | 74-78° |
与异羟肟酸化合物反应10分钟 | |
在MYLAR上镀AlOX | 90-92° |
在SiOX上镀AlOX | 90-92° |
通过接触印刷可以形成相同光学衍射的冷凝图[科学中所述的方法,第263卷第60页(1994),这里引入作为参考]。
镀Al的光学级的MYLAR表明在促进自集成单分子层的接触印刷方面与镀Al的硅具有相同的性能。实施例5
在亲水的自集成单分子层上的自集成的可光致固化的聚合物。
图6是在亲水自集成单分子层上直径为10微米的自集成的可光致固化的聚合物的场致反射二次电子显微镜图象。
现在本领域的技术人员将看到可以对这里公开的关于举例说明的技术方案的本发明作出某些改进,而不会脱离本发明的宗旨。且尽管本发明已经公开了上述优选技术方案,应该明白本发明适合于很多的重组、修改和变更,所有的这些重组、修改和变更均在所附的权利要求的范围之内。
Claims (32)
1.一种在其上具有图案化的自集成单分子层的薄膜,包括:
一层涂有金属的聚合物薄膜;和
一层印刷在该聚合物薄膜上的自集成的单分子层。
2.权利要求1的薄膜,其中金属是选自金、银、镍、铂、铝、铁、铜或锆。
3.权利要求1的薄膜,其中金属为金。
4.权利要求3的薄膜,其中金镀层的厚度为大约1纳米-1000纳米。
5.权利要求1的薄膜,其中聚合物薄膜为聚对苯二酸乙二酯,丙烯腈-丁二烯-苯乙烯共聚物、丙烯腈-丙烯酸甲酯共聚物,玻璃纸,纤维素聚合物如乙基纤维素、乙酸纤维素、乙酸丁酸纤维素、丙酸纤维素、三乙酸纤维素、三乙酸纤维素、聚乙烯、聚乙烯-乙酸乙烯酯共聚物、离子交联聚合物(乙烯聚合物)聚乙烯-尼龙共聚物、聚丙烯、甲基戊烯聚合物、聚氟乙烯和芳香族聚砜。
6.权利要求4的薄膜,其中聚合物薄膜为聚对苯二酸乙二酯。
7.权利要求1的薄膜,其中热塑性薄膜是透明的。
8.权利要求1的薄膜,其中热塑性薄膜具有5%-95%的透光度。
9.权利要求1的薄膜,其中热塑性薄膜具有20%-80%的透光度。
10.权利要求1的薄膜,其中自集成单分子层是由具有下面通式的化合物形成:
X-R-Y
其中X是在聚合物薄膜上对金属或金属氧化物具有反应性的物质,
R为烃链,和
Y是具有任何特性的化合物。
11.权利要求10的薄膜,其中:
X可以是不对称的或对称的二硫化物(-R′SSR,-RSSR),硫化物(-R′SR,-RSR),联硒化物(-R′SeSeR,),硒化物(-R′SeR,-RSeR),硫醇(-SH),腈(-CN),异腈、硝基(-NO2),硒醇(-SeH),三价磷化合物,异硫氰酸酯,黄原酸酯,硫代氨基甲酸酯,磷化氢、硫代酸或二硫代羧酸,羧酸,羟酸和异羟肟酸;
R和R′是可以任意由杂原子中断的,经过氟化的和优选非支链的烃链;
Y是选自羟基、羧基、氨基、醛基、酰肼基、羰基、环氧基或乙烯基。
12,权利要求10的薄膜,其中R在长度上是大于7个碳原子。
13.权利要求10的薄膜,其中R是形成(CH2)a-Z-(CH2)b的化合物,其中a≥0,b≥7和Z是任何特性官能团。
14.权利要求13的薄膜,其中Z是选自砜、脲和内酰胺。
15.权利要求1的薄膜,其中有两个或多个具有不同化学特性的自集成单分子层。
16.权利要求1的薄膜,其中第一层自集成单分子层为憎水性,而第二层自集成单分子层为亲水性。
17.一种制备具有自集成单分子层图案的薄膜的方法,包括在涂有金属的聚合物薄膜上压印自集成单分子层的图案。
18.权利要求17的方法,其中金属是选自金、银、镍、铂、铝、铁、铜或锆。
19.权利要求17的方法,其中金属为金。
20.权利要求19的方法,其中金镀层的厚度为大约1纳米-1000纳米。
21.权利要求18的方法,其中聚合物薄膜为聚对苯二酸乙二酯,丙烯腈-丁二烯-苯乙烯共聚物、丙烯腈-丙烯酸甲酯共聚物,玻璃纸,纤维素聚合物如乙基纤维素、乙酸纤维素、乙酸丁酸纤维素、丙酸纤维素、三乙酸纤维素、三乙酸纤维素、聚乙烯、聚乙烯-乙酸乙烯酯共聚物、离子交联聚合物(乙烯聚合物)聚乙烯-尼龙共聚物、聚丙烯、甲基戊烯聚合物、聚氟乙烯和芳香族聚砜。
22.权利要求21的方法,其中聚合物薄膜为聚对苯二酸乙二酯。
23.权利要求17的方法,其中热塑性薄膜是透明的。
24.权利要求17的方法,其中热塑性薄膜具有5%-95%的透光度。
25.权利要求17的方法,其中热塑性薄膜具有20%-80%的透光度。
26.权利要求17的方法,其中自集成单分子层是由具有下面通式的化合物形成:
X-R-Y
其中X是在聚合物薄膜上对金属或金属氧化物具有反应性的物质,
R为烃链,和
Y是具有任何特性的化合物。
27.权利要求26的方法,其中:
X可以是不对称的或对称的二硫化物(-R′SSR,-RSSR),硫化物(-R′SR,-RSR),联硒化物(-R′SeSeR),硒化物(-R′SeR,-RSeR),硫醇(-SH),腈(-CN),异腈、硝基(-NO2)硒醇(-SeH),三价磷化合物,异硫氰酸酯,黄原酸酯,硫代氨基甲酸酯,磷化氢、硫代酸或二硫代羧酸,羧酸,羟酸和异羟肟酸;
R和R′是可以任意由杂原子中断的,经过氟化的和优选非支链的烃链;
Y是选自羟基、羧基、氨基、醛基、酰肼基、羰基、环氧基或乙烯基。
28,权利要求26的方法,其中R在长度上是大于7个碳原子。
29.权利要求26的方法,其中R是形成(CH2)a-Z-(CH2)b的化合物,其中a≥0,b≥7和Z是任何特性官能团。
30.权利要求29的方法,其中Z是选自砜、脲和内酰胺。
31.权利要求17的方法,其中有两个或多个具有不同化学特性的自集成单分子层。
32.权利要求17的方法,其中第一层自集成单分子层为憎水性,而第二层自集成单分子层为亲水性。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/769,594 US6048623A (en) | 1996-12-18 | 1996-12-18 | Method of contact printing on gold coated films |
US08/769594 | 1996-12-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1244265A true CN1244265A (zh) | 2000-02-09 |
CN1222831C CN1222831C (zh) | 2005-10-12 |
Family
ID=25085922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB971808384A Expired - Lifetime CN1222831C (zh) | 1996-12-18 | 1997-12-17 | 在镀金薄膜上的接触印刷方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US6048623A (zh) |
EP (1) | EP0948757B9 (zh) |
KR (1) | KR100568634B1 (zh) |
CN (1) | CN1222831C (zh) |
AU (1) | AU730657B2 (zh) |
CA (1) | CA2273797C (zh) |
DE (1) | DE69730149T2 (zh) |
ES (1) | ES2223085T3 (zh) |
HK (1) | HK1025816A1 (zh) |
WO (1) | WO1998027463A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100336174C (zh) * | 2003-12-04 | 2007-09-05 | 中国科学院兰州化学物理研究所 | 图案化导电聚苯胺薄膜的制备方法 |
CN101657757B (zh) * | 2007-04-18 | 2013-01-16 | 美光科技公司 | 形成模板的方法,图案化衬底的方法和用于所述方法的模板和图案化系统 |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6824987B1 (en) * | 1999-05-11 | 2004-11-30 | President And Fellows Of Harvard College | Small molecule printing |
US7932213B2 (en) * | 1999-05-11 | 2011-04-26 | President And Fellows Of Harvard College | Small molecule printing |
US20050154567A1 (en) * | 1999-06-18 | 2005-07-14 | President And Fellows Of Harvard College | Three-dimensional microstructures |
US6509100B1 (en) | 1999-08-18 | 2003-01-21 | The University Of Houston System | Fluorinated hydrogn bond stabilized surface modifying agents, articles made therefrom, methods for making and using the same |
AU2765201A (en) | 2000-01-07 | 2001-07-24 | President And Fellows Of Harvard College | Fabrication of metallic microstructures via exposure of photosensitive composition |
IL134631A0 (en) * | 2000-02-20 | 2001-04-30 | Yeda Res & Dev | Constructive nanolithography |
EP1297387A2 (en) | 2000-06-30 | 2003-04-02 | President And Fellows of Harvard College | Electric microcontact printing method and apparatus |
AU2001277907A1 (en) | 2000-07-17 | 2002-01-30 | Board Of Regents, The University Of Texas System | Method and system of automatic fluid dispensing for imprint lithography processes |
US6534399B1 (en) * | 2001-01-24 | 2003-03-18 | Advanced Micro Devices, Inc. | Dual damascene process using self-assembled monolayer |
US6703304B1 (en) | 2001-01-30 | 2004-03-09 | Advanced Micro Devices, Inc. | Dual damascene process using self-assembled monolayer and spacers |
US6682988B1 (en) | 2001-03-14 | 2004-01-27 | Advanced Micro Devices, Inc. | Growth of photoresist layer in photolithographic process |
US6798464B2 (en) | 2001-05-11 | 2004-09-28 | International Business Machines Corporation | Liquid crystal display |
US20030152703A1 (en) * | 2001-10-31 | 2003-08-14 | Hammond Paula T. | Production of chemically patterned surfaces using polymer-on-polymer stamping |
US7220452B2 (en) * | 2001-10-31 | 2007-05-22 | Massachusetts Institute Of Technology | Multilayer transfer patterning using polymer-on-polymer stamping |
ES2327398T3 (es) | 2001-11-20 | 2009-10-29 | Duke University | Biomateriales interfaciales. |
US7098041B2 (en) * | 2001-12-11 | 2006-08-29 | Kimberly-Clark Worldwide, Inc. | Methods to view and analyze the results from diffraction-based diagnostics |
US7102752B2 (en) | 2001-12-11 | 2006-09-05 | Kimberly-Clark Worldwide, Inc. | Systems to view and analyze the results from diffraction-based diagnostics |
US7384598B2 (en) * | 2001-12-21 | 2008-06-10 | Kimberly-Clark Worldwide, Inc. | Diagnostic device |
US20030138570A1 (en) * | 2001-12-21 | 2003-07-24 | Kimberly-Clark Worldwide, Inc. | Method to prepare diagnostic films using engraved printing cylinders such as rotogravure |
US7244393B2 (en) * | 2001-12-21 | 2007-07-17 | Kimberly-Clark Worldwide, Inc. | Diagnostic device and system |
US8367013B2 (en) * | 2001-12-24 | 2013-02-05 | Kimberly-Clark Worldwide, Inc. | Reading device, method, and system for conducting lateral flow assays |
US20030119203A1 (en) * | 2001-12-24 | 2003-06-26 | Kimberly-Clark Worldwide, Inc. | Lateral flow assay devices and methods for conducting assays |
US6923923B2 (en) * | 2001-12-29 | 2005-08-02 | Samsung Electronics Co., Ltd. | Metallic nanoparticle cluster ink and method for forming metal pattern using the same |
AU2003217184A1 (en) * | 2002-01-11 | 2003-09-02 | Massachusetts Institute Of Technology | Microcontact printing |
US6972155B2 (en) * | 2002-01-18 | 2005-12-06 | North Carolina State University | Gradient fabrication to direct transport on a surface |
US6828581B2 (en) * | 2002-02-26 | 2004-12-07 | The United States Of America As Represented By The Secretary Of Commerce | Selective electroless attachment of contacts to electrochemically-active molecules |
US20030215723A1 (en) * | 2002-04-19 | 2003-11-20 | Bearinger Jane P. | Methods and apparatus for selective, oxidative patterning of a surface |
US6783717B2 (en) * | 2002-04-22 | 2004-08-31 | International Business Machines Corporation | Process of fabricating a precision microcontact printing stamp |
US7223534B2 (en) * | 2002-05-03 | 2007-05-29 | Kimberly-Clark Worldwide, Inc. | Diffraction-based diagnostic devices |
US7214530B2 (en) * | 2002-05-03 | 2007-05-08 | Kimberly-Clark Worldwide, Inc. | Biomolecule diagnostic devices and method for producing biomolecule diagnostic devices |
US7223368B2 (en) * | 2002-05-03 | 2007-05-29 | Kimberly-Clark Worldwide, Inc. | Diffraction-based diagnostic devices |
US7771922B2 (en) * | 2002-05-03 | 2010-08-10 | Kimberly-Clark Worldwide, Inc. | Biomolecule diagnostic device |
KR101050275B1 (ko) * | 2002-05-21 | 2011-07-19 | 에이에스엠 아메리카, 인코포레이티드 | 반도체 프로세싱 도구 내 챔버 간의 상호 오염 감소 방법 |
AU2003239569A1 (en) * | 2002-05-23 | 2003-12-12 | Gene Networks, Inc. | Analyte microdetector and methods for use |
US7091049B2 (en) * | 2002-06-26 | 2006-08-15 | Kimberly-Clark Worldwide, Inc. | Enhanced diffraction-based biosensor devices |
US7432105B2 (en) * | 2002-08-27 | 2008-10-07 | Kimberly-Clark Worldwide, Inc. | Self-calibration system for a magnetic binding assay |
US7285424B2 (en) * | 2002-08-27 | 2007-10-23 | Kimberly-Clark Worldwide, Inc. | Membrane-based assay devices |
US7314763B2 (en) * | 2002-08-27 | 2008-01-01 | Kimberly-Clark Worldwide, Inc. | Fluidics-based assay devices |
US7781172B2 (en) * | 2003-11-21 | 2010-08-24 | Kimberly-Clark Worldwide, Inc. | Method for extending the dynamic detection range of assay devices |
US20040106190A1 (en) * | 2002-12-03 | 2004-06-03 | Kimberly-Clark Worldwide, Inc. | Flow-through assay devices |
US20040121334A1 (en) * | 2002-12-19 | 2004-06-24 | Kimberly-Clark Worldwide, Inc. | Self-calibrated flow-through assay devices |
US7247500B2 (en) * | 2002-12-19 | 2007-07-24 | Kimberly-Clark Worldwide, Inc. | Reduction of the hook effect in membrane-based assay devices |
JP4340086B2 (ja) * | 2003-03-20 | 2009-10-07 | 株式会社日立製作所 | ナノプリント用スタンパ、及び微細構造転写方法 |
DE10312628A1 (de) * | 2003-03-21 | 2004-10-07 | Friz Biochem Gmbh | Verfahren und Vorrichtung zum Benetzen eines Substrats mit einer Flüssigkeit |
US7851209B2 (en) * | 2003-04-03 | 2010-12-14 | Kimberly-Clark Worldwide, Inc. | Reduction of the hook effect in assay devices |
US20040197819A1 (en) * | 2003-04-03 | 2004-10-07 | Kimberly-Clark Worldwide, Inc. | Assay devices that utilize hollow particles |
US6853134B2 (en) * | 2003-05-20 | 2005-02-08 | Canon Kabushiki Kaisha | Anode structure for organic light emitting device |
GB0323902D0 (en) | 2003-10-11 | 2003-11-12 | Koninkl Philips Electronics Nv | Method for patterning a substrate surface |
US7232771B2 (en) | 2003-11-04 | 2007-06-19 | Regents Of The University Of Minnesota | Method and apparatus for depositing charge and/or nanoparticles |
US7592269B2 (en) | 2003-11-04 | 2009-09-22 | Regents Of The University Of Minnesota | Method and apparatus for depositing charge and/or nanoparticles |
US7713748B2 (en) * | 2003-11-21 | 2010-05-11 | Kimberly-Clark Worldwide, Inc. | Method of reducing the sensitivity of assay devices |
US20050112703A1 (en) * | 2003-11-21 | 2005-05-26 | Kimberly-Clark Worldwide, Inc. | Membrane-based lateral flow assay devices that utilize phosphorescent detection |
US7943395B2 (en) * | 2003-11-21 | 2011-05-17 | Kimberly-Clark Worldwide, Inc. | Extension of the dynamic detection range of assay devices |
US20050170095A1 (en) * | 2003-12-05 | 2005-08-04 | International Business Machines Corporation | Method and apparatus for forming a chemical gradient on a substrate |
US7943089B2 (en) * | 2003-12-19 | 2011-05-17 | Kimberly-Clark Worldwide, Inc. | Laminated assay devices |
US20050189676A1 (en) * | 2004-02-27 | 2005-09-01 | Molecular Imprints, Inc. | Full-wafer or large area imprinting with multiple separated sub-fields for high throughput lithography |
WO2005101427A1 (en) * | 2004-04-14 | 2005-10-27 | Sukgyung A.T Co., Ltd | Conducting metal nano particle and nano-metal ink containing it |
US20050244953A1 (en) * | 2004-04-30 | 2005-11-03 | Kimberly-Clark Worldwide, Inc. | Techniques for controlling the optical properties of assay devices |
US7815854B2 (en) * | 2004-04-30 | 2010-10-19 | Kimberly-Clark Worldwide, Inc. | Electroluminescent illumination source for optical detection systems |
US20060019265A1 (en) * | 2004-04-30 | 2006-01-26 | Kimberly-Clark Worldwide, Inc. | Transmission-based luminescent detection systems |
US7796266B2 (en) * | 2004-04-30 | 2010-09-14 | Kimberly-Clark Worldwide, Inc. | Optical detection system using electromagnetic radiation to detect presence or quantity of analyte |
EP1600811A1 (en) * | 2004-05-28 | 2005-11-30 | Obducat AB | Modified metal molds for use in imprinting processes |
US7717693B2 (en) * | 2004-05-28 | 2010-05-18 | Obducat Ab | Modified metal mold for use in imprinting processes |
JP4792028B2 (ja) * | 2004-06-03 | 2011-10-12 | モレキュラー・インプリンツ・インコーポレーテッド | ナノスケール製造技術における流体の分配およびドロップ・オン・デマンド分配技術 |
US20070228593A1 (en) * | 2006-04-03 | 2007-10-04 | Molecular Imprints, Inc. | Residual Layer Thickness Measurement and Correction |
US7141275B2 (en) * | 2004-06-16 | 2006-11-28 | Hewlett-Packard Development Company, L.P. | Imprinting lithography using the liquid/solid transition of metals and their alloys |
US7521226B2 (en) * | 2004-06-30 | 2009-04-21 | Kimberly-Clark Worldwide, Inc. | One-step enzymatic and amine detection technique |
CN101010588A (zh) * | 2004-08-04 | 2007-08-01 | 爱克瑟拉生物传感器有限公司 | 用在基于衍射的传感中的利用化学交联剂图案化的表面 |
KR20070085841A (ko) | 2004-11-08 | 2007-08-27 | 프레쉬포인트 홀딩스 에스아 | 시간-온도 표시 장치 |
US20070121113A1 (en) * | 2004-12-22 | 2007-05-31 | Cohen David S | Transmission-based optical detection systems |
US20090272715A1 (en) * | 2004-12-23 | 2009-11-05 | Koninklijke Philips Electronics, N.V. | Nanofabrication based on sam growth |
US7403287B2 (en) * | 2005-06-08 | 2008-07-22 | Canon Kabushiki Kaisha | Sensing element used in sensing device for sensing target substance in specimen by using plasmon resonance |
CN101233453A (zh) * | 2005-07-28 | 2008-07-30 | 皇家飞利浦电子股份有限公司 | 组合物及其应用 |
CA2635929A1 (en) * | 2006-01-03 | 2008-01-31 | David W. Barnes | Small molecule printing |
US20070217019A1 (en) * | 2006-03-16 | 2007-09-20 | Wen-Kuei Huang | Optical components array device, microlens array and process of fabricating thereof |
US8142850B2 (en) * | 2006-04-03 | 2012-03-27 | Molecular Imprints, Inc. | Patterning a plurality of fields on a substrate to compensate for differing evaporation times |
TWI306954B (en) * | 2006-07-04 | 2009-03-01 | Ind Tech Res Inst | Method for fabricating an array of microlenses on an electro-optic device is disclosed |
US8764996B2 (en) * | 2006-10-18 | 2014-07-01 | 3M Innovative Properties Company | Methods of patterning a material on polymeric substrates |
US20080095988A1 (en) * | 2006-10-18 | 2008-04-24 | 3M Innovative Properties Company | Methods of patterning a deposit metal on a polymeric substrate |
KR20090107494A (ko) * | 2006-12-05 | 2009-10-13 | 나노 테라 인코포레이티드 | 표면을 패턴화하는 방법 |
US8608972B2 (en) * | 2006-12-05 | 2013-12-17 | Nano Terra Inc. | Method for patterning a surface |
US7968804B2 (en) | 2006-12-20 | 2011-06-28 | 3M Innovative Properties Company | Methods of patterning a deposit metal on a substrate |
US20080220175A1 (en) | 2007-01-22 | 2008-09-11 | Lorenzo Mangolini | Nanoparticles wtih grafted organic molecules |
US20080271625A1 (en) * | 2007-01-22 | 2008-11-06 | Nano Terra Inc. | High-Throughput Apparatus for Patterning Flexible Substrates and Method of Using the Same |
US8343437B2 (en) * | 2008-06-04 | 2013-01-01 | Jp Laboratories, Inc. | Monitoring system based on etching of metals |
WO2010002788A1 (en) * | 2008-06-30 | 2010-01-07 | 3M Innovative Properties Company | Solvent assisted method of microcontact printing |
KR101184161B1 (ko) | 2010-04-15 | 2012-09-18 | 한남대학교 산학협력단 | 소프트 리소그래피를 이용하여 패턴화된 금 표면의 표면 개질 방법 |
DE102012112030A1 (de) | 2012-12-10 | 2014-06-12 | Ev Group E. Thallner Gmbh | Verfahren zum Mikrokontaktprägen |
TW201509245A (zh) * | 2013-03-15 | 2015-03-01 | Omg Electronic Chemicals Llc | 用於在金屬表面上形成自組裝單層的方法及包含自組裝單層的印刷電路板 |
WO2015160684A1 (en) * | 2014-04-14 | 2015-10-22 | President And Fellows Of Harvard College | Cellulose and cellulosic substrate-based device |
WO2016053866A1 (en) | 2014-09-30 | 2016-04-07 | 3M Innovative Properties Company | Electrically conductive patterns with wide line-width and methods for producing same |
Family Cites Families (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US33581A (en) * | 1861-10-29 | Improvement in cider and wine mills | ||
BE550885A (zh) * | 1955-09-09 | |||
US3497377A (en) * | 1966-10-31 | 1970-02-24 | Boeing Co | Mirror configurations |
US3641354A (en) * | 1967-03-08 | 1972-02-08 | Jack De Ment | Optical modulation by fluidic optics utilizing chromatic aberration |
US3716359A (en) * | 1970-12-28 | 1973-02-13 | Xerox Corp | Cyclic recording system by the use of an elastomer in an electric field |
US4587213A (en) * | 1971-09-29 | 1986-05-06 | Malecki George J | Methods and means of determining microorganism population |
US4011009A (en) * | 1975-05-27 | 1977-03-08 | Xerox Corporation | Reflection diffraction grating having a controllable blaze angle |
US4173075A (en) * | 1976-12-08 | 1979-11-06 | Swiss Aluminium Ltd. | Engraver's template |
EP0059304B1 (en) * | 1978-07-18 | 1985-10-23 | Nippon Telegraph And Telephone Corporation | A method of manufacturing a curved diffraction grating structure |
US4325779A (en) * | 1979-04-17 | 1982-04-20 | Beatrice Foods Co. | Method for shaping and finishing a workpiece |
US4274706A (en) * | 1979-08-30 | 1981-06-23 | Hughes Aircraft Company | Wavelength multiplexer/demultiplexer for optical circuits |
FR2472198A1 (fr) * | 1979-12-20 | 1981-06-26 | Anvar | Miroirs astronomiques et reseaux aspheriques semi-encastres et procede de fabrication par flexion elastique |
US4363874A (en) * | 1981-08-07 | 1982-12-14 | Miles Laboratories, Inc. | Multilayer analytical element having an impermeable radiation nondiffusing reflecting layer |
US4477158A (en) * | 1981-10-15 | 1984-10-16 | Pollock Stephen C | Lens system for variable refraction |
US4690715A (en) * | 1982-06-18 | 1987-09-01 | American Telephone And Telegraph Company, At&T Bell Laboratories | Modification of the properties of metals |
US4528260A (en) * | 1983-04-27 | 1985-07-09 | Rca Corporation | Method of fabricating lenticular arrays |
GB2145977B (en) * | 1983-08-30 | 1987-01-14 | Craigave Pty Ltd | Article die |
US4512848A (en) * | 1984-02-06 | 1985-04-23 | Exxon Research And Engineering Co. | Procedure for fabrication of microstructures over large areas using physical replication |
USRE33581E (en) | 1984-06-25 | 1991-04-30 | Immunoassay using optical interference detection | |
US4596697A (en) * | 1984-09-04 | 1986-06-24 | The United States Of America As Represented By The Secretary Of The Army | Chemical sensor matrix |
US5018829A (en) * | 1984-11-19 | 1991-05-28 | Matsushita Electric Industrial Co., Ltd. | Optical fiber and method of producing the same |
GB8509492D0 (en) * | 1985-04-12 | 1985-05-15 | Plessey Co Plc | Optical assay |
US4897325A (en) * | 1985-11-18 | 1990-01-30 | The Perkin-Elmer Corporation | Contact lithographic fabrication of patterns on large optics |
US4802951A (en) * | 1986-03-07 | 1989-02-07 | Trustees Of Boston University | Method for parallel fabrication of nanometer scale multi-device structures |
US4728591A (en) * | 1986-03-07 | 1988-03-01 | Trustees Of Boston University | Self-assembled nanometer lithographic masks and templates and method for parallel fabrication of nanometer scale multi-device structures |
US4818336A (en) * | 1986-04-11 | 1989-04-04 | Advanced Tool Technologies, Incorporated | Method of making metal molds and dies |
GB8618133D0 (en) * | 1986-07-24 | 1986-09-03 | Pa Consulting Services | Biosensors |
US5182135A (en) * | 1986-08-12 | 1993-01-26 | Bayer Aktiengesellschaft | Process for improving the adherency of metallic coatings deposited without current on plastic surfaces |
GB2197065A (en) * | 1986-11-03 | 1988-05-11 | Stc Plc | Optical sensor device |
US5079600A (en) * | 1987-03-06 | 1992-01-07 | Schnur Joel M | High resolution patterning on solid substrates |
US4731155A (en) * | 1987-04-15 | 1988-03-15 | General Electric Company | Process for forming a lithographic mask |
DE3883638T2 (de) * | 1987-06-27 | 1994-04-21 | Shimadzu Corp | Flexibles Replika-Gitter und optischer Multiplexer/Demultiplexer mit Anwendung eines solchen Gitters. |
US4842633A (en) * | 1987-08-25 | 1989-06-27 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing molds for molding optical glass elements and diffraction gratings |
EP0341928A1 (en) * | 1988-05-10 | 1989-11-15 | AMERSHAM INTERNATIONAL plc | Improvements relating to surface plasmon resonance sensors |
DE68907519T2 (de) * | 1988-05-10 | 1993-10-21 | Amersham Int Plc | Biosensoren. |
GB8811919D0 (en) * | 1988-05-20 | 1988-06-22 | Amersham Int Plc | Biological sensors |
GB8813307D0 (en) * | 1988-06-06 | 1988-07-13 | Amersham Int Plc | Biological sensors |
SE462454B (sv) * | 1988-11-10 | 1990-06-25 | Pharmacia Ab | Maetyta foer anvaendning i biosensorer |
US4999489A (en) * | 1989-03-17 | 1991-03-12 | The Boeing Company | Optical sensor using concave diffraction grating |
EP0402718B1 (en) * | 1989-06-03 | 1994-11-02 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Control of cell arrangement |
US5143854A (en) * | 1989-06-07 | 1992-09-01 | Affymax Technologies N.V. | Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof |
US5235238A (en) * | 1989-08-10 | 1993-08-10 | Dainabot Company, Limited | Electrode-separated piezoelectric crystal oscillator and method for measurement using the electrode-separated piezoelectric crystal oscillator |
SE463181B (sv) * | 1989-09-07 | 1990-10-15 | Radians Innova Ab | Saett att saekestaella modhoppsfri avstaemning av resonansfrekvens och q-vaerde hos en optisk resonator samt anordning foer utoevande av saettet |
US5190350A (en) * | 1989-09-13 | 1993-03-02 | Goodway Corporation | Seating arrangement |
US5032216A (en) * | 1989-10-20 | 1991-07-16 | E. I. Du Pont De Nemours And Company | Non-photographic method for patterning organic polymer films |
FR2656925B1 (fr) * | 1990-01-08 | 1992-05-15 | Eg G | Capteur d'humidite et installation de mesure comportant une pluralite de tels capteurs. |
CA2084077C (en) * | 1990-06-06 | 2003-04-22 | Herman Leonard Lowenhar | Fiber optics system |
GB9019123D0 (en) * | 1990-09-01 | 1990-10-17 | Fisons Plc | Analytical device |
US5510481A (en) * | 1990-11-26 | 1996-04-23 | The Regents, University Of California | Self-assembled molecular films incorporating a ligand |
US5294369A (en) * | 1990-12-05 | 1994-03-15 | Akzo N.V. | Ligand gold bonding |
GB9102646D0 (en) * | 1991-02-07 | 1991-03-27 | Fisons Plc | Analytical device |
EP0504730B1 (en) * | 1991-03-22 | 1997-08-27 | Seiko Instruments Inc. | Electrochemical measurement system |
JPH0580530A (ja) * | 1991-09-24 | 1993-04-02 | Hitachi Ltd | 薄膜パターン製造方法 |
US5402075A (en) * | 1992-09-29 | 1995-03-28 | Prospects Corporation | Capacitive moisture sensor |
US5351548A (en) * | 1992-12-02 | 1994-10-04 | Walbro Corporation | Capacitive pressure sensor |
GB2273772A (en) * | 1992-12-16 | 1994-06-29 | Granta Lab Ltd | Detection of macromolecules utilising light diffraction |
US5327225A (en) * | 1993-01-28 | 1994-07-05 | The Center For Innovative Technology | Surface plasmon resonance sensor |
US5512131A (en) * | 1993-10-04 | 1996-04-30 | President And Fellows Of Harvard College | Formation of microstamped patterns on surfaces and derivative articles |
US5455475A (en) * | 1993-11-01 | 1995-10-03 | Marquette University | Piezoelectric resonant sensor using the acoustoelectric effect |
US5435887A (en) * | 1993-11-03 | 1995-07-25 | Massachusetts Institute Of Technology | Methods for the fabrication of microstructure arrays |
WO1996029629A2 (en) * | 1995-03-01 | 1996-09-26 | President And Fellows Of Harvard College | Microcontact printing on surfaces and derivative articles |
AU6774996A (en) * | 1995-08-18 | 1997-03-12 | President And Fellows Of Harvard College | Self-assembled monolayer directed patterning of surfaces |
-
1996
- 1996-12-18 US US08/769,594 patent/US6048623A/en not_active Expired - Lifetime
-
1997
- 1997-12-17 AU AU57144/98A patent/AU730657B2/en not_active Expired
- 1997-12-17 EP EP19970953387 patent/EP0948757B9/en not_active Expired - Lifetime
- 1997-12-17 CN CNB971808384A patent/CN1222831C/zh not_active Expired - Lifetime
- 1997-12-17 KR KR1019997005439A patent/KR100568634B1/ko not_active IP Right Cessation
- 1997-12-17 ES ES97953387T patent/ES2223085T3/es not_active Expired - Lifetime
- 1997-12-17 CA CA 2273797 patent/CA2273797C/en not_active Expired - Lifetime
- 1997-12-17 DE DE1997630149 patent/DE69730149T2/de not_active Expired - Lifetime
- 1997-12-17 WO PCT/US1997/023714 patent/WO1998027463A1/en not_active Application Discontinuation
-
2000
- 2000-08-09 HK HK00104967A patent/HK1025816A1/xx not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100336174C (zh) * | 2003-12-04 | 2007-09-05 | 中国科学院兰州化学物理研究所 | 图案化导电聚苯胺薄膜的制备方法 |
CN101657757B (zh) * | 2007-04-18 | 2013-01-16 | 美光科技公司 | 形成模板的方法,图案化衬底的方法和用于所述方法的模板和图案化系统 |
Also Published As
Publication number | Publication date |
---|---|
CN1222831C (zh) | 2005-10-12 |
KR100568634B1 (ko) | 2006-04-07 |
EP0948757B1 (en) | 2004-08-04 |
WO1998027463A1 (en) | 1998-06-25 |
DE69730149D1 (de) | 2004-09-16 |
DE69730149T2 (de) | 2004-12-09 |
EP0948757B9 (en) | 2005-01-19 |
KR20000069527A (ko) | 2000-11-25 |
AU730657B2 (en) | 2001-03-08 |
US6048623A (en) | 2000-04-11 |
ES2223085T3 (es) | 2005-02-16 |
EP0948757A1 (en) | 1999-10-13 |
CA2273797C (en) | 2007-09-11 |
CA2273797A1 (en) | 1998-06-25 |
HK1025816A1 (en) | 2000-11-24 |
AU5714498A (en) | 1998-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1244265A (zh) | 在镀金薄膜上的接触印刷方法 | |
JP4358911B2 (ja) | 金属合金で被覆されたポリマーフイルム | |
US5512131A (en) | Formation of microstamped patterns on surfaces and derivative articles | |
EP1657070B1 (en) | A stamp for soft lithography, in particular micro contact printing and a method of preparing the same | |
US6776094B1 (en) | Kit For Microcontact Printing | |
Kumar et al. | Patterning self-assembled monolayers: applications in materials science | |
JP5265728B2 (ja) | インプリントリソグラフィ | |
JP3600546B2 (ja) | マイクロコンタクト・プリンティングによるパターン化されたインジウム亜鉛酸化物フィルムおよびインジウムすず酸化物フィルムの形成方法 | |
US20060165912A1 (en) | Micropatterning of molecular surfaces via selective irradiation | |
US4751171A (en) | Pattern forming method | |
Jones et al. | Terminology of polymers in advanced lithography (IUPAC Recommendations 2020) | |
US20080314272A1 (en) | Printing method and apparatus | |
MXPA99005814A (en) | Method of contact printing on gold coated films | |
MXPA98003530A (en) | Method of contact printing on metal alloy-coated polymer films | |
Xia | Soft lithography: micro-and nanofabrication based on microcontact printing and replica molding | |
Ell | A fundamental study of the modification of elastomeric poly (dimethylsiloxane) and silicon surfaces using polymers and their applications in patterning | |
MXPA99008160A (en) | Gel sensors and methods of use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20051012 |