CN1244218A - 对多肽的特性公析 - Google Patents

对多肽的特性公析 Download PDF

Info

Publication number
CN1244218A
CN1244218A CN98801977.9A CN98801977A CN1244218A CN 1244218 A CN1244218 A CN 1244218A CN 98801977 A CN98801977 A CN 98801977A CN 1244218 A CN1244218 A CN 1244218A
Authority
CN
China
Prior art keywords
peptide
polypeptide
group
albumen
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98801977.9A
Other languages
English (en)
Other versions
CN1118580C (zh
Inventor
G·施密特
A·H·汤普森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Protein science research and development GmbH & Co.KG
Proteome Sciences PLC
Original Assignee
Brax Genomics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9701357.7A external-priority patent/GB9701357D0/en
Priority claimed from GBGB9726947.6A external-priority patent/GB9726947D0/en
Application filed by Brax Genomics Ltd filed Critical Brax Genomics Ltd
Publication of CN1244218A publication Critical patent/CN1244218A/zh
Application granted granted Critical
Publication of CN1118580C publication Critical patent/CN1118580C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/12General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6818Sequencing of polypeptides

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种对多肽进行特性分析的方法,该方法包括:(a)用断裂剂处理含一群有一种或多种多肽的样品,已知该断裂剂识别多肽链中特定的氨基酸残基或序列并在切割位点产生断裂,从而使该群体断裂产生肽片段;(b)分离出一群肽片段,这些片段的一端为仅包含C端或N端的参照端,片段的另一端为最接近该参照端的切割位点;和(c)测定至少一些分离的片段的特征序列,该特征序列是自切割位点起预定数目的氨基酸残基的序列;其中特征序列和切割位点相对于参照端的位置表征了这个或每个多肽。

Description

对多肽的特性分析
发明领域
本发明涉及对多肽进行特性分析的方法,以及鉴定和分析该多肽的方法。
发明背景
对复杂混合物中的多肽(如生物体系中的蛋白样品)进行特性分析和鉴定是生物化学中众所周知的难题。传统的方法涉及各种液相分级和层析步骤,然后进行特性分析(例如用二维凝胶电泳)。这些方法有人为倾向且方法本身很慢。另外,要使这些方法自动化也非常困难。
1997年9月5日提交的专利申请PCT/GB97/02403描述了一种描绘(profile)cDNA群体的方法,以便使群体中的每一个cDNA产生一个“识别标志(特征)(signature)”。该方法中假定,根据固定参照点而确定的约8bp的短序列就足以鉴定几乎所有的基因。该系统依靠于将cDNA群的3′端固定并用限制性内切酶来切割。这样就留下了一群3′限制性片段。该专利描述的技术允许测定距离限制性位点指定数目碱基处的大约8至10个碱基对的识别标志,该识别标志足以用来鉴定几乎所有基因。
描述蛋白分布的技术(即对组织中蛋白质的种类和含量进行编目)在自动化或提高数据处理量方面的发展很少。描述一群蛋白分布的经典方法是二维电泳。在该方法中,从生物样品中抽提出的蛋白样品在狭窄的凝胶带上分离。首次分离通常根据蛋白的等电点来分离。然后将整个凝胶条带铺在矩形凝胶一条边的边缘。然后使条带中分离的蛋白根据大小在第二种凝胶中电泳分离。该方法很慢,且很难自动化。另外,其最简单的具体形式也相当不灵敏。现已作了许多改进来提高二维凝胶电泳的蛋白分辨力和改进系统的灵敏度。改进二维凝胶电泳灵敏度及其分辨力的一种方法是用质谱法分析凝胶上特定部位的蛋白。一种方法是在凝胶内进行胰蛋白酶消化,然后用质谱法分析胰蛋白酶的消化片段,从而产生肽的质量指纹(mass fingerprint)。如果需要序列信息,则可进行串联质谱分析。
最近已有人试图用质谱法来分析已经过液相层析或毛细管电泳分级的全部蛋白。已经测试了采用毛细管电泳质谱法的串联(in-line)系统。然而,用质谱法分析全部蛋白仍存在许多困难。第一个困难是分析各种蛋白在多种电离状态下所产生的复杂质谱。第二个主要的缺点是目前质谱仪对于高分子量物质(即质量高于约4千道尔顿的离子)的质量分辨力还很差,因此要分辨质量相互接近的蛋白很困难。第三个缺点是,通过串联质谱法进一步分析全部蛋白非常困难,因为全部蛋白的片段化模式非常复杂。
发明概述
本发明提供了一种对多肽进行特性分析的方法,该方法包括:
(a)用断裂剂处理含一群有一种或多种多肽的样品,已知该断裂剂识别多肽链中特定的氨基酸残基或序列并在切割位点产生断裂,从而使该群体断裂产生肽片段;
(b)分离出一群肽片段,这些片段的一端为仅包含C端或N端的参照端,片段的另一端为最接近该参照端的切割位点;和
(c)测定至少一些分离的片段的特征序列,该特征序列是自切割位点起预定数目的氨基酸残基序列;
其中特征序列和切割位点相对于参照端的位置表征了这个或每个多肽。
因此,本发明描述了一种类似于PCT/GB97/02403但用于蛋白质的系统。由于构成蛋白质的有20种单体,因此序列中特定位点可能存在的变化要多得多,因而与鉴定唯一cDNA序列所需的长度相比,蛋白序列所需的识别标志长度要短得多。
本发明可以用液相分离技术和质谱法来分辨蛋白和蛋白片段,以实现自动化,并避免以凝胶为基础的技术(如二维凝胶电泳)所具有的人为现象、方法本身较慢以及不能自动化的缺点。
参照端可以与固相载体连接,以固定多肽或其肽片段群。较佳的,多肽群在用断裂剂处理之前先被固定。这样,断裂剂处理时产生的肽片段仍被固定,通过洗去液相中不希望的物质就可很容易分离出来。固相载体可包括合适的珠粒或本领域中熟知的其它此类载体。选择这些载体或基质,使其选择性地结合于N端或C端,这在下文进一步详细讨论。
在一个实例中,参照端通过以下方式与固相载体连接:(i)用封闭剂处理多肽,以封闭所有外露的参照基团,该基团包含羧基或伯胺基团;(ii)切割参照端氨基酸,使未封闭的参照端外露;和(iii)用能与固相载体偶联的固定剂处理未封闭的参照端;其中步骤(b)包括将处理过的参照端结合到固相载体上和除去未结合的肽片段。在另一个实例中,该方法还包括:(i)通过用封闭剂预处理多肽来制备步骤(a)的样品,以封闭所有外露的参照基团(包括羧基或伯胺基团),这样随后用断裂剂处理样品就产生了具有未封闭参照端的肽片段;(ii)使未封闭的参照端生物素化;和(iii)将含有未封闭参照端的肽片段结合到固相载体上;其中步骤(b)包括洗脱未结合的肽片段。较佳的,固定剂包括生物素化试剂。
断裂剂必须可靠地识别特定的氨基酸残基或氨基酸序列。切割位点可以在特定的氨基酸残基或序列处或距其已知距离的位移区。断裂剂可以是化学断裂剂如溴化氰。较佳的,断裂剂是肽酶,如丝氨酸蛋白酶,更佳的是胰蛋白酶。
如下面的详述中所讨论的,根据给定样品中的蛋白或多肽数量,可以有利地将多肽分成易处理的亚群。可在用断裂剂处理样品之前或在断裂后进行分类。如下面的详述中所讨论的,步骤(a)的样品可包含亚细胞组分。这样,该方法在步骤(a)之前还包括亚细胞分级步骤。步骤(a)的样品可以通过对粗制组分或亚细胞组分进行液相层析来制得。测定特征序列的一种较佳的方法是质谱法,在这之前可采用高压液相层析步骤来分辨分离肽片段。或者,在步骤(c)前可对肽片段进行离子交换层析,然后用质谱或其它方法测序。
根据本发明的方法,构成特征序列所需的氨基酸残基预定数目可根据多肽群的大小而不同。较佳的,氨基酸残基预定数目为3-30,更佳的为3至6。
本发明还提供了一种鉴定测试样品中多肽的方法。该方法包括:如上所述对多肽作特性分析,将所得的特征序列和切割位点的相对位置与已知多肽的特征序列和切割位点的相对位置作比较,以确定测试样品中的这个或每个多肽。通过比较其特征(即,它们的特征序列和切割位点的相对位置)与早已鉴定的多肽的特征,该方法可用来鉴定单个未知多肽或一群未知多肽。预计很容易汇编这些特征的数据库。
另一方面,本发明提供了一种测定测试样品中的一种或多种特定多肽的方法。该方法包括:执行上述方法,其中断裂剂和切割位点的相对位置是预先确定的,在步骤(c)中,通过测定自切割位点起的氨基酸残基的预定序列来确定特征序列。较佳的,通过从一种或多种已知靶序列(例如可从数据库中得到)中选出相应的序列,来预先确定切割位点和特征序列。
附图简述
现在将通过实施例,参照下列附图来更详细地描述本发明:
图1显示了根据本发明一个实例的反应方案;
图2显示了根据本发明另一个实例的反应方案;
图3显示了根据本发明简单实例的反应方案;和
图4显示了根据图1所示实例的变化反应方案。
发明简述
蛋白质识别标志:
本系统的本质是可将一群蛋白分子的一端固定在固相基质上。蛋白质是有方向性的,因此可根据固定剂的化学性质选择具体末端,例如可用Edman试剂(异硫氰酸苯酯)选择性地除去蛋白质N端氨基酸;但是,如果采用异氰酸苯酯,则N端就被加帽封闭。能与固相基质上的可断裂接头偶联的该分子衍生物,可以使蛋白在N端固定化,并且随后通过接头的断裂来除下。在肽合成时,C端通常利用氯甲基以苄酯形式被固定。如果需要,可用这种化学过程在C端固定蛋白。
然后用序列特异性的肽酶(如胰蛋白酶)来处理一群固定化的蛋白,留下一群N端的切割片段。可以认为这些片段与蛋白的表达序列标记类似。然后可用质谱法对所得的肽识别标志测序。末端片段是最有意义的,因为蛋白中所有获得的肽的位置是已知的,且末端通常是大多数蛋白表面上容易接近的。
蛋白质分类:
从细胞抽提出的一群蛋白质显然有许多不同种类。如果认为人细胞平均表达大约15000个基因,则可以预计有这么多的蛋白。显然,采用目前的技术是无法在单个步骤中通过质谱法来对所有这些蛋白进行测序的。出于这个原因,需要将这么大的蛋白群分类成便于管理的亚组。
描述蛋白分布的综合系统必须试图将蛋白群分成合理分散的大小相对均一的亚组。根据在大而连续的范围内变化的蛋白质普通性质来进行分离最容易实现分类,例如根据大小和表面电荷,这些是二维凝胶电泳中使用最有效的性质。这些分离可采用液相层析技术迅速或者更快地实现。实际上,通过一个接一个的液相层析分离,能以任意多的维数来分辨蛋白,因为液相层析分离系统的灵活性更高,但是理想的是应避免过多的分离步骤以防样品损失。
分类可在从源组织中抽提时、抽提出蛋白后或在固定化肽断裂后进行。
在细胞分级时进行分类:
蛋白在体内根据其在细胞中的区室化而本身被分类。可采用各种方法,这些方法根据细胞区室来分类。分级方案包括各种细胞裂解方法,如超声破碎、用洗涤剂或机械方式裂解细胞,它们可以和各种分级方法(主要是离心)结合。标准的实践是分离成膜蛋白、胞质蛋白和主要的膜结合亚细胞区室(如细胞核和线粒体)。因此,如果选择一下,就可有效地忽略某些种类的蛋白,例如在许多情况下线粒体蛋白可能是不感兴趣的。总的来说,细胞膜、细胞质和细胞核区室是特别感兴趣的。
在抽提后进行分类:
由于蛋白是高度异源的分子,因此根据大小、疏水性、表面电荷及上述各种的组合,采用各种具体形式的液相层析,就可有多种蛋白分离方法。分离可这样实现:经各种官能团衍生的一类固相基质根据上述性质粘附蛋白从而减缓蛋白流过柱的流速。分子通常在有利于粘附到固相基质上的条件下上样于这些柱,并在逐步增加的有利于洗脱的第二缓冲液中被选择性地洗出。这样,与给定基质相互作用最弱的蛋白首先被洗脱。
存在各种形式的液相层析,但是为了通量速度最大和分离最分开,优选高压液相层析(HPLC)。在该形式中,基质被设计成非常不可压缩,当其被衍生时,它能在有利于迅速和分散分离的极高的压力下进行层析分离。
断裂的肽的分类:
液相层析质谱(LCMS)是发展很快的领域。与电喷射质谱法直接结合的HPLC系统正在被广泛采用。在肽从其固定化状态断裂后,HPLC是分辨肽的迅速而有效的方法。
另外,用离子交换层析对肽分类可能也是有利的,因为短肽能以几乎依赖于序列的方式被分离:可电离的氨基酸具有已知的pKa值,因此在特定pH下肽被洗脱下柱就表明该序列中存在该氨基酸。例如,天冬氨酸残基的pKa值为3.9而谷氨酸残基为4.3。在pH4.3时洗脱出肽将表明肽中存在谷氨酸。这些效果有时在大的蛋白质中被掩盖,但是在短肽中应当是显著的,因此非常适合作为分类特征。
组合上述技术就能开发出各种分类方案,这些方案可以更好地控制所产生的蛋白质分布曲线形式。这样,应当能鉴定细胞中表达的大多数蛋白。
用质谱法对肽测序:
肽容易用串联质谱法直接进行测序。通常,肽混合物通过电喷射被射入质谱仪内,这使混合物处于气相。第一个质谱仪作为过滤器,它根据分子的质荷比选择进入第二个质谱仪的分子,从而使每次基本只有一种物质进入第二个质谱仪。所选的肽在离开第一个质谱仪时经过一个碰撞室,从而使得肽片段化。由于片段化主要发生在肽键上,因此片段样品对应于组成原始肽的一系列亚组肽和氨基酸。肽片段化所产生的单个氨基酸、2聚体、3聚体等的独特的质量模式足以鉴定其序列。
然后,最终结果是一群蛋白可以随意地分成合适大小的肽群体,以送入电喷射串联质谱仪中进行直接测序。在对整个细胞蛋白的分析结束后,就可描述存在何种蛋白及其相对量。在蛋白群中掺入已知量且已知不存在的特定蛋白(例如在动物样品中加入植物蛋白或相反)来标定结果,就能测得绝对量。
蛋白识别标志:
本发明提供了一种将一群蛋白通过每种蛋白的一个末端而捕获到固相基质上的方法。本发明还提供了一种断裂蛋白的方法,该蛋白的一端用一种试剂衍生,该试剂可用来将该末端固定在固相基质上。这就使得群体中每种蛋白的单个肽可被捕获到固相基质上,因此具有所选末端的肽可与断裂步骤所产生的其它肽分开并被分离。本发明还提供了一种方法,使断裂步骤中产生的没有参照端的所有肽被捕获,而每种蛋白只留下一种末端肽游离于溶液中以便分析。
根据本发明的方法产生的肽群体可用多种方法来分析,较佳的是采用质谱法。
两种分析方式是较佳的。第一种是测定产生的特征肽群体的肽质量指纹。在该方法中测定每个肽的质量,最好是精确的质量。这种分析可唯一地鉴定出大部分特征肽。任何未知的质量峰可用第二种优选分析法作进一步特性分析。可以选择一定质量的离子,在串联质谱仪中进行碰撞诱导式电离。该方法可用来测定肽的序列信息。
捕获肽:
本发明提供的方法利用各种试剂(包括已有的肽测序试剂)和蛋白的衍生反映,以便从一群蛋白的每个成员中分离出单个“识别标志”肽。本发明可通过两种形式来实施。本发明的方法可从群体的蛋白中选出参照端。在第一种形式中,可用一种固定剂来衍生参照端。如果用序列特异性断裂剂来处理以这种方式衍生的蛋白,则混合物中具有蛋白参照端的肽可被特异性地捕获,而其余肽则游离于溶液中。这第一种形式将在下文标题为“形式1”的章节中进行讨论。在第二种形式中,每种蛋白的单个肽样品是这样产生的:使没有所选参照端的肽片段被捕获,从而使特征序列游离于溶液中。
形式1:
在图3所示本发明的最简单的实例中,使一群蛋白与对群体中各蛋白的一个末端特异的修饰过的测序剂(sequencing agent)反应。该修饰过的测序剂携带了固定剂,以便经测序剂衍生的蛋白可被捕获到固相载体上。然后可用序列特异性断裂剂切割被捕获的蛋白。该断裂步骤将在溶液中产生一组肽片段,并使一个肽蛋白被捕获在固相载体上。然后洗涤除去游离于溶液中的肽。然后,通过完成时偶联的末端氨基酸的测序反应,从固相载体上释放出固定化的肽。Edman试剂(异硫氰酸苯酯)可被修饰成携带固定剂,苯环可被连于合适的固定化效应物(如生物素)的基团取代。用该试剂衍生处理的一群蛋白可用胰蛋白酶来切割。然后,有衍生末端的肽可固定到亲和素化的固相载体上,从而使得未衍生的肽被洗去。然后,通过破坏亲和素-生物素反应,可将肽从固相载体上释放下来。这将使N端肽游离于溶液中。然后可用质谱法分析这些肽。在质谱分析前对肽进行分级是有利的,但是该分级步骤是任选的。或者,可采用修饰过的C端测序剂通过C端来捕获蛋白。C端通常不会在翻译后被修饰,因此可以作为捕获一群蛋白的较佳末端。下面将讨论本发明的其它实例。
C端测序剂:
可用未修饰的C端测序剂来产生特征肽。本发明的另一个实例如下并且如图1所述。在第一个步骤中,将从组织中抽提出的蛋白群松散地固定到膜(如PVDF膜)上。用来从组织样品抽提蛋白的溶剂通常非常苛刻,通常含有诸如脲、硫脲和洗涤剂之类的试剂,因为蛋白质的溶解度有很大的不同。将抽提的蛋白固定到膜上,便可以在修饰前用其它溶剂进行洗涤。然后用偶联剂衍生处理该被捕获的蛋白群,偶联剂例如是购自Hewlett-Packard的磷酸异硫氰酸二苯酯(diphenylphosphoroisothiocyanatidate)(Miller等,蛋白质化学技术,VI 219-227),其方法与对单个蛋白进行正常测序反应所用的方法基本相同,从而与所有蛋白形成酰基异硫氰酸肽酯(peptidylacylisothiocyanate)。偶联剂还与其它游离的羧基反应,同样产生酰基异硫氰酸酯衍生物。然而,偶联剂与一些羧酸侧链的反应不完全。因此,可能希望用多种反应剂进行附加的衍生步骤,以确保所有游离的羧基被衍生。这一变化方案显示于图4中。然后,用吡啶处理衍生的蛋白群,使末端的酰基异硫氰酸酯衍生物发生环闭合。然后可加入断裂剂(例如购自Hewlett-Packard的三甲硅烷酸酯(trimethylsilanolate)),使每个蛋白的末端氨基酸断裂,释放出末端氨基酸的硫代乙内酰脲-氨基酸衍生物。这样使得每个蛋白的倒数第二个残基的游离羧基外露。这可特异地用5-(生物素酰胺基)戊胺(5-(biotimamido)pentylamine)作生物素衍生,因为其它所有的羧基已经被衍生。这样,群体中所有蛋白的C端都可被生物素衍生。然后,用合适的序列特异性断裂剂处理仍在PVDF膜上的生物素化的肽群。对于应用质谱,通常采用胰蛋白酶,因为这通常使切割位点的N端侧质子化,而这是所希望的。胰蛋白酶在碱性残基毗邻处特异性地切割。如果用酶,则必须用某种形式的生理缓冲液来洗涤固定化的肽,以使胰蛋白酶起作用。这会产生一群断裂的肽,其中一些生物素化的肽可从PVDF膜上解吸到溶液中。生物素化的肽可用经亲和素单体衍生处理的固相基质来捕获。然后洗去未固定化的肽,留下一群固定化的C端肽,该肽包含用来鉴定群体中蛋白的标记。在洗去游离肽后,加入酸破坏生物素/亲和素(亲和素单体最佳)的相互作用,就可将固定化标记从固相载体上释放下来。在另一个实例中,生物素化的肽可在序列特异性断裂之前被捕获到亲和素化的载体上。
N-端测序剂:
大多数细胞蛋白的N-端是封闭的。为了描述N端没有封闭的蛋白的分布,可用相应的N-端测序剂来衍生处理包括末端氨基在内的氨基。末端氨基酸可以切除,接着新外露的倒数第二个氨基酸的氨基可用固定剂衍生。然后切割生物素化的蛋白,捕获末端识别标志肽并分析。然而,这局限于那些没有封闭的N端。
形式2:
该方法显示在图2中。在该方法中,用衍生处理羧基残基的试剂,对感兴趣的蛋白质群中所有羧基残基(包括C端羧基)加帽。然后用胰蛋白酶或断裂肽键的其它序列特异性断裂剂断裂蛋白群,从而在C端和N端片段上分别是氨基和羧基。在此阶段,除被加帽的末端肽之外的所有肽具有游离的羧基。这些游离的羧基可用5-(生物素酰胺基)戊胺或其它一些固定剂来衍生。如果采用生物素,则所有生物素化的非C端肽可被捕获到经亲和素衍生的固相基质上。与质谱仪串联的亲和素化的亲和柱能将C端肽选择性地直接洗脱到质谱仪中进行分析。
该方法同样适用于从一群蛋白的N端产生肽标记。可用氨基衍生试剂对蛋白上所有氨基(包括N端氨基)选择性加帽。断裂会使非末端肽的氨基外露,这些氨基可用生物素衍生,从而使得非N端肽被选择性地捕获。这很重要,因为许多蛋白的N端被修饰,且N端氨基对于试剂来说通常是不可及的。因此,选择性地捕获非N-端肽是产生N端识别标志的一种方式。
另外,用来衍生处理氨基和羧基的试剂也比测序反应中所用偶联剂所需的试剂更简单。
固定剂:
可以用各种化学试剂来捕获衍生的肽。在本发明方法的讨论中,已经选用生物素作为典型的固定剂,因为它能非常特异性地与亲和素相互作用。除了亲和素,其它固定剂也适用于本发明的方法。下面是固定剂的例子,而且本发明不局限于这些。
六组氨酸接头会使肽标记被捕获到配位金属离子衍生柱上。同样,可采用各种抗体抗原的相互作用,其中将抗体或抗原(而不是生物素)标记到倒数第二个氨基酸上。
抗衍生物的抗体:
最常用的N-端修饰是乙酰化。可以产生抗N-端乙酰基化的肽的抗体,使得肽能被经该抗体衍生处理的亲和柱捕获。为了捕获几乎所有的蛋白,可以用乙酰化试剂衍生处理样品中其余未乙酰化的蛋白。然后可用胰凝乳蛋白酶或其它序列特异性试剂(胰蛋白酶不切割蛋白的乙酰化切割位点)来断裂衍生的蛋白。固定在合适基质上的抗N端乙酰基化的抗体可用来产生一种亲和柱。该柱能用来在其源蛋白断裂后捕获具有乙酰化N-端的识别标志肽。
为了捕获C端肽,可以产生抗肽的硫代乙内酰脲衍生物的抗体,该抗体可用来从蛋白中选择性地捕获肽,其中该蛋白在用胰蛋白酶或其它序列特异性断裂剂断裂之前已被测序用偶联剂衍生处理。
蛋白衍生:
本发明的方法包括衍生步骤,该步骤是必需的,以确保群体中每个蛋白的参照端被固定剂特异性衍生(第一种形式),或确保参照端被特异性封闭而不与固定剂反应(第二种形式)。还可进行附加的衍生步骤。如果在质谱分析前对识别标志肽分级,则这些可能是需要的。任何分级步骤都应当考虑两个重要的因素。这些因素是分级步骤的分辨力和分级引起的样品损失。
某些层析方法在用于分离肽时是有“粘性”的,也就是说,一部分样品留在分离基质上。通过衍生处理参与粘附于分离基质的基团,可以减少这种样品损失。即,如果采用离子交换层析分离,则可用增加疏水性的试剂来衍生处理离子性和极性侧链,从而减少对基质的亲和力。然而,这会降低分离的分辨力。
在分析一群识别标志肽所产生的质谱结果时,希望确保每种肽只出现一个质量峰。因此,可能希望衍生处理识别标志肽的极性和离子性侧链,以减少那些肽的电离状态数目。该步骤应有助于促进每种识别标志肽只形成一种离子。
也希望在每种识别标志肽中加入基团,以提高质谱分析的灵敏度。加入肽中的一种特别佳的“敏化”基团是叔铵离子,它是一种带正电荷的物质,具有优良的检测性能。
预分类步骤:
该技术可用来描述各种方式所产生的肽群体的分布。根据某些特征对蛋白分类的各种分级技术已经存在。其中特别感兴趣的是分析信号途径。激酶对蛋白的磷酸化是许多信号途径的一个特征。可被激酶磷酸化的蛋白通常具有被激酶识别的短的磷酸化基序。存在与这些基序结合的抗体,一些抗体与磷酸化形式结合,而另一些则与非磷酸化状态结合。在活体模型系统的时间性研究中,针对激酶靶向亚群的抗体亲和柱或免疫沉淀及随后的描述蛋白分布是非常感兴趣的,可以同时鉴定这些蛋白和监测其代谢情况。
许多蛋白作为复合体存在,而分析这些复合体通常较为棘手。克隆的蛋白(复合体的一个推定成员)允许人们用该蛋白来生产亲和柱,以俘获与该蛋白结合的其它蛋白。这种描述方法特别适用于分析这类被捕获的蛋白复合体。
可用包含抗体亲和柱的试剂盒,通过捕获经适当翻译后修饰的蛋白来分析信号转导或膜位置,这也在构思之中,它这可作为预分类步骤或作为用序列特异性断裂剂断裂蛋白群后的捕获步骤。
层析技术:
在从一群蛋白产生肽标记后,希望分析所得标记。在分析一群肽识别标志时,在质谱前进行层析是任选的步骤,但是可能非常需要的,这取决于所用质谱仪的结构。在描述蛋白质的方法中,任何层析阶段都需要的两个重要特征是:高分辨力和样品损失最少。分辨力提供信息,而且还减少了进入质谱仪的肽标记群的复杂性。第二个特征是样品在层析分离时的损失最少,否则这将降低方法对受分析群体中低频率肽的灵敏度。
蛋白质的衍生:
某些层析方法在用于分离肽时是有“粘性”的,也就是说一部分样品留在分离基质上。为了减少这类样品损失,可以对参与粘附到分离基质上的基团进行衍生处理。即,如果采用离子交换层析分离,则可用增加疏水性的试剂来衍生处理离子性和极性侧链,从而减少对基质的亲和力。但是,这一特征需要与对分辨力的要求相平衡。
用C端测序剂衍生处理游离的羧基,将降低这种肽与阳离子交换树脂间的粘合作用。这可能意味着阳离子交换层析可有利地作为层析分离步骤。
对于阴离子交换层析,很容易对乙酰化的氨基残基进行衍生处理,以便获得类似效果。
用质谱法分析肽:
电离技术:
通常,肽混合物通过使其处于气相的电喷射法或MALDI TOF方式注射到质谱仪中。
电喷射电离:
电喷射电离需要使生物分子的稀释液从插入探针“雾化”(即以细的喷雾形式)进入到质谱仪中。例如,在静电场梯度下从针尖喷出溶液。对于电离机理并未完全了解,但是认为它的工作原理大致如下。静电场使探针尖处形成的液滴带电荷,从而加速了雾化。溶剂在氮气气流下蒸发。较小的液滴导致生物分子浓缩。假定大多数生物分子具有净电荷,这就提高了溶解蛋白的静电斥力。随着蒸发的继续,该斥力最终变得大于液滴的表面张力,使得液滴爆炸成更小的液滴。静电场有助于进一步克服带电液滴的表面张力。更小的液滴继续蒸发,从而反复爆炸直至生物分子基本上处于全部为溶剂的气相中。
常压化学电离:
适合与LCMS一起用来分析肽的电离方法是常压化学电离法(APCI)。这是一种以电喷射为基础的方法,其中对电离室加以改进使其包括一个放电电极,该电极可用来使浴气(bath gas)电离,而浴气则与汽化样品分子碰撞,从而促进了样品的电离。
快速原子轰击:
这是一种与APCI非常类似的电离方法,非常适用于溶液中的样品。通常,可将来自毛细管电泳柱或HPLC柱的连续液流经插入探针泵入通孔或釉质(frit)尖端,在该处溶液被加速的原子或离子(通常是氙或铯)轰击。与溶解样品的碰撞导致动能转移到样品上并使样品电离。
基质辅助性激光解吸电离(MALDI):
MALDI需要将生物分子包埋在摩尔过量很多的可光激发的“基质”中。施加合适频率的激光(对于烟酸为266钠米光束)导致基质激发,从而使包埋的生物分子激发并电离。该方法为离子提供了大量的平动能,但是尽管如此也不会诱导过度的片段化。但是该方法也可采用加速电压来控制片段化。
MALDI方法受到两方面的支持。可将有质量标记的DNA包埋在MALDI基质中,其中标记本身不能被激光特异性激发,或者可将标记构建成含有允许激光激发所需的基团。后一方法意味着在进行质谱法之前不必将标记包埋在基质内。这些基团包括烟酸、芥子酸或肉桂酸部分。用可光断裂的接头,对标记进行以MALDI为基础的断裂可能是最有效的,因为这将避免在进行MALDI质谱法之前的断裂步骤。不同的可激发电离剂有不同的激发频率,因此可以选择不同的频率来引发电离,使其不同于断裂可光解接头时所用的频率。这些可激发部分容易用有机化学中的标准合成技术来衍生处理,因此可以组合方式构建出有多种质量的标记。
所有上述技术在常规上用于肽和蛋白质,它们是本发明中较佳的电离方法。
质谱法的灵敏度和肽标记的定量测定:
然后,最终结果是,一群蛋白可以随意地分成合适大小的肽群体,以送入质谱仪中进行分析。在完成了对全部细胞蛋白的分析后,就能描述出有何种蛋白存在及其相对量。通过在蛋白群中“掺入”已知量且已知不存在的特定蛋白(例如在动物样品中加入植物蛋白或相反)来标定结果,就能测得绝对量。通过测定在大多数细胞中以相对固定浓度存在的某些蛋白(如组蛋白)的相对量,就可测得内部量。与某些质谱仪几何结构相配合的各种技术使得能用质谱仪来获得优秀的定量测定。这些内容在GB 9719284.3中有详细描述。
质量分析仪几何学:
质谱法是一门高度多样化的学科,存在许多质量分析仪配置,它们通常能以各种几何结构组合,从而能分析复杂的有机分子(例如本发明中产生的肽标记)。
精确的质量测定:
双聚焦质谱仪能将分子质量测定到非常高的精度(即相差1道尔顿的级分)。这就能很容易地区分整体质量相同但原子组成不同的分子,因为可利用不同原子同位素质量的组分差别进行区分。对于测定一群肽标记的分子质量,该方法可能非常有效,因为它能够鉴定出大部分的肽而不需进行任何测序(即使有一些肽具有相同的整体质量)。少数残留的模棱两可的肽可用下述串联质谱法来分析。
用串联质谱法对肽标记测序:
肽很容易用串联质谱法来测序。串联质谱法描述了许多技术,其中用第一个质量分析仪根据离子的质荷比从样品中选出离子,以便诱导所选离子发生片段化,进行进一步的分析。用第二个质量分析仪分析片段化产物。串联仪器中的第一个质量分析仪作为过滤器,它根据离子的质荷比选择离子,使其进入第二个质量分析仪,从而使每一次基本上仅一种质量/电荷比的离子(通常是仅仅一个肽离子)进入第二个质量分析仪。所选的肽在离开第一个质量分析仪时通过一个碰撞室,从而使得肽片段化。由于片段化主要发生在肽键上,因此片段样品对应于组成原始肽的一系列亚组肽和氨基酸。肽片段化所产生的单个氨基酸、2聚体、3聚体等的独特质量模式足以鉴定其序列。
离子源→MS1→碰撞单元→MS2→离子检测器
可以有不同的串联结构。可采用常规的“区段(sector)”装置,其中电区段提供第一质量分析仪阶段,磁区段提供第二质量分析仪,并在两个区段间放置了一个碰撞室。该结构对于肽测序来说并不理想。由碰撞单元分开的两个完整区段的质量分析仪可用于肽测序。所用的一种更典型的结构是三联四极矩(triplequadrupole),其中第一个四极矩过滤出用于碰撞的离子。三联四极矩中的第二个四极矩作为碰撞室,而最后一个四极矩是分析片段化的产物。该结构非常有利。另一个更有利的结构是四极矩/正交飞行时间(Orthogonal Time of Flight)串联仪器,其中四极矩的高速扫描与TOF质量分析仪更高的灵敏度相匹配,从而鉴定片段化产物。
用离子捕获测序:
离子捕获质谱仪是与四极矩光谱仪相近的仪器。离子阱通常有3电极结构—一个圆柱形电极和2个位于末端的“帽”电极,它们形成空腔。在圆柱形电极上施加正弦射频电势,而帽电极用DC或AC电势加偏压。射到空腔内离子由于圆柱形电极的振荡电场而被限制在稳定的圆形轨道内。然而,对于给定幅值的振荡电势,某些离子会有不稳定的轨道,并会从捕获器中射出。通过改变振荡射频电势,就可根据其质量/电荷比将注入捕获器中的离子样品依次射出捕获器。然后可检测射出的离子,产生质谱。
离子阱操作时通常在离子阱空腔内有少量“浴气”(如氦)。它通过与捕获离子碰撞而提高了装置的分辨力和灵敏度。碰撞不仅加速了样品导入捕获器时的电离,而且还减弱了离子轨道的幅值和速度,使得它们更靠近捕获器的中央。这就意味着,当改变振荡电势时,轨道变得不稳定的离子会比减幅循环的离子更迅速地获得能量,并以更紧密的集束离开捕获器,形成更狭窄、更大的峰。
离子阱能模仿串联质谱仪的结构,实际上它们能模仿多个质谱仪的结构,从而对被捕获离子进行复杂的分析。捕获器内可保留样品的单种质量的物质,即,可将其它所有物射出,然后通过在第一个振荡频率上叠加第二个振荡频率,可以小心地激发保留的物质。然后,激发的离子与浴气碰撞,如果离子充分激发则会产生片段。然后可进一步分析片段。通过射出其它离子然后激发片段离子产生片段,就可保留片段离子作进一步的分析。该方法可重复进行,只要有充足的样品存在来进行进一步分析。应当注意,在诱导片段化后,这些仪器通常保留了高比例的片段离子。这些仪器和FTIGR质谱仪(下述)表示了时间分辨型串联质谱法,而不是在线性质谱仪中所见的空间分辨型串联质谱法。
为了对肽群体进行蛋白描述,离子阱是一种非常好的仪器。可将肽标记样品射入光谱仪中。预计会出现在分布图中的肽标记(如真核细胞样品中的管家(housekeeping)蛋白或组蛋白肽)可被特异性地射出并被迅速定量。可扫描剩余的肽。然后可从随后的肽群样品中选择性地保留下全新的肽,并诱导肽产生片段,从而获得该肽的序列信息。另外,离子阱可作为串联结构仪器的第一阶段。
傅里叶变换离子回旋共振质谱法(FTICR MS):
FTICR质谱法与离子阱的相似特征是将离子样品保留在空腔内,但是在FTICR MS中离子通过正交电磁场被捕获在高真空腔内。电场由一对平板式电极产生,这对电极形成了一个盒子的两侧。该盒子被包在与两块板连接的超导磁体的磁场内,捕获板将射入的离子限定在捕获板间垂直于施加磁场的圆形轨道内。在形成盒子的另两侧的两块“发射板”上施加射频脉冲,将离子激发到更大的轨道。离子的摆线运动在盒的其余两侧(即“接受板”)上产生了相应的电场。激发脉冲激发离子至更大的的轨道,该轨道随着离子相干运动通过碰撞损失而衰弱。通过傅里叶变换分析,将接受板监测到的相应信号转变成质谱。
对于诱导片段化的实验,这些仪器可以类似于离子阱的方式进行—将除感兴趣的单种物质外的所有离子射出捕获器。可将碰撞气体导入捕获器中。然后诱导片段化。随后可分析片段离子。如果用FT分析由“接受板”监测到的信号,则片段化产物与浴气混合时的分辨力通常较差。然而,可将片段离子射出空腔,在例如具有四极矩的串联结构中进行分析。
为了描述蛋白分布,可采用FTICRMS,这可能是有利的,因为这些仪器具有非常高的质量分辨力,能精确地测定质量,因此能分辨整体质量相同但原子组成不同的肽。另外,未经鉴定的肽标记随后可通过片段化来分析。
蛋白的固定:
关于具体的蛋白化学,尤其是肽的有机合成领域,已经积累了许多知识。
·R.B.Merrifield,科学232:341-347,1986.
·S.B.H.Kent.,″肽和蛋白质的化学合成″,Annu.Rev.Biochem.1988.57:957-989。
接头:
本发明的一个重要的特征是与其相关生物分子连接的可断裂接头。可光断裂的接头是特别有利的,因为它们的断裂迅速,不需要试剂。参见:
·Theodora W.Greene,″有机合成中的保护基团″,1981,Wiley-Interscince.
关于可光除去的基团:
·Patchornik,J.Am.Chem.Soc.92:6333-,1970。
·Amit等,J.Org.Chem.39:192-,1974。
液相层析:
·R.Scopes,″蛋白纯化:理论和实践″,Springer-Verlag,1982。
·M.Deutscher,″蛋白纯化指南″,Academic Press,1990。
质谱法:
对于肽测序来说,电喷射质谱法是较佳的方法,因为它是一种非常灵活的方法,能直接与用于本发明的液相分子生物学方法结合。关于质谱法的全面描述参见:
·K.Biemann,″肽和蛋白质的质谱分析″,Annu.Rev.Biochem.1992.61:977-1010。
·R.A.W.Johnstone和M.E.Rose,″化学学和生物化学家的质谱分析″,第2版,Cambridge University Press,1996。
实验
描述蛋白的实例概述
这包含一种系统,其中
(i)蛋白的羧基被保护,最后一个氨基酸被除去,从而在断裂端只留下一个游离的羧基。
(ii)将其与生物素化试剂反应,从而使羧基末端被生物素标记。
(iii)用蛋白酶将蛋白质断裂成肽片段,只有一个羧基被生物素化。
生物素用来将C端片段连接到固定化的链亲和素(或较佳的是亲和素单体),用弱酸可将生物素从亲和素上释放下来,并用来进行质谱分析(MS-MS)。
所有试剂均可购得,通常所熟知的化学原理如下所述:
(i)已建立了蛋白质羧基端测序的方法。我们注意到Boyd等人的方法(Boyd,,VL,Bozzini,M,Guga,PJ,DeFranco,RJ,Yuan,P-M,Loudon,GM和Nguyen,D;J.Org.Chem,60,2581,(1995))在除去末端氨基酸时通过酰胺化来封闭天冬氨酸和谷氨酸残基的侧链羧基。
(ii)出于这个目的,可采用5-(生物素酰胺基)戊胺/1-乙基-3-[3-二甲氨基丙基]碳化二亚胺盐酸盐(由Pierce & Warriner出售),使羧基端的游离羧基生物素化(Lee,KY,Birckbichler,PJ和Patterson,MK,Clin Chem,34,906(1988))。
(iii)对膜上的蛋白质进行蛋白酶片段化处理是已建立的技术(Sutton,CW,Pemberton,KS,Cottrell,JS,Corbett,JM,Wheeler,CH,Dunn,MJ和Pappin,DJ,Electrophoresis,16,308,(1995)),Millipore Corporation生产用于此用途的Immobilon-CD和其它PVDF膜。亲和素单体由Pierce and Warriner生产,生物素化的分子可用磷酸盐缓冲液中的2mM生物素来释放。
方法中的其余步骤是采用PVDF膜(用于胰蛋白酶消化)代替用于测序反应(I)的Zitex膜。
方法
溶菌酶与PVDF膜结合
用异丙醇润湿0.5mm见方的PVDF(Millipore)片,并于室温在PBS配的20mg/ml溶菌酶(Pharmacia)中培育30分钟。然后用空气干燥膜,4℃保藏直至使用。
与PVDF结合的溶菌酶的修饰(保护羧基)
在2毫升CH3CN中混合62毫克2-乙基-5-苯基异噁唑鎓-3′硫酸盐(Aldrich)和50μl二异丙基乙胺(Aldrich),制得修饰溶液。在每个膜上加100μl修饰溶液,并于室温培育4小时。
培育后,加入900μl水,在室温下轻微振动各膜30分钟。然后将膜转移到50μl CH3CN中,加入450μl水,在室温下轻微振动膜30分钟。
然后将每个膜转移到500μl 2%三氟乙酸中,并在室温下培育过夜。
胰蛋白酶消化
将各膜转移到250μl 25mM,pH7.6的碳酸氢铵溶液中,在室温下轻微振动15分钟。
将每个蛋白/含蛋白膜加入/转移到200μl含5μg胰蛋白酶、pH7.6的碳酸氢铵溶液中并于37℃培育过夜。
从膜上洗脱蛋白/肽片段
将各膜转移到100μl 50%甲酸/50%乙醇溶液中,并在室温下培育30分钟以除下蛋白/肽。然后取出膜,在含有蛋白/肽的50%甲酸/50%乙醇溶液中加入300μl水。
分析
用反相HPLC分析下列物质
40μg PBS中的胰蛋白酶;40μg PBS中的溶菌酶;40μg用胰蛋白酶消化的溶菌酶;40μg用胰蛋白酶消化的胰蛋白酶;用胰蛋白酶消化的与膜结合的修饰过的溶菌酶;经历没有溶菌酶的修饰过程并用胰蛋白酶消化的膜;与膜结合的、未修饰的溶菌酶,用胰蛋白酶消化;与膜结合的、修饰过的溶菌酶,不用胰蛋白酶消化。
结果
我们现在已用PVFD膜代替用于测序反应(I)的Zitex膜来进行操作。我们已经发现,在PVDF膜上经测序反应处理并经胰蛋白酶消化后所得溶菌酶(作为典型的蛋白)的反相HPLC层析谱,在减去经过相同过程但没有溶菌酶存在时的层析谱后,与用胰蛋白酶直接消化的溶菌酶所得的结果类似。因此,该方法是相容的,可用来产生“识别标志”肽进行MS-MS鉴定(数据未显示)。
附图图解
图1步骤1:    用苛刻的溶剂抽提蛋白,将抽提的蛋白捕获到PVDF膜上步骤2:    可对松散固定的蛋白进行洗涤,以除去苛刻的溶剂步骤3:    用C端偶联剂处理蛋白步骤4:    用环化剂处理衍生的蛋白,然后从该衍生的蛋白中切下末端氨基酸步骤5:    使新外露的倒数第二个氨基酸的羧基生物素化步骤6:    洗涤与膜结合的蛋白,以除去化学试剂,用生理缓冲液中的胰蛋白酶
       切割蛋白步骤7:    将末端片段捕获到亲和素化的珠粒上步骤8:    洗去游离的肽,然后释放捕获的肽“标记”进行分析步骤9:    用MS、LC/MS/MS或MS/MS进行分析
图2步骤1:    用苛刻的溶剂抽提蛋白,将抽提的蛋白捕获到PVDF膜上步骤2:    可对松散固定的蛋白进行洗涤,以除去苛刻的溶剂步骤3:    用C端偶联剂处理蛋白步骤4:    洗涤与膜结合的蛋白,以除去化学试剂,用生理缓冲液中的胰蛋白酶
       或其它序列特异性断裂剂来切割蛋白步骤5:    使新外露的羧基端生物素化步骤6:    将末端片段捕获到亲和素化的珠粒上(例如在亲和柱中)步骤7:    用MS或LC/MS/MS或MS/MS分析洗脱的C端
图3步骤1:    用苛刻的溶剂抽提蛋白,将抽提的蛋白捕获到PVDF膜上步骤2:    可对松散固定的蛋白进行洗涤,以除去苛刻的溶剂步骤3:    用携带固定化效应物的C端偶联剂处理蛋白步骤4:    洗涤与膜结合的蛋白,以除去化学试剂,用生理缓冲液中的胰蛋白酶
       切割蛋白步骤5:    将末端片段捕获到亲和素化的珠粒上步骤6:    洗涤除去游离的肽,然后释放捕获的肽“标记”进行分析步骤7:    用MS或LC/MS/MS或MS/MS进行分析
图4步骤1:    用苛刻的溶剂抽提蛋白,将抽提的蛋白捕获到PVDF膜上步骤2:    可对松散固定的蛋白进行洗涤,以除去苛刻的溶剂步骤3:    用C端偶联剂处理蛋白步骤4:    用衍生试剂处理偶联的蛋白,以保证所有外露的羧基被加帽步骤5:    用环化剂处理衍生的蛋白,然后从衍生的蛋白中切下末端氨基酸步骤6:    使新外露的倒数第二个氨基酸的羧基生物素化步骤7:    洗涤与膜结合的蛋白,以除去化学试剂,用生理缓冲液中的胰蛋白酶
       切割蛋白步骤8:    将末端片段捕获到亲和素化的珠粒上步骤9:    洗去游离的肽,然后释放捕获的肽“标记”进行分析步骤10:   用MS、LC/MS/MS或MS/MS分析

Claims (17)

1.一种对多肽进行特性分析的方法,该方法包括:
(a)用断裂剂处理含一群有一种或多种多肽的样品,已知该断裂剂识别多肽链中特定的氨基酸残基或序列并在切割位点产生断裂,使该群体断裂产生肽片段;
(b)分离出一群肽片段,这些片段的一端为仅包含C端或N端的参照端,片段的另一端为最接近该参照端的切割位点;和
(c)测定至少一些分离的片段的特征序列,该特征序列是自切割位点起预定数目的氨基酸残基的序列;
其中特征序列和切割位点相对于参照端的位置表征了这个或每个多肽。
2.根据权利要求1所述的方法,其中参照端与固相载体相连来固定这群多肽或其片段。
3.根据权利要求2所述的方法,其中该多肽群在用断裂剂处理前被固定。
4.根据权利要求2或3所述的方法,其中参照端通过下列方式与固相载体相连:
(i)用封闭剂处理多肽,以封闭所有外露的参照基团,其中该参照基团包括羧基或伯胺基团;
(ii)切除参照端氨基酸,使未封闭的参照端外露;和
(iii)用能与固相载体偶联的固定剂处理未封闭的参照端;其中步骤(b)包括将处理过的参照端结合到固相载体上和除去未结合的肽片段。
5.根据权利要求1所述的方法,该方法还包括
(i)通过用封闭剂预处理多肽来制备步骤(a)的样品,以封闭所有外露的参照基团,其中参照基团包括羧基或伯胺基团,随后用断裂剂处理样品就产生了具有未封闭参照端的肽片段;
(ii)用能与固相载体偶联的固定剂处理未封闭的参照端;和
(iii)将含有未封闭参照端的肽片段结合到固相载体上;其中步骤(b)包括洗脱未结合的肽片段。
6.根据权利要求4或5所述的方法,其中固定剂包括生物素化剂。
7.根据权利要求4至6中任一所述的方法,其中参照端是羧基。
8.根据前述任一权利要求所述的方法,其中断裂剂包括肽酶。
9.根据前述任一权利要求所述的方法,其中步骤(a)的样品包括亚细胞级分。
10.根据前述任一权利要求所述的方法,该方法还包括用液相层析制备步骤(a)的样品。
11.根据前述任一权利要求所述的方法,其中用质谱法测定特征序列。
12.根据权利要求11所述的方法,其中在质谱法之前用高压液相层析来分辨肽片段。
13.根据权利要求1至11中任一所述的方法,其中在步骤(c)前对肽片段进行离子交换层析。
14.根据前述任一权利要求所述的方法,其中氨基酸残基的预定数目为3至30。
15.一种鉴定测试样品中多肽的方法。该方法包括根据前述任一权利要求所述的方法对多肽作特性分析,将所得特征序列和切割位点的相对位置与其它多肽的特征序列和切割位点的相对位置作比较,以鉴定测试样品中的这个或每个多肽。
16.一种测定测试样品中的一种或多种具体多肽的方法,该方法包括:执行权利要求1至14任一所述的方法,其中断裂剂和切割位点的相对位置是预先确定的,在步骤(c)中,通过测定自切割位点起的氨基酸残基的预定序列来确定特征序列。
17.根据权利要求16所述的方法,其中通过从一种或多种已知靶序列中选出相应的序列来预先确定切割位点和特征序列。
CN98801977.9A 1997-01-23 1998-01-23 对多肽的特性分析 Expired - Fee Related CN1118580C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9701357.7 1997-01-23
GBGB9701357.7A GB9701357D0 (en) 1997-01-23 1997-01-23 Characterising polypeptides
GBGB9726947.6A GB9726947D0 (en) 1997-12-19 1997-12-19 Characterising polypeptides
GB9726947.6 1997-12-19

Publications (2)

Publication Number Publication Date
CN1244218A true CN1244218A (zh) 2000-02-09
CN1118580C CN1118580C (zh) 2003-08-20

Family

ID=26310845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98801977.9A Expired - Fee Related CN1118580C (zh) 1997-01-23 1998-01-23 对多肽的特性分析

Country Status (12)

Country Link
US (1) US6156527A (zh)
EP (1) EP1027454B1 (zh)
JP (1) JP3795534B2 (zh)
CN (1) CN1118580C (zh)
AT (1) ATE247173T1 (zh)
AU (1) AU721390B2 (zh)
CA (1) CA2278556C (zh)
DE (1) DE69817211T2 (zh)
ES (1) ES2205437T3 (zh)
IL (1) IL130949A (zh)
NZ (1) NZ336768A (zh)
WO (1) WO1998032876A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153712A (zh) * 2015-04-16 2016-11-23 深圳华大基因研究院 一种多肽二硫键的定位方法
CN112739708A (zh) * 2018-08-14 2021-04-30 德克萨斯大学系统董事会 对与主要组织相容性复合体结合的肽进行单分子测序

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207370B1 (en) 1997-09-02 2001-03-27 Sequenom, Inc. Diagnostics based on mass spectrometric detection of translated target polypeptides
JP3345401B2 (ja) * 1998-08-25 2002-11-18 ユニバーシティ オブ ワシントン 複合した混合物中のタンパク質またはタンパク質機能の迅速定量分析
GB9821393D0 (en) * 1998-10-01 1998-11-25 Brax Genomics Ltd Protein profiling 2
DE60124265D1 (de) * 2000-05-05 2006-12-14 Purdue Research Foundation Durch affinität ausgewählte unterschriftspeptide zur identifizierung und quantifizierung von proteinen
AU6689401A (en) 2000-06-12 2001-12-24 Univ Washington Selective labeling and isolation of phosphopeptides and applications to proteomeanalysis
CA2419159A1 (en) * 2000-08-11 2002-02-21 Agilix Corporation Ultra-sensitive detection systems
US7583710B2 (en) 2001-01-30 2009-09-01 Board Of Trustees Operating Michigan State University Laser and environmental monitoring system
US7973936B2 (en) 2001-01-30 2011-07-05 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
WO2002061799A2 (en) 2001-01-30 2002-08-08 Board Of Trustees Operating Michigan State University Control system and apparatus for use with laser excitation or ionization
US7450618B2 (en) * 2001-01-30 2008-11-11 Board Of Trustees Operating Michigan State University Laser system using ultrashort laser pulses
US7567596B2 (en) 2001-01-30 2009-07-28 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US7609731B2 (en) * 2001-01-30 2009-10-27 Board Of Trustees Operating Michigan State University Laser system using ultra-short laser pulses
US20020106700A1 (en) * 2001-02-05 2002-08-08 Foote Robert S. Method for analyzing proteins
EP1267170A1 (en) * 2001-06-07 2002-12-18 Xzillion GmbH & CO.KG Method for characterising polypeptides
CA2449680A1 (en) * 2001-06-07 2002-12-12 Xzillion Gmbh & Co. Kg Method for characterizing polypeptides
US6800449B1 (en) 2001-07-13 2004-10-05 Syngenta Participations Ag High throughput functional proteomics
WO2003027682A2 (en) 2001-09-27 2003-04-03 Purdue Research Foundation Controlling isotope effects during fractionation of analytes
CA2466861A1 (en) * 2001-11-06 2003-07-10 Agilix Corporation Sensitive coded detection systems
EP1490693A1 (en) 2002-04-04 2004-12-29 Xzillion GmbH & CO.KG Method for characterising analytes
US7094345B2 (en) * 2002-09-09 2006-08-22 Cytonome, Inc. Implementation of microfluidic components, including molecular fractionation devices, in a microfluidic system
US7195751B2 (en) * 2003-01-30 2007-03-27 Applera Corporation Compositions and kits pertaining to analyte determination
US20050164324A1 (en) * 2003-06-04 2005-07-28 Gygi Steven P. Systems, methods and kits for characterizing phosphoproteomes
CA2528370A1 (en) * 2003-06-06 2005-05-12 President And Fellows Of Harvard College Capture and release based isotope tagged peptides and methods for using the same
JP4576972B2 (ja) * 2003-10-16 2010-11-10 株式会社島津製作所 タンパク質又はペプチドのスルホン酸誘導体化されたn末端ペプチドフラグメントを質量分析する方法
US7579165B2 (en) * 2003-10-16 2009-08-25 Shimadzu Corporation Methods for derivatizing protein or peptide with sulfonic acid groups
US7355045B2 (en) 2004-01-05 2008-04-08 Applera Corporation Isotopically enriched N-substituted piperazine acetic acids and methods for the preparation thereof
US7307169B2 (en) 2004-01-05 2007-12-11 Applera Corporation Isotopically enriched N-substituted piperazines and methods for the preparation thereof
US20050148087A1 (en) * 2004-01-05 2005-07-07 Applera Corporation Isobarically labeled analytes and fragment ions derived therefrom
US20050147985A1 (en) * 2004-01-05 2005-07-07 Applera Corporation Mixtures of isobarically labeled analytes and fragments ions derived therefrom
JP2006078192A (ja) * 2004-09-07 2006-03-23 Shimadzu Corp 生体高分子の質量分析法
EP1851551A2 (en) * 2005-02-03 2007-11-07 Perkinelmer Las, Inc. Ultra-sensitive detection systems using multidimension signals
WO2006088841A1 (en) 2005-02-14 2006-08-24 Board Of Trustees Of Michigan State University Ultra-fast laser system
GB0515323D0 (en) 2005-07-26 2005-08-31 Electrophoretics Ltd Mass labels
GB0518585D0 (en) 2005-09-12 2005-10-19 Electrophoretics Ltd Mass labels
US8618470B2 (en) 2005-11-30 2013-12-31 Board Of Trustees Of Michigan State University Laser based identification of molecular characteristics
US9018562B2 (en) 2006-04-10 2015-04-28 Board Of Trustees Of Michigan State University Laser material processing system
US20090002703A1 (en) * 2006-08-16 2009-01-01 Craig Edward Parman Methods and systems for quantifying isobaric labels and peptides
JP2010503852A (ja) * 2006-09-14 2010-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ C末端のペプチドの識別に基づいたタンパク質の試料を分析するための方法
US8334506B2 (en) 2007-12-10 2012-12-18 1St Detect Corporation End cap voltage control of ion traps
US7973277B2 (en) 2008-05-27 2011-07-05 1St Detect Corporation Driving a mass spectrometer ion trap or mass filter
US8861075B2 (en) 2009-03-05 2014-10-14 Board Of Trustees Of Michigan State University Laser amplification system
EP2336783A1 (de) * 2009-12-18 2011-06-22 Basf Se C-terminale Sequenzierung von Aminosäuren
US8630322B2 (en) 2010-03-01 2014-01-14 Board Of Trustees Of Michigan State University Laser system for output manipulation
US11435358B2 (en) 2011-06-23 2022-09-06 Board Of Regents, The University Of Texas System Single molecule peptide sequencing
GB2577626B (en) 2011-06-23 2020-09-23 Univ Texas Identifying peptides at the single molecule level
US20150087526A1 (en) * 2012-01-24 2015-03-26 The Regents Of The University Of Colorado, A Body Corporate Peptide identification and sequencing by single-molecule detection of peptides undergoing degradation
CA3208970A1 (en) 2014-09-15 2016-05-06 Board Of Regents, The University Of Texas System Improved single molecule peptide sequencing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532207A (en) * 1982-03-19 1985-07-30 G. D. Searle & Co. Process for the preparation of polypeptides utilizing a charged amino acid polymer and exopeptidase
SE8803986D0 (sv) * 1988-11-03 1988-11-03 Pharmacia Ab Method for sequencing peptides or proteins
JPH0824576B2 (ja) * 1992-07-22 1996-03-13 農林水産省食品総合研究所長 新規アスパラギニルエンドプロテアーゼとその製造法並びに利用法
US5470703A (en) * 1992-10-21 1995-11-28 Shimadzu Corporation Method for peptide C-terminal fragment sequence analysis and apparatus for collecting peptide fragment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153712A (zh) * 2015-04-16 2016-11-23 深圳华大基因研究院 一种多肽二硫键的定位方法
CN112739708A (zh) * 2018-08-14 2021-04-30 德克萨斯大学系统董事会 对与主要组织相容性复合体结合的肽进行单分子测序

Also Published As

Publication number Publication date
AU721390B2 (en) 2000-06-29
DE69817211D1 (de) 2003-09-18
AU5674598A (en) 1998-08-18
ES2205437T3 (es) 2004-05-01
DE69817211T2 (de) 2004-06-03
NZ336768A (en) 2001-12-21
JP3795534B2 (ja) 2006-07-12
IL130949A0 (en) 2001-01-28
WO1998032876A1 (en) 1998-07-30
CA2278556C (en) 2003-07-29
EP1027454B1 (en) 2003-08-13
JP2001508872A (ja) 2001-07-03
EP1027454A1 (en) 2000-08-16
US6156527A (en) 2000-12-05
CN1118580C (zh) 2003-08-20
CA2278556A1 (en) 1998-07-30
IL130949A (en) 2004-12-15
ATE247173T1 (de) 2003-08-15

Similar Documents

Publication Publication Date Title
CN1118580C (zh) 对多肽的特性分析
JP4291161B2 (ja) 生体分子の同定および定量のための方法および装置
CN101313223B (zh) 用于包含2,6‑二甲基‑哌啶‑1‑基‑亚甲基或嘧啶‑2‑基硫代亚甲基质量标记部分以及琥珀酰亚胺基‑氧‑羰基活性官能团的生物分子的质量标记物
EP1397686B1 (en) Method for characterizing polypeptides
CN1602422A (zh) 分离及标记样品分子的方法
US20060141632A1 (en) New methods and kits for sequencing polypeptides
AU2001273568A1 (en) Methods and kits for sequencing polypeptides
EP1267170A1 (en) Method for characterising polypeptides
CN105241972A (zh) 层叠的转基因蛋白质的多重分析
WO2008064239A2 (en) Imidazolidine derivative mass tags
AU2002310611B2 (en) Method for characterizing polypeptides
Hummon From prohormones to neuropeptides: Mass spectrometric and bioinformatic approaches
AU2002310611A1 (en) Method for characterizing polypeptides
WO2003104813A2 (en) Characterising polypeptides
AU2002310610A1 (en) Characterising polypeptides
JP2008292390A (ja) タンパク質の同定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: XZILLION GMBH & CO. KG

Free format text: FORMER OWNER: JERRY BLACKSTONE GROUP CO., LTD.

Effective date: 20040514

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20040514

Address after: Frankfurt, Germany

Patentee after: X Cyrion Co.,Ltd.

Address before: cambridge

Patentee before: BRAX Group Ltd.

ASS Succession or assignment of patent right

Owner name: PROTEINUM SCIENCE RESEARCH AND DEVELOPMENT LIMITE

Free format text: FORMER OWNER: XZILLION GMBH + CO. KG FRANKFURT AM

Effective date: 20070928

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: ELECTROPHORESIS LTD.

Free format text: FORMER NAME OR ADDRESS: PROTEINUM SCIENCE RESEARCH AND DEVELOPMENT LIMITED PARTNERSHIP FRANKFURT AM

CP03 Change of name, title or address

Address after: surrey

Patentee after: ELECTROPHORETICS Ltd.

Address before: De Guo Frankfurt on the riverside

Patentee before: Protein science research and development GmbH & Co.KG

TR01 Transfer of patent right

Effective date of registration: 20070928

Address after: Germany Frankfurt on the riverside

Patentee after: Protein science research and development GmbH & Co.KG

Address before: Germany Frankfurt on the riverside

Patentee before: X Cyrion Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030820

Termination date: 20130123