CN1241443C - 薄膜整体声共振器的制造 - Google Patents

薄膜整体声共振器的制造 Download PDF

Info

Publication number
CN1241443C
CN1241443C CNB021184704A CN02118470A CN1241443C CN 1241443 C CN1241443 C CN 1241443C CN B021184704 A CNB021184704 A CN B021184704A CN 02118470 A CN02118470 A CN 02118470A CN 1241443 C CN1241443 C CN 1241443C
Authority
CN
China
Prior art keywords
air gap
semiconductor substrate
fbar
fluoride
piezoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021184704A
Other languages
English (en)
Other versions
CN1419387A (zh
Inventor
徐五权
全灿凤
朴万金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1419387A publication Critical patent/CN1419387A/zh
Application granted granted Critical
Publication of CN1241443C publication Critical patent/CN1241443C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开了一种制造气隙型薄膜整体声共振器(FBAR)的方法。该FBAR制造方法包括:(a)在半导体衬底上沉积并构图下电极;(b)在下电极上沉积并构图压电材料层;(c)在压电材料层上沉积并构图上电极;(d)形成穿过上电极、压电材料层和下电极的孔;以及(e)将氟化物注入到孔中,使得可以在半导体衬底上形成气隙,并且非等离子体蚀刻半导体衬底。因为FBAR制造方法在制造过程中不包括形成并去除牺牲层,所以制造工艺被简化。此外,不具有频率选择性的气隙可以形成,且FBAR的性能可以提高。

Description

薄膜整体声共振器的制造
                       技术领域
本发明涉及一种制造薄膜整体声共振器(film bulk acousticresonator)(FBAR)的方法,更具体地,涉及一种制造气隙型FBAR的方法。
                       背景技术
对于超高频波段,使用电介质共振器、金属腔共振器和压电薄膜共振器(FBAR)。这些共振器在小插入损耗、频率特性或温度稳定性方面是出众的。然而,它们过大,以致于不能在半导体衬底上被作成紧凑的、质轻的集成电路。当与电介质共振器或金属腔共振器相比时,FBAR可以制造成紧凑的并可在硅衬底或砷化镓(GaAs)衬底上制备,并具有小的插入损耗。
使用电介质共振器、金属腔共振器和FBAR共振器的滤波器是移动通讯系统所需的一种核心元件。滤波器制造技术对制造紧凑、质轻和低能耗的移动终端是必不可少的。
电介质滤波器和表面声波(SAW)滤波器最广泛地用于移动通讯的射频(RF)。
电介质滤波器用作家用移动电话的900MHz滤波器和PCS的1.8-1.9GHz双重滤波器。其特征在于高介电率、低插入损耗、高温稳定性、耐振动性和抗冲击性。然而,难以将小型电介质滤波器制成单片微波集成电路(MMIC)。
SAW滤波器小于电介质滤波器并易于处理信号,并具有电路简单和易于批量生产的优点。另外,SAW不需要调整。然而,因为制造工艺的限制,难以制造在超高频率(5GHz或更高)波段之上运行的SAW滤波器。
FBAR滤波器区别于以上滤波器,因为它可以非常轻和薄,并且易于借助半导体工艺批量生产,而且可以无任何限制地与RF有源元件结合。
FBAR滤波器是一种薄膜,在诸如ZnO或AlN的压电材料用RF溅射方法沉积在硅(Si)衬底或GaAs上之后,通过压电特性在该薄膜中形成空腔。
FBAR制造工艺包括隔膜型、布拉格反射层型和气隙型。
在隔膜型制造方法中,作为FBAR隔膜的硅P+层用离子生长方法沉积在硅上,硅衬底的相反侧各向异性蚀刻,以形成蚀刻挡并形成蚀刻腔。因为背部蚀刻以隔膜方法进行,所以共振器可能劣化。
在布拉格反射层型制造方法中,具有大的声阻抗差的材料每隔一层沉积在硅衬底上,形成布拉格反射,使得声能可集中在电极层之间以产生共振。布拉格反射层型制造方法有缺陷,因为它难以调整薄膜层的厚度,且如果厚度调节失败,声波可能因所接收的声波的相位变化而减弱。
气隙型FBAR制造方法是最新的技术,它被设计来克服这两种方法的不足。在气隙型FBAR制造方法中,使用了微加工技术,以在硅半导体衬底上形成牺牲层、制成气隙并产生共振。根据气隙型FBAR制造方法,气隙防止了共振器的损失,且在制造过程中该加工较容易。
图1A至1Q示出了制造现有气隙型FBAR的步骤。
如图1A所示,制备半导体衬底11。然后,如图1B所示,光致抗蚀剂12涂覆在半导体衬底11上,掩膜放置在光致抗蚀剂12上,并曝光光致抗蚀剂。掩膜具有预定结构,使得蚀刻部分如图1C那样形成在半导体衬底11上。
在显影已曝光的光致抗蚀剂后,以电感耦合等离子体反应离子蚀刻(ICPRIE)方法如图1C那样在半导体衬底上形成气隙。然后,如图1D所示,诸如多晶Si的牺牲层13叠置在半导体衬底11上。牺牲层13以化学机械抛光(CMP)平坦化工艺平坦,如图1E所示。当压电材料层17是AlN时,牺牲层13是ZnO。在压电材料层17是ZnO时,牺牲层13是多晶Si。
参照图1F,下电极15叠置在包括牺牲层的半导体衬底11上。进行光工艺以构图叠置的下电极,如图1G所示。图1H示出了通过光工艺形成的下电极15。
图1I示出了在下电极15上沉积压电材料层17的工艺。压电材料层17通过光工艺构图,如图1J所示。图1K示出了构图后的压电材料层17。
上电极19叠置在压电材料层17上。然后,如图1L和1M所示那样进行光工艺和构图。图1N显示了作为光工艺和构图的结果而形成的上电极19的构图。牺牲层依然包括在半导体衬底内。
图1O显示了形成穿过上电极19、压电材料层17和下电极15的孔10a以去除牺牲层的步骤。图1P显示了通过注入诸如KOH的蚀刻剂16到孔10a内而去除牺牲层13的步骤。牺牲层可以用等离子体湿法蚀刻或干法蚀刻。
图1Q显示了在以上过程中制造的气隙型FBAR。
现有气隙型FBAR的制造需要上述复杂的17个步骤。另外,在现有气隙型FBAR制造方法中,在半导体衬底被蚀刻后,蚀刻部分需要用牺牲层填充。于是,如果蚀刻部分很深,则将花费大量时间来制造牺牲层,且难以形成深的气隙。
此外,使牺牲层平坦化的额外工序是必要的,这导致了长的复杂制造工艺,且难以如所需那样精确地平坦化牺牲层。
尤其是,在去除牺牲层的步骤中,制造FBAR的薄膜可能被蚀刻,或者牺牲层蚀刻之后气隙内残余的废液导致FBAR的缺陷。
                       发明内容
为了解决上述问题,本发明的目的是提供一种薄膜整体声共振器(FBAR)的制造方法,用以通过在简化的制造过程中以低成本制造不具有频率选择性的气隙来提高FBAR的性能。
为了实现以上目的,提供一种气隙型薄膜整体声共振器(FBAR)的制造方法。该方法包括:(a)在半导体衬底上沉积并构图下电极;(b)在下电极上沉积并构图压电材料层;(c)在压电材料层上沉积并构图上电极;(d)形成穿过上电极、压电材料层和下电极的孔;以及(e)将氟化物注入到孔中,使得可以在半导体衬底上形成气隙,并且非等离子体蚀刻半导体衬底。
步骤(e)还包括在将氟化物注入到孔中之前蒸发氟化物。步骤(e)还包括对作为与氟化物反应的结果产生的材料进行真空抽吸。
优选的是,非等离子体蚀刻为化学干法蚀刻。
氟化物为XeF2
优选的是,气隙的宽度是从上电极与半导体衬底交汇的最外点到下电极与半导体衬底交汇的最外点的距离。
优选的是,气隙的深度为气隙宽度的一半。
在气隙型FBAR制造方法中,本发明简化了制造工序,并减少了制造工艺所花费的时间和成本。使用氟化物的非等离子体蚀刻方法可形成不具有频率选择性的气隙。于是,因为FBAR具有气隙,该气隙具有取决于射频(RF)振动数目的多种宽度和深度,所以采用FBAR的通讯系统的性能可以提高。
                       附图说明
通过参照附图详细地描述本发明的优选实施例,本发明的以上目的和优点将更加清晰,其中:
图1A至1Q显示制造现有气隙型薄膜整体声共振器(FBAR)的方法;
图2A至2L显示根据本发明一实施例制造FBAR的方法;
图3是显示采用了根据本发明实施例的FBAR的滤波器的顶视图;
图4显示根据本发明实施例制造FBAR的设备;
图5是显示利用用作掩膜的光致抗蚀剂以非等离子体蚀刻方法在半导体衬底上形成的气隙的照片;以及
图6是显示以非等离子体蚀刻方法在半导体衬底上形成的气隙的照片,其中,二氧化硅层利用用作掩膜的光致抗蚀剂沉积。
                     具体实施方式
通过参照附图描述本发明的优选实施例,本发明将得以详细说明。附图中,相同的附图标记标示相同的元件。
图2A至2L显示用于根据本发明实施例制造气隙型FBAR的方法。
为了制造FBAR,诸如硅或砷化镓(GaAs)的半导体衬底21如图2A所示那样制备。诸如铝(Al)的导电电极叠置在半导体衬底21上以形成下电极23,如图2B所示。下电极通过光工艺构图,如图2C所示。在光工艺中,光致抗蚀剂22涂覆在下电极23上,并且在光致抗蚀剂22上放置所需构图结构的掩膜。然后,进行曝光和显影。
图2D示出通过光工艺构图的下电极23。如图2E、2F和2G所示,在压电材料层25上进行同样的光工艺。
如图2H、2I和2J所示,在上电极27上进行相同的光工艺。
图2K显示形成孔20a的步骤,该孔穿过通过光工艺形成的上电极27、压电材料层25和下电极23。图2L显示通过将诸如XeF2的氟化物注入到孔20a内而蚀刻半导体衬底21的步骤。
图2L显示非等离子体蚀刻方法,该方法利用氟化物和化学方程1的化学反应。氟化物呈气态。
[化学方程1]
图3是显示采用了根据本发明实施例的FBAR的滤波器的顶视图。参照图3,压电材料层25制备在下电极23和上电极27之间,这些电极分别连接至接触焊点32和34。与SAW滤波器不同,FBAR滤波器取代表面波而使用了厚度波。
图4示出用于制造根据本发明实施例的FBAR的设备。参照图4,源室41与泵50和膨胀室43相连。膨胀室43与泵60和蚀刻室45相连。蚀刻室45与泵60和传输室47相连。传输室47连接泵50。连接点具有阀51至56。
为了制造根据本发明实施例的气隙型FBAR,在源室41内准备固体氟化物(XeF2),并将压力减至4乇或更低。该室中的温度为常温。该室中的压力减小至4乇或更低,以将固体氟化物升华成蒸汽。在此情形下,压力需要适当地调整,使得可以产生所需的气体氟化物。当阀51关闭时,阀52开启,泵50借助真空抽吸将源室内的压力降低,并将固体氟化物升华成蒸汽。
然后,阀51和54开启,阀52关闭。泵60运行,以将室41内的蒸汽氟化物传输至膨胀室43。在此过程中,膨胀室43被蒸汽氟化物填充。在该室中填充了适量的氟化物后,阀53和55开启,阀51和54关闭。然后,泵60运转,将膨胀室43内的蒸汽氟化物传输至蚀刻室45。
蚀刻室45具有其上形成了上电极、下电极和压电材料层的半导体衬底(未示出)。半导体衬底与注入到蚀刻室45内的蒸汽氟化物产生化学反应,并被蚀刻。氟化物的注入量应当根据所要在半导体衬底上形成的气隙的尺寸调整。氟化物的注入量依靠通过泵60降低的室压与阀53和55的开启/关闭时间来调节,该泵进行真空抽吸。膨胀室43内的压力被调节至约4乇,且蚀刻室45的压力被调节至约20mtorr。
当所需尺寸的气隙在蚀刻室45中在半导体衬底上形成后,阀55开启且阀53关闭。然后,泵60运转,以释放残存的蒸汽氟化物。
经过蚀刻工艺的FBAR被传送至传输室47。
图5和6是显示气隙的照片,该气隙使用利用氟化物的非等离子体蚀刻方法在半导体衬底上形成。参照图5,当将光致抗蚀剂用作掩膜时,在光致抗蚀剂的下侧形成半球形气隙。此时,光致抗蚀剂未受到任何损伤,且在半导体衬底上形成所需的半球形气隙。即,与现有的气隙型FBAR制造方法相比,根据本发明实施例的气隙型FBAR制造方法未对下电极造成任何损伤。
图6是显示在半导体衬底上用非等离子体蚀刻方法形成的气隙的照片,其中,二氧化硅层通过用作掩膜的光致抗蚀剂沉积。参照图6,二氧化硅层沉积在半导体衬底上,光致抗蚀剂涂覆在二氧化硅层上。然后,进行非等离子体蚀刻,所需的半球形气隙形成在二氧化硅层的下侧。
因为根据本发明实施例的气隙型FBAR制造方法不需要牺牲层,所以制造工艺被简化,且下电极具有高的粘接功和低的电阻。结果,连接至FBAR的芯片的品质因数(Q)提高。
另外,根据本发明的气隙型FBAR制造方法,气隙通过使用氟化物的非等离子体蚀刻形成,该气隙不具有使用选择性。于是,气隙尺寸可根据频率改变,且下电极不受损伤。
另外,因为根据本发明实施例的气隙型FBAR制造方法使用了蒸汽,所以不需要额外的清洁工序或干燥工序,且不残存蚀刻剂,缺陷可减至最少。
如上所述,根据本发明的气隙型FBAR制造方法简化了制造工艺,且大大降低了制造时间。气隙用利用氟化物的非等离子体蚀刻形成,该气隙不具有使用选择性。于是,下电极具有高粘接功和低的电阻,且FBAR的性能能提高。

Claims (7)

1.一种气隙型薄膜整体声共振器的制造方法,该方法包括:
(a)在半导体衬底上沉积并构图下电极;
(b)在下电极上沉积并构图压电材料层;
(c)在压电材料层上沉积并构图上电极;
(d)形成穿过上电极、压电材料层和下电极的孔;以及
(e)将氟化物注入到孔中,使得可以在半导体衬底上形成气隙,并且非等离子体蚀刻半导体衬底。
2.如权利要求1所述的方法,其中,步骤(e)还包括:
在将氟化物注入到孔中之前蒸发固体氟化物。
3.如权利要求2所述的方法,其中,步骤(e)还包括:
对作为与氟化物反应的结果而产生的材料进行真空抽吸。
4.如权利要求3所述的方法,其中,非等离子体蚀刻为化学干法蚀刻。
5.如权利要求3或4所述的方法,其中,氟化物为XeF2
6.如权利要求1所述的方法,其中,气隙的宽度是从上电极与半导体衬底交汇的最外点到下电极与半导体衬底交汇的最外点的距离。
7.如权利要求1所述的方法,其中,气隙深度为气隙宽度的一半。
CNB021184704A 2001-11-13 2002-04-26 薄膜整体声共振器的制造 Expired - Fee Related CN1241443C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020010070378A KR20030039446A (ko) 2001-11-13 2001-11-13 Fbar 제조방법
KR70378/2001 2001-11-13
KR70378/01 2001-11-13

Publications (2)

Publication Number Publication Date
CN1419387A CN1419387A (zh) 2003-05-21
CN1241443C true CN1241443C (zh) 2006-02-08

Family

ID=19715932

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021184704A Expired - Fee Related CN1241443C (zh) 2001-11-13 2002-04-26 薄膜整体声共振器的制造

Country Status (5)

Country Link
US (1) US20030088960A1 (zh)
EP (1) EP1315293A3 (zh)
JP (1) JP2003198301A (zh)
KR (1) KR20030039446A (zh)
CN (1) CN1241443C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545814A (zh) * 2010-12-10 2012-07-04 原子能和能源替代品委员会 用于制造包括悬浮隔膜的声波谐振器的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI242883B (en) * 2001-06-28 2005-11-01 Winbond Electronics Corp Manufacturing process of high-frequency thin-film bulk acoustic wave filter and apparatus thereof
KR100555762B1 (ko) 2003-10-07 2006-03-03 삼성전자주식회사 에어갭형 박막 벌크 음향 공진기 및 그 제조방법, 이를이용한 필터 및 듀플렉서
US7113055B2 (en) * 2003-11-07 2006-09-26 Matsushita Electric Industrial Co., Ltd. Piezoelectric resonator, method of manufacturing piezoelectric resonator, and filter, duplexer, and communication device using piezoelectric resonator
KR100622955B1 (ko) * 2004-04-06 2006-09-18 삼성전자주식회사 박막 벌크 음향 공진기 및 그 제조방법
JP4476903B2 (ja) * 2005-08-24 2010-06-09 株式会社東芝 薄膜圧電共振器およびフィルタ回路
JP4707533B2 (ja) 2005-10-27 2011-06-22 太陽誘電株式会社 圧電薄膜共振器およびフィルタ
JP5220503B2 (ja) 2008-07-23 2013-06-26 太陽誘電株式会社 弾性波デバイス
KR101009484B1 (ko) * 2008-07-24 2011-01-21 민승기 저수지 또는 연안 지역의 양식장용 친환경적인 보온장치
JP2010232983A (ja) * 2009-03-27 2010-10-14 Nippon Telegr & Teleph Corp <Ntt> 薄膜振動子およびその製造方法
TWI373450B (en) * 2009-07-29 2012-10-01 Pixart Imaging Inc Microelectronic device and method for fabricating mems resonator thereof
US10658998B2 (en) 2013-07-31 2020-05-19 Oepic Semiconductors, Inc. Piezoelectric film transfer for acoustic resonators and filters
CN104767500B (zh) * 2014-01-03 2018-11-09 佛山市艾佛光通科技有限公司 空腔型薄膜体声波谐振器及其制备方法
CN108900173B (zh) * 2018-07-04 2022-03-04 杭州左蓝微电子技术有限公司 一种以硅为牺牲层的薄膜体声波谐振器制备方法
CN109302158B (zh) * 2018-08-01 2021-07-16 广州市艾佛光通科技有限公司 一种薄膜体声波谐振器及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103264A (en) * 1976-01-30 1978-07-25 Vernitron Corporation Wave filter and process for making same
US4502932A (en) * 1983-10-13 1985-03-05 The United States Of America As Represented By The United States Department Of Energy Acoustic resonator and method of making same
US4672254A (en) * 1985-10-11 1987-06-09 Massachusetts Institute Of Technology Surface acoustic wave devices and method of manufacture thereof
EP0534354A1 (en) * 1991-09-25 1993-03-31 Sumitomo Electric Industries, Limited Surface acoustic wave device and manufacturing method thereof
US5587620A (en) * 1993-12-21 1996-12-24 Hewlett-Packard Company Tunable thin film acoustic resonators and method for making the same
KR0155141B1 (ko) * 1993-12-24 1998-10-15 손병기 다공질실리콘을 이용한 반도체 장치의 제조방법
US5534107A (en) * 1994-06-14 1996-07-09 Fsi International UV-enhanced dry stripping of silicon nitride films
JPH0983029A (ja) * 1995-09-11 1997-03-28 Mitsubishi Electric Corp 薄膜圧電素子の製造方法
US5853601A (en) * 1997-04-03 1998-12-29 Northrop Grumman Corporation Top-via etch technique for forming dielectric membranes
JP4065049B2 (ja) * 1998-03-19 2008-03-19 オリンパス株式会社 圧電セラミクス構造体の製造方法及び複合圧電振動子の製造方法
FI108583B (fi) * 1998-06-02 2002-02-15 Nokia Corp Resonaattorirakenteita
US6320295B1 (en) * 1998-11-18 2001-11-20 Mcgill Robert Andrew Diamond or diamond like carbon coated chemical sensors and a method of making same
JP2000173301A (ja) * 1998-12-10 2000-06-23 Seiko Epson Corp 圧電発光素子、表示装置およびそれらの製造方法
US6307447B1 (en) * 1999-11-01 2001-10-23 Agere Systems Guardian Corp. Tuning mechanical resonators for electrical filter
TW436933B (en) * 1999-12-30 2001-05-28 Taiwan Semiconductor Mfg Method for defining a pattern
US6887337B2 (en) * 2000-09-19 2005-05-03 Xactix, Inc. Apparatus for etching semiconductor samples and a source for providing a gas by sublimation thereto
JP4083968B2 (ja) * 2000-11-02 2008-04-30 株式会社東芝 半導体装置の製造方法
US6601276B2 (en) * 2001-05-11 2003-08-05 Agere Systems Inc. Method for self alignment of patterned layers in thin film acoustic devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545814A (zh) * 2010-12-10 2012-07-04 原子能和能源替代品委员会 用于制造包括悬浮隔膜的声波谐振器的方法
CN102545814B (zh) * 2010-12-10 2017-03-01 原子能和能源替代品委员会 用于制造包括悬浮隔膜的声波谐振器的方法

Also Published As

Publication number Publication date
KR20030039446A (ko) 2003-05-22
CN1419387A (zh) 2003-05-21
EP1315293A2 (en) 2003-05-28
EP1315293A3 (en) 2004-05-26
JP2003198301A (ja) 2003-07-11
US20030088960A1 (en) 2003-05-15

Similar Documents

Publication Publication Date Title
CN1241443C (zh) 薄膜整体声共振器的制造
US7128941B2 (en) Method for fabricating film bulk acoustic resonator (FBAR) device
CN110995196B (zh) 谐振器的制备方法和谐振器
US7793395B2 (en) Method for manufacturing a film bulk acoustic resonator
KR100616508B1 (ko) Fbar 소자 및 그 제조방법
US20130049545A1 (en) Resonator device including electrodes with buried temperature compensating layers
CN109302158B (zh) 一种薄膜体声波谐振器及其制备方法
AU4884000A (en) Thin film resonator apparatus and method of making same
CN112134542B (zh) 体声波谐振器、体声波谐振器组件及制造方法、滤波器及电子设备
JP2002198758A (ja) FBAR(FilmBulkAcousticResonator)素子及びその製造方法
CN112117986B (zh) 谐振器制造方法
KR100470711B1 (ko) 폴리 실리콘 희생층 및 에칭 방지 벽을 이용한 에어갭형fbar 제조 방법 및 그 장치
CN107026627A (zh) 垂直阵列纳米柱薄膜体声波谐振器及其制备方法和滤波器
US20030094431A1 (en) Method for making a thin film bulk acoustic-wave resonator
US7119638B2 (en) Film bulk acoustic resonator having an air gap and a method for manufacturing the same
CN113193846A (zh) 一种带混合横向结构特征的薄膜体声波谐振器
CN113630099A (zh) 体声波谐振器及制造方法、体声波谐振器组件、滤波器及电子设备
US6657517B2 (en) Multi-frequency thin film resonators
JP2005303573A (ja) 薄膜圧電共振器及びその製造方法
CN116633308A (zh) 一种薄膜体声波谐振器及其制备方法和应用
CN115733457A (zh) 体声波谐振器组件的制造方法
CN114928348B (zh) 一种滤波器、通信设备及其制造方法
CN114301406B (zh) 空腔型压电单晶体声波谐振器及其制备方法
CN116248069A (zh) 体声波谐振器及其制备方法
CN118631199A (zh) 一种体声波谐振器的制备方法及装置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060208