JP4065049B2 - 圧電セラミクス構造体の製造方法及び複合圧電振動子の製造方法 - Google Patents

圧電セラミクス構造体の製造方法及び複合圧電振動子の製造方法 Download PDF

Info

Publication number
JP4065049B2
JP4065049B2 JP07084398A JP7084398A JP4065049B2 JP 4065049 B2 JP4065049 B2 JP 4065049B2 JP 07084398 A JP07084398 A JP 07084398A JP 7084398 A JP7084398 A JP 7084398A JP 4065049 B2 JP4065049 B2 JP 4065049B2
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
piezoelectric
silicon
rod
pzt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07084398A
Other languages
English (en)
Other versions
JPH11274592A (ja
Inventor
詩男 王
正喜 江刺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Olympus Corp
Original Assignee
Olympus Corp
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Aloka Co Ltd filed Critical Olympus Corp
Priority to JP07084398A priority Critical patent/JP4065049B2/ja
Publication of JPH11274592A publication Critical patent/JPH11274592A/ja
Application granted granted Critical
Publication of JP4065049B2 publication Critical patent/JP4065049B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Micromachines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密度が高く微細な構造を有する圧電セラミクス構造体の製造方法およびこの圧電セラミクス構造体を用いた複合圧電振動子に関するものである。
【0002】
【従来の技術】
微細で、高アスペクト比のPZT/高分子1−3複合圧電振動子は、医療用高感度マイクロ超音波トランスデューサー用に有望な振動子である。PZT/高分子1−3複合圧電振動子は図9の(f)に示すように、圧電セラミクスロッドアレイをポリマー中に埋め込んだ構造である(以下、PZT/高分子1−3複合圧電振動子を複合圧電振動子と称す)。図9は複合圧電振動子を製造する従来技術の工程図である。バルクPZTに比べて、複合圧電振動子は電気機械結合係数が大きく、音響インピーダンスが小さいため、人体組織とのマッチングが良く、高分解能が得られる。複合圧電振動子を高感度化するためには高アスペクト比が必須である。また複合圧電振動子を小型化するためには圧電セラミクス構造体を微細化することが必須である。
【0003】
従来、微細な圧電セラミクス構造体を製造する方法の一例として、マイクロマシン技術を応用した方法がある。この方法は、シンクロトロン放射光を用いたX線リソグラフィー技術により樹脂型を成形し、この樹脂型に圧電セラミクスを充填してロストワックス法にてセラミクスロッドアレーを成形し、微細な圧電セラミクス構造体とするものである。
【0004】
この方法は、例えば、住友電気第148号(1996)P129「ディープエッチX線リソグラフィによる複合圧電振動子の製作」(以下、先行文献1と記す)に記載されている。先行文献1には、図9に示すように、以下の工程からなる圧電セラミクス構造体および複合圧電振動子の製造方法が説明されている。(a)図9(a)に示すように、150μmの厚さのMMA(メタクリル酸メチル)/MAA(メタクリル酸)共重合体のレジストにマスクを介してシンクロトロン放射光を照射後、現像してレジスト構造体を得る。(b)図9(b)に示すように、上記レジスト構造体を樹脂型として用いて、PZT(チタン酸ジルコン酸鉛)粉体、バインダー、および、水からなるPZTスラリーを注入する。そして、PZTスラリーを室温で乾燥固化させてPZTグリーン体を得る。(c)図9(c)に示すように、酸素プラズマにより樹脂型を除去する。次に、PZTグリーン体を500℃で脱脂(バインダー除去)し、1200℃で本焼成を行ってPZTロッドアレイ(直径20μm、高さ140μm)を成形して、圧電セラミクス構造体とする。(d)図9(d)に示すように、PZTロッドアレイにエポキシ樹脂を真空含浸し、硬化する。(e)図9(e)に示すように、PZTロッド両端の表面が露出するまでエポキシ樹脂を研磨して、平坦化する。(f)図9(f)に示すように、平坦化した両面に金をスパッタ蒸着して電極を形成する。そして、オイルバス中で電極に電圧をかけてロッドアレイに電界を印加し分極処理を行い、圧電性を付与する。このようにして、複合圧電振動子を完成する。
【0005】
微細な圧電セラミクス構造体を製造する別の方法の例として、上記樹脂型の代わりに金属型を使用した方法がある。この方法は、例えば、特開平6−45664号(以下、先行文献2と記す)に記載されている。先行文献2には、樹脂型を作成した後に電気メッキ工程により金属型を作り、その金属型にPZTスラリーを注入してPZTロッドアレイを成形し、圧電セラミクス構造体とする工程が説明されている。
【0006】
しかし、これらの方法においては、以下のような問題点が存在していた。
(1)先行文献1に記載された方法においては、十分密度の高い圧電セラミクス構造体が得られず、最終的に空孔度が大きいものしか得られない。それは、PZTスラリーを注入する際、真空引きおよび超音波攪拌を用いた場合でも、残留空気、PZTスラリーの表面張力の為に、樹脂型へ十分にPZTスラリーを注入することが難しいからである。圧電セラミクスの密度が低いために、複合圧電振動子としての性能が高いものとならなかった。
【0007】
(2)また、先行文献1に記載された方法においては、所望する微細な形状を有する圧電セラミクス構造体を高精度に得ることができない。それは、PZTグリーン体を焼成する際にPZT単体のみで焼成しているために、PZT単体の持つ初期内部応力や構造のわずかな非対称性等により、焼成後のPZTロッドが傾いてしまうからである。また、前述のように圧電セラミクスの密度が低いために密度にムラが生じ、初期内部応力にバラツキが生じて、焼成後のロッドが傾きやすくなっていた。微細な形状を有する圧電セラミクス構造体を得ることができないため、複合圧電振動子自体も小型化することが困難であった。
【0008】
(3)さらに、先行文献1の方法においては、アスペクト比の高いロッドを成形することができなかった。それは、アスペクト比の高いロッドを成形すると、焼成後に傾いたロッドが互いに接触しやすくなるからである。アスペクト比が低いために、振動子の発振音圧が低く、発振信号のS/N比が低かった。
【0009】
(4)先行文献2に記載された方法においては、成形後に金属型をはずす工程が必要であり、また、金属型をはずすことは容易ではなかった。特に、PZTの密度を高めようとして高温・高圧のもとでPZTグリーンを充填すると、PZTと金属型とが反応焼結するため、両者を分離することはより困難となっていた。
【0010】
【発明が解決しようとする課題】
本発明の目的は、成形後の型除去が容易で、かつ圧電セラミクスの密度が大きく、微細で高精度な形状を有し、またアスペクト比の高い圧電セラミクス構造体の製造方法、およびこの圧電セラミクス構造体を用いた複合超音波振動子を提供することである。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明においてはシリコンから形成された型を用いて圧電セラミクスを成形することとした。シリコン型を用いることにより、圧電セラミクスを型に充填したまま、高圧下のもとで高温焼成することができる。その結果、密度が高く、微細・高精度で、アスペクト比の高い圧電セラミクス構造体を得ることができる。さらに、シリコン型はエッチング処理によって成形後に容易に除去することができる。
【0012】
(1)すなわち、本発明によれば、(a)シリコン基材上に反応性イオンエッチング法を用いて複数の穴を開口する工程と、(b)圧電セラミクス粉体とバインダーを含むスラリーを、該穴内部を含むシリコン基材表面上に塗布する工程と、(c)塗布膜を乾燥させたのち、バインダーを除去する工程と、(d)バインダーを除去した試料を保護用セラミクス粉体で包み込んだのち、圧電セラミクスの焼結温度下で加圧して圧電セラミクスを焼成する工程と、(e)焼成後、保護用セラミクス粉体を除去しシリコン基材をエッチング除去して圧電セラミクス板とその上の圧電セラミクスロッドを得る工程とを含むことを特徴とする圧電セラミクス構造体の製造方法が提供される。
【0013】
(2)本発明においては、該工程(b)において、該穴内部を含むシリコン基材表面上に窒化シリコンもしくは酸化シリコンからなるセラミクス保護膜を設けたのちに、圧電セラミクス粉体とバインダーを含むスラリーを塗布することことが好ましい。
【0014】
(3)また、本発明によれば、(1)または(2)の方法によって製造された圧電セラミクス板上の圧電セラミクスロッド間に樹脂を充填して硬化させたのち、圧電セラミクス板およびロッドの両端を研磨・除去してロッドの両端面を露出させた圧電セラミクス−樹脂複合体を得る工程と、圧電セラミクス−樹脂複合体のロッドが露出した面に電極を形成する工程とを含むことを特徴とする複合圧電振動子の製造方法が提供される。
【0015】
【発明の実施の形態】
以下、図面を参照して、本発明を詳細に説明する。
最初に、本発明に係る圧電セラミクス構造体、および複合圧電振動子の構造について説明する。
【0016】
図7は、圧電セラミクス構造体の一例を示す概略斜視図である。圧電セラミクス構造体は、板状の圧電セラミクス板1の上にアスペクト比の高い円柱形状の圧電セラミクスロッド2が一定の周期で垂直に林立した構造をなしている。圧電セラミクスとしては、例えばチタン酸ジルコン酸鉛(PZT)などが挙げられる。なお、図7において、圧電セラミクスロッド2の大きさ、周期間隔等は誇張して描いてあり、セラミクスロッドの数も実際の複合圧電振動子で用いる数よりも少ない。また、図において、Dはロッド2の直径、hはロッド2の高さ、pはロッド2の周期間隔である。
【0017】
図8(a)は、複合圧電振動子の一例を示す概略斜視図である。複合圧電振動子は、図7に示した圧電セラミクス構造体のロッド2の間隙に樹脂3などのような高分子マトリックスを充填したのち、圧電セラミクス板1を研削・研磨除去して得られた圧電セラミクス−樹脂複合体の構造となっている。なお、図8(a)において、圧電セラミクスロッド2の大きさ、周期間隔等は誇張して描いてあり、セラミクスロッド2の数も実際の複合圧電振動子で用いる数よりも少ない。また、図において、Dはロッド2の直径、hはロッド2の高さ、pはロッド2の周期間隔である。図8(a)に示した試料の上下面に金などを蒸着して電極を設けて、複合圧電振動子として使用する。
【0018】
図8(b)は、複合圧電振動子の一例を示す概略平面図である。図8(b)において、複合圧電振動子は中央に貫通孔15を有する厚みの薄いドーナツ形状となっている。ドーナツの中の小さい円のそれぞれが図8(a)の圧電セラミクスロッド2を示しており、紙面に対し垂直方向がロッド2の長手方向となっている。
【0019】
(I)圧電セラミクス構造体の製造方法
まず、図7に示した圧電セラミクス構造体を製造する方法について説明する。本方法は以下の工程からなる。(1)シリコン型を作成する工程、(2)PZTスラリーをキャスティングする工程、(3)HIP処理をする工程、(4)シリコン型を除去する工程である。
【0020】
図1を参照して、各工程について詳細に説明する。
(1)シリコン型を作成する工程
図1(a)に示すように、シリコン(Si)基板上にフォトレジスト4を塗布する。レジスト4層に所望のパターンを露光したのちに現像する。パターンは、製造する圧電セラミクス構造体の形状、寸法によるが、本例の場合には、円柱形状の圧電セラミクスロッド2の径に対応した複数の円形などが挙げられる。
【0021】
次に、ディープRIE(反応性イオンエッチング)法により、レジスト層4のパターンに従ってシリコン基板に穴5を開けてシリコン型6を形成する。穴5はシリコン基板を貫通していても良いし、貫通していなくても良い。ディープRIE法は、アスペクト比が大きくシリコン基板面に対して垂直な側壁を有する穴5を形成することができるエッチング方法であり、当該技術分野で良く知られている方法である。
【0022】
なお、図3に示したように、穴5を開けた後に、穴5底部および穴5側面部を含めたシリコン型6表面に、窒化シリコンまたは酸化シリコンなどからなるセラミクス保護膜7を設けることが好ましい。シリコン型6表面にこのようなセラミクス保護膜7を設けることにより、後述する(c)HIP処理をする工程において圧電セラミクスとシリコン型6との反応を最小限に抑えることができる。また、後述する(d)シリコン型6を除去する工程においても、エッチング除去するエッチング材として、高価なXeF2 ガスではなく、TMAH(テトラメチルアンモニウムヒドロキシド)などの安価なエッチング材を使用することができる。それは、保護膜7によって、TMAHがシリコン型6とともに圧電セラミクスもエッチングすることを防ぐことができるからである。
【0023】
(2)圧電セラミクスのスラリーをキャスティングする工程
図1(b)に示すように、圧電セラミクス8のスラリーを超音波攪拌などによって加振しながら、(1)の工程で作成したシリコン型6に流し込む。スラリーは、圧電セラミクス8粉体、バインダーおよび水などから構成される混合物からなる。バインダーとしては、PVA(ポリビニルアルコール)などが挙げられる。
【0024】
スラリーの流し込みは、シリコン型6の穴5に圧電セラミクス8を充填するとともに、圧電セラミクス8が充填されたシリコン型6の上を圧電セラミクス8が覆うように行う。シリコン型6の表面を覆う圧電セラミクス8は、それぞれの穴5に充填された圧電セラミクス8と一体化される。
【0025】
次に、シリコン型6に流し込んだスラリーを乾燥させて、圧電セラミクス8をグリーン状態とする。乾燥方法としては自然乾燥などが挙げられる。
最後に、グリーン状態の圧電セラミクス8を脱脂する。脱脂とは圧電セラミクス8粉体のバインダーを除去することである。脱脂の方法としては、空気中で高温に保つ方法などが挙げられる。なお、脱脂した状態では、穴5の中の圧電セラミクス8の密度は十分には高くない。
【0026】
(3)HIP処理をする工程
図1(c)に示すように、前述の脱脂した試料にHIP(ホットアイソスタティックプレシング:熱間静水圧焼結)処理を行う。HIP処理はシリコン型6中の圧電セラミクス8粉体の密度を大きくするためであり、当該技術分野で良く知られた方法で行うことができる。
【0027】
図4および図5にHIP処理の手順を示す。
最初に、図4に示すようにして、試料にCIP(コールドアイソスタティックプレシング)処理を行う。つまり、図1(b)の脱脂した試料をBN(窒化ボロン)粉末などの反応性の低い保護用セラミクス粉体9で包み込んだ後、ゴムチューブ10、テープ11で周囲を包んで保持する。この試料を水中に置き、例えば約100MPaの等方圧をかける。CIP処理によって、圧電セラミクス8粉体をかなり高密度に圧縮することができる。
【0028】
次に、図5(a)に示すようにして、保護用セラミクス粉体9で包んだ試料をパイレックスガラスなどのガラスカプセル内に封じ込める。つまり、ガラス管の中の真空度が10-3Pa以下になるまで排気を行い、次にガラス管を約750℃まで加熱し試料を包むようにガラス管を軟化させる。その後、ガスバーナーでガラスカプセルをガラス管から切り離す。保護用セラミクス粉体9によって試料を包み込むことで、ガラスカプセル13内への封じ込め時、または次のHIP処理時に、試料とガラスカプセル13の間の反応を防ぐことができる。
【0029】
なお、保護用セラミクス粉体9としては窒化ボロンに限らず、該試料とガラスカプセルとの間の反応を防いだり、それ自身がシリコンやPZTとの反応性が低いようなセラミクス材料ならば他の材料でも構わない。
【0030】
最後に、図5(b)に示すようにして、試料にHIP処理を行う。つまり、試料を封じ込めたガラスカプセル13をArなどの不活性ガス中で加熱しながら、このカプセル13に等方圧を印加する。
【0031】
HIP処理の際の、試料に印加する温度と圧力のプログラムの一例を図6に示す。
最初に、例えば約1MPaの低い圧力をかけながら、試料の温度をガラスの軟化点(パイレックスガラスの場合、約750℃)まで上昇させる。
【0032】
次に、温度と圧力を同時に上昇させて、圧電セラミクス8粉末が焼結する温度(PZT粉末の場合、約1000℃)および約70MPaの高圧力を印加する。そして、この状態のもとで例えば約2時間、保持する。
【0033】
上述したHIP処理の後、温度、圧力を徐々に下げる。所定の温度、圧力まで下げた後に、試料をガラスカプセル13および保護用セラミクス粉体9から取り出す。
【0034】
なお、前述したように、(1)のシリコン型6を作成する工程で、窒化シリコンまたは酸化シリコンなどからなるセラミクス保護膜7をシリコン型6に設けておくことによって、HIP処理の際に、圧電セラミクス8とシリコン型6との間に相互拡散などの反応が起きることを最小限に抑えることができる。反応が抑えられることで、圧電セラミクス8の成分、例えばPZT中の鉛などがシリコン型6中へと拡散して圧電セラミクス8の圧電性が失われることなどを抑制することが可能となる。
【0035】
(4)シリコン型を除去する工程
図1(d)に示すように、HIP処理を行った試料を、XeF2 ガスなどのエッチング材を用いてエッチングし、圧電セラミクス8を残してシリコン型6のみをエッチング除去する。XeF2 ガスは、PZTなどの圧電セラミクス8を残してシリコンのみを選択的にエッチングすることができるエッチング材である。
【0036】
なお、前述したように、(1)のシリコン型6を作成する工程で、窒化シリコンまたは酸化シリコンなどからなるセラミクス保護膜7をシリコン型6に設けておくことで、高価なXeF2 ガスなどではなくTMAHなどの安価なエッチング材を使うことが可能となる。それは、TMAHなどはXeF2 ガスと異なってシリコンとともに圧電セラミクスもエッチングするエッチング材であるが、保護膜7を設けておくことで、シリコンのみをエッチング除去して圧電セラミクスのエッチングを防ぐことができるからである。
【0037】
以上説明した(1)〜(4)の工程によって、図7に示すような、圧電セラミクス板1の上に圧電セラミクスロッド2が林立した構造の圧電セラミクス構造体を製造することができる。なお、図7に示した構造以外の圧電セラミクス構造体についても、上述の方法によって同様にしてシリコン型6から製造できることは言うまでもない。
【0038】
本発明に係る圧電セラミクス構造体の製造方法においては、シリコンからなる型6を使用している。そのため、高温・高圧下で圧電セラミクス8を充填することができる。
【0039】
すなわち、シリコン型6に圧電セラミクス8を充填したまま、高圧下で圧電セラミクス8を焼成することができる。これは、シリコンの融点(約1414℃)が圧電セラミクス8の焼結温度(PZTの場合、約1000℃)よりも十分に高く、またシリコンの強度が十分に高いために、高温・高圧下でもシリコン型6が溶融または変形しないからである。
【0040】
圧電セラミクス8を高圧下で焼成できるため、高密度な圧電セラミクス構造体を得ることが可能となる。
また、型6に圧電セラミクス8を充填したまま焼成できるため、圧電セラミクス8の持つ初期内部応力や構造のわずかな非対称性等によって焼成後の圧電セラミクス8が傾くということを防ぐことができる。また、密度の高く均一な圧電セラミクス8を得ることができるため、初期内部応力のバラツキに起因する焼成後の圧電セラミクス8の傾斜を防止できる。このように、圧電セラミクス8が焼成後に変形しないので、所望の微細で高精度な形状の圧電セラミクス構造体を得ることが出来る。
【0041】
また、焼成後に圧電セラミクス8が傾かないため、アスペクト比の高い圧電セラミクスロッド2を成形しても、焼成後にロッド2が互いに接触することがない。従って、アスペクト比の高い圧電セラミクスロッド2を容易に成形することができる。
【0042】
さらに、シリコン型6はエッチング処理によって成形後に容易に除去することが可能である。
(II)複合圧電振動子の製造方法
次に、上述のようにして製造したセラミクス構造体を用いて、複合圧電振動子を製造する方法について説明する。
【0043】
本方法はロストモールド法であり、(I)で説明した工程に続いて以下の工程を行う。(5)樹脂を充填する工程、(6)研磨、電極付与、圧電性付与を行う工程である。
【0044】
(5)樹脂を充填する工程
図2(a)に示すように、図7に示す円柱形状の圧電セラミクスロッド2の間隙に、エポキシ樹脂などの樹脂3を充填する。樹脂3の充填の仕方としては、圧電セラミクス構造体を密閉容器の中に置いて容器内を真空引きしながら、容器に別に設けた注入口から樹脂3を注入して、圧電セラミクス構造体に樹脂3を充填する方法などが挙げられる。充填した後、樹脂3を硬化させる。
【0045】
(6)研磨、電極付与、圧電性付与を行う工程
まず、樹脂3を充填した圧電セラミクス構造体の両面を研削・研磨する。そして圧電セラミクス板1を除去し、圧電セラミクスロッド2と樹脂3の両方を露出させて、図8(a)に示すような圧電セラミクス−樹脂複合体の試料を得る。
【0046】
次に、図2(b)に示すように、図8(a)に示した試料の上下面に金などを蒸着して電極14を設ける。そして、電極14間にDC電圧を印加して圧電セラミクスロッド2の分極を行い、セラミクスロッド2に圧電性を付与する。
【0047】
最後に、外形加工および貫通孔15の開口を行うことにより、環状の複合圧電振動子を完成させる。
前述したように、本発明に係る複合圧電振動子は、圧電セラミクス8の密度が高く、微細・高精度な形を有し、またアスペクト比の高い圧電セラミクス構造体を用いている。
【0048】
圧電セラミクス8の密度が高いために、複合圧電振動子の性能を高くすることができる。また、圧電セラミクス構造体が微細・高精度な形を有しているため、複合圧電振動子自体も容易に小型化することができる。さらに、圧電セラミクス構造体のアスペクト比が高いために、複合圧電振動子の発振音圧を高くでき、ひいては発振信号のS/N比を高くすることができる。
【0049】
【実施例】
本発明の一実施例として、PZT圧電セラミクスを用いて圧電セラミクス構造体および複合圧電振動子を製造した。以下、前述の図面を参照して詳細に説明する。
【0050】
(1)最初に、図1(a)に示すようにして、シリコン型6を作成した。まず、シリコン基板上にフォトレジスト材4を塗布した。レジスト材4としてポジレジスト材を用いた。レジスト層4の厚みは6μmとした。パターンを露光したのち現像してレジスト層4のパターニングを行った。パターンに従ってディープRIE法によってシリコン基板をエッチングし、直径が約16μm、深さが約100μmの高アスペクト比の複数の穴5を、シリコン基板上に形成した。穴5の形状は、シリコン基板面に対して十分垂直な側壁を有するものであった。
【0051】
(2)次に、図1(b)に示すように、PZTスラリーをキャスティングした。まず、PZTスラリーを超音波攪拌によって加振しながら、シリコン型6に流し込んだ。PZTスラリーとしては、PZT粉末8(Pb(Zr0.52Ti0.48)O3 )、PVAおよび水の混合体を用いた。PZT粉末8の平均粒子サイズは0.3μmであった。PZTスラリーを流し込んだシリコン型6を12時間以上自然乾燥させて水分を蒸発させ、PZT8をグリーン状態とした。乾燥させたのち、2時間以上空気中で500℃で加熱してPVAを除去し、PZT8を脱脂した。
【0052】
(3)次に、図1(c)、ならびに図4および図5に示すようにして、HIP処理を行った。まず、脱脂した試料をBN粉末9で包み込んだ後、ゴムチューブ10、テープ11で周囲を包んで、水中に置いた。そして、水中で約100MPaの等方圧をかけてCIP処理を行った。次に、BN粉末9中の試料をパイレックスガラス製のガラスチューブ12に入れ、チューブ12内を約10-3Paの真空状態まで真空引きした。その後、ガラスチューブ12をパイレックスガラスの軟化点(約750℃)まで加熱して試料を包むようにガラスチューブ12を軟化させた。次に、ガスバーナーでガラスカプセル13をガラスチューブ12から切り離し、試料をガラスカプセル13内に封じ込めた。最後に、ガラスカプセル13に封じ込めた試料を、図6に示したプログラムに従って、Arガス中で加熱し圧力をかけた。すなわち、最初に約1MPaの低い圧力をかけながら、試料の温度を約750℃まで上昇させた。次に、温度を約1000℃、圧力を約70MPaまで上昇させて、約2時間、保持した。そして、所定の温度、圧力まで下げた後に、試料をガラスカプセル13および窒化ボロン粉末9から取り出した。
【0053】
(4)次に、図1(d)に示すように、シリコン型6を除去した。つまり、HIP処理を行った試料について、XeF2 ガスを用いてエッチングを行い、シリコン型6のみを除去した。XeF2 ガスによるエッチングの際にFT−IR(フーリエ変換赤外分光)によりその場観察を行ったところ、エッチング生成物にPZTの成分は見られず、PZT8はエッチングされていないことが確認された。
【0054】
以上の工程によって、図7に示すような構造の圧電セラミクス構造体が得られた。PZTロッド2の直径Dは約16μm、PZTロッド2の高さhは約100μm、従ってアスペクト比は約6.25という高い値であった。また、PZTロッド2の周期間隔pは、約22μmであった。
【0055】
(5)次に、図2(a)に示すようにして、セラミクス構造体にエポキシ樹脂3を充填した。エポキシ樹脂3の充填は、試料を密閉容器の中に置いて容器内を真空引きしながら、容器に別に設けた注入口からエポキシ樹脂3を注入することで行った。その後、充填したエポキシ樹脂3を硬化させた。
【0056】
(6)次に、図2(b)に示すようにして、研磨、電極付与、および圧電性付与を行った。まず、樹脂3が硬化した圧電セラミクス構造体の両面を研削・研磨してPZTとエポキシ樹脂3の両方を露出させ、図8(a)に示すような構造の試料を得た。PZTを用いて製造した図8(a)のような構造の試料は、一般にPZT/高分子1―3複合圧電構造体と呼ばれる。次に、試料の上下面に金を蒸着して電極14を設け、電極間にDC電圧を印加して圧電セラミクスロッド2の分極を行って、圧電セラミクスロッド2に圧電性を付与した。最後に、外形加工および貫通孔15の開口を行うことにより、環状の複合圧電振動子を完成させた。
図8(b)において、完成した複合圧電振動子の外周の直径は、約3mm、内周の直径は約2mm、厚みは約100μmであった。
【0057】
【発明の効果】
以上、詳述したように、本発明によれば、圧電セラミクス8の密度が大きく、微細で高精度な形状を有し、またアスペクト比の高い圧電セラミクス構造体を得ることが可能な、さらに成形後に型を除去することが容易な圧電セラミクス構造体の製造方法、およびこの圧電セラミクス構造体を用いた複合超音波振動子を提供することが可能となる。
【0058】
その結果、電気機械結合係数が大きく、生体との音響インピーダンスが近い複合圧電振動子が得られる。また、圧電セラミクスロッド径が小さく単位面積あたりのロッド数が多いので、空間的に均質な特性を有する複合圧電振動子を得ることができる。さらに、本発明による複合超音波振動子を用いて作成した超音波トランスデューサーは、分解能が優れるとともに、振動子の中央の貫通孔から処置具を入れることで、生体の超音波画像をモニターしながら生体組織の処置をする事を可能とする。
【図面の簡単な説明】
【図1】本発明に係るセラミクス構造体を製造する方法の一例を示す工程図。
【図2】本発明に係る複合圧電振動子を製造する方法の一例を示す工程図。
【図3】本発明に係るセラミクス保護膜の形成工程の一例を示す図。
【図4】本発明に係るHIP処理工程の一例を示す図。
【図5】本発明に係るHIP処理工程の一例を示す図。
【図6】本発明に係るHIP処理時の温度および圧力の変化の一例を示す図。
【図7】本発明に係る圧電セラミクス構造体の一例を示す概略斜視図。
【図8】本発明に係る複合圧電振動子の一例を示す概略斜視図および平面図。
【図9】従来技術における複合圧電振動子を製造する方法を示す工程図。
【符号の説明】
1…圧電セラミクスの板
2…圧電セラミクスロッド
3…樹脂
4…フォトレジスト
5…穴
6…シリコン型
7…シリコン保護膜
8…圧電セラミクス
9…保護用セラミクス粉体
10…ゴムチューブ
11…テープ
12…ガラスチューブ
13…ガラスカプセル
14…電極

Claims (3)

  1. (a)シリコン基材上に反応性イオンエッチング法を用いて複数の穴を開口する工程と、
    (b)圧電セラミクス粉体とバインダーを含むスラリーを、該穴内部を含むシリコン基材表面上に塗布する工程と、
    (c)塗布膜を乾燥させたのち、バインダーを除去する工程と、
    (d)バインダーを除去した試料を保護用セラミクス粉体で包み込んだのち、圧電セラミクスの焼結温度下で加圧して圧電セラミクスを焼成する工程と、
    (e)焼成後、保護用セラミクス粉体を除去しシリコン基材をエッチング除去して圧電セラミクス板とその上の圧電セラミクスロッドを得る工程と
    を含むことを特徴とする圧電セラミクス構造体の製造方法。
  2. 該工程(b)において、該穴内部を含むシリコン基材表面上に窒化シリコンもしくは酸化シリコンからなるセラミクス保護膜を設けたのちに、圧電セラミクス粉体とバインダーを含むスラリーを塗布することを特徴とする請求項1記載の方法。
  3. 請求項1または2記載の方法によって製造された圧電セラミクス板上の圧電セラミクスロッド間に樹脂を充填して硬化させたのち、圧電セラミクス板およびロッドの両端を研磨・除去してロッドの両端面を露出させた圧電セラミクス−樹脂複合体を得る工程と、
    圧電セラミクス−樹脂複合体のロッドが露出した面に電極を形成する工程
    含むことを特徴とする複合圧電振動子の製造方法
JP07084398A 1998-03-19 1998-03-19 圧電セラミクス構造体の製造方法及び複合圧電振動子の製造方法 Expired - Fee Related JP4065049B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07084398A JP4065049B2 (ja) 1998-03-19 1998-03-19 圧電セラミクス構造体の製造方法及び複合圧電振動子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07084398A JP4065049B2 (ja) 1998-03-19 1998-03-19 圧電セラミクス構造体の製造方法及び複合圧電振動子の製造方法

Publications (2)

Publication Number Publication Date
JPH11274592A JPH11274592A (ja) 1999-10-08
JP4065049B2 true JP4065049B2 (ja) 2008-03-19

Family

ID=13443261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07084398A Expired - Fee Related JP4065049B2 (ja) 1998-03-19 1998-03-19 圧電セラミクス構造体の製造方法及び複合圧電振動子の製造方法

Country Status (1)

Country Link
JP (1) JP4065049B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017125A1 (ja) 2017-07-18 2019-01-24 株式会社テクニスコ ガラス成形方法及びその方法によって形成されたガラス成形品

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3551141B2 (ja) * 2000-09-28 2004-08-04 松下電器産業株式会社 圧電体の製造方法
JP3849976B2 (ja) 2001-01-25 2006-11-22 松下電器産業株式会社 複合圧電体と超音波診断装置用超音波探触子と超音波診断装置および複合圧電体の製造方法
JP2003174202A (ja) * 2001-09-25 2003-06-20 Sumitomo Electric Ind Ltd 熱電装置とこれを用いた光モジュール及びこれらの製造方法
KR20030039446A (ko) * 2001-11-13 2003-05-22 삼성전자주식회사 Fbar 제조방법
JP2004350701A (ja) * 2003-05-26 2004-12-16 Olympus Corp 超音波内視鏡装置
US8399059B2 (en) * 2009-07-27 2013-03-19 Cts Corporation Encapsulated ceramic element and method of making the same
DE102009043414B4 (de) 2009-09-29 2016-09-22 Siemens Aktiengesellschaft Dreidimensionale Mikro-Struktur, Anordnung mit mindestens zwei dreidimensionalen Mikro-Strukturen, Verfahren zum Herstellen der Mikro-Struktur und Verwendung der Mikro-Struktur
WO2013069347A1 (ja) 2011-11-08 2013-05-16 富士通株式会社 熱電変換素子及びその製造方法
WO2014064755A1 (ja) 2012-10-22 2014-05-01 富士通株式会社 半導体装置、半導体装置の製造方法及び熱電発電電子機器
JP6405604B2 (ja) * 2013-07-08 2018-10-17 富士通株式会社 熱電素子及びその製造方法
EP3519110A1 (en) * 2016-09-29 2019-08-07 Koninklijke Philips N.V. Flexible phased array transducer for intravascular imaging device and associated devices, systems, and methods
KR102070851B1 (ko) * 2017-08-04 2020-01-29 한국산업기술대학교산학협력단 나노로드 구조를 이용한 초음파 지문센서의 제조방법
KR102006102B1 (ko) * 2018-02-21 2019-07-31 한국산업기술대학교산학협력단 Htcc(고온 동시 소성 세라믹)를 이용한 지문 인식용 압전 어레이 소자 제조방법
KR101965171B1 (ko) * 2018-08-24 2019-08-13 (주)비티비엘 초음파센서의 제조방법
KR102196674B1 (ko) * 2019-02-26 2020-12-30 한국산업기술대학교산학협력단 압전 어레이 소자 제조방법
CN113851577B (zh) * 2021-09-23 2024-02-20 业成光电(深圳)有限公司 压电传感器的制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017125A1 (ja) 2017-07-18 2019-01-24 株式会社テクニスコ ガラス成形方法及びその方法によって形成されたガラス成形品

Also Published As

Publication number Publication date
JPH11274592A (ja) 1999-10-08

Similar Documents

Publication Publication Date Title
JP4065049B2 (ja) 圧電セラミクス構造体の製造方法及び複合圧電振動子の製造方法
US5340510A (en) Method for making piezoelectric ceramic/polymer composite transducers
US7459836B2 (en) Composite piezoelectric apparatus and method
US6566265B2 (en) Method of working piezoelectric substance and method of manufacturing composite piezoelectric substance
CN102484200B (zh) 压电陶瓷体的制造方法
JP3121049B2 (ja) 複合超音波変換器
US6004500A (en) Methods for producing novel ceramic composites
WO2005055119A2 (en) Composite piezoelectric apparatus and method
CN107812691A (zh) 压电超声换能器及其制备方法
Chabok et al. Ultrasound transducer array fabrication based on additive manufacturing of piezocomposites
Singh et al. Additive manufacturing of PZT-5H piezoceramic for ultrasound transducers
JPH11285096A (ja) 複合圧電振動子
JP3882231B2 (ja) 複合圧電材料の製造方法
US4876179A (en) Method for manufacturing ceramic material having piezo-electric properties
Safari et al. Fabrication of fine-scale 1-3 Pb (Zrx, Ti1-x) O3/ceramic/polymer composites using a modified lost mold method
TW201015762A (en) Improved manufacturing process of piezoelectric ceramic device
JP2002217461A (ja) 複合圧電材料
US11746062B2 (en) Processes for preparing porous ceramics for acoustic transducers
JPH11284243A (ja) 圧電セラミクス構造体の製造方法
Starke et al. Fine scale piezoelectric 1-3 composites: A new approach of cost effective fabrication
JP3612945B2 (ja) 微小構造体の製造方法
Chen et al. Micro-Stereolithography of KNN Piezoceramics for Ultrasonic Transducers
US7160500B2 (en) Method of fabricating a micro device
JPH07164195A (ja) 中空部を有する粉末成形体を製造するための静水圧成形用型および粉末成形体の成形方法
JP2003211422A (ja) 3次元セラミック構造体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees