CN1240936A - 液体色谱仪 - Google Patents

液体色谱仪 Download PDF

Info

Publication number
CN1240936A
CN1240936A CN99109082A CN99109082A CN1240936A CN 1240936 A CN1240936 A CN 1240936A CN 99109082 A CN99109082 A CN 99109082A CN 99109082 A CN99109082 A CN 99109082A CN 1240936 A CN1240936 A CN 1240936A
Authority
CN
China
Prior art keywords
sample
chromatographic column
valve
supply
moving phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99109082A
Other languages
English (en)
Other versions
CN1154843C (zh
Inventor
北冈光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of CN1240936A publication Critical patent/CN1240936A/zh
Application granted granted Critical
Publication of CN1154843C publication Critical patent/CN1154843C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

当填充或更换流动相的信号从外面传入控制单元(40)时,控制部分便转换阀(26)来将输送泵部分(2),经过进样环管(24)连接于取样针(36)并将取样针(36)移向一排出口(38)。这样便形成了一个流经流动相容器(16)→泵(10)→转换阀(26)→进样环管(24)→取样针(36)→排出口(38)的流路。在此流路状态下,控制部分(40)便以高速驱动泵(10)来按照需要的流动相来变换连接泵(10)与取样针(36)的流路。

Description

液体色谱仪
本发明是关于一种色谱仪,例如分离和分析某一样品中各种化合物的高效液体色谱仪。
图1是表示一普通高效液体色谱的流路方框图,它是由以下部件构成:分离样品的色谱柱5;向柱5供给流动相的输送泵部分1;自动进样器3,用于从取样针39收集样品并向进样环管27供送样品以及将所收取的样品通过一流路转换阀29引入到色谱柱5上游(入口前侧)的流动相流路中;一检测部分7,用于检测在柱5中所分离出的样品;以及一控制部分41,用于控制输送泵部分1与自动进样器3的操作。
输送泵部分1具有一双柱塞式往复供给泵9。泵9的主泵压头(主要泵压力)11的吸入端是通过一止回阀13a连接于贮存流动相的容器15,而泵9的排出端是通过止回阀13b连接于次级泵压头(次要泵压力)17的吸入端。次级泵压头17的排出端,是通过一排放阀19和一管线过滤器21连接于自动进样器3。一压力传感器23是装设在次级泵压头17与排放阀19之间的流路上。次级泵压头17的排出端可进行转换开关并连接于自动进样器3或连接于排放口,通过手工开关排放阀19的杠杆来排放。
自动进样器3具有一个双位六通阀29,用于转换开关并连接于从泵送部分1到取样环管27或色谱柱5的流路。取样环管27与进样针39相连接,进样针39在注射口35与样品容器37之间移动,用于从样品容器37中吸入样品并将样品放入进样口35。进样口35是通过转换阀29连接于色谱柱5。一测量用进样器33通过一个三通阀31连接于阀29的一个接口,并需通过转换阀29连接于进样环管27。
检测部分7是用于检测在色谱柱5中分离出的样品,它连接于色谱柱5的下游(出口一侧)。在进样口35与阀29之间,在阀29与柱5之间以及在柱5与检测部分之间的一些流路都由一些细薄管制成以防样品被稀释。
在现有色谱技术中,当全部流路充满流动相或者需更换流动相时,需花费相当多的时间来替换泵9中的流动相,因泵9有相当大的体积,如果以通常流速供给流动相很费时间。然而,如果以高速供给流动相,则向各细薄管和随后向进样口35包括色谱柱5传送的压力会增加。因而,流动相不能以高速供入各流路和随后送至进样口35。在此情况下,在将排出阀19转换通向输送泵部分1中的排出一侧,以便引入流动相进入泵9之后,泵9便以高速驱动。
此时,首先用手工将排出阀19的杠杆25移动以连接于次级泵压头17的排放一侧,以便排出,然后泵9便以高速驱动来通过排出阀19从排出管中排放出流动相。在主泵压头11和次级泵压头17充满新的流动相之后,泵9便返回到正常速度并将排出阀19的杠杆用手工转换以便将次级泵压头17的排放一侧连接于自动进样器3,以此向所有流路供给新的流动相。
对操作人员来说,繁琐问题在于需以手工开/关排放阀19以更换流动相,因而期待自动化操作。然而为了自动开/关排放阀19,则需一高转距马达,因高压应用于排出阀19所需,这便导致设备的高费用。
本发明的目的是使加入或更换液体色谱仪中的流动相自动化而不增加成本费用。
本发明的液体色谱仪,包含有一个分离样品的色谱柱;一个向柱中供给流动相的供送部分;一样品引入部分,用以从取样针中将样品送入进样环管中和通过开关流路转换阀将收取的样品送入在色谱柱上游的流动相流路道中;一检测色谱柱中分离出的样品的检测部分;以及一控制供给部分与样品引入部分操作的控制部分。该液体色谱仪还进一步包含有一排出口,用于排放从取样针向外排出的液体;该色谱仪可通过控制部分对流路转换阀进行换向开关,用以连接供给部分与一流路,该流路连接着进样环管与取样针,同时使取样针位于排放口上;以及通过控制部分将供给部分转换到高速驱动。
当一流路充满流动相的信号或更换流动相的信号从外部传送至控制部分时,该控制部分便调控供给部分和样品引入部分,以便转换流路转换阀来连接供给部分与取样针,将取样针从进样口移动至排出口并增加流动相供给部分的流速。流动相通过流路转换阀、进样环管、取样针及排放口从该设备的供给部分以高速排放出来,这样流路便可由所需要的流动相来替换。此后,取样针又返回至进样口并且泵的流速也返回至低速以供给流动相,以此来完成全部流路填充流动相或液体替换的操作。
因而,根据本发明,在液体色谱仪中不仅无需一个马达用于一个排出阀,而且排出阀本身也没有必要了,并且填充和更换流动相也可实现自动化而不增加设备的成本费用。
本发明的上述和其它目的、特点、方面及优点,可从以下对本发明的详细描述并结合附图而得到更清楚的了解。
附图简述
图1是表示普通高效液体色谱的流程流路方框图;
图2是表示本发明一实施方案的流程流路方框图;
图3是表示另以实施例方案的流动相供给部分的流程流路方框图;
图4是表示处于备用状态的另一实施方案的流程流路方框图;
图5是表示该实施方案处于减压位态的流程流路方框图;
图6是表示该实施方案处于荷载位态的流程流路方框图;
图7是表示该实施方案处于进样/清洗位态的流程流路方框图;
图8是表示该实施方案处于清除位态下的流程流路方框图;
图9是表示该实施方案处于自动排放位态的流程流路方框图。一些优选实施方案的描述
图2是表示本发明一实施方案的流程流路方框图。
该实施方案包含有一供给流动相的输送泵部分(供给部分)2,一用于将样品引入到一流路中的自动进样器(样品引入部分)4,一用于分离样品的色谱柱6以及一用以顺序检测已分离的样品的检测部分8。
该输送泵部分2具有一双柱塞式往复供给泵10。泵10的主泵压头12的吸入侧端通过一止回阀14a连接于贮存流动相的流动相容器16,而其排出侧端是通过止回阀14b连接于次级泵压头18的吸入侧端。次级泵压头18的排出侧端是通过一除去混入流动相中的外来杂物的管线滤器20连接于自动进样器4。一压力传感器22装设在次级泵压头18与管线滤器20之间的流路上。
自动进样器4具有一个二位六通阀26,用于开关和连接从输送泵部分2至进样环管24或色谱柱6的流路。进样环管24与取样针36相连接,取样针是移动于进样口32与样品容器34之间用以从样品容器34中吸入样品并将样品排入进样口32中。一向外排出液体的排放口38被装设在进样口32的附近,以及取样针36也可以移向排放口38用以通过排放口38向外排出废液。进样口32是通过转换阀26连接于色谱柱6。一计量进样器30通过一个三通阀28连接于阀26的一个口上。该计量进样器30通过转换阀26连接于进样环管24。
检测色谱柱6中已分离出的样品的检测部分8是连接在色谱柱6的下游。
在进样口32于阀26之间,在阀26与色谱柱6之间以及在色谱柱6与检测部分8之间的一些流路是由一些细薄的管子制成,用以预防样品稀释。
装设有控制部分40,用于控制输送泵部分2与自动进样器4的操作。除用于控制样品引入和分析之外,控制部分40还控制流路转换阀26的转换操作,用以连接输送泵部分2并通过进样环管24连接于取样针36,连接取样针36至排出口38以及转换泵2至高速驱动位。
现在描述该实施方案中的分析操作。控制部分40通过阀26连接从输送泵部分2至色谱柱6的一些流路,用以供给流动相至色谱柱6,同时连接计量进样器30至进样环管24。控制部分40还移动取样针36到样品容器34上并通过计量进样器30将样品吸入到进样环管24中。
此后控制部分40将取样针36移至进样口32,并转换阀26至图2所示的状态。这样,流动相便通过进样环管24和从连接取样针36与进样口32的部分流到色谱柱6中,同时由进样环管26采集的样品被注入到色谱柱6中并在柱6中分离,然后由检测部分8予以检测。
下面将描述流路中填充流动相或更换流动相的一些操作。
当流路中填充或更换流动相的信号从外部分传送给控制部分40时,该控制部分40便转换阀26,通过进样环管24,接通从输送泵部分2至取样针36的流路,并移动取样针36到排出口38上。这样,便形成了流径流动相容器16→泵10→转换阀26→进样环管24→取样针26→排出口38的一个流路。在此流路状态中,控制部分40以高速驱动泵10用以高速供给流动相。通过驱动泵10经过一预定时间,所需要的流动相被引入连接泵10与取样针36的流路中。在泵10的高速驱动过程中,从取样针36中排卸出的流动相,经排放口38向外排出。
在经过预定时间之后,控制部分40便返回取样针36到进样口32,返回泵10到正常驱动速度以便以低速供给流动相,以及将流动相引入到进样口32与阀26之间,阀26与色谱柱6之间和色谱柱6与检测部分8之间的一些流路中。
这里省略去阀26的转换操作的详细描述,阀26可适当地转换,包括取样针的移动。
根据本发明的技术方案,不仅无需一个马达用于一个驱动阀,而且驱动阀本身也无必要。因而,填充或更换流动相能够实现自动化且不增加设备的成本费用。
图3是表示本发明另一实施方案一部分的流程方框图。
分别贮存流动相的流动相容器42a,42b和42c及贮存清洁溶液的清洁溶液容器42d,是分别通过电磁阀44a,44b,44c和44d连接于输送泵部分的主泵压头的吸入侧端。
这些流动相或清洁溶液,可通过电磁阀44a,44b,44c,44d的控制开/关进行选择,以此仅利用一个按钮操作便能实现流动相的选择和更换并且分析之后的流路清洗步骤能够实现自动化,
图4表示本发明的还有的另一实施方案,一个样品引入部分的自动取样器(sampler)4a,它相当于图2中所示实施方案中的自动进样器4,具有一高压阀50和一低压阀52用于转换各流路。高压阀50有六个接口①至⑥设置在定子上和三个流路沟槽A,B和C设置在转子上,用以进行这些接口之间的转换连接。流路沟槽A是用于转换和连接接口①与接口②或⑥,流路沟槽B是用于转换和连接接口④与接口③或⑤,以及流路沟槽C是用于转换和连接接口⑤与接口④或⑥。
流路沟槽A的长度比接口①与②之间或接口①与⑥之间的距离较长一些。换言之,流路沟槽A部分延伸超出60°的转角。这样,不仅流路沟槽A将接口①连接于接口②或⑥,而且成为这样的状态,即流路沟槽B和C的连接没有接口。如后述图9的自动排出位态所示。高压阀50是一种三位阀。
低压阀52的定子,具有4个接口“a”至“d”,而它们的转子具有一些流路沟槽,这些沟槽能够取三个位点,包括一个位点用于连接接口“b”和“c”,一个位点用于连接接口“d”和“a”,如图7所示,以及另一位点无接口可连接,如图9所示,这样,低压阀52也是一个三位阀。
图4中高压阀50的接口①是连接于一流路,该流道是通过输送泵部分2供给贮存在流动相容器16中的流动相。与接口②相连接的流路设有一进样环管24,以及一取样针36设置在该流路的前端。与接口③连接的流路是通过一计量泵30a,相当于图2所示实施方案的计量进样器30,与低压阀52的接口“b”相连接。接口④与低压阀52的接口“a”相连接。接口⑤与进样口32相连接,接口⑥与分析流路相连接,并通过色谱柱6连通检测部分8。
低压阀52的接口“c”是与一冲洗水口38a相连接,该冲洗水口38a具有图2实施方案中排放口38的作用。供应冲洗水用于冲洗取样针36的冲洗水口38a,能够从取样针中排出流动相而用做排出口。冲洗水和流动相溢出冲洗水口38a被排入排水管。一与接口“d”连接的流路通至冲洗水54。
图4至图8是表示按照各位点顺序的进样操作。
图4表示一备用(分析)位态(A),其中在高压阀50中接口①与接口②及接口⑤与接口6相连接,这样由输送泵部分2所供给的流动相经过进样环管,再经过取样针36与进样口32之间的连接点,最后流经连接色谱柱6和检测部分8的流路。
在低压阀52中,接口“b”与接口“c”相连接,以及计量泵30a通过冲洗水口38a向大气开放。
图5表示一减压(减压步骤)位态B,其中高压阀50被转换至连接口②和③,以此使包括进行环管24在内的流路通过计量泵30a和冲洗口38a向大气开放。进一步,高压阀50的接口①和⑥这样连接,使流动相连续流经色谱柱6和检测部分8的流路。
图6表示一装载(样品吸入)位态(C),其中低压阀52转换至关闭与计量泵30a连通的接口“b”。取样针36浸没在贮存样品的样品小瓶56中,驱动计量泵30a吸入并将样品收取到进样环管24中。
图7表示一进样/清洗入(样品注入/计量泵清洗)位态(D),其中高压阀50转换至连接接口①和②,接口⑤和⑥以及取样针36返回到进样口32。这样,流动相便通过进样环管24,再通过在取样针36和进样口32之间的连接点,最后流经到色谱柱和检测部分8相连接的流路中,用于将进样环管收取的样品引入到色谱柱6中,并由色谱柱6开始分离样品。
另一方面,高压阀50的接口③和④及低压阀52的接口“a”和“d”相连接,以此将冲洗水54吸入到计量泵30a中,用以冲洗计量泵30a的流路。
图8表示一清洗出(计量泵清洗)位态(E),其中低压阀52被换向到连接接口“b”和“c”,同时关闭接口“a”。计量泵30a被驱动排放出从冲洗水口38a吸入的冲洗水54。高压阀50仍然保持继续分析,以及控制部分8继续检测在色谱柱6中分离出的样品各组份。
这样,样品被自动收取到进行环管24中,注射进入色谱柱6,连续通过图4至图8所示的各位态(A)→(B)→(C)→(D)→(E)进行分离和分析。
图9表示该实施方案中一自动排放(自动排出)位态(F)。在此位态中,只有高压阀50的①和②被连接,以及取样针36移动到冲洗水口38。高压阀50的其余接口和低压阀52的所有接口都被关闭。流动相由输送泵部分2供给和通过高压阀50和进行环管24,而排入冲洗水口38a中。
下面将描述在自动排放位态(F)中全部流路填充流动相或更换流动相的操作。
控制高压阀50和低压阀52的转换和取样针36的移动,使通过备用位态(A)→减压位态(B)→自动排放位态(F)→减压位态(B)→备用位态(A)。
起初,色谱仪是处于图4所示的备用位态(A)。然后这种位态被转换到图9所示的自动排放位态(F),中间经过图5所示的减压位态(B)。在自动排放位态(F)中,输送泵部分2被转换至高速驱动,在很短时间内填充流动动相或更换流动相。然后将此自动排放位态返回到备用位态(A),中间经过减压位态(B)。
根据该实施方案,类似于图2所示的控制部分40(未示出)是用来控制分析和填充或更换流动相的操作。
虽然已对本发明作了详细描述和说明,但应清楚地理解到这仅仅是说明的方式和举例,不是用作限制方式,本发明的精神和技术范围仅由待审批的各项权利要求来限定。

Claims (5)

1.一种液体色谱仪,其特征在于包含有一分离样品的色谱柱(6);一向所说色谱柱(6)中供给流动相的供给部分(2);一样品引入部分(4,4a),用来从取样针中将样品收入进样环管(24)中和通过转换流路转换阀(26,50)将收入的样品引入到色谱柱上游的流动相流路中;一检测部分(8),用于检测在色谱柱(6)中所分离出的样品;以及一控制部分(40),用于控制所说的供给部分(2)和所说的样品引入部分(4,4a)的操作;所说的液体色谱仪还进一步包含有:一排放口(38,38a),用于从所说的取样针(36)中向外排放液体,其中
所说的控制部分(40)可转换流路转换阀(26,50)来连接供给部分(2)和通过进样环管(24)连接于取样针(36)连接的流路,可设置取样针(36)于排放口(38,38a)上,以及除上述控制之外还可控制供给部分(2)至高速驱动的操作。
2.根据权利要求1所述的液体色谱仪,其特征在于所说的供给部分(2)没有直接向外排放出流动相的出口。
3.根据权利要求1所述的液体色谱仪,其特征在于样品引入部分(4)的流路转换阀(26)是一个二换位阀,它可转换于两个位点之间,一个位点是通过进样环管(24)将供给部分(2)连接于色谱柱(6),而另一位点是直接连通供给部分(2)于色谱柱(6),以及流路的连接是这样进行的,即收取样品的计量构件(30)与进样环管(24)相连接,在此位点上可直接将供给部分(2)连接于色谱柱(6)。
4.根据权利要求1所述的液体色谱仪,其特征在于所说的样品引入部分(4a)的流路转换阀(50)是一个三转位阀,它转换于三位点之间,一个位点是用来通过进样环管(24)将供给部分(2)与色谱柱(6)相连接,一个位点是用来将供给部分(2)直接与色谱柱(6)相连接,和另一位点用来将供给部分(2)与进样环管(24)相连接并关闭色谱柱(6)的上游部分,以及流路的连接是这样进行的,即用来收取样品的计量构件(30a)是连接于进样环管(24),在此位点上可直接连接供给部分(2)于色谱柱(6)。
5.根据权利要求1所述的液体色谱仪,其特征在于贮存不同流动相的多个流动相容器(42a,42b,42c)各分别通过电磁阀(44a,44b,44c)连接于供给部分(2)的吸入侧端,这样所说的这些流动相便能通过开启/关闭各电磁阀(44a,44b,44c)来选择。
CNB991090829A 1998-06-19 1999-06-18 液体色谱仪 Expired - Lifetime CN1154843C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP172563/1998 1998-06-19
JP17256398 1998-06-19

Publications (2)

Publication Number Publication Date
CN1240936A true CN1240936A (zh) 2000-01-12
CN1154843C CN1154843C (zh) 2004-06-23

Family

ID=15944174

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB991090829A Expired - Lifetime CN1154843C (zh) 1998-06-19 1999-06-18 液体色谱仪

Country Status (4)

Country Link
US (1) US6129840A (zh)
CN (1) CN1154843C (zh)
DE (1) DE19926163B4 (zh)
GB (1) GB2338433B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063495B (zh) * 2006-04-26 2010-09-01 株式会社岛津制作所 流路切换阀、使用该切换阀的高效液相色谱仪及分析方法
CN102171560A (zh) * 2008-10-03 2011-08-31 爱科来株式会社 分析装置及其控制方法
CN101675329B (zh) * 2007-09-28 2012-04-25 株式会社岛津制作所 进样装置
CN101680823B (zh) * 2007-09-28 2012-07-25 株式会社岛津制作所 进样方法
CN104833745A (zh) * 2014-02-10 2015-08-12 道尼克斯索芙特隆公司 将样品加入液相色谱设备的分析支管的方法
CN104870993A (zh) * 2012-12-19 2015-08-26 株式会社日立高新技术 试料导入装置
CN106153965A (zh) * 2016-08-30 2016-11-23 中国科学院寒区旱区环境与工程研究所 一种中和浓缩试验装置
CN106168628A (zh) * 2016-08-30 2016-11-30 中国科学院寒区旱区环境与工程研究所 一种海水中和浓缩试验装置
CN111093790A (zh) * 2017-10-20 2020-05-01 株式会社岛津制作所 脱气装置
CN111122741A (zh) * 2019-12-31 2020-05-08 安徽皖仪科技股份有限公司 一种多元液相色谱流动相切换系统及切换方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485648B1 (en) 1998-05-18 2002-11-26 Transgenomic, Inc. MIPC column cleaning system and process
JP4377639B2 (ja) * 2003-09-18 2009-12-02 株式会社日立ハイテクノロジーズ ポンプおよびクロマトグラフ用液体ポンプ
JP4377761B2 (ja) * 2004-07-01 2009-12-02 株式会社日立ハイテクノロジーズ 液体クロマトグラフ装置
US8881582B2 (en) 2005-01-31 2014-11-11 Waters Technologies Corporation Method and apparatus for sample injection in liquid chromatography
JP5070062B2 (ja) * 2005-01-31 2012-11-07 ウオーターズ・テクノロジーズ・コーポレイシヨン 液体クロマトグラフィにおけるサンプル注入のための方法および装置
DE102008006266B4 (de) 2008-01-25 2011-06-09 Dionex Softron Gmbh Probengeber für die Flüssigkeitschromatographie, insbesondere für die Hochleistungsflüssigkeitschromatographie
US8293100B2 (en) * 2009-03-13 2012-10-23 Terrasep, Llc Methods and apparatus for centrifugal liquid chromatography
WO2011001460A1 (ja) * 2009-06-29 2011-01-06 株式会社島津製作所 流路切換バルブ
CN105008915A (zh) 2013-03-04 2015-10-28 株式会社岛津制作所 制备色谱装置
WO2015189927A1 (ja) * 2014-06-11 2015-12-17 株式会社島津製作所 液体試料導入装置
US10473632B2 (en) 2014-11-10 2019-11-12 Agilent Technologies, Inc. Metering device with defined enabled flow direction
DE202016100451U1 (de) 2015-06-25 2016-02-16 Dionex Softron Gmbh Probengeber für die Flüssigkeitschromatographie, insbesondere für die Hochleistungsflüssigkeitschromatographie
DE102016101658B4 (de) 2016-01-29 2018-04-05 Dionex Softron Gmbh Probenvorkompressionsventil für die Flüssigkeitschromatographie, insbesondere für die Hochleistungsflüssigkeitschromatographie
EP3252464B1 (en) * 2016-05-30 2024-03-27 Agilent Technologies, Inc. (A Delaware Corporation) Injector and method for sample injection with fludic connection between fluid drive unit and sample accomodation volume
US11275062B2 (en) 2016-05-30 2022-03-15 Agilent Technologies, Inc Sample injection with fluidic connection between fluid drive unit and sample accommodation volume
EP3946670B1 (en) * 2019-03-25 2024-06-05 Waters Technologies Corporation Dual mode sample manager
ES2915839T3 (es) 2019-06-04 2022-06-27 Hoffmann La Roche Intercambio de líquidos rápido en cromatografía de líquidos
WO2021133646A1 (en) 2019-12-23 2021-07-01 Waters Technologies Corporation Sample metering and injection for liquid chromatography

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5158675A (en) * 1986-03-10 1992-10-27 Isco, Inc. Gradient system
US5180487A (en) * 1987-09-25 1993-01-19 Nihon Bunko Kogyo Kabushiki Kaisha Pump apparatus for transferring a liquified gas used in a recycle chromatograph
JP2845909B2 (ja) * 1988-12-09 1999-01-13 株式会社日立製作所 液体クロマトグラフおよびそれを用いる方法
JPH03144360A (ja) * 1989-10-31 1991-06-19 Yokogawa Electric Corp カテコールアミン類の分析装置
US5131998A (en) * 1990-11-13 1992-07-21 The University Of North Carolina At Chapel Hill Two-dimensional high-performance liquid chromatography/capillary electrophoresis
JP3389649B2 (ja) * 1993-09-17 2003-03-24 株式会社島津製作所 送液装置
US5520817A (en) * 1994-10-04 1996-05-28 Biologica Co. Method of fractionating components in liquid chromatography
EP0686848A1 (en) * 1994-05-09 1995-12-13 Shiseido Company Limited Liquid chromatograph having a micro and semi-micro column
US5567307A (en) * 1994-09-30 1996-10-22 Lachat Instruments System and a method for using a small suppressor column in performing liquid chromatography
US5935443A (en) * 1995-03-03 1999-08-10 Alltech Associates, Inc. Electrochemically regenerated ion neutralization and concentration devices and systems
JP3172429B2 (ja) * 1996-03-29 2001-06-04 株式会社日立製作所 液体クロマトグラフ
US5958227A (en) * 1997-07-15 1999-09-28 Tosoh Corporation Liquid chromatograph apparatus with a switching valve

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063495B (zh) * 2006-04-26 2010-09-01 株式会社岛津制作所 流路切换阀、使用该切换阀的高效液相色谱仪及分析方法
CN101675329B (zh) * 2007-09-28 2012-04-25 株式会社岛津制作所 进样装置
CN101680823B (zh) * 2007-09-28 2012-07-25 株式会社岛津制作所 进样方法
CN102171560A (zh) * 2008-10-03 2011-08-31 爱科来株式会社 分析装置及其控制方法
CN102171560B (zh) * 2008-10-03 2014-06-04 爱科来株式会社 分析装置及其控制方法
CN104870993A (zh) * 2012-12-19 2015-08-26 株式会社日立高新技术 试料导入装置
US10794874B2 (en) 2012-12-19 2020-10-06 Hitachi High-Tech Corporation Sample injection device
CN104833745A (zh) * 2014-02-10 2015-08-12 道尼克斯索芙特隆公司 将样品加入液相色谱设备的分析支管的方法
CN104833745B (zh) * 2014-02-10 2017-04-12 道尼克斯索芙特隆公司 将样品加入液相色谱设备的分析支管的方法
CN106153965A (zh) * 2016-08-30 2016-11-23 中国科学院寒区旱区环境与工程研究所 一种中和浓缩试验装置
CN106168628A (zh) * 2016-08-30 2016-11-30 中国科学院寒区旱区环境与工程研究所 一种海水中和浓缩试验装置
CN111093790A (zh) * 2017-10-20 2020-05-01 株式会社岛津制作所 脱气装置
CN111122741A (zh) * 2019-12-31 2020-05-08 安徽皖仪科技股份有限公司 一种多元液相色谱流动相切换系统及切换方法

Also Published As

Publication number Publication date
DE19926163B4 (de) 2008-07-03
CN1154843C (zh) 2004-06-23
US6129840A (en) 2000-10-10
GB9914259D0 (en) 1999-08-18
GB2338433B (en) 2002-01-02
GB2338433A8 (en) 2000-01-12
GB2338433A (en) 1999-12-22
DE19926163A1 (de) 2000-03-09

Similar Documents

Publication Publication Date Title
CN1154843C (zh) 液体色谱仪
CN104690047B (zh) 一种液相色谱进样通道清洗装置
CN105891391B (zh) 一种自动进样装置
CN1192233C (zh) 自动取样机
CN108072724B (zh) 液相色谱系统、方法和用途
CN101535815B (zh) 高速样品供给设备
WO2011052445A1 (ja) 液体試料分析装置及び液体試料導入装置
JP6309439B2 (ja) ヘモグロビン分析装置
CN103238066A (zh) 液体色谱仪、液体色谱仪用试样导入装置以及液体色谱仪用试样导入装置的清洗方法
CN1648657A (zh) 液相色谱仪
CN102171562A (zh) 液相层析装置和液相层析法
CN102369434A (zh) 液相色谱仪
JP2015092166A5 (zh)
CN1305642C (zh) 一种用于输送磨粉浆的方法和流体供应系统
CN1407337A (zh) 液相色谱系统、进样器、清洗装置和清洗方法
CN1675530A (zh) 抽吸和稀释样本的方法和设备
CN105527128A (zh) 水质自动采样装置及方法
CN101074949A (zh) 进行样本分配和清洗的装置及方法
CN1527052A (zh) 自动采样器以及清洗其针头的方法
CN112888941A (zh) 用于多维样品分离设备的注入器
WO2014157505A1 (ja) フロー式分析装置用の試料注入装置、フロー式分析装置、及び、ヘモグロビン成分の計測方法
CN1680039A (zh) 多个平行通道内的成分的分离装置
CN101074948A (zh) 利用单加液管进行样本采集和分配的装置及方法
EP1154270B1 (en) Glycated hemoglobin analyzer
CN1773290A (zh) 一种尿沉渣、粪便、脑积水镜检进样和清洗方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20040623