CN1240407A - 过碳酸钠的制备方法 - Google Patents
过碳酸钠的制备方法 Download PDFInfo
- Publication number
- CN1240407A CN1240407A CN 97180679 CN97180679A CN1240407A CN 1240407 A CN1240407 A CN 1240407A CN 97180679 CN97180679 CN 97180679 CN 97180679 A CN97180679 A CN 97180679A CN 1240407 A CN1240407 A CN 1240407A
- Authority
- CN
- China
- Prior art keywords
- spc
- weight
- bulk density
- active
- under
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Detergent Compositions (AREA)
Abstract
本发明涉及一种新的“干燥”制备过碳酸钠的方法(干法),根据本发明它由一水合碳酸钠出发,使其与相关于过碳酸钠中所希望的活性氧含量准化学计算量的浓过氧化氢水溶液反应。上述方法可十分有利地与随后对所制得的过碳酸钠的压制结合在一起。可制得的过碳酸钠产物具有可变的至少10重量%的活性氧浓度,但尤其具有大于14.5重量%的高活性氧浓度。所制得的过碳酸钠产物在溶解速度、稳定性和与洗涤剂基质的相容性方面具有特别优异的性能,并且优于常规的、例如结晶法得到的过碳酸钠。本发明还涉及有利的过碳酸钠产物和包含该产物的洗涤剂组合物。
Description
本发明涉及一种制备活性氧含量至少是10重量%,优选>14.5至15.2重量%的过碳酸钠(以下简称为“PCS”)的方法,以及PCS本身和含该新PCS产品的漂白剂和洗涤剂组合物。
过碳酸钠在粉状洗涤剂、漂白剂和清洗剂中作为漂白组分使用。它的特点在于好的水溶性以及过氧化氢的快速释放,并且对环境污染少,因为分解产物不会增加环境负荷。
对于过碳酸钠,在现有技术中给出活性氧含量理论值为15.28重量%的总分子式Na2CO3·1.5H2O2。然而,在这种情况下,必须考虑,工业上由过氧化氢和碳酸钠制备的过碳酸钠一般不是这种确定的、均一的化合物,而一方面是由下式含不同水合水的化合物组成的混合物,Na2CO3·1,5 H2O2
Na2CO3·1,5 H2O2·H2O
Na2CO3·2 H2O2·H2O
Na2CO3·2 H2O2
Na2CO3·x H2O2另一方面根据制备方法还附加地包含一定量的未氧化的碳酸钠以及其它与制备方法有关的添加剂,例如硫酸钠和食盐。产物的性能(既涉及稳定性,又涉及例如活性氧的含量、溶解性及堆比重和过碳酸钠的颗粒尺寸)不但受制备条件而且还受各添加剂的决定性影响。所以,在工业用过碳酸钠中,在有利条件下可达到的活性氧含量仅是13.4至14.5重量%,但是在某种条件下由于根据制备方法所添加的添加剂(硫酸盐、食盐)以及所采取的稳定措施其通常较之低得多。还通常降低了过碳酸钠本身具有的好的溶解性,例如由于根据制备条件加入的其它盐如碳酸钠、硫酸钠和食盐的存在。此外,在现有技术的制备方法下,所获得的过碳酸钠的堆比重和颗粒尺寸一般很少是易变的,并且在大多数情况下,通过工艺方法或者所使用的碳酸钠一开始就将其限定在窄的范围中。
根据洗涤剂制造商的不同要求,例如为了在洗涤、漂白和清洗组合物组分的具有低堆比重的轻质粉状洗涤剂或者具有较高堆比重的高密度洗涤剂中使用,越来越需要具有高的活性氧含量和不同的堆比重和粒径的过碳酸钠。在此,特别地还要求,这样的组合物的单个组分的堆比重相互之间是协调一致的,以便尽可能地避免在组分的堆比重不同时必然出现的离析。
为了制备过碳酸钠,在现有技术中公开了三种工艺:结晶法、喷雾法和干燥法。
一般过碳酸钠是通过结晶法制备的。在这种情况下,在10至20℃下,使碳酸钠的溶液或悬浮液与过氧化氢反应,并在稳定剂如水玻璃、无机或有机膦酸等的存在下进行结晶。然而,由于过碳酸钠具有好的溶解性,为了提高产率,需要使过碳酸钠从反应混合物中盐析出,对此在现有技术中在反应混合物中优选加入食盐,其浓度是约240克/升。但是,结晶作用难以控制,所以为了形成有利的平衡晶体,建议加入所谓的促晶剂如聚磷酸酯或聚丙烯酸酯。然后离心分离结晶的过碳酸钠,并且按照本身常规的方法例如流化床进行干燥。通过结晶法获得的PCS有许多用途,然而仍然不是最佳的,并且特别地通常根据制备方法所要求加入的食盐影响其性能。
在使用喷雾法制备过碳酸钠时,为了从母液中分离出过碳酸钠,过滤或离心分离是不需要的。更确切地说,在该喷雾方法中,在喷雾干燥器中干燥由碳酸钠和过氧化氢组成的水溶液(或者,如果需要,稍微浓缩的悬浮液)。然而,喷雾干燥产物通常具有非常低的堆比重,仅约为0.35千克/升,因此,对于今天的包含越来越多具有较高堆比重的组分的洗涤剂配方来说,其本身是不能使用的。此外,在溶液喷雾时,必须除去大量的水,但是这需要附加的能量消耗。
在对喷雾方法略加改变的方法中,例如由碳酸钠和过氧化氢组成的溶液连续地喷雾在由预置的过碳酸钠组成并通过热空气而流化的流化床上。喷雾和干燥步骤可以在一个步骤或二个步骤中进行。在其它的喷雾法的改进方法中,通过分开的喷嘴将碳酸钠和过氧化氢的溶液喷入反应室中,其中同时使空气和二氧化碳的热混合物通过反应室。但是按照该方法获得几乎多孔的过碳酸钠,鉴于堆比重和抗磨强度其不能满足如今的洗涤剂组合物标准的要求。
根据所谓的干法如下制备过碳酸钠:使无水合水的Na2CO3与约50至80重量%的浓缩的过氧化氢溶液反应,在反应期间少量释放的水已经被蒸发。在该方法中,在整个反应过程中存在基本上干燥的反应混合物。该方法可以在例如混合器、流化床反应器或者在具有H2O2喷入装置的管式反应器中进行。除长的反应时间外,该方法的缺陷还在于,不能净化这样制备的碳酸钠,所以必须采取附加的用于稳定产物的措施,例如在反应过程中就己加入特定的稳定剂。特别地其缺陷还在于,为了获得具有足够活性氧含量的PCS必须使用大量过量的过氧化氢。此外,在涉及过碳酸钠的颗粒性能,例如涉及堆比重和颗粒尺寸方面,该方法是很少能进行变化的,因为过碳酸钠颗粒形状基本上与所使用的碳酸钠颗粒形状一致(也就是说不考虑通过反应造成的微不足道的圆形化)。特别地,在制备用于高密度洗涤剂的具有高堆比重的过碳酸钠颗粒时,必须使用重质碳酸钠,但是其中其只提供很少的与过氧化氢进行反应的表面积。同样该反应是不完全的,所以仅获得低活性氧含量和非均质的产物,该产物具有高的分布不均匀的碳酸钠含量,其碱度影响产物的稳定性。
本发明的目的是,消除制备过碳酸钠的现有技术中存在的缺陷并且提供一种有效的和可高度灵活地操作的干燥制备具有有利性能的过碳酸钠的方法(干法)。本发明提出的干法特别地能够在尽可能高的有效活性氧产率下提供高质量过碳酸钠,该过碳酸钠根据各自预定的使用目的可以具有可变的、特别是高的活性氧含量和具有可变的颗粒参数。
本发明的目的是通过权利要求中限定的本发明的制备过碳酸钠的方法以及通过权利要求中限定的这种新的具有意想不到的有利性能的过碳酸钠和规定的固体漂白剂和洗涤剂组合物来解决的。
本发明活性氧含量至少是10重量%的过碳酸钠的干燥制备方法的特征在于,在混合器中,在最高至80℃的反应条件下,使固体的一水合碳酸钠与相关于过碳酸钠中所希望的活性氧含量准化学计算量的特别是50至70重量%的过氧化氢的水溶液反应,获得潮湿的过碳酸钠的浆体或糊状物,随后通过干燥和/或造粒获得活性氧含量是10至15.2重量%、优选从>14.5至15.2重量%和具有所希望的颗粒参数如堆比重和平均颗粒直径的过碳酸钠。
本发明的方法本身可以在各种能够使固体(特别是碳酸钠一水合物和所形成的PCS)和所使用的过氧化氢足够快地和剧烈混合的混合器中进行。适合的混合器例如如下:具有适用于可流动介质的搅拌器例如螺旋桨、圆盘、叶片、桨式或管板搅拌器的搅拌型反应器;极为有效的是强力混合器,例如快速运转的转子-定子搅拌机和涡轮混合器,其附加地配备有刀头以便打碎颗粒大的附聚物。在快速和剧烈混合下,每次混合的强度,其对应的搅拌机的转数从一开始至少是约100转/分钟,特别是约100至150转/分钟。优选的混合器是配备有捏合机的混合器,借助于该捏合机可以特别好地和均匀地处理在反应期间形成的浆体或糊状物。该反应不但可以间歇而且可以连续地进行。如果反应连续地进行,就可以借助于配料螺旋输送机在混合器中喂入固体碳酸钠一水合物。在间歇反应时,碳酸钠一水合物预先放置在混合器中。在这二种工艺下即在连续和间歇操作方式下,优选通过喷嘴,特别是二元喷嘴按照所需要的量将过氧化氢水溶液计量加入混合器中,其中在连续工艺中,加料速度由碳酸钠一水合物的加入、反应混合物在混合器中的停留时间和在某个时间间隔连续取出所形成的PCS的量来决定。
为了控制碳酸钠一水合物和过氧化氢之间的放热反应的反应温度,所使用的混合器可以配备冷却装置。为了截获反应热以保护过氧化氢中的活性氧含量和形成的过碳酸钠,这是特别适合的。为了进行冷却,其可适当地经一简单的冷却套进行,一般如果自来水具有足够冷却能力,那么一般为了冷却不必消耗其它的能量。在反应过程中,反应温度完全可以升高达80℃,而不会损害产物的性能,特别是活性氧含量。在反应期间温度控制是毫无问题的,并且因此反应可以在高于20℃的温度下进行,而不会影响产物性能,因此快速操作即碳酸钠一水合物和过氧化氢的相对快速的混合是可能的。但是应该避免高于80℃的温度,因为由于常过氧化氢的提前分解会影响活性氧的产率。在放热反应期间,反应温度有利地保持在室温至最高80℃的范围中,优选从高于20℃至最大80℃。
本发明方法的一基本特征在于,使用水合水含量基本上确定的特定形式的碳酸钠即碳酸钠一水合物作为原料。适合地碳酸钠一水合物是通过调制碳酸钠(Na2CO3)获得的,即通过无水形式的碳酸钠与一至约1.5倍摩尔量的水反应获得的。对此,在混合器中使优选预热的碳酸钠(例如达约100℃的水浴温度)与计算量的沸腾的水在足够的时间内反应,接着以本身已知的方式分析控制向碳酸钠一水合物的转化,例如通过DSC分析和总碱度的滴定。将碳酸钠调制为本发明方法使用的一水合物与欲调制的碳酸钠的种类无关。例如可以调制堆比重低于0.50千克/升(如0.20至0.48千克/升)的超轻质碳酸钠、堆比重例如为0.50至0.55千克/升的轻质煅烧碳酸钠和堆比重为1.0至1.1千克/升的重质碳酸钠。特别有利地是在使用这样的碳酸钠一水合物下进行本发明的方法,该一水合物是通过调制轻质碳酸钠,例如特别是堆比重是约0.50至0.55千克/升的轻质碳酸钠以及堆比重低于0.50千克/升的超轻质碳酸钠而获得的。在调制为碳酸钠一水合物之后,在与过氧化氢基本上完全反应的条件下该轻质碳酸钠被加工成特别均质的过碳酸钠。使用由轻质碳酸钠获得的碳酸钠一水合物可以使与过氧化氢的反应快速和完全地进行,根据欲反应的量,该反应在几分钟至最长约1.5小时内结束,特别是已经在1小时内结束。正如在实施方式中指明的一样,在常规水冷却下,在几分钟的时间内千克级的量可以反应;所以在水冷却下,在少于约15分钟内,2千克的轻质碳酸钠一水合物完全反应。但是在调制一水合物时使用重质煅烧碳酸钠时,在随后与过氧化氢反应时短的反应时间是可能的,并且获得基本上均质的PCS颗粒,只要如果需要延长调制时间以使供于水合反应的水充分地渗透进碳酸钠颗粒,或者如果需要作为这一方式的替代使用或附加地使用略微过量的用于水合的水;碳酸钠一水合物特性的控制在轻质碳酸钠调制时可以通过DSC分析和总碱度的滴定来进行。
在本发明的方法中,碳酸钠一水合物与过氧化氢中活性氧含量的比例如下调节,以使摩尔比对应于PCS中欲获得的Avox含量,其中如果需要仅要求略微过量的过氧化氢(过量的数量级最高达约5%)。因为本发明的方法保证了基本上完全的活性氧含量产率,所以使用准化学计算量的过氧化氢(相对于理论总分子式为Na2CO3·1.5H2O2的过碳酸钠;理论AVOX含量是15.28重量%)已经足够,并且使得避免使昂贵的过氧化氢过量。过氧化氢与碳酸钠一水合物的摩尔比是约1.0时,获得活性氧含量是约10重量%的的过碳酸钠。在本发明优选的实施方案中,将过氧化氢和碳酸钠的摩尔比调节至约1.5至1.52,以使在过碳酸钠中活性氧含量至少是14重量%,特别地从>14.5重量%至15.2重量%。在本发明的方法中,所使用的过氧化氢水溶液的浓度是50至70重量%,其中优选55至65重量%。一般以本身已知的方式稳定过氧化氢;现有技术中所有已知的活性氧稳定剂均是适合的,例如Turpinal SL。
碳酸钠一水合物和过氧化氢反应产物的干燥和粒化可以按照本身已知的常规方法进行,并且可以根据工艺和所使用的设备进行控制以获得颗粒尺寸(平均颗粒直径)随意地是约150至约1300微米的过碳酸钠。在本发明优选的实施方案中,制备颗粒尺寸是350至1300微米的过碳酸钠。因此本发明的方法可以制备具有轻质洗涤剂或高密度洗涤剂所要求颗粒尺寸范围的过碳酸钠,其颗粒尺寸是约550至600微米,特别是640至1100微米,优选是约800至1000微米。在各种情况下欲维持的粒化条件本身不是关键的,且与在各种情况下使用的粒化设备的常规条件相符合。根据本发明的方法可以制备具有堆比重是0.2千克/升至1.1千克/升,优选0.5至1.1千克/升的过碳酸钠。较后面的有关本发明的PCS产物说明中还描述的其它特别优选的颗粒尺寸和堆比重。
干燥和粒化可以在例如涡轮干燥器(粒化干燥器)以及其它本身常规的短时干燥设备和粒化设备中在各自常规条件下进行。干燥也可以在流化床干燥器或循环空气干燥器中进行。在本发明所有的方法变型中可以以本身已知的方式进行粒化,例如在压制方法中的干燥粒化或者在粒化混合器如犁头式混合器或V混合器中的湿粒化(构建粒化)。在粒化和干燥步骤的组合工艺布置中,操作方式包括在涡轮干燥器中,其中原则上该涡轮干燥器是一种布置有加热装置的涡轮混合器。在涡轮干燥器中的操作方式特别地适合于连续工艺,其中在反应之后直接干燥反应糊或反应浆,并且同时进行粒化。在另一种情况下,在原料混合之后可以在挤压工序中进行粒化。在粒化/干燥步骤中可以加入所希望的造粒助剂(例如硅酸盐)和稳定剂(如有机膦酸或膦酸酯),然而本发明制备的PCS中它们一般不是绝对必要的。
在本发明特别优选的工艺布置中,该方法的特征在于,使干燥之后-例如在本发明的该实施方案中通过循环空气干燥-获得的过碳酸钠压制,及紧接着进行干燥粒化。制备过碳酸钠产物的这种方法的特征在于,在第一步骤中(反应步骤),按照上述的反应过程制备过碳酸钠并干燥,在第二步骤中(压制/干燥粒化步骤),在不加或加入最高达1重量%的润滑剂,优选碱金属硬脂酸盐和/或碱土金属硬脂酸盐的情况下,将第一步骤干燥之后获得的过碳酸钠压制成结块,随后在干燥粒化过程中通过粉碎和过筛将结块制成具有所希望颗粒参数例如堆比重和平均颗粒直径的过碳酸钠颗粒。
根据本发明方法的该实施方案,在压制工序中处理基本上干燥的初级颗粒,并通过对此所使用的压制压力的作用而致密化。因此导致所使用的初级颗粒所希望的堆积(附聚)。因为通过压制或施加压力完成附聚作用,所以致密化的压制过程同样也被称为压制或压制附聚或挤压附聚,或者在造粒的情况下也称为压制造粒或挤压造粒。因此,制备附聚物和颗粒的压制附聚方法不同于所谓的构建附聚方法(构建粒化方法),该构建附聚方法只是通过与液体(例如水)和/或粘结剂的粘结而获得颗粒之间的粘合,而没有实质的压力作用。
进行压制的温度范围与能够使所使用的含活性氧的化合物具有好的热稳定性的温度范围一致,从安全方面来说,该方法可以毫无问题地进行。在本发明有利的工艺布置中过碳酸钠的压制是在环境温度下进行的。在涉及到欲压制的过碳酸钠初级颗粒的活性氧含量方面,这种方法可以毫无问题地在该温度范围中进行;与现有技术中常规的PCS结晶法不同,根据本发明制备的PCS中未观察到有损产物的活性氧损失。
尽管所使用的压力大小可以在宽的范围中随意选择,并且因此可以适应对产物的特殊的需要和要求;然而,从下面的值来看,压力由二个条件共同决定。一方面,应该具有足够的最低施加压力,以便使初级颗粒的附聚物具有足够的机械强度和堆比重。为了获得所希望的机械性能欲使用的最低压制压力与所使用的压制机械和产物的粘合性能有关,并且在涉及所希望的加工性能和产物性能方面本领域专业人员可以容易地在很少的几个预试验中确定。所使用压力的上限可以通过压制所使用的设备可达到的最大机械压力或许可压力和产物的粘结性能来限定。在本发明使用辊式压力机的有利工艺布置中,例如无定形的过碳酸钠的初级颗粒在至少50巴至最大150巴的压力下通过压制致密化。优选在80至120巴的压力下进行致密化。
与细的PCS初级颗粒的非均匀混合物相比,本发明获得的附聚物是能够很好计量和输送的成形产物,该产物在通过破碎而粉碎并过筛之后不易于起尘、粘附、粘合和离析,该附聚物还具有好的流动性和确定的堆比重。按照本发明的方法,PCS的产品性能如颗粒形状和颗粒尺寸以及堆比重可以适应不同使用目的的要求或者其它的市场需求。因此所希望的产品性能关键性地决定适当的压制方法。
对于压制可以使用所有常规的压制附聚设备。在此,尽管在不加入或加入少量液体、粘结剂、润滑剂、其它助剂和/或其它所希望的和有利的添加剂的情况下,通过压制也可以使潮湿的初级颗粒附聚。但是优选地,在使用其中只压制干燥初级颗粒的压制方法时完全体现出本发明的优点,因为在该方法中不会因所存在或加入的液体(特别是水)而对产物的稳定性(特别是活性氧的稳定性)产生不利影响,并且可以省去随后的干燥。其它优点是,在干燥的压制附聚方法中,一方面可以加入或不加粘结剂、润滑剂和/或其它助剂,另一方面对于该操作来说也不是绝对必要的;因此得以避免不受欢迎的、通过可能加入的添加剂和助剂造成的压制的过碳酸盐性能的改变。但是,另一方面,完全可以在压制附聚作用之前使其它所希望的以有利方式改性附聚物的添加剂,例如宜最高这约1重量%的硬脂酸钠或硬脂酸镁与欲压制的微晶体过碳酸盐颗粒均匀混合。
合适的压制设备例如是辊式压力机如轧光辊、结构辊(Strukturwalzen)或成形辊(压块辊)。可以用或不用强制式输送设备(用于输送欲压制的初级颗粒材料)来操作这些设备。根据所使用的压制设备,在施压下将初级颗粒压制成一定的形状,例如密实的、光滑的或者具有结构的薄片,也就是说压制成所谓的结块。接着可以将该结块粉碎至具有所希望尺寸的颗粒。
在特别有利的压制方法中,使用辊式压力机;优选是结构辊。结构辊是用于制造光滑或异型薄片(结块)、带状物或小的致密物的带槽纹或者连续成型的辊。结构辊可以是浅度或深度成型的辊,后者可以敞开或封闭式安装。这样获得或多或少光滑的、浅或深度结构化的(例如波纹状的)结块、波浪片或棒状物,后者是在在封闭安装的辊的总宽度上均匀成型的辊的情况下获得的。
因为通过压制获得的产物仍然不具备所希望的产品形状,例如特别是结块、波浪片和棒状物,所以按照本身已知的方法将它们粉碎为具有所希望的颗粒尺寸和堆比重的颗粒。对于粉碎,例如泥饼或结块破碎机(Schuelpenbrecher)适合于粗颗粒,而造粒筛适合于细颗粒。
本发明的方法制备的过碳酸钠颗粒,如果需要,可以以本身已知的方式使之具有涂层。合适的涂覆材料例如是现有技术中描述的材料,如硼酸盐、盐如Na2CO3、NaCl、Na2SO4和它们的混合物、有机涂料,例如乳糖酸和其衍生物。如果希望本发明制备的过碳酸钠颗粒具有附加涂层,那么在粒化步骤之后进行适宜的和本身已知的涂覆方法。
同样本发明涉及新的过碳酸钠,其特征是具有按照迄今为止的现有技术中的方法不能获得的有利性能。本发明的过碳酸钠(PCS)的特征是其活性氧含量从>14.5至15.2重量%(在不考虑可能加入的颗粒助剂或涂覆材料的情况下计算得到)。
在一种实施方案中,在1分钟之后该新的PCS的溶解度至少是95%,在2分钟之后至少是99%(每种情况下的标准条件是:2克,15℃)。在另一实施方案中,该新PCS在高于约155℃下,优选高于或等于159℃下,特别是在159至162℃的范围中具有放热DSC峰。在本发明的又一实施方案中,该新的PCS的稳定损失低于6.2%,优选是3.4至5.1%(在标准条件下测量的,标准条件:105℃,2小时)。
该新的PCS产物具有一系列其它有利的性能,该过碳酸钠的平均颗粒直径特别是550至1100微米,优选是640至1000微米。该过碳酸钠的堆比重优选是0.85至1.1千克/升。此外,过碳酸钠的磨损低于5%(在标准条件下测量)。
在本发明的一实施方案中,该过碳酸钠的特征在于,它包含最高达1重量%的在粒化过程中使用的选自碱金属或碱土金属的硬脂酸盐的润滑剂,并且它的堆比重是0.93至1.1千克/升。这种过碳酸钠的磨损低于8%(在标准条件下测量)。
该新的过碳酸钠可以按照上述本发明的方法,特别是按照具有压制和干燥粒化方案制备。如果按照有利的具有压制和干燥粒化的方案制备过碳酸钠,那么可以选择地在加入或不加润滑剂下进行压制。
如果按照有利的具有压制和干燥粒化的方案并且在压制/干燥时不加入润滑剂来制备过碳酸钠,那么在一方案中在标准条件(105℃,2小时)下测量的该过碳酸钠的稳定损失低于6.2%。在另一实施方案中,在不添加润滑剂的压制/干燥粒化方案中获得的过碳酸钠的平均颗粒直径是550至1100微米,优选是640至1000微米。在又一实施方案中,按照不添加润滑剂的压制/干燥粒化方法制备的过碳酸钠的堆比重是0.85至1.1千克/升。此外,该过碳酸钠的磨损低于5%(标准条件)。
在本发明的另一实施方案中,过碳酸钠的制备按照在压制时加入润滑剂的具有压制和干燥粒化的方案来进行。在本发明的一种实施方案中由此获得的过碳酸钠的特征在于,该过碳酸钠是在压制/干燥粒化时加入最高达1重量%的润滑剂,优选加入碱金属和/或碱土金属硬脂酸盐下获得的,其活性氧含量通常超过14.5重量%,优选超过14.8重量%,稳定损失最高是12.0(在标准条件下测定的,标准条件:105℃,2小时)。在本发明的另一实施方案中,在压制/干燥粒化时加入最高达1重量%的润滑剂,优选加入碱金属或碱土金属的硬脂酸盐而获得的过碳酸钠的特征在于,其活性氧含量从大于14.5至15重量%,优选是从大于14.8至15.0重量%,且其平均颗粒直径是800至1000微米。在本发明的又一实施方案中,在压制/干燥粒化时加入最高达1重量%的润滑剂,优选加入碱金属或碱土金属的硬脂酸盐而获得的过碳酸钠的活性氧含量从大于14.5至15重量%,优选从大于14.8至15.0重量%,堆比重是0.95至1.1千克/升。该过碳酸钠有利地具有最高为8%的磨损(在标准条件下测量)。
本发明的新PCS产物非常适合于在固体漂白剂和洗涤剂组合物中使用。因此,本发明还涉及一种固体漂白剂和洗涤剂组合物,其包括0.5至40重量%,优选5至25重量%的本发明的过碳酸钠和99.5重量%至60重量%,优选95重量%至75重量%的漂白剂和洗涤剂组合物中的常规配料和助剂,这些助剂和配料选自:表面活性剂、助洗剂、漂白活化剂、过酸漂白剂前体、酶、酶稳定剂、载污剂(Schmutztraeger)和/或配伍剂、配合物和螯合物形成剂、肥皂泡沫调节剂和添加剂如荧光增白剂、不透明剂、抗腐蚀剂、抗静电剂、颜料、杀菌剂。由于本发明的过碳酸钠对洗涤剂成分具有非常高的稳定性,所以其适用于这样的漂白剂和洗涤剂组合物,在选自沸石的助洗剂的存在下,该组合物包含过碳酸钠。本发明过碳酸钠的颗粒尺寸和堆比重使得其可以有利的方式在高密度洗涤剂组合物中使用。
在本发明的组合物中,可以使用选择范围宽的沸石助洗剂,其有时也被称为硅铝酸盐助洗剂。合适的沸石通常具有显著的钙或者碱土金属离子交换能力(消除水的硬度)。因此,用碳酸钙当量表示离子交换能力,并且其至少是150毫克碳酸钙/克,对于优选的沸石,离子交换能力是200至250毫克碳酸钙当量/克。沸石通常通过经验通式Mz[(AlO2)z(SiO2)y]·xH2O来描述,其中M是碱金属,优选是钠;z和y是至少为6的整数,并且y∶z的摩尔比是1∶1至2∶1,x是至少为5的整数,优选是10至280。许多沸石是水合物,并且包含最高达约30重量%的水,其中10至25重量%的水被结合在沸石中。沸石可以是无定形的,然而,大多数优选的沸石具有晶体结构。虽然存在某些天然的硅铝酸盐,但是大多数的硅铝酸盐是合成的。具有熟知的结构和分子式的合适晶体沸石例如是沸石A、沸石X、沸石B、沸石P、沸石Y、沸石HS和沸石MAP。在本发明的漂白剂和洗涤剂组合物中沸石量总计至少是5重量%,在大多数情况下,至少是10重量%,以组合物的总量为基准计。通常沸石的含量不超过约60重量%,一般不超过50重量%,特别是不超过40重量%,以组合物的总量为基准计。
虽然在本发明优选的方案中,描述了本发明过碳酸钠可以用于含一种或多种沸石作为助洗剂的漂白剂和洗涤剂组合物,但是在本发明一般性的实施方案中,漂白剂和洗涤剂组合物同样可包含本发明的过碳酸钠和含量在上述重量范围中的无定形沸石或者页硅酸盐(Schichtsilikate)。合适的页硅酸盐,特别是晶体性质的,通常对应于通式Na2SixO2x+1·yH2O或者相应的化合物,其中钠离子被氢离子代替。这里X特别地是在1.9至4的范围中,y特别地是在0至20的范围中。该页硅酸盐不仅可以与沸石助洗剂混合使用,也可以在无沸石助洗剂的漂白剂和洗涤剂组合物中使用。
在包含本发明过碳酸钠的漂白剂和洗涤剂组合物中,在本发明的其它一般性的实施方案中可以代替沸石类助洗剂而包含非沸石类的助洗剂。这样的洗涤剂的助洗剂例如是上面已经描述的页硅酸盐、碱金属的磷酸盐(特别是三聚磷酸盐)、四焦磷酸盐和六偏磷酸盐(特别是以钠盐形式存在的)、碱金属碳酸盐(优选碳酸钠)、碱金属硅酸盐和碱金属硼酸盐(优选硼酸钠)。可在漂白剂和洗涤剂组合物中包含的其它助洗剂是有机螯合物助洗剂,例如氨基聚羧酸盐和氨基聚亚甲基膦酸盐和羟基膦酸盐,也包括次氮基三乙酸盐或者三亚甲基膦酸盐、乙二胺四乙酸盐或者四亚甲基膦酸盐、二亚乙基三胺五亚甲基膦酸盐或者环己烷-1,2-二胺四亚甲基膦酸盐在内,它们通常完全或部分以钠盐的形式存在。螯合的羧酸盐助洗剂包括单和低聚的羧酸盐,包括乙醇酸衍生物和醚的衍生物,如琥珀酸、酒石酸、柠檬酸的盐和衍生物、琥珀酸盐的羧基衍生物和Polyasparte在内。其它的实例是乙烷四羧酸盐或丙烷四羧酸盐和不同的磺基琥珀酸盐。例如为了增强助洗剂的性能和稳定过氧作用,可以在在漂白剂和洗涤剂组合物中加入含量相对低的上述螯合物助洗剂;对于该目的1至10重量%的加入量是适合的,同样它们的含量也可以高达40重量%,优选5至20重量%。
此外,本发明的漂白剂和洗涤剂组合物通常包括一种或多种表面活性剂,其含量是2至40重量%,优选是5至25重量%。表面活性剂是选自下组的常规表面活性剂:阴离子、阳离子、非离子、两性离子、两性的和两性表面活性剂,同样还有天然或合成的皂类。表面活性剂的实例例如是作为阴离子表面活性剂的羧酸皂、烷基芳基磺酸盐、烯属磺酸盐、直链的烷基磺酸盐、羟基烷基磺酸盐、长链的脂肪醇硫酸盐、硫酸化的甘油酯、硫酸化的醚、磺基琥珀酸酯、磷酸酯、蔗糖酯和阴离子氟表面活性剂;阳离子表面活性剂的实例是季铵或者季化吡啶鎓盐(包含至少一个疏水的烷基或芳烷基基团);非离子表面活性剂例如是长链醇类和聚环氧乙烷或者与苯酚的缩合物,或者长链羧酸或胺和/或酰胺与聚环氧乙烷或相应化合物的缩合物(其中长链单元与脂族多羟基化合物如山梨醇缩合),或者环氧乙烷或环氧丙烷或者脂肪酸链烷醇酰胺和脂肪酸胺氧化物的缩合产物;两性或两性离子表面活性剂例如是锍和鏻表面活性剂(未取代或被其它的增溶的阴离子基团取代)。以上仅是举例性列举,而不能作为排除性理解。
其它任选的漂白剂和洗涤剂组合物的组分例如是已经提及的:载污剂、漂白活化剂、荧光增白剂、酶、软化剂、香料、颜料和,如果需要,加工助剂。任选的组分,除可以构成单独组分的加工助剂外,的含量是最高达约20重量%,以组合物的总量为基准计;通常是高达10重量%。如果需要作为单独组分的加工助剂可占组合物的0至40重量%。载污剂例如通常是纤维素的甲基、羧甲基或羟基乙基衍生物或者聚乙烯吡咯烷酮,或者是多羧酸聚合物如马来酸酐与甲基丙烯酸或者亚乙基-和/或甲基乙烯基醚的共聚物。通常采用的漂白活化剂例如是O-酰基-或N-酰基-化合物,其是通过与过碳酸钠反应获得过酸的,特别是TAED、SNOBS和它们的异壬基类似物、TAGU和蔗糖酯。荧光增白剂例如是适当取代的氨基1,2-二苯乙烯和特别是三嗪氨基1,2-二苯乙烯。酶例如选自淀粉酶、中性或碱性蛋白酶、脂酶、酯酶和纤维素酶,其中每种均是商业上可获得的。软化剂例如是非水溶性的叔胺,有时是具有长链季铵盐的化合物和/或高分子量的聚环氧乙烷。加工助剂通常是硫酸钠和/或硫酸镁。然而,在浓缩或超浓缩的组合物中,加工助剂的含量是较低的,为最高达5重量%,在传统的组合物中其含量一定是20至40重量%。
本发明的漂白剂和洗涤剂组合物可以按照各种常规的方法制备,例如通过颗粒状的过碳酸钠和所希望的成分的干燥混合,这些所希望的成分通常可以被预先加工成预混合物或预配制物形式。
本发明的方法以及本发明制备的过碳酸钠的特征如下:
本发明提供一种简单并经济的间歇或连续制备基本上均质的活性氧含量可变化的、特别是高活性氧含量的PCS颗粒的方法,该颗粒的活性氧含量是10至15.2重量%,特别是从大于14.5至15.2重量%。本发明的方法可以在节约能量下进行,因为一方面在反应期间不需要用于冷却的能量,而是仅经过常规的水冷却控制温度,并且另一方面为了干燥只需蒸发掉少量水。与所谓的湿法(结晶法)不同,本发明的方法产生无氯化物的PCS产物,因此避免设备腐蚀的危险性。与湿法不同,本发明的方法不产生需处理的废水;在温法中,与此相反产生碱性的、含过氧化氢和氯化物的废水,此外该废水在排放之前还要进行中和,并且如果需要必须分解过氧化氢成分。与其中PCS的活性氧含量仅是约10重量%的所谓干法不同,按照本发明的方法可以获得10至15.2重量%,特别是大于14.5至15.2重量%的可变活性氧含量。按照本发明的干法,在使用确定的一水合碳酸钠的情况下,可以很好地控制PCS产物中的活性氧含量,并且使之适应市场上的各种要求和不同的产品。本发明的干法保证几乎无损失地使用过氧化氢,并因此保证基本上完全的活性氧产率;因此可以避免昂贵的过氧化氢过量,并且一水合碳酸钠与过氧化氢的反应可以按照准化学计量进行。此外,按照本发明的方法制备的PCS具有高的均匀性和纯度。因此本发明获得的PCS颗粒具有有利的稳定性。该方法是非常灵活的,因为与现有技术中的干法(其中使用管式反应器)不同,本发明的方法可以在本身常用的混合和干燥设备中进行。本发明方法的灵活性在于,该方法不仅可以以间歇的方式,而且可以以连续的方式很好控制地进行。
下面的实施例用于进一步详细说明本发明,然而并不是将本发明限制在这些实施例的范围中。表中和文中的%一般均表示重量%。
实施例
实施例1:
将碳酸钠调制成一水合碳酸钠
为了制备一水合碳酸钠,在带有加热套(水浴,99℃)的实验室用Loedige混合器中调制轻质碳酸钠。为此,将2000克的碳酸钠填充在混合器中,并在低转数下(约20U/分钟)预热15分钟。然后将转数升高至约120U/分钟,然后迅速加入520克沸腾的水。在停留约35分钟中后,从混合器中取出产物。通过DSC分析和总碱度的滴定来控制产生一水合碳酸钠的反应。
制备6批一水合碳酸钠(参见实施例3)。所获得的一水合碳酸钠的通用工艺条件和平均分析结果列于随后的表Ia和Ib中。
表Ia:在Loedige混合器中将碳酸钠(Na2CO3)调制成一水合碳酸钠(Na2CO3·H2O)
Na2CO3(轻质碳酸钠) | 2,000g(79.37重量%) |
H2O(沸腾的) | 520g(20.63重量%) |
摩尔比Na2CO3∶H2O | 1∶1.53 |
碳酸钠预热时间(混合器) | 15分钟 |
方法 | 带有加热套的实验室用Loedige混合物(120U/Min) |
H2O加入时间 | 平均34秒(25至45秒) |
加热套温度 | 99℃ |
反应时间 | 平均38分钟(35至45分钟) |
表Ib:一水合碳酸钠(通过碳酸钠的调制获得的)的分析和特性
DSC吸热峰 | 平均99℃(94至102℃)平均-403J/g(-390至-420J/g) |
H2O(总碱度) | 平均13.95%(13.45至14.23) |
Na2CO3(总碱度) | 平均86.05%(86.55至85.77%) |
Na2CO3∶H2O比(来自分析) | 平均1∶0.95(1∶0.92至1∶0.98) |
实施例2
过碳酸钠的制备
随后,使实施例1制备的每种一水合碳酸钠与过氧化氢反应,获得过碳酸钠。为此在每种情况下将称量的一水合碳酸钠(约2000克)加入具有捏合工具的混合器(Loedige混合器)中。每1摩尔称量的一水合碳酸钠称量1.5摩尔的过氧化氢(60重量%)水溶液,并且通过加入Turpinal SL(60重量%)使之稳定(加入量:以过氧化物(100%)为基准计为5.75重量%TSL(100%))。经两相喷嘴将这样稳定的过氧化氢溶液喷入Loedige混合器中。在混合器的转数是约120U/分钟时,喷射时间总计是约13分钟。为了控制反应时的温度,经套管采用自来水的冷却该混合器。在反应之后,从混合器中取出产物,并在80℃下在循环空气干燥橱中干燥。最终产物中的水含量或活性氧含量一达到所希望的值,就结束干燥(小于约0.2重量%;按照Sartorius测定水)。在形成的过碳酸钠冷却之后,通过PCS的常规分析进行质量控制。
总计由实施例1制备的6批一水合碳酸钠均如上所述进行反应。通用的反应条件和所获得的过碳酸钠的平均分析结果列于随后的表IIa和IIb中。
实施例3:
调制和PCS制备的其它试验
类似于实施例1和2,进一步进行由一水合碳酸钠制备PCS的试验。各个工艺条件和原料和产物的性能列于随后的表III中。表IIa:一水合碳酸钠与过氧化氢反应生成过碳酸钠
表IIb:本发明制备的过碳酸钠的分析及性能
表III:调制和PCS制备的其它试验调制:
与过氧化氢反应:
调制:
与过氧化氢反应:
调制:
与过氧化氢反应:
方法 | 带有冷却套的实验室用Loedige混合器(ca.100U/min.) |
原料 | Na2CO3·H2O(调制)H2O2(w=0.6)TSL(w=0.6) |
摩尔比Na2CO3∶H2O2 | 1∶1.5 |
Turpinal量 | 5.75%TSL100%ig基于H2O2 100%ig |
温度 | 室温/水冷却 |
H2O2加入时间(双料喷嘴) | 平均13分钟(12至14分钟) |
AVOX湿产物 | 平均11.43%(10.90至11.68%) |
干燥-温度-干燥时间 | 循环空气干燥橱80℃150至180分钟 |
AVOX | 平均15.02%(14.98至15.06%)=31.91%H2O2 |
H2O(Sartorius) | 平均0.15%(0.07至0.33%) |
Na2CO3(总碱度) | 平均66.01% |
NaCl | 平均0.1%(0.08%/0.09%) |
Turpinal SL | 平均1.69%(0.501%P) |
总量H2O/H2O2/Na2CO3/TSL/NaCl | 99.86% |
Na2CO3∶H2O2比 | 1∶1.51 |
DSC放热峰 | 平均161℃(159至162℃)平均+133J/g(+130至+140J/g) |
稳定损失2h/105℃ | 平均4.6%(3.4至5.1%) |
试验3.1 | 试验3.2 | |
Na2CO3(Rheinberg轻质) | 2,000g(79.37%) | 2,000g(79.37%) |
H2O(沸腾) | 520g(20.63%) | 520g(20.63%) |
Na2CO3∶H2O比 | 1∶1.53 | 1∶1.53 |
方法 | 实验室用Loedige混合器(120U/Min) | 实验室用Loedige混合器(120U/Min) |
H2O加入时间 | 45秒 | 40秒 |
温度 | 99℃ | 99℃ |
时间 | 45分钟 | 40分钟 |
H2O(总碱度) | 14% | 13.45% |
Na2CO3(总碱度) | 86% | 86.55% |
H2O(Sartorius) | 13.52% | 13.48% |
Na2CO3∶H2O比(来自分析) | 1∶0.96 | 1∶0.92 |
试验3.1 | 试验3.2 | |
方法 | 实验室用Loedige混合器(ca.100U/Min) | 实验室用Loedige混合器(ca.100U/Min) |
原料 | 1,940g H2O2(w=0.6)/TSL(w=0.6) | 2,035g H2O2(w=0.6)/TSL(w=0.6) |
Na2CO3∶H2O2比 | 1∶1.5(1,338g H2O2/76.9g TSL) | 1∶1.5(1,412g H2O2/81.2g TSL) |
温度 | 室温/水冷却 | 室温/水冷却 |
时间 | 13分钟 | 12分钟 |
干燥 | 循环空气干燥橱80℃,150分钟 | 循环空气干燥橱80℃,160分钟 |
产物产率 | 2,089g | 2,271g |
AVOX湿产物 | 10.90% | 11.62% |
AVOX终产物 | 15.00% 14.95% 15.04% | 15.06% 15.04% |
H2O(Sartorius) | 0.17% | 0.22% 0.43% |
稳定损失2h/105℃ | 5.1% | 4.9% |
试验3.3 | 试验3.4 | |
Na2CO3(Rheinberg轻质) | 2,000g(79.37%) | 2,000g(79.37%) |
H2O(沸腾) | 520g(20.63%) | 520g(20.63%) |
Na2CO3∶H2O比 | 1∶1.53 | 1∶1.53 |
方法 | 实验室用Loedige混合器(120U/Min) | 实验室用Loedige混合器(120U/Min) |
H2O加入时间 | 30秒 | 35秒 |
温度 | 99℃ | 99℃ |
时间 | 40分钟 | 35分钟 |
H2O(总碱度) | 13.9% | 14.15% |
Na2CO3(总碱度) | 86.1% | 85.85% |
H2O(Sartorius) | 13.83% | 13.98% |
Na2CO3∶H2O比(来自分析) | 1∶0.95 | 1∶0.97 |
试验3.3 | 试验3.4 | |
方法 | 实验室用Loedige混合器(ca.100U/Min) | 实验室用Loedige混合器(ca.100U/Min) |
原料 | 2,000g H2O2(w=0.6)/TSL(w=0.6) | 2,132g H2O2(w=0.6)/TSL(w=0.6) |
Na2CO3∶H2O2比 | 1∶1.5(1,381g H2O2/79.4g TSL) | 1∶1.5(1,468g H2O2/84.4g TSL) |
温度 | 室温/水冷却 | 室温/水冷却 |
时间 | 12分钟 | 14分钟 |
干燥 | 循环空气干燥橱80℃,165分钟 | 循环空气干燥橱80℃,170分钟 |
产物产率 | 2,193g | 2,448g |
AVOX湿产物 | 11.68% | 11.42% |
AVOX终产物 | 15.08% 15.04% | 15.00% 14.96% |
H2O(Sartorius) | 0.06% 0.07% | 0.16% 0.17% |
稳定损失2h/105℃ | 5.1% | 4.7% |
试验3.5 | 试验3.6 | |
Na2CO3(Rheinberg轻质) | 2,000g(79.37%) | 2,000g(79.37%) |
H2O(沸腾) | 520g(20.63%) | 520g(20.63%) |
Na2CO3∶H2O比 | 1∶1.53 | 1∶1.53 |
方法 | 实验室用Loedige混合器(120U/Min) | 实验室用Loedige混合器(120U/Min) |
H2O加入时间 | 25秒 | 30秒 |
温度 | 99℃ | 99℃ |
时间 | 35分钟 | 35分钟 |
H2O(总碱度) | 14.23% | 13.96% |
Na2CO3(总碱度) | 85.77% | 86.04% |
H2O(Sartorius) | 14.10% | 13.96% |
Na2CO3∶H2O比(来自分析) | 1∶0.98 | 1∶0.96 |
试验3.5 | 试验3.6 | |
方法 | 实验室用Loedige混合器(ca.100U/Min) | 实验室用Loedige混合器(ca.100U/Min) |
原料 | 2,073g H2O2(w=0.6)/TSL(w=0.6) | 2,066g H2O2(w=0.6)/TSL(w=0.6) |
Na2CO3∶H2O2比 | 1∶1.5(1,426g H2O2/81.9g TSL) | 1∶1.5(1,425g H2O2/82.0g TSL) |
温度 | 室温/水冷却 | 室温/水冷却 |
时间 | 13分钟 | 12分钟 |
干燥 | 循环空气干燥橱80℃,175分钟 | 循环空气干燥橱80℃,180分钟 |
产物产率 | 2,368g | 2,252g |
AVOX湿产物 | 11.39% | 11.58% |
AVOX终产物 | 15.04% 15.00% | 14.96% 15.00% |
H2O(Sartorius) | 0.08% 0.14% | 0.88% 0.06% |
稳定损失2h/105℃ | 4.2% | 3.4% |
实施例4:
压制和干燥粒化
将实施例2和3制备的微晶过碳酸钠压制,随后干燥粒化。该压制在Alexander-Werk公司的具有干燥粒化成套设备的WP-50 N/75型压制机中进行,其中该装置适合于连续密实干燥的、粉状或细晶体状的产物,并随后将压制的产物粉碎(粒化)。通过压制获得的结块的粒化可以通过安装不同的滤网来控制。对此,可使用筛号为2.00、1.25和1.00毫米的滤网。
除实施例2和3中制备的过碳酸钠外,为了进行比较,还对按照现有技术中的结晶法制备的过碳酸钠进行压制和干燥粒化(该PCS的平均颗粒尺寸是d=500微米)。如果需要,在压制时,在所使用的过碳酸钠中加入1.0重量%的硬脂酸钠粉末。因此,一旦需要可以改善结块从辊表面分离的特性。这样,结块本身脱下,而无需借助安装的刮刀。硬脂酸钠的加入不影响粒度的测定。
为了找到有利的工艺条件,在预试验中,首先在恒定的产物输入下,逐渐地将辊的压制压力从25巴升高至120巴。在高压力下制备的结块可经1.25毫米的滤网很好地粒化。该颗粒由接近长方体形状的颗粒组成,其具有令人满意的强度。在低于50巴时仅产生易碎的结块,其在粒化时易于崩解成粉末。产物的输入量提高将导致产生更密实的结块,但是随着压制压力的提高,这些密实的结块更多地从辊子上剥落。因此,证明50至100巴的辊压制压力是有利的工艺条件。
研究粗粒颗粒的性能,其中该颗粒是在上述压制和粒化时,经筛号为1.25毫米的滤网制得的平均颗粒直径是650微米(在加入硬脂酸钠时是873微米)的过碳酸钠颗粒。该颗粒产物具有较低的磨损(按照ISO5.937小于5%或小于8%),低的干燥稳定损失(在105℃下,2小时,6%)和高溶解速度(在1分钟后99%,15℃)。根据本发明制备的过碳酸钠的堆比重是0.87克/毫升,在加入硬脂酸钠时是0.93克/毫升。根据微量量热法测定的结果和沸石试验的结果,本发明制备的PCS颗粒在洗涤剂中具有有利的储存稳定性。在微量量热法测定中本发明制备的过碳酸钠的值是49μW/g或者57μW/g(在加入硬脂酸钠时),在沸石试验中,剩余氧含量约是50%,在加入硬脂酸钠时是56%(各是以PBS-1作为标准测定的)。为了清楚起见,将常规的过碳酸钠(通过结晶方法获得的或是其密实的形式)和根据本发明在没有加入或加入硬脂酸盐时制备的过碳酸钠产物的详尽的分析结果列于随后的表IV中。
表IV:本发明制备的过碳酸钠的性能和对比试验4.1=压制之后的本发明的PCS4.2=压制之后并加入硬脂酸钠的本发明PCSV1=对比试验:商用PCS的性能,其是按照结晶法制备的V2=对比试验:与V1相同的PCS,但是其是附加压制之后的 *)所有的原始试样;无筛分级分;**)在含沸石的洗涤剂中测定LKB-值;混合比例:20重量%的过碳酸盐和80重量%的洗涤剂基质。
说明PCS =过碳酸钠Avox =活性氧(含量)Turpinal SL =1-羟基乙烷-1,1-二膦酸(HEDP)的60(TSL) 重量%的水溶液;
过氧化物的稳定剂水玻璃 =36重量%的硅酸钠水溶液(8重量%的
Na2O;25.5重量%的SiO2)IFB =一体化的流化床h =小时min =分钟mmWS =毫米水柱P,dP =压力,压差U/min =转/分钟DSC =差示扫描量热法。DSC包括所有的能量
消耗或释放过程,即放热和吸热相变LKB-测量 =热流测量
在热流测量时,在等温测量条件下出现
的热流暗示含活性氧的产物的稳定
性;如果在这样的试样上进行热流测
量,特别地同样可以确定在洗涤剂组分
存在下产物的稳定性,其中在该试样中
含活性氧的产物与洗涤剂组分相混
合。热流测量在40℃下,在LKB2277
生物活性监视器中进行20小时。所测
量的热流越低,含活性氧产物在洗涤剂
中的稳定性越高或者每种PCS颗粒越
稳定。Avox损失Avox稳定性,稳定损失 =为了测定所制备的过碳酸钠的化学稳
定性,测量活性氧的损失(Avox稳定
性)。为此在105℃下加热产物2小时,
并且确定通过分解造成的活性氧损
失。活性氧的测定按照常规滴定分析方
法进行。H2O(Sartorius) =每次称量7.5克;试验温度60℃;试
验结果:小于5毫克/90秒。沸石试验 =将10克产物和10克沸石A(分子筛2
至3微米,Aldrich)混合;在敞开的
陪替氏培养皿中,在32℃下和80%的
相对湿度下放置48小时;沸石特性数
值=放置后试样的剩余AVOX除以放置
后标准PBS-1的剩余AVOX。(PBS-1=
一水合过硼酸钠)磨损试验 =按照ISO 5934进行磨损测定,也就是
说,重力测定法测定小于150微米的细
组分量,该细组分是试样借助于压缩空
气在垂直管中涡旋时产生的。所产生的
细组分占总量的百分比为磨损百分比
Claims (35)
1、制备过碳酸钠的方法,其特征在于,在混合设备中,在最高至80℃的反应温度下,使固体的一水合碳酸钠与相关于过碳酸钠中所希望的活性氧含量准化学计算量的50至70重量%的过氧化氢的水溶液反应,获得由潮湿的过碳酸钠组成的浆体或糊状物,随后通过干燥和/或造粒获得活性氧含量是10至15.2重量%、优选>14.5至15.2重量%和具有所希望颗粒参数如堆比重和平均颗粒直径的过碳酸钠。
2、根据权利要求1的方法,其特征在于,在放热反应过程中,反应温度保持在室温至最高80℃的范围中,优选在高于20℃至最高80℃的范围中。
3、根据权利要求1的方法,其特征在于,以理论分子式为Na2CO3·1.5H2O2的过碳酸钠为基准计,使用准化学计算量的过氧化氢水溶液,优选是1.49至1.52摩尔(H2O2)的过氧化氢水溶液。
4、根据权利要求1的方法,其特征在于,使用55至65重量%的过氧化氢水溶液。
5、根据权利要求1的方法,其特征在于,经喷嘴优选是双料喷嘴将过氧化氢水溶液计量地喷入装有固体一水合碳酸钠的混合器中。
6、根据权利要求1的方法,其特征在于,使用通过调制由堆比重是0.50至0.55千克/升的轻质碳酸钠获得的固体一水合碳酸钠。
7、根据权利要求1的方法,其特征在于,使用通过调制由堆比重低于0.50千克/升的超轻质碳酸钠获得的固体一水合碳酸钠。
8、根据权利要求1的方法,其特征在于,一水合碳酸钠与过氧化氢水溶液的反应在强力混合器中尽可能快速进行。
9、根据权利要求8的方法,其特征在于,制备堆比重是0.2至1.1千克/升,优选0.5至1.1千克/升的过碳酸钠颗粒。
10、制备过碳酸钠颗粒的方法,其特征在于,在第一步骤中(反应步骤),按照权利要求1至9的方法制备过碳酸钠并干燥,在第二步骤中(压制/干燥粒化步骤),在不加或加入最高达1重量%的润滑剂,优选碱金属硬脂酸盐和/或碱土金属硬脂酸盐的情况下,将第一步骤干燥之后获得的过碳酸钠压制成结块,随后在干燥粒化过程中通过粉碎和过筛将结块制成具有所希望颗粒参数例如堆比重和平均颗粒直径的过碳酸钠颗粒。
11、根据权利要求10的方法,其特征在于,在至少50巴至最高150巴的压力,优选80巴至120巴的压力下进行密实。
12、根据权利要求8或10的方法,其特征在于,所制备的过碳酸钠颗粒的平均颗粒直径是350至1300微米,优选是550至1100微米。
13、根据权利要求10和12的方法,其特征在于,所制备的过碳酸钠颗粒的平均颗粒直径大于600微米,优选是640至1000微米。
14、根据权利要求10的方法,其特征在于,所制备的过碳酸钠颗粒的堆比重是0.85至1.1千克/升,优选是0.93至1.1千克/升。
15、根据权利要求10至14的方法,其特征在于,在加入最高至1重量%的硬脂酸钠和/或硬脂酸镁下进行密实。
16、过碳酸钠(PCS),其特征在于,其活性氧含量>14.5至15.2重量%(在不考虑可能在制备和/或粒化时所使用的颗粒助剂的情况下计算),并且在1分钟之后其溶解度至少是95%,在2分钟之后至少是99%(每种情况下的标准条件是:2克,15℃)。
17、过碳酸钠(PCS),其特征在于,其活性氧含量>14.5至15.2重量%(在不考虑可能在制备和/或粒化时所使用的颗粒助剂的情况下计算),并且在高于约155℃下,特别是在159至162℃的范围中具有放热DSC峰。
18、过碳酸钠(PCS),其特征在于,其活性氧含量>14.5至15.2重量%(在不考虑可能在制备和/或粒化时所使用的颗粒助剂的情况下计算),并且其稳定损失低于6.2%,优选是3.4至5.1%(在标准条件下测量的,标准条件:105℃,2小时)。
19、根据权利要求16至18之一项的过碳酸钠,其特征在于,其平均颗粒直径是550至1100微米,优选是640至1000微米。
20、根据权利要求16至18之一项的过碳酸钠,其特征在于,过碳酸钠的堆比重是0.85至1.1千克/升。
21、根据权利要求19或20的过碳酸钠,其特征在于,过碳酸钠的磨损低于5%(在标准条件下测量)。
22、根据权利要求16或17的过碳酸钠,其特征在于,它包含最高达1重量%的在粒化过程中使用的选自碱金属或碱土金属的硬脂酸盐的润滑剂,并且它的堆比重是0.93至1.1千克/升。
23、根据权利要求22的过碳酸钠,其特征在于,这种过碳酸钠的磨损低于8%(在标准条件下测量)。
24、根据权利要求16至23之一项的过碳酸钠,其特征在于,其是按照权利要求1至15,优选按照权利要求10至15的方法制备的。
25、根据权利要求16至18之一项的过碳酸钠,其特征在于,其是按照权利要求10至15的方法在压制/干燥粒化工艺中不加入润滑剂而获得的,其在标准条件(105℃,2小时)下的稳定损失低于6.2%。
26、根据权利要求16至18之一项的过碳酸钠,其特征在于,其是按照权利要求10至15的方法在压制/干燥粒化时不添加润滑剂获得的,该过碳酸钠的平均颗粒直径是550至1100微米,优选是640至1000微米。
27、根据权利要求16至18之一项的过碳酸钠,其特征在于,其是按照权利要求10至15的方法在压制/干燥粒化时不添加润滑剂获得的,并且该过碳酸钠的堆比重是0.85至1.1千克/升。
28、根据权利要求26或28的过碳酸钠,其特征在于,过碳酸钠的磨损低于5%(标准条件)。
29、根据权利要求16或17的过碳酸钠,其特征在于,其是按照权利要求10至15的方法在压制/干燥粒化时加入最高达1重量%的润滑剂,优选加入碱金属和/或碱土金属硬脂酸盐下获得的,其活性氧含量高于14.5重量%,优选超过14.8重量%,稳定损失最高是12.0(在标准条件下测定的,标准条件:105℃,2小时)。
30、根据权利要求16或17的过碳酸钠,其特征在于,其是按照权利要求10至15的方法在压制/干燥粒化时加入最高达1重量%的润滑剂,优选加入碱金属或碱土金属的硬脂酸盐而获得的,其活性氧含量从大于14.5至15重量%,优选是从大于14.8至15.0重量%,其平均颗粒直径是800至1000微米。
31、根据权利要求16或17的过碳酸钠,其特征在于,其是按照权利要求10至15的方法在压制/干燥粒化时加入最高达1重量%的润滑剂,优选加入碱金属或碱土金属的硬脂酸盐而获得的,该过碳酸钠的活性氧含量从大于14.5至15重量%,优选是从大于14.8至15.0重量%,堆比重是0.93至1.1千克/升。
32、根据权利要求30或31的过碳酸钠,其特征在于,该过碳酸钠具有最高为8%的磨损(在标准条件下测量)。
33、一种固体漂白剂和洗涤剂组合物,其包括0.5至40重量%,优选5至25重量%的根据权利要求16至32之一项的过碳酸钠和99.5重量%至60重量%,优选95重量%至75重量%的漂白剂或洗涤剂组合物中的常规配料和助剂,这些助剂或配料选自:表面活性剂、助洗剂、漂白活化剂、过酸漂白剂前体、酶、酶稳定剂、载污剂和/或配伍剂、配合物和螯合物形成剂、肥皂泡沫调节剂和添加剂如荧光增白剂、不透明剂、抗腐蚀剂、抗静电剂、颜料、杀菌剂。
34、根据权利要求33的漂白剂和洗涤剂组合物,其特征在于,在选自沸石的助洗剂的存在下,该组合物包含权利要求16至27之一项的过碳酸钠。
35、根据权利要求33或34的漂白剂和洗涤剂组合物,其特征在于,它是一种高密度洗涤剂组合物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 97180679 CN1240407A (zh) | 1996-12-16 | 1997-12-12 | 过碳酸钠的制备方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19652243.9 | 1996-12-16 | ||
CN 97180679 CN1240407A (zh) | 1996-12-16 | 1997-12-12 | 过碳酸钠的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1240407A true CN1240407A (zh) | 2000-01-05 |
Family
ID=5177807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 97180679 Pending CN1240407A (zh) | 1996-12-16 | 1997-12-12 | 过碳酸钠的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1240407A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1330561C (zh) * | 2002-06-27 | 2007-08-08 | 浙江金科化工股份有限公司 | 一种过碳酸钠制备方法 |
CN100387512C (zh) * | 2005-11-09 | 2008-05-14 | 广东中成化工股份有限公司 | 一种干法制备过碳酸钠的方法 |
-
1997
- 1997-12-12 CN CN 97180679 patent/CN1240407A/zh active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1330561C (zh) * | 2002-06-27 | 2007-08-08 | 浙江金科化工股份有限公司 | 一种过碳酸钠制备方法 |
CN100387512C (zh) * | 2005-11-09 | 2008-05-14 | 广东中成化工股份有限公司 | 一种干法制备过碳酸钠的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2704020B2 (ja) | 界面活性剤含有顆粒の製法 | |
JPH05209200A (ja) | ノニオン洗剤粒子の製造方法 | |
CN1083521A (zh) | 致密洗涤剂组合物的制备方法 | |
KR900004538B1 (ko) | 세제과립 및 그 제조방법 | |
CN1230984A (zh) | 粒状洗涤剂或清洗剂的制备方法 | |
PL180050B1 (pl) | Sposób wytwarzania homogenicznej granulowanej kompozycji detergentowej PL | |
KR100572242B1 (ko) | 과탄산나트륨의 제조방법 | |
EP0643129A1 (en) | Process for preparing detergent compositions | |
JPH0680160B2 (ja) | 流動性の改良された高密度の粒状洗剤の製法 | |
CN1124498A (zh) | 在混合表面活性剂颗粒中的仲(2,3)烷基硫酸盐表面活性剂 | |
CN100595267C (zh) | 颗粒状阴离子表面活性剂的制造方法 | |
CN1541260A (zh) | 生产洗涤剂颗粒的方法 | |
CN100387512C (zh) | 一种干法制备过碳酸钠的方法 | |
CN1208447C (zh) | 高堆积密度洗涤剂组合物的制备方法 | |
CN100513543C (zh) | 阴离子型表面活性剂粉末 | |
KR100695049B1 (ko) | 세제 입자 | |
KR950001687B1 (ko) | 점토를 함유하는 부피 밀도가 높은 세제 분말의 제조 방법 | |
CN1240407A (zh) | 过碳酸钠的制备方法 | |
CN1054353C (zh) | 稳定粒状碱金属过碳酸盐的方法 | |
JPH0640709A (ja) | 安定な過炭酸ソーダ及びその製造法並びに安定な過炭酸ソーダを含有する漂白洗浄剤組成物 | |
JP2869310B2 (ja) | 安定な過炭酸ソーダ及びその製造方法並びに安定な過炭酸ソーダを含有してなる漂白洗浄剤組成物 | |
JP2871298B2 (ja) | 安定化された過炭酸ソーダの製造法 | |
CN1067674A (zh) | 用于洗涤剂组合物中形成表面活性颗粒的高活性浆料的凝聚方法 | |
CN1200999C (zh) | 制造粒状洗涤剂组合物的方法 | |
JPH07122079B2 (ja) | 流動性の改良された高密度の粒状洗剤の製法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C01 | Deemed withdrawal of patent application (patent law 1993) | ||
WD01 | Invention patent application deemed withdrawn after publication |