CN1234385A - α,β-不饱和羰基化合物的选择性液相加氢 - Google Patents

α,β-不饱和羰基化合物的选择性液相加氢 Download PDF

Info

Publication number
CN1234385A
CN1234385A CN99105566A CN99105566A CN1234385A CN 1234385 A CN1234385 A CN 1234385A CN 99105566 A CN99105566 A CN 99105566A CN 99105566 A CN99105566 A CN 99105566A CN 1234385 A CN1234385 A CN 1234385A
Authority
CN
China
Prior art keywords
hydrogen
preferred
hydrogenation
bubble
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN99105566A
Other languages
English (en)
Inventor
F·J·布勒克
G·凯贝尔
W·阿奎拉
H·福赫斯
G·维格纳
M·斯特勒策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN1234385A publication Critical patent/CN1234385A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2455Stationary reactors without moving elements inside provoking a loop type movement of the reactants
    • B01J19/2465Stationary reactors without moving elements inside provoking a loop type movement of the reactants externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2495Net-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/0011Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及式Ⅰ的α,β-不饱和羰基化合物的选择性液相加氢以得到相应的分子式为Ⅱ的饱和羰基化合物的方法,该方法在粉状钯和/或铑催化剂的存在下以及在有机碱的存在下使用氢气。该方法在带有产物循环(11,17)和循环氢气(14,15,16)的填充泡罩塔反应器(1,2)中进行。尤其适于柠檬醛的选择性加氢至香茅醛。

Description

α,β-不饱和羰基化合物的选择性液相加氢
本发明涉及式Ⅰ的α,β-不饱和羰基化合物的选择性液相加氢以得到相应的式Ⅱ的饱和羰基化合物的方法,
Figure A9910556600042
该方法在粉状钯和/或铑催化剂的存在下以及在有机碱的存在下使用氢气。本发明尤其涉及柠檬醛的选择性加氢至香茅醛。
在液相中使用氢气来进行α,β-不饱和羰基化合物的选择性加氢方法已经被公开,例如,在DE-A2114211和DE-A-2839474中。这两种方法都是在钯催化剂和碱的存在下间歇进行,DE-A-2839474的方法使用了基于起始原料的15~50重量%的叔胺,显示出加氢反应改进的选择性和时空收率。
然而,这种改进并没有得到令人满意的反应时间。虽然反应时间能够通过使用大量的钯催化剂来缩短,但由此导致的昂贵的催化剂耗费是不经济的。此外,考虑到处理固体的问题,大量的催化剂是不利的。对于通常可行的失活催化剂的有效再生也是不利的。
因此本发明的目的是将式(Ⅰ)的α,β-不饱和羰基化合物以更经济的方式加氢得到相应的式(Ⅱ)的饱和羰基化合物,同时提高时空收率并减少投资费用。
本发明的具体目的是提供一种使柠檬醛加氢至香茅醛的更经济的方法。
我们已经发现这个目的可通过在粉状钯和/或铑催化剂的存在下以及在有机碱的存在下使用氢气,将式(Ⅰ)的α,β-不饱和羰基化合物进行选择性液相加氢作用,以得到式(Ⅱ)的饱和羰基化合物的方法来达到,
Figure A9910556600051
Figure A9910556600052
其中R1是氢或有机基,R2、R3和R4,彼此独立的为氢或C1~C4烷基。该方法它包括在带有产物循环和循环氢气的填充泡罩塔反应器中进行加氢作用。
已经发现,在整个方法中速率的决定步骤,即所谓的氢气扩散到催化剂表面,可通过在带有产物循环和循环氢气的填充泡罩塔反应器中进行而得到加速。随着反应的进行,催化剂表面附近中液体内的氢气浓度将下降。这种催化剂表面的低浓度氢气膜随后可通过使用带有产物循环和循环氢气的填充泡罩塔反应器进行涡动,从而以这种方式,使得与外部的氢气-饱和液体的交换成为可能。此处关键的一点在于增加了催化剂颗粒相对于液相和氢气泡的相对运动,它通过将催化剂颗粒减慢速度以及短暂的停留在填充通道壁上而得到的。这种改进的氢气运动意味着催化剂得到了特别好的利用。
这种新方法原则上可用于所有分子式为(Ⅰ)的α,β-不饱和羰基化合物,就双键的加氢而言,缩短了反应时间,提高了选择性,即,具有较大速率常数的反应。在优选的实施方案中,起始原料柠檬醛转变为香茅醛。
粉状钯和/或铑催化剂可以负载或不负载形式使用,优选载体为炭、二氧化锆或二氧化钛。使用平均颗粒尺寸为0.1~300um的催化剂载体是特别有利的,优选为0.5~100um。这些高表面积/单位体积的催化剂颗粒产生了良好的时空收率,因为它们在流过泡罩塔反应器的填料中的孔隙和通道时,相对于液相和氢气泡,能进行相对运动。
加氢作用在填充的泡罩塔反应器中进行。有孔隙或通道的填料特别合适,它的水力直径为0.5~20mm,优选1~10mm,特别优选1~3mm。水力直径定义为四倍孔隙横截面与它的周长的商。悬浮的催化剂颗粒通过与通道壁相碰撞以及短暂的停留,在填料孔或通道慢下来。已经观察到,对于上述范围的水力直径,任一时刻平均约有15~16重量%的催化剂停留在填料壁上。
这种效果可通过增加壁的表面粗糙度来进一步提高。优选的壁材料表面粗糙度值为0.1~10倍,优选0.5~5倍于悬浮的催化剂颗粒的平均颗粒尺寸。特合适的壁材料为金属的并且表面平均粗糙度Ra,根据DIN4768/1测定,为0.001~0.01mm。
合适的填充材料是金属材料、塑料、陶瓷和/或无机纤维,特别是炭或石棉取代物。
填料可以是箔形、金属网形或网孔形,就它们的几何形状而言,在蒸馏或萃取技术中大体是已知的。这种形式的填料单体显示出低降压损失的优点,例如,MontzA3和SulzerBX、DX和EX型的金属丝网填料。然而为了本发明的目的,填料基本上有着相当小的水力直径,通常系数为2~10,它小于蒸馏或萃取技术领域内类似的情况。金属丝网填料是特别有利的。为了本发明的目的,丝网填料也可用其它纺织的、编织的或毡制的、液体渗透的材料制备的填料所代替。在其它合适的填料中,可用平整的金属片,优选没有穿孔或其它孔隙相当大的金属片,例如Montz Bl或Sulzer Mellapak型。同样有利的是由金属网制成的填料,例如Montz BSH型填料。此处,孔隙,如穿孔必须相当小。适用于本发明目的的填料的关键因素不在于其几何形状,而是在于为了使流体通过,在填料上形成的孔隙大小或通道宽度。
在优选的方法中,液相泵入填充泡罩塔反应器的表面速度为100~500m3/m2.h,优选150~300m3/m2.h。
循环氢气以优选表面速度0.5~15cm/s输入到含有悬浮粉状催化剂液相中,优选为2.5~10cm/s。循环氢气优选通过气体喷射压缩机引入,这种压缩机可剧烈地混合液相与其中悬浮的催化剂。
加氢作用优选在氢气分压为1~200巴中进行,优选1~100巴,特别优选1~10巴。
优选的反应温度为25~150℃,更优选为50~100℃。
该方法可以间歇式或连续式进行。连续步骤是特别有利的。在这个方式中,消耗的催化剂可通过特别有利的交叉过滤方法除去。
含悬浮催化剂和氢气的液相优选以并流方式循环。这特别有利于将起始原料从底部装入到垂直泡罩塔反应器中。
下面参照实施方案和附图详细阐述本发明,其中:
图1表示了适用于本发明的间歇式方法的装置的图示,和
图2表示了适用于本发明特别优选的连续式方法的装置的图示。
通过实施例,图1表示了有间歇式操作的泡罩塔反应器1的装置的图示,填充塔中填充着填料2,它的几何形状是与Montz-Pak型A3-1200蒸馏填料类似的。
为了进行加氢作用,贮存罐7首先通过进料管路3装满起始原料、胺和悬浮催化剂。通过循环泵12,反应混合物通过预热器13和气体喷射压缩机5进入反应器,并从后者通过循环管路6回到贮存罐7。这时,分离未反应的氢气并通过循环气体管路9反馈到混合喷嘴5,从而到达了反应器的入口,并与循环的悬浮液紧密混合。消耗掉的氢气通过新鲜的氢气管路4连续地补充,为阻止惰性气体的积聚,一定量的尾气可通过尾气管路10排出。
当加氢作用完成时,通过回收管路14排放悬浮液。
在这个步骤中通过循环悬浮液和在悬浮液中通过气体喷射压缩机5适当的分配氢气可得到高的时空收率,悬浮液的循环速度基于单个反应器横截面,为100~500m3/m2.h,优选150~300m3/m2.h。
这个步骤在填料内含气体的悬浮液中产生了增强的湍流。催化剂颗粒相对于液体进行了增强的相对运动,因为在填料狭窄的孔隙和通道中,它们相对于围绕在周围的液体和上升的气泡,经历了一个减速过程。
图2显示了特别有利的连续式过程。反应器1装入填料2并供以循环的液体和气体。首先,所有回路通过进料管路3装满了悬浮液,预氢化的产物和悬浮的催化剂。通过循环泵12,悬浮液通过预热器8和交叉流动过滤单元17进入混合喷嘴5。该混合喷嘴是一个气体喷射压缩机,它通过循环气体管路15和16吸入氢气,并将它和悬浮液剧烈混合。如果循环以这种方式实现,通过进料管路3引入将被氢化的起始原料。通过压力保持系统经过H2管路4连续引入必需的氢气。
在反应器1中,悬浮液和氢化水在填料的孔隙和通道中紧密混合,产生了相对好的加氢作用。反应产物通过管路6进入分离器7。在分离器中,分离气相并通过循环气体管路15和16反馈到反应器中。一定量的尾气可通过尾气管路10除去,这可以阻止了氢气中惰性气体的积聚。
悬浮的催化剂通过交叉过滤器17保留在反应体系中。无催化剂的产物通过14以渗透物排出。
如图2中所示,带有填充泡罩塔反应器的装置,投资费用仅是有着相同时空收率的传统的搅拌反应器装置的约1/4。实施例1
根据图1所示,适于间歇式加氢装置中的反应器,装有五个直径为27mm、高度为5cm的单片,这种单片由V2A丝组成,材料为No.4301,有着交叉通道结构(计量单位1.0mm)。塔夫金属丝网的孔宽为0.18mm,金属丝直径为0.105mm。该装置通过加料斗加入550ml含70重量%的柠檬醛,27重量%的甲醇和3重量%的三甲胺的柠檬醛溶液,和5克粉状钯/炭催化剂(5重量%的钯)。后者颗粒大小的分布在0.001~0.2mm间,其中50%为0.012mm,这是通过Cilas激光波谱根据DIN标准66111沉淀方法测定的。在通过H2进料管路4注入氢气至8巴后,打开循环泵12,使流速基于单个反应器横截面为200m3/m2.h。气体喷射压缩机的喷嘴通过循环气体管路9吸入氢气,并以5.5cm/s的气体流速加到反应器中。通过预热器13,反应器入口温度升到70℃。在加氢过程中,样品以一定的时间间隔通过阀14从循环流中采出,用气相色谱分析。
2.75小时后,可得到柠檬醛的转化率为99.5%,选择性为94%。基于Pd/C催化剂的时空收率为22.4kg柠檬醛/kg催化剂·h。对比实施例1
含70重量%的柠檬醛,27重量%的甲醇和3重量%的三甲胺的6.9升柠檬醛溶液,和55克粉状钯/炭催化剂(5重量%的钯)引入到10升带有气体分散搅拌器的搅拌反应器中。催化剂的颗粒尺寸对应于实施例1中的催化剂。
在氢气注入后,反应器加热到70℃,混合物在8巴H2,800转/分钟搅拌下氢化。通过一定时间间隔取样并用气相色谱分析来分析氢化的过程。19小时后,柠檬醛的转化率为99.7%,选择性为92.9%。基于Pd/C催化剂的时空收率为3.68kg柠檬醛/kg催化剂·h。

Claims (15)

1.一种在粉状钯和/或铑催化剂的存在下以及在有机碱的存在下使用氢气,将式(Ⅰ)的α,β-不饱和羰基化合物进行选择性液相加氢,以得到式(Ⅱ)的饱和羰基化合物的方法,
Figure A9910556600021
其中R1是氢或有机基,R2、R3和R4,彼此独立的为氢或C1~C4烷基,
该方法包括在带有产物循环和循环氢气的填充泡罩塔反应器中进行加氢作用。
2.如权利要求1所述的方法,其中填充泡罩塔反应器中的填料有孔隙和通道,其水力直径为0.5~20mm,优选1~10mm,特别优选1~3mm。
3.如权利要求1或2所述的方法,其中填充泡罩塔反应器中填料的孔隙或通道壁表面粗糙度值为0.1~10倍,优选0.5~5倍于粉状催化剂颗粒的平均颗粒尺寸。
4.如权利要求1或2所述的方法,其中填充泡罩塔反应器中填料的孔隙或通道壁表面粗糙度Ra,根据DIN4768/1测定,为0.001~0.01mm。
5.如权利要求1所述的方法,其中填充泡罩塔反应器中填料由金属材料、塑料、陶瓷和/或无机纤维,特别是碳或石棉取代物组成。
6.如权利要求5所述的方法,其中填料是箔形、金属网形或网孔形,在蒸馏或萃取技术中大体上是已知的。
7.如权利要求1所述的方法,其中粉状钯和/或铑催化剂是负载或不负载的,使用载体特别为炭、二氧化锆或二氧化钛,优选平均颗粒尺寸为0.1~300um,特别优选平均颗粒尺寸为0.5~100um。
8.如权利要求7所述的方法,其中负载型催化剂含0.01~10重量%的钯和/或铑,优选0.2~5重量%的钯和/或铑,更优选0.5~1重量%的钯和/或铑。
9.如权利要求1或2所述的方法,其中液相以表面速度100~500m3/m2.h,优选150~300m3/m2.h循环。
10.如权利要求1或2所述的方法,其中氢气以表面速度0.5~15cm/s输入,优选以2.5~10cm/s,优选通过气体喷射压缩机引入。
11.如权利要求1或2所述的方法,其中加氢作用在氢气分压为1~200巴中进行,优选1~100巴,特别优选1~10巴。
12.如权利要求1或2所述的方法,其中加氢作用在25~150℃中进行,优选在50~100℃。
13.如权利要求1或2所述的方法,其中加氢作用以连续方式进行。
14.如权利要求1或2所述的方法,其中液相和氢气并流输送,优选通过垂直泡罩塔反应器的底部连续输入到顶部。
15.如权利要求1或2所述的方法,其中式(Ⅰ)的α,β-不饱和羰基化合物是柠檬醛。
CN99105566A 1998-04-02 1999-04-02 α,β-不饱和羰基化合物的选择性液相加氢 Pending CN1234385A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19814879A DE19814879A1 (de) 1998-04-02 1998-04-02 Verfahren zur selektiven Flüssigphasenhydrierung von alpha,beta-ungesättigten Carbonylverbindungen
JP19814879.8 1998-04-02

Publications (1)

Publication Number Publication Date
CN1234385A true CN1234385A (zh) 1999-11-10

Family

ID=7863426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99105566A Pending CN1234385A (zh) 1998-04-02 1999-04-02 α,β-不饱和羰基化合物的选择性液相加氢

Country Status (12)

Country Link
US (1) US6150564A (zh)
EP (1) EP0947493B1 (zh)
JP (1) JPH11349517A (zh)
KR (1) KR19990082817A (zh)
CN (1) CN1234385A (zh)
AT (1) ATE226930T1 (zh)
DE (2) DE19814879A1 (zh)
DK (1) DK0947493T3 (zh)
ES (1) ES2186267T3 (zh)
IL (1) IL129146A (zh)
PT (1) PT947493E (zh)
SI (1) SI0947493T1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100361949C (zh) * 2002-07-15 2008-01-16 巴斯福股份公司 四氢香叶基丙酮的制备
CN101291902B (zh) * 2005-10-17 2012-01-11 巴斯夫欧洲公司 连续氢化或氢化胺化的方法
CN108794314A (zh) * 2017-04-28 2018-11-13 山东新和成药业有限公司 一种柠檬醛加氢合成香茅醛的方法
CN112004589A (zh) * 2018-04-20 2020-11-27 西门子股份公司 用于运行反应器设施的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10044400A1 (de) * 2000-09-08 2002-04-04 Haarmann & Reimer Gmbh Verfahren zur Herstellung von Benzylaceton
US20110065129A1 (en) * 2001-07-27 2011-03-17 Lowe Derek B Indane acetic acid derivatives and their use as pharmaceutical agents, intermediates, and method of preparation
ITMI20012267A1 (it) * 2001-10-29 2003-04-29 Chemi Spa Preparazione ed uso di un catalizzatore eterogeneo per l'idrogenerazione di un doppio legame di un composto carbonilico b-insaturo
DE50211196D1 (de) * 2001-12-07 2007-12-27 Basf Ag Verfahren zur Herstellung von Ruthenium/Eisen/Kohlenstoffträger-Katalysatoren
DE10160141A1 (de) 2001-12-07 2003-06-18 Basf Ag Verfahren zur selektiven Flüssiphasenhydrierung von alpha,beta-ungesättigren Carbonylverbindungen zu ungesättigten Alkoholen in Gegenwart eines Pt/ZnO-Katalysators
DE10231944A1 (de) * 2002-07-15 2004-01-29 Basf Ag Verfahren zur kontinuierlichen Hydrierung von Citral zu Citronellal
DE10248159A1 (de) * 2002-10-16 2004-04-29 Degussa Ag Verfahren zur kontinuierlichen Hydrierung
DE10359026A1 (de) * 2003-12-15 2005-07-21 Basf Ag Verfahren zur Herstellung von Tetrahydrogeranylaceton
DE102006061167A1 (de) * 2006-04-25 2007-12-20 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
TW200802544A (en) * 2006-04-25 2008-01-01 Osram Opto Semiconductors Gmbh Composite substrate and method for making the same
BR112018006782B1 (pt) 2015-10-05 2020-11-10 Basf Se processo para produção de um catalisador, e, uso de um catalisador

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE226872C (zh) *
FR2247445A1 (en) * 1973-10-12 1975-05-09 Anvar Reduction of alpha beta ethylenic ketones - by hydrogenation with a rhodium catalyst
DE2839474A1 (de) * 1978-09-11 1980-03-27 Basf Ag Verfahren zur herstellung von carbonylverbindungen
DE2934250A1 (de) * 1979-08-24 1981-03-19 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von olefinisch ungesaettigten carbonylverbindungen und alkoholen
DE2936362A1 (de) * 1979-09-08 1981-04-02 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von palladium-kohle-katalysatoren
DD226872A1 (de) * 1984-07-27 1985-09-04 Bitterfeld Chemie Verfahren zur katalytischen hydrierung in der fluessigphase
DE3602525A1 (de) * 1986-01-29 1987-07-30 Henkel Kgaa Verfahren zur kontinuierlichen heterogenkatalytischen hydrierung von fetten, fettsaeuren und fettsaeurederivaten
DE19530329A1 (de) * 1995-08-17 1997-02-20 Basf Ag Packungsmaterial für Stoffaustausch-Kolonnen und Verfahren zu dessen Herstellung
DE19611976A1 (de) * 1996-03-26 1997-10-02 Basf Ag Verfahren und Reaktor zur Durchführung von Stoffumwandlungen mit in Flüssigkeiten suspendierten Katalysatoren
DE19641707A1 (de) * 1996-10-10 1998-04-16 Basf Ag Verfahren zur Herstellung von 1,4-Butandiol durch katalytische Hydrierung von 1,4-Butindiol

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100361949C (zh) * 2002-07-15 2008-01-16 巴斯福股份公司 四氢香叶基丙酮的制备
CN101291902B (zh) * 2005-10-17 2012-01-11 巴斯夫欧洲公司 连续氢化或氢化胺化的方法
US8163963B2 (en) 2005-10-17 2012-04-24 Basf Se Process for continuous hydrogenation or hydrogenating amination
US8557985B2 (en) 2005-10-17 2013-10-15 Basf Se Process for continuous hydrogenation or hydrogenating amination
CN102531813B (zh) * 2005-10-17 2014-09-24 巴斯夫欧洲公司 连续氢化或氢化胺化的方法
CN108794314A (zh) * 2017-04-28 2018-11-13 山东新和成药业有限公司 一种柠檬醛加氢合成香茅醛的方法
CN112004589A (zh) * 2018-04-20 2020-11-27 西门子股份公司 用于运行反应器设施的方法

Also Published As

Publication number Publication date
DE19814879A1 (de) 1999-10-07
JPH11349517A (ja) 1999-12-21
KR19990082817A (ko) 1999-11-25
ATE226930T1 (de) 2002-11-15
DE59903222D1 (de) 2002-12-05
DK0947493T3 (da) 2002-12-30
SI0947493T1 (en) 2003-04-30
US6150564A (en) 2000-11-21
EP0947493A1 (de) 1999-10-06
IL129146A0 (en) 2000-02-17
EP0947493B1 (de) 2002-10-30
PT947493E (pt) 2003-03-31
ES2186267T3 (es) 2003-05-01
IL129146A (en) 2003-09-17

Similar Documents

Publication Publication Date Title
CN1234385A (zh) α,β-不饱和羰基化合物的选择性液相加氢
EP0627958B1 (en) Catalytic multi-phase reactor
CN1056322C (zh) 进行多相催化转化反应的方法
CN104710289B (zh) 一种采用固体多相催化剂的用于烯烃氢甲酰化反应的方法
CN1087186C (zh) 实现悬浮在液体中的催化剂转化的方法与反应器
US5637286A (en) Process for producing hydrogen peroxide
JP2019514880A (ja) 不均一系触媒反応の実施方法
CN1078173A (zh) 一种氢化,特别是碳水化合物和多元醇的氢化和/或氢解的催化剂及其制备和应用的方法
CN1498131A (zh) 淤浆反应器中的原位淤浆催化剂再生
RO108243B1 (ro) Procedeu si instalatie pentru polimerizarea olefinelor in faza gazoasa
CN101277983A (zh) 聚合反应前的种子床处理方法
CN1193972C (zh) 肉桂醛和二氢化肉桂醛衍生物的连续制备方法
CN1020411C (zh) 混相催化反应蒸馏工艺及设备
CN106278836A (zh) 中等浓度甲醛与甲缩醛合成聚甲氧基二甲醚的装置和方法
JP2005519105A5 (zh)
CN1335833A (zh) 低压胺反应器
CN1809523A (zh) 生产乙酸的方法
US6153792A (en) Carbonylation process using a flash step with washing
US3853929A (en) Method for continuously effecting solid-catalyzed liquid phase reactions in a bubble column-cascade reactor
CN1281564C (zh) 将香茅醛连续氢化为香茅醇的方法
KR880007572A (ko) 지글러-나타형 α-올레핀 중합촉매의 액체세정 방법
CN1296334C (zh) 丙酮的氢化方法
CN1126731C (zh) 一种不饱和季铵盐的制备方法
US6369277B1 (en) Selective liquid-phase hydrogenation of α,β-unsaturated carbonyl compounds
RU93004767A (ru) Способ обогащения парафинового сырья

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned