CN1221513A - 低损失及易饱和的粘结磁铁 - Google Patents

低损失及易饱和的粘结磁铁 Download PDF

Info

Publication number
CN1221513A
CN1221513A CN97195308A CN97195308A CN1221513A CN 1221513 A CN1221513 A CN 1221513A CN 97195308 A CN97195308 A CN 97195308A CN 97195308 A CN97195308 A CN 97195308A CN 1221513 A CN1221513 A CN 1221513A
Authority
CN
China
Prior art keywords
rare earth
earth metal
magnet
iron
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97195308A
Other languages
English (en)
Other versions
CN1132197C (zh
Inventor
V·潘查纳坦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnequench International LLC
Original Assignee
Magnequench International LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnequench International LLC filed Critical Magnequench International LLC
Publication of CN1221513A publication Critical patent/CN1221513A/zh
Application granted granted Critical
Publication of CN1132197C publication Critical patent/CN1132197C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0094Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with organic materials as the main non-metallic constituent, e.g. resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种粘结的各向同性磁铁,它含有包含如下成分的组合物:约5~约25%的稀土金属,约0.5~约4.5%的硼,约0.3~约3.0%的铌,其余主要为铁。这种磁铁显示出低的矫顽力及低的时效损失。

Description

低损失及易饱和的粘结磁铁
背景技术
对于由稀土含量低组合物制成的粘结磁铁有着很大的需求。它们可用于办公自动化、计算机辅助设备及消费者的电子方面的用途。制造这类磁铁的工艺可用熔融-旋压法进行,该法用熔体产生了具有合乎要求的微观组织的粉末。
磁铁在特定的温度下时效后承受了不可逆的损失。这种磁铁损失随时间的延长及温度的升高而增大。过去通常认为:室温下的磁铁初始的矫顽力决定该磁铁的损失行为。一般认为,矫顽力越低则这种损失越高,反之亦然。因而磁铁应有高的矫顽力以减少这类损失;但是这又导致在饱和方面产生困难。已在探索将产生与易饱和行为明显矛盾的性能,低矫顽力和低时效损失的磁铁的精确合金成份上已化费了大量劳动。这类磁铁将在难以饱和的多极磁铁的场合找到用途。
发明简述
本发明提供含低稀土含量组合物的粘结磁铁,它们具有易饱和的行为,低的矫顽力(<10kOe,更好是<8kOe)及低的时效损失。本发明通过添加铌来克服与低矫顽力相关的高时效损失,铌是能降低时效损失的。在退火、与环氧树脂混合后及固化后产生的这类粘结磁铁,在于80℃下加热2000小时后的时效损失小于4%,而在100℃下加热2000小时后的时效损失小于6%。
这类磁铁用成份如下的合金制成(%重量):约5%~约25%的总稀土金属(“TRE”),该成份中至少95%是钕,而其余主要是镨,约0.5%~约4.5%的硼,其中所述稀土金属和硼的总量为约9%~约26%,约0.5%~3.0%的铌,及其余主要为铁。较佳范围是TRE约10~约20%,B约0.8-4.0%,Nb约1%~约2.5%,余量主要是Fe。稀土金属和硼总量的较佳范围是约12%~约22%。更大量的TRE是不适宜的,因为Hci将很高,而且将难于饱和。更低量的TRE也不好,因为Hci值将很低因而将失去工业意义。正确的B及TRE值有助于得到正确的、硬磁2-14-1相及α-Fe和/或Fe3B软相的微观组织。钴降低Br和Hci值;但在希望Br的低温矫顽力的应用场合,推荐用钴。该合金成份可含最多为16%的钴。
其它的金属也可以最多为2%(重量)的小量,单独地或混合地存在。这些金属包括W、Cr、Ni、Al、Cu、Mg、Mn、Ga、V、Mo、Ti、Ta、Sn、Zr、C和Ca。Si和O和N一样也可以小量存在。
一般来说,这类优选成份的永磁体是这样形成的:开始通过在干燥的,基本上无氧的Ar气、惰性或真空的气氛下进行感应加热,形成熔融的均匀组合物而制成合金锭。最好使此熔融组合物在惰性气氛下或真空中快速凝固,产生一种非晶态的材料或细晶的材料,其中,以其最大尺寸计,晶粒尺寸不大于约500nm,最好是小于约400nm。最好是,这种快速凝固的材料的晶粒尺寸小于约20nm。这类材料,比如,可用常规的熔融-旋压作业生产。这种优选成份的合金以22m/秒的速度被熔融-旋压,该步骤形成了一种带材,在其整个厚度上是非晶态或是微晶态的组织。
用辊式破碎机将此带材粉碎成细粉,其平均颗粒最好为200μm。
最好将所得的粉末于700℃,在Ar中退火约4分钟。退火后,晶粒尺寸在约20~约500nm的范围内,更好是在20-100nm之间。
将此退火后的粉末与粘结剂混合,此粘结剂随后可经硬化而形成自支撑的未磁化的,但是可磁化的原料压块。该粘结剂可以是可硬化的树脂类物质,如用于压力成形的2%(重量)的环氧树脂。由于此粉末是各向同性的,所以在粘结过程中无需校正磁场,这使作业周期的时间得以加快。可沿任何方向使成品磁铁磁化,这使得设计具较大的灵活性。
最好以170℃的温度,30分钟的时间使此原料压块固化。使环氧树脂固化,然后将这样形成的粘结磁铁用于进一步的用途。该原料压块可压制成形。
还可用压制成形之外的其它工艺制造粘结磁铁。它们包括喷塑、压延、挤压等。虽然本发明涉及了用压制成形法制成的粘结磁铁,但可以预料用其它方法制成的粘结磁铁有类似的或更好的结果,在这类磁铁含较大量粘结剂时尤为如此。
为测试所得磁铁的损失性能,最好在80℃的温度下使其时效2小时。
详细描述及实施例:实施例1
以22m/秒的速度熔融旋压具有下列成份的合金。该合金由稀土、硼及余量的铁构成。至少总稀土组份中的95%是钕,而其余的主要是镨。将带材粉碎成平均颗粒尺寸为200μm的粉末。于700℃将此粉末退火4分钟。将此粉末与环氧树脂(2%重量)混合,再用压制成形法制成原料压块。将其于170℃固化30分钟。将这样制成的粘结磁铁在80℃时效2小时。测量试样A-G的损失,结果示于下表中。
    TRE%  B%  Hci,kOe 损失,%
A    15    1.5    1.3    >10
B    16    1.4    1.4    >10
C    17    1.3    1.7    >10
D    18    1.2    3.6      8
E    19    1.1    4.0      8
F    18.5  1.2    3.8      8
G    19.5  1.2    4.2      8
实施例2:
将下列成份的合金进行熔融旋压,再以与相同的方式制成粘结磁铁。该合金由稀土、硼和余量的铁组成,任选地含有Co或Nb。稀土组份中至少95%是钕,其余基本上是镨。试样H-N的性能如下。
     TRE%   B%    其它  Br,KG  Hci,kOe
H    18.0    0.99    -     10.1    4.3
I    19.0    1.0     -     9.94    4.3
J    21.3    1.6     -     8.43    4.93
K    21.9    1.9     -     8.06    4.64
L    18.0    1.03   Co2.5  9.93    3.53
M    18.0    .85    Co10.7 9.24    2.99
N    18.0    1.07   Nb1.8  8.68    5.02
可见,加Co使Br和Hci下降。但加Nb使Br下降,使Hci上升。
实施例3
按实施例用试样H和N制成粘结磁铁。使它们在80℃和100℃时时效最高达1000小时。测量损失。
           损失%
       试样H    试样N
80℃     10      3.7
100℃    15      5.2
试样N在80℃和100℃时时效2小时后的损失分别为0.5%和1%试样H分别在80℃和100℃时效后的类似的数值为5%和8%。因而含Nb的磁铁不仅在2小时的短期时效后,而且在高达2000小时的时效后都显示出很低的损失。
实施例4
以不同的磁场使实施例3中的试样H和N的粘接磁铁饱和。下表列出了两磁铁的饱和行为:
                 Bv饱和%
磁场,kOe    试样H    试样N
10            60       67
15            83       90
20            91       96
注意Hci较高的含Nb磁铁比Hci较低但不含Nb的磁铁更易被饱和。
因此,本发明所涉及的是用组成为TRE5~25%、B0.05~4.5%,TRE+B为9-26%,Nb0.5~3.0,余量的Fe,制成的磁铁,它具有较低的损失及较好的饱和行为。
下图描绘了各实施例中用于测量该粘结磁铁的时效损失和饱和程度的方法。时效研究
该磁铁在40kOe时被脉冲磁化。得到退磁曲线。确定与该磁铁的饱和线相对应的起始磁通量值。将其在40kOe时磁化,然后于适宜温度的烘炉内保持一段时间。此后,从炉中取出磁铁,将其冷至室温,绘制退磁曲线。确定磁通量值。其损失以原值的百分比表示。
%损失=(B1-B2)/B1%
Figure A9719530800091
磁性测量
将此磁铁在10kOe-40kOe的变化的磁场中磁化。制取各种磁场时的退磁曲线。超过35kOe时磁性无进一步提高。B3/B1之比为15kOe时的饱和程度,而B2/B1之比为20kOe时的饱和程度等。

Claims (19)

1.一种粘结的各向同性的磁铁,它包含粘结剂及经熔融旋压的结晶颗粒,该颗粒的成份包括(%重量),约5~25%的稀土金属,约0.5~约4.5%的硼,其中所述稀土金属与所述硼之和为约9~约26%,约0.5~3.0%的铌,其余主要是铁。
2.权利要求1的磁铁,其矫顽力小于10kOe。
3.权利要求1的磁铁,其中该成份含最多达16%的Co。
4.权利要求1的磁铁,其中该成份中含(%重量)约10~约20%的稀土金属,约0.8~约4.0%的硼,约1.0~约2.5%的铌,其余主要是铁。
5.权利要求1的磁铁,其中所述稀土金属主要是钕和/或镨。
6.权利要求1的磁铁,其中所述的各向同性颗粒的平均颗粒尺寸为200μm。
7.形成粘结的各向同性磁铁的方法,它包括如下步骤:
熔炼包含如下成份的组合物(%重量):约5%~约25%的稀土金属,约0.5%~约4.5%的硼,其中所述稀土金属和所述硼的总和为约0.9%~约26%,约0.5%~约3.0%的铌,其余主要是铁;
将所述组合物熔融旋压,心形成带;
将所述的带磨成粉末;
将所述粉末退火;
将退过火的所述粉末与粘结剂混合而形成压块;
使所述压块固化以形成最终的粘结磁铁。
8.权利要求1的方法,其中以约700℃的温度,约4分钟的时间进行该退火工艺。
9.权利要求7的方法,其中所述的各向同性的颗粒用约2%的环氧树脂粘结剂粘结。
10.权利要求7的方法,其中的与粘结剂混合的所述各向同性颗粒在约170℃的温度下固化约30分钟。
11.一种粘结的各向同性的磁铁,它包含环氧树脂粘结剂和经熔融旋压的结晶颗粒,该颗粒是由包含如下成份(%重量)的组份物形成的:约5%~约25%的稀土金属,约0.5%~约4.5%的硼,其中该稀土金属与所述硼的总和为约9%~约26%,约0.5%~约3.0%的铌,其余主要是铁,所述的熔融旋压的结晶颗粒的微观组织为2-14-1及α-Fe和/或Fe3B软相。
12.权利要求11的磁铁,其中该组合物含(%重量):约10~约20%的稀土金属,约0.8~约4.0%的硼,约1.0~约2.5%的铌,其余主要是铁。
13.一种粘结的各向同性的磁铁,它包含环氧树脂粘结剂及经熔融旋压的结晶颗粒,该颗粒是由包含成份如下(%重量)的组合物构成的:约5~约25%的稀土金属,约0.5~约4.5%的硼,其中所述稀土金属和所述硼的总和为约9~约26%,约0.5~约3%的铌,其余主要是铁;
所述磁铁在10kOe的磁场中的饱和程度大于60%。
14.权利要求13的磁铁,它显示出在将所述磁铁于80℃的温度下加热2000小时后的时效损失小于4%。
15.权利要求13的磁铁,它显示出在将所述磁铁于100℃的温度下加热2000小时后的时效损失小于6%。
16.权利要求13的磁铁,其中该组合物含(%重量):约10~约20%的稀土金属,约0.8~约4.0%的硼,约1.0~约2.5%的铌,其余主要是铁。
17.一种形成粘结的铁-稀土金属永磁铁的方法,其包括的步骤为:
提供一定量的晶粒尺寸不大于约500nm的各向同性的铁-稀土金属颗粒,其中所述的各向同性的铁-稀土金属颗粒由含如下成份的组合物构成(%重量):约5~约25%的稀土金属,所述的稀土金属组份中主要是钕,及约0.5~约4.5%的硼,约0.5~约3.0%的铌,其中所述稀土金属和所述硼之总和为约9~约26%;其余主要是铁;
将所述量的各向同性的铁-稀土金属颗粒与粘结剂混合,从而形成压块;
使所述压块在一定温度下,以足够的时间固化,以形成特征为均匀地存有硬磁性Nb2Fe14B相和软相Fe3B和/或α铁的粘结的,各向同性的铁-稀土金属永磁铁。
18.权利要求17的形成粘结的铁-稀土金属永磁铁的方法,它还含最多为约16%的钴。
19.权利要求17的形成粘结的铁-稀土金属永磁铁的方法,其中所述的稀土的范围为约10~约20%的稀土金属,所述的硼的范围为约0.8~约4.0%的硼,其中所述稀土金属和所述硼的总和的范围为约12~约22%。
CN97195308A 1996-04-10 1997-04-09 低损失及易饱和的粘结磁铁 Expired - Fee Related CN1132197C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/632,722 US5725792A (en) 1996-04-10 1996-04-10 Bonded magnet with low losses and easy saturation
US08/632,722 1996-04-10

Publications (2)

Publication Number Publication Date
CN1221513A true CN1221513A (zh) 1999-06-30
CN1132197C CN1132197C (zh) 2003-12-24

Family

ID=24536667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97195308A Expired - Fee Related CN1132197C (zh) 1996-04-10 1997-04-09 低损失及易饱和的粘结磁铁

Country Status (8)

Country Link
US (1) US5725792A (zh)
EP (1) EP0898778B1 (zh)
JP (1) JP2000508476A (zh)
KR (1) KR20000005296A (zh)
CN (1) CN1132197C (zh)
DE (1) DE69720206T2 (zh)
TW (1) TW400526B (zh)
WO (1) WO1997038426A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331167C (zh) * 2001-02-28 2007-08-08 马格内昆茨国际公司 用雾化永磁粉制备的粘合磁体

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3470032B2 (ja) * 1997-12-22 2003-11-25 信越化学工業株式会社 希土類永久磁石材料およびその製造方法
US6183572B1 (en) * 1997-12-30 2001-02-06 Magnequench International, Inc. Isotropic rare earth material of high intrinsic induction
US6478890B2 (en) 1997-12-30 2002-11-12 Magnequench, Inc. Isotropic rare earth material of high intrinsic induction
US6511552B1 (en) * 1998-03-23 2003-01-28 Sumitomo Special Metals Co., Ltd. Permanent magnets and R-TM-B based permanent magnets
US6425961B1 (en) * 1998-05-15 2002-07-30 Alps Electric Co., Ltd. Composite hard magnetic material and method for producing the same
JP3951525B2 (ja) 1999-11-25 2007-08-01 セイコーエプソン株式会社 薄帯状磁石材料、薄帯状磁石材料の製造方法、磁石粉末および希土類ボンド磁石
JP3593939B2 (ja) 2000-01-07 2004-11-24 セイコーエプソン株式会社 磁石粉末および等方性ボンド磁石
JP2001196210A (ja) * 2000-01-06 2001-07-19 Seiko Epson Corp 磁石粉末および等方性ボンド磁石
JP3593940B2 (ja) 2000-01-07 2004-11-24 セイコーエプソン株式会社 磁石粉末および等方性ボンド磁石
JP2001196211A (ja) * 2000-01-06 2001-07-19 Seiko Epson Corp 磁石粉末および等方性ボンド磁石
JP2001323343A (ja) * 2000-05-12 2001-11-22 Isuzu Motors Ltd 高性能希土類永久磁石用合金及びその製造方法
KR100562681B1 (ko) 2000-05-24 2006-03-23 가부시키가이샤 네오맥스 복수의 강자성상을 포함하는 영구자석 및 그 제조방법
JP4243413B2 (ja) * 2000-05-31 2009-03-25 セイコーエプソン株式会社 磁石粉末の製造方法およびボンド磁石の製造方法
JP4243415B2 (ja) * 2000-06-06 2009-03-25 セイコーエプソン株式会社 磁石粉末の製造方法およびボンド磁石の製造方法
CN1182548C (zh) * 2000-07-10 2004-12-29 株式会社新王磁材 稀土磁铁及其制造方法
WO2002030595A1 (fr) * 2000-10-06 2002-04-18 Santoku Corporation Procede de fabrication par coulee de bandes d'un alliage brut pour aimant permanent nanocomposite
JP5001509B2 (ja) * 2000-11-08 2012-08-15 ニコメッド ゲゼルシャフト ミット ベシュレンクテル ハフツング マガルドレート粉末の再水和法
US6790296B2 (en) 2000-11-13 2004-09-14 Neomax Co., Ltd. Nanocomposite magnet and method for producing same
US7217328B2 (en) * 2000-11-13 2007-05-15 Neomax Co., Ltd. Compound for rare-earth bonded magnet and bonded magnet using the compound
US7208097B2 (en) * 2001-05-15 2007-04-24 Neomax Co., Ltd. Iron-based rare earth alloy nanocomposite magnet and method for producing the same
CA2447933A1 (en) * 2001-05-23 2002-11-28 Abdelali Hannoufa A repressor-mediated regulation system for control of gene expression in plants
US7507302B2 (en) * 2001-07-31 2009-03-24 Hitachi Metals, Ltd. Method for producing nanocomposite magnet using atomizing method
DE60213642T2 (de) * 2001-11-22 2006-12-07 Neomax Co., Ltd. Nanozusammensetzungsmagnet
US6994755B2 (en) * 2002-04-29 2006-02-07 University Of Dayton Method of improving toughness of sintered RE-Fe-B-type, rare earth permanent magnets
JP3760899B2 (ja) * 2002-07-23 2006-03-29 ソニー株式会社 データ記録再生装置及びデータ記録再生方法、並びにコンピュータ・プログラム
US20040079445A1 (en) * 2002-10-24 2004-04-29 Zhongmin Chen High performance magnetic materials with low flux-aging loss
US6979409B2 (en) * 2003-02-06 2005-12-27 Magnequench, Inc. Highly quenchable Fe-based rare earth materials for ferrite replacement
US20060054245A1 (en) * 2003-12-31 2006-03-16 Shiqiang Liu Nanocomposite permanent magnets
EP1766641A2 (en) * 2004-06-30 2007-03-28 University Of Dayton Anisotropic nanocomposite rare earth permanent magnets and method of making
DE102007026503B4 (de) 2007-06-05 2009-08-27 Bourns, Inc., Riverside Verfahren zur Herstellung einer Magnetschicht auf einem Substrat und druckbarer magnetisierbarer Lack
JPWO2011030387A1 (ja) * 2009-09-11 2013-02-04 株式会社東芝 磁石材料、永久磁石、およびそれを用いたモータと発電機
WO2013103132A1 (ja) 2012-01-04 2013-07-11 トヨタ自動車株式会社 希土類ナノコンポジット磁石
ES2643509T3 (es) * 2012-09-21 2017-11-23 Höganäs Ab (Publ) Método para el uso de una nueva composición de polvo de hierro
CN107353208A (zh) * 2017-08-04 2017-11-17 濮阳职业技术学院 利用微通道连续流反应器制备5‑硝基水杨酸工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3779481T2 (de) * 1986-04-15 1992-12-24 Tdk Corp Dauermagnet und verfahren zu seiner herstellung.
US5022939A (en) * 1987-07-30 1991-06-11 Tdk Corporation Permanent magnets
JPH01103805A (ja) * 1987-07-30 1989-04-20 Tdk Corp 永久磁石
US5015307A (en) * 1987-10-08 1991-05-14 Kawasaki Steel Corporation Corrosion resistant rare earth metal magnet
EP0362812B1 (en) * 1988-10-04 1996-01-24 Hitachi Metals, Ltd. Bonded isotropic R-Fe-B-magnet and method for making it
JPH06505366A (ja) * 1991-03-08 1994-06-16 ビーエーエスエフ アクチェンゲゼルシャフト 新規カテゴリーの磁性材料、その製造方法および用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331167C (zh) * 2001-02-28 2007-08-08 马格内昆茨国际公司 用雾化永磁粉制备的粘合磁体

Also Published As

Publication number Publication date
DE69720206D1 (de) 2003-04-30
DE69720206T2 (de) 2004-02-05
EP0898778A4 (en) 1999-12-15
CN1132197C (zh) 2003-12-24
EP0898778B1 (en) 2003-03-26
TW400526B (en) 2000-08-01
KR20000005296A (ko) 2000-01-25
JP2000508476A (ja) 2000-07-04
EP0898778A1 (en) 1999-03-03
WO1997038426A1 (en) 1997-10-16
US5725792A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
CN1132197C (zh) 低损失及易饱和的粘结磁铁
JPH0510806B2 (zh)
EP0311049B1 (en) Corrosion resistant rare earth metal magnet
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
CN1057630C (zh) 磁各向异性的球状粉粒及其制造方法
JP4968519B2 (ja) 永久磁石およびその製造方法
JPH03188241A (ja) 焼結永久磁石材料およびその製造方法
JPH1053844A (ja) 希土類−鉄−ボロン系磁石合金及びその製造法並びに該希土類−鉄−ボロン系磁石合金を用いたボンド磁石
EP0386286B1 (en) Rare earth iron-based permanent magnet
JP3118740B2 (ja) 希土類磁石材料および希土類ボンド磁石
JPS63128606A (ja) 永久磁石
JP2720039B2 (ja) 耐食性のすぐれた希土類磁石材料
JPH0380508A (ja) 希土類磁石の製造方法
JPS62256411A (ja) 耐酸化性に優れた永久磁石
JPH089752B2 (ja) R1R2FeCoB系永久磁石の製造方法
JPH0518898B2 (zh)
JPH02145739A (ja) 永久磁石材料および永久磁石
JP2553278B2 (ja) 希土類−遷移金属系磁石合金
JPH01103806A (ja) 希土類磁石
JPS6377104A (ja) 耐食性のすぐれた希土類磁石
JPH0223603A (ja) 永久磁石
JPH06287720A (ja) 永久磁石合金
JPH0649882B2 (ja) 永久磁石用合金粉末組成物
JPH0649885B2 (ja) 永久磁石用合金粉末組成物
JPH089751B2 (ja) R1R2FeB系永久磁石の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Assignee: Magnequench (Tianjian) Co.,Ltd.

Assignor: Magnequench International Inc.|Magnequench Inc.

Contract fulfillment period: 2007.10.17 to 2024.2.4 contract change

Contract record no.: 2009990000568

Denomination of invention: Bonded magnet with low losses and easy saturation

Granted publication date: 20031224

License type: Exclusive license

Record date: 2009.5.27

LIC Patent licence contract for exploitation submitted for record

Free format text: EXCLUSIVE LICENSE; TIME LIMIT OF IMPLEMENTING CONTACT: 2007.10.17 TO 2024.2.4; CHANGE OF CONTRACT

Name of requester: MAGNEQUENCH( TIANJIN ) CO., LTD.

Effective date: 20090527

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20031224

Termination date: 20140409