CN1217443A - 纤维强化复合材料制成的管状体 - Google Patents

纤维强化复合材料制成的管状体 Download PDF

Info

Publication number
CN1217443A
CN1217443A CN98124563A CN98124563A CN1217443A CN 1217443 A CN1217443 A CN 1217443A CN 98124563 A CN98124563 A CN 98124563A CN 98124563 A CN98124563 A CN 98124563A CN 1217443 A CN1217443 A CN 1217443A
Authority
CN
China
Prior art keywords
layer
fiber
tubular body
composite material
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98124563A
Other languages
English (en)
Other versions
CN1131139C (zh
Inventor
竹村振一
早田喜穗
大野秀幸
岛美树男
荒井丰
中西朋宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Graphite Fiber Corp
Nippon Steel Corp
Eneos Corp
Original Assignee
Japan Graphite Fiber Corp
Nippon Steel Corp
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Graphite Fiber Corp, Nippon Steel Corp, Nippon Oil Corp filed Critical Japan Graphite Fiber Corp
Publication of CN1217443A publication Critical patent/CN1217443A/zh
Application granted granted Critical
Publication of CN1131139C publication Critical patent/CN1131139C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/121Rigid pipes of plastics with or without reinforcement with three layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Golf Clubs (AREA)
  • Moulding By Coating Moulds (AREA)
  • Fishing Rods (AREA)
  • Nonwoven Fabrics (AREA)
  • Vibration Dampers (AREA)

Abstract

为获得具有良好的抗弯曲破裂强度、抗弯曲破裂挠度、冲击吸收能量的纤维复合材料制成的管状体,使该管状体含有高压缩破裂变形层,该高压缩破裂变形层含有在相对于管状体纵向0°~±15°的范围内取向的碳纤维,相对于该高压缩破裂变形层取向方向的压缩破裂变形为1~5%,且在把该碳纤维的纤维体积含量按60%换算后,所得碳纤维取向方向的压缩弹性模量为3~120GPa。

Description

纤维强化复合材料制成的管状体
本发明涉及纤维强化复合材料制成的管状体。
由强化纤维复合材料制成的管状体用于高尔夫握杆、钓鱼杆等各种用途。
对于高尔夫握杆,近年来更加倾向于轻量化。由于轻量化导致杆的弯曲破断强度下降,因此要制造具有良好弯曲破断强度的轻质握杆迄今仍是困难的。
对于钓鱼杆来说,要求其前端部分具有柔软性。为获得良好的柔软性,采用使前端部分壁厚减薄的方法,但是同时会导致其弯曲破断强度下降,因此要制造具有良好弯曲破断强度及柔软性的钓鱼杆迄今仍是困难的。
本发明的目的是解决上述现存的问题,提供具有良好弯曲破断强度、弯曲挠度、冲击吸收能量的纤维强化复合材料制成的管状体。
本发明的上述目的由如下所述的纤维强化复合材料制成的管状体实现。
即本发明涉及纤维强化复合材料制成的管状体,其特征在于:它含有高压缩破裂变形层,该高压缩破裂变形层含有在相对于管状体纵向0°~±15°的范围内取向的碳纤维,在该高压缩破裂变形层取向方向的压缩破裂变形为1~5%,且在把该碳纤维的纤维体积含量按60%换算后,在碳纤维取向方向的压缩弹性模量为3~120GPa。
本发明的纤维强化复合材料制成的管状体可具有使强化纤维预浸料坯沿轴的全长叠层而成的笔直层,其中该强化纤维预浸料坯相对于管状体纵向(轴向)大致平行地以0°~±5°的范围取向。笔直层的叠层数为1~20层,较好的是1~18层,而最好是1~16层。笔直层的叠层数沿管状体的纵向可以保持均等,也可变化。
此处,本发明所述叠层数是将笔直层等特定层,平均地层叠若干层,即经管状体轴的周边进行若干次卷绕。
根据上述管状体的用途、具体说根据高尔夫握杆的用途,本发明的管状体具有由强化纤维预浸料坯叠层形成的斜交层,其中所述强化纤维预浸料坯是由强化纤维在管状体纵向±20°~±70°范围内取向而成的。
该斜交层通常为正负斜交层,它们是通过使强化纤维沿相对于上述管状体纵向、在+20°~+70°范围内取向的强化纤维预浸料坯叠层而形成的正斜交层和使强化纤维沿相对于上述管状体纵向、在-20°~-70°范围内取向的强化纤维预浸料坯叠层而形成的负斜交层。
把正斜交层或负斜交层每一层或多层交替叠层。也可使正斜交层与负斜交层的叠层数相互不同。正负一组的斜交层的叠层数为1~12层,最好为1~10层。即,在正斜交层与负斜交层的叠层数相同的情况下,斜交层的总叠层数为2~24层,最好为2~20层。
根据上述管状体的其它用途、具体说作为钓鱼杆的用途,本发明的管状体也可具有环带层,该环带层是通过使强化纤维相对于前述管状体纵向成大致直角的±70°~±90°范围、最好是±80°~±90°范围内取向的强化纤维预浸料坯叠层而形成。环带层的叠层数为1~10层,最好为1~8层。斜交层及环带层的叠层数可沿管状体的纵向均等或者也可变化。
作为用于这种强化纤维预浸料坯的强化纤维,可采用碳纤维、玻璃纤维、聚芳基酰胺纤维、陶瓷纤维、硼纤维、金属纤维等,但最好使用沥青(ビツチ)系的碳纤维或者聚丙烯腈系碳纤维。作为用于前述强化纤维的基质树脂,可采用从环氧树脂、不饱和聚酯树脂、酚醛树脂、硅酮树脂、聚氨酯树脂、尿素树脂、三聚氰胺树脂等中选出的热固性树脂或热塑性树脂,最好是环氧树脂。
作为用于这种强化纤维预浸料坯的碳纤维,可采用这样的碳纤维,在把前述碳纤维的纤维体积含量以60%计时,其碳纤维取向方向的压缩弹性模量为125GPa~600GPa。
本发明是这样构成的纤维强化复合材料制成的管状体,其特征是形成一高压缩破裂变形层,该变形层由含有压缩破裂变形为1.0~5.0%且压缩弹性模量为3GPa~120GPa的碳纤维的预浸料坯叠层构成。
作为该高压缩破裂变形层所使用的碳纤维,可使用压缩破裂变形为1~5%、较好的是1.5~5%、更好的是1.7~5%、最好是2~5%的碳纤维。
此外,作为该高压缩破裂变形层所使用的碳纤维,希望采用压缩弹性模量为3GPa~120GPa、最好是3GPa~100GPa的碳纤维。
此外,作为该高压缩破裂变形层所使用的碳纤维,可使用密度低于1.9g/cm3、最好低于1.8g/cm3的碳纤维。当密度大于1.9g/cm3时,由于会增加管状体的重量,因此不理想。
再者,作为该高压缩破裂变形层所使用的碳纤维,可使用绞合纤维数为24000根以下、较好为12000根以下、更好为6000根以下、最好为3000根以下的碳纤维。
在绞合纤维数大于24000根的情况下,当经浸渍基质树脂制造预浸料坯时,特别是当制造碳纤维目付小的预浸料坯时,由于容易产生孔眼的缺陷,因此不好。
作为用于前述高压缩破裂变形层上碳纤维预浸料坯所使用的碳纤维,可采用树脂系碳纤维、聚丙烯腈系碳纤维中的任一种,但最好采用沥青系碳纤维。此外作为高压缩破裂变形层的碳纤维预浸料坯所使用的基质树脂,可选用从环氧树脂、不饱和聚酯树脂、酚醛树脂、硅酮树脂、聚氨酯树脂、尿素树脂、三聚氰胺树脂等中选出的热固性树脂或热塑性树脂,但最好是环氧树脂。
本发明中对预浸料坯的强化纤维目付没有特别的限制,通常采用20~300g/m2、最好是50~200g/m2的范围。在设计强化纤维目付大于300g/m2的管状体时,设计自由度受到限制,因此不好。此外,在制造强化纤维目付小于20g/m2的管状体时,由于预浸料坯易起皱,因此也不好。
为了提供具有良好的弯曲破断强度、由纤维强化复合材料制成的管状体,前述高压缩破裂变形层是这样形成的:碳纤维在相对于管状体纵向0°~±15°、较好是在0°~±10°、更好是在与管状体大致平行的0°~±5°的范围内取向,使这样取向的碳纤维预浸料坯叠层。前述高压缩破裂变形层可在管状体的纵向整个区域内叠层。在仅将前述高压缩破裂变形层沿管状体纵向一部分内叠层的情况下,在叠层有前述高压缩破裂变形层的部分上可赋予该管状体良好的弯曲强度与耐冲击性能,但是在没有叠层前述高压缩破裂变形层的部分上不能期望其会产生弯曲破断强度与耐冲击性能的提高。因此,通过将前述高压缩破裂变形层在管状体的纵向整个区域内叠层,可提高管状体纵向整体的弯曲强度与耐冲击性能。而且,应兼顾弯曲破断强度与耐冲击性能的提高部分,以此实现管状体的轻量化。
形成前述高压缩破裂变形层的预浸料坯可叠层在本发明的纤维强化复合材料制成的管状体的壁厚方向的任一位置,更好的是叠层在该管状体较外侧,最好叠层在该管状体的最外层上。
此外,作为形成该高压缩破裂变形层的预浸料坯,当可分成两片以上时,可分别采用同一形状或者不同形状的预浸料坯。
前述高压缩破裂变形层可组合使用斜交层、笔直层、环带层中任一种或者两种以上。与在前述管状体半径方向的壁厚的前述高压缩破裂变形层相比,其它的层、即斜交层、笔直层、环带层中任一种或者两种以上组合而成的层相对于前述变形层的比率为50∶1~1∶50、较好的是20∶1~1∶20、最好是15∶1~1∶15。
作为本发明的强化纤维预浸料坯,可使用织物预浸料坯、单向预浸料坯,但最好用单向预浸料坯。由于要实现固定强化纤维的目的,所以该单向预浸料坯可稀疏地通过纬线。
本发明的管状成形体的高压缩破裂变形层、斜交层、笔直层、环带层各层的Vf通常为40~90v°1%,最好是50~75v°1%。
本发明在强化纤维预浸料坯上重叠玻璃纤维织物,并将其形成卷绕的管状体,可增大管状体的抗压强度。
本发明的纤维强化复合材料制成的管状体可以是锥形管状体,也可以是非锥形的轴向平行的管状体。
图1是心轴或各层所用的预浸料坯各自的平面图及由实施例1制造的管状体的断面图;
图2是心轴或各层所用的预浸料坯各自的平面图及由实施例2制造的管状体的断面图。
以下描述的实施例不构成对本发明的限制。
本发明的三点抗弯试验在以下条件下进行:支点间距300mm、压头半径R75mm、支点半径R12.5mm、试验速度5mm/min。
此外,本发明的冲击试验在以下条件下进行:采用米仓制作所制造的落锤型冲击试验机(IITM-18型)、支点间距300mm、压头半径R75mm、支点半径R12.5mm、落锤重量766g、落下高度1800mm、冲击时落锤速度6.0mm/sec。
压缩弹性模量、压缩破裂变形根据纤维强化复合材料的压缩试验法ASTM D3410进行,根据从压缩重量与试验片的断面积计算的压缩应力和从贴于压缩试验片上的应变片得到的压缩变形,测定压缩弹性模量。而且,本发明的压缩弹性模量的值为Vf60%换算值。此外,压缩破裂变形为混合压缩试验的实测值。拉伸弹性模量的值为根据ASTM D3039测定得到的值。
制造非锥形管状体的实施例(实施例1、比较例1、2)
在直径为6.0mm、长度为1200mm的心轴上涂布作为脱模剂的由リソヒィ(株式会社)制造的石蜡后,使用作为斜交层的由东丽(株式会社)制造的P3052S-12的预浸料坯,将分别在心轴上可缠绕3周而裁断所得的正负2片斜交层预浸料坯以相当于轴半周的距离使一方与另一方交错重叠后,卷绕在心轴上,其中该正负斜交层预浸料坯的碳纤维相对于心轴的纵向分别以+45°、-45°取向。
使用作为笔直层的由东丽(株式会社)制造的P8055S-12的预浸料坯,将在斜交层上可缠绕4周而裁断的笔直层预浸料坯(1张)卷绕在斜交层上,其中该预浸料坯的强化纤维应与轴的纵向平行。
然后,作为高压缩破裂变形层,在各实施例及比较例中每次变化地使用表1中所示的各种单方向预浸料坯,所述预浸料坯在笔直层上可缠绕3周而裁断所得的高压缩破裂变形层卷绕在笔直层上,其中该预浸料坯的强化纤维平行于心轴的纵向。把收缩胶层卷绕在由以上的叠层(卷绕的)得到的叠层体上,在加热130℃脱泡硬化后,拔出心轴而得到管状体。图1表示在拔出心轴之前管状体的断面图。图中,1表示心轴的平面图,2a为正的斜交层预浸料坯、2b为负的斜交层预浸料坯、3为笔直层预浸料坯、4为高压缩破裂变形层预浸料坯各自的平面图。管状体外径为9.0mm。所得到的管状体的三点抗弯曲物理特性及冲击物理特性表示在表1中。
如表1所示,实施例1的管状体具有良好的三点抗弯曲破裂载荷(弯曲破断强度)、三点抗弯曲破裂挠度和冲击吸收载荷。比较例1的管状体的三点抗弯曲破裂载荷、三点抗弯曲破裂挠度和冲击吸收能量低,性能差。比较例2的管状体的三点抗弯曲破裂载荷、三点抗弯曲破裂挠度和冲击吸收能量也低,性能差。
制造锥形管状体的实施例(实施例2、比较例3)
使用全长为1200mm、细径直径为6mm、粗径直径为13.2mm的锥形心轴,将各层从细径侧到粗径侧、以一定叠层数地如图2(b)~(e)所示形状裁断,斜交层是正负斜交层,它们应使用由分别以在心轴上可缠绕2.5周而裁断得到的预浸料坯,斜交层以相当于轴半周的距离一方与另一方交错重叠后,卷绕在轴上,其中正负斜交层预浸料坯的碳纤维相对于心轴纵向分另以+45°、-45°取向。笔直层以3周地叠层、高压缩破裂变形层以2周地叠层,其余同非锥形管状体同样地制造。
各层使用的预浸料坯示于表2中。各实施例及比较例的高压缩破裂变形层使用不同种类的预浸料坯,比较轴的性能。
图2表示在拔出心轴前锥形管状体的断面图。图中1表示心轴的平面图,2a为正的斜交层预浸料坯、2b为负的斜交层预浸料坯、3为笔直层预浸料坯、4为高压缩破裂变形层预浸料坯各自的平面图。
管状体轴的细径侧端部外径为8.2mm、粗径侧端部的外径为15.5mm。而且把该轴从细径侧端部起按400mm和800mm的部分切断,从而得到直径不同的长度为400mm的3种试验体。把3种试验体各自切出的轴段分别称为细径部分、中央部分和粗径部分。表2表示所得到的轴的三点抗弯曲物理特性。
表2所示的实施例2的轴的细径部分、中央部分及粗径部分中任一部分都具有良好的三点抗弯曲破裂载荷。比较例3的轴的细径部分、中央部分、和粗径部分中任一部分的三点抗弯曲破裂载荷都低、性能差。
本实施例中在心轴上可按斜交层、笔直层的顺序叠层,也可按笔直层、斜交层的顺序叠层。
各实施例及比较例使用的预浸料坯的详细情况如下:
(1)东丽(株式会社)制造的P3052S-12:聚丙烯腈系碳纤维T700S(拉伸弹性模量230GPa、压缩破裂变形1.4%、压缩弹性模量130GPa)、碳纤维目付125g/m2、环氧树脂含量33wt%。
(2)东丽(株式会社)制造的P8055S-12:聚丙烯腈系碳纤维M30S(拉伸弹性模量300GPa、压缩破裂变形0.9%、压缩弹性模量175GPa)、碳纤维目付125g/m2、环氧树脂含量24wt%。
(3)日本石墨纤维(株式会社)制造的E0526A-10:沥青系碳纤维XN-05(拉伸弹性模量50GPa、压缩破裂变形2.9%、压缩弹性模量32GPa)、碳纤维目付100g/m2、环氧树脂含量37wt%。
(4)新日铁化学(株式会社)制造的GE-100:玻璃纤维(拉伸弹性模量73GPa、压缩破裂变形1.3%、压缩弹性模量44GPa)、玻璃纤维目付100g/m2、环氧树脂含量35wt%。
(5)日本石墨纤维(株式会社)制造的E1526C-10:沥青系碳纤维XN-15(拉伸弹性模量150GPa、压缩破裂变形1.8%、压缩弹性模量85GPa)、碳纤维目付100g/m2、环氧树脂含量33wt%。表1
非锥形管状体三点抗弯曲物理特性及冲击物理特性
斜交层(3层×2) 笔直层(4层)     高压缩破裂变形层(3层) 三点抗弯曲物理特性 冲击物理特性
预浸料坯强化纤维 预浸料坯强化纤维 预浸料坯强化纤维 压缩破裂变形*1 压缩弹性模量*2 三点抗弯曲破裂载荷 三点抗弯曲破裂挠度 冲击吸收能量
实施例1 P3052S-12T700S P8055S-12M30S E0526A-10XN-05 2.9% 32GPa  820N     30mm     9.0J
比较例1 同上 同上 P3052S-12T700S 1.4% 130GPa  735N     17mm     5.2J
比较例2 同上 同上 GE-100玻璃 1.3% 44GPa  720N     23mm     7.1J
*1:压缩破裂变形是把高压缩破裂变形层所用的碳纤维作为单向的复合材料时,0°方向的压缩破裂变形值。
*2:压缩弹性模量是把高压缩破裂变形层所用的碳纤维作为单向的复合材料时碳纤维的体积含量按60%换算后,在0°方向的压缩弹性模量值。表2
锥形管状体的三点抗弯曲物理特性
斜交层(2.5层×2) 笔直层(3层) 高压缩破裂变形层(2层) 三点抗弯曲破裂载荷
预浸料坯强化纤维 预浸料坯强化纤维 预浸料坯强化纤维 压缩破裂变形*1 压缩弹性模量*2 前端部分Tip-400mm 中央部分400-800mm 大径部分800mm-Butt
实施例2 P3052S-12T700S P8055S-12M30S E1526C-10XN-15 1.8% 85GPa 600N 700N 785N
比较例3 同上 同上 P8055S-12M30S 0.9% 175GPa 450N 610N 705N
*1:压缩破裂变形是把高压缩破裂变形层所用的碳纤维作为单向的复合材料时,0°方向的压缩破裂变形值。
*2:压缩弹性模量是把高压缩破裂变形层所用的碳纤维作为单向的复合材料时碳纤维的体积含量按60%换算后,在0°方向的压缩弹性模量值。
如上所述,由本发明可得到具有良好的抗弯曲破裂强度、抗弯曲破裂挠度、冲击吸收能量的纤维复合材料制成的管状体。

Claims (7)

1.一种纤维强化复合材料制成的管状体,其特征是:它含有高压缩破裂变形层,该高压缩破裂变形层含有在相对于管状体纵向0°~±15°的范围内取向的碳纤维,相对于该高压缩破裂变形层取向方向的压缩破裂变形为1~5%,且在把该碳纤维的纤维体积含量按60%换算后,所得碳纤维取向方向的压缩弹性模量为3~120GPa。
2.如权利要求1所述的纤维强化复合材料制成的管状体,其特征是:所述管状体还含有斜交层及笔直层。
3.如权利要求1或2所述的纤维强化复合材料制成的管状体,其特征是:所述管状体还含有环带层。
4.如权利要求1或2所述的纤维强化复合材料制成的管状体,其特征是:所述高压缩破裂变形层所使用的碳纤维为沥青系碳纤维或者聚丙烯腈系碳纤维。
5.如权利要求4所述的纤维强化复合材料制成的管状体,其特征是:所述斜交层及笔直层所使用的强化纤维是从碳纤维、玻璃纤维、聚芳基酰胺纤维、陶瓷纤维、硼纤维、金属纤维中选出的纤维。
6.如权利要求5所述的纤维强化复合材料制成的管状体,其特征是:所述斜交层或笔直层含有碳纤维,且在把该碳纤维的纤维体积含量按60%换算后,所得碳纤维取向方向的压缩弹性模量为125~600Gpa。
7.如权利要求4所述的纤维强化复合材料制成的管状体,其特征是:在纤维强化复合材料制成的管状体的半径方向,所述高压缩破裂变形层的壁厚与除该高压缩破裂变形层外其它层的总壁厚之比率为50∶1~1∶50。
CN98124563A 1997-10-24 1998-10-23 纤维强化复合材料制成的管状体 Expired - Fee Related CN1131139C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP309517/97 1997-10-24
JP30951797A JP3771360B2 (ja) 1997-10-24 1997-10-24 繊維強化複合材料製管状体
JP309517/1997 1997-10-24

Publications (2)

Publication Number Publication Date
CN1217443A true CN1217443A (zh) 1999-05-26
CN1131139C CN1131139C (zh) 2003-12-17

Family

ID=17993966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98124563A Expired - Fee Related CN1131139C (zh) 1997-10-24 1998-10-23 纤维强化复合材料制成的管状体

Country Status (4)

Country Link
JP (1) JP3771360B2 (zh)
KR (1) KR100298101B1 (zh)
CN (1) CN1131139C (zh)
TW (1) TW429216B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047486A (zh) * 2011-10-17 2013-04-17 上海伟星新型建材有限公司 一种双取向的纤维增强无规共聚聚丙烯三层复合管
CN104006284A (zh) * 2014-05-26 2014-08-27 中山市卡邦碳纤维材料制品有限公司 一种碳纤维管
TWI496537B (zh) * 2009-09-30 2015-08-21 Shimano Kk 釣魚用捲線器的操作桿組裝體
CN107709645A (zh) * 2015-07-07 2018-02-16 株式会社丰田自动织机 纤维层叠体、纤维层叠体的制造方法以及纤维强化复合材料

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4249998B2 (ja) * 2002-03-15 2009-04-08 Sriスポーツ株式会社 ゴルフクラブシャフト
JP4314785B2 (ja) * 2002-06-14 2009-08-19 村田機械株式会社 組物の積層構造
JP2004081230A (ja) * 2002-08-22 2004-03-18 Sumitomo Rubber Ind Ltd ゴルフクラブシャフト
JP4533063B2 (ja) * 2004-09-14 2010-08-25 Sriスポーツ株式会社 ゴルフクラブシャフト
WO2018038174A1 (ja) * 2016-08-24 2018-03-01 Jxtgエネルギー株式会社 支持部材
JP2019013157A (ja) * 2017-07-04 2019-01-31 株式会社シマノ 釣竿

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3317619B2 (ja) * 1995-11-17 2002-08-26 新日本石油株式会社 テーパ付き中空シャフト

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496537B (zh) * 2009-09-30 2015-08-21 Shimano Kk 釣魚用捲線器的操作桿組裝體
CN103047486A (zh) * 2011-10-17 2013-04-17 上海伟星新型建材有限公司 一种双取向的纤维增强无规共聚聚丙烯三层复合管
CN104006284A (zh) * 2014-05-26 2014-08-27 中山市卡邦碳纤维材料制品有限公司 一种碳纤维管
CN107709645A (zh) * 2015-07-07 2018-02-16 株式会社丰田自动织机 纤维层叠体、纤维层叠体的制造方法以及纤维强化复合材料

Also Published As

Publication number Publication date
JPH11123782A (ja) 1999-05-11
TW429216B (en) 2001-04-11
CN1131139C (zh) 2003-12-17
JP3771360B2 (ja) 2006-04-26
KR100298101B1 (ko) 2001-10-27
KR19990037286A (ko) 1999-05-25

Similar Documents

Publication Publication Date Title
CN1131139C (zh) 纤维强化复合材料制成的管状体
US7179522B2 (en) Aluminum conductor composite core reinforced cable and method of manufacture
RU2618674C2 (ru) Армированные волокнами, заполненные наночастицами термоусаживаемые полимерно-композитные провода и кабели и способы
US6273830B1 (en) Tapered hollow shaft
US20070128435A1 (en) Aluminum conductor composite core reinforced cable and method of manufacture
JP2016106186A (ja) 撚り熱可塑性ポリマー複合体ケーブル、その製造方法及び使用方法
CN102136319B (zh) 架空导线用连续高强纤维树脂基复合芯及制备方法
JPH06508404A (ja) 改良繊維強化製品の非対称編組形成
CN102465844A (zh) 一种风力发电机叶片
JP2018039115A (ja) 繊維強化樹脂複合構造体及び高圧容器、並びにこれらの製造方法
CN108885914A (zh) 用于电气列车的吊线缆、其制造方法和安装方法
JP3529009B2 (ja) 炭素繊維強化複合材
US20100112249A1 (en) Sign post comprising composite material
JP2002069754A (ja) 高強度・高伸度炭素繊維及びその成形材料
JP2004298357A (ja) ゴルフシャフト
KR20200126474A (ko) 복합소재를 이용한 광섬유 복합가공지선
CA3130661C (en) Composite coil spring with carbon and glass fiber layers
CN110343367B (zh) 一种架空导线用高韧性碳纤维复合芯
JP2554821B2 (ja) 炭素繊維強化樹脂複合材料とその製造方法
CN110121407A (zh) 线材及制备线材的方法
US9834649B1 (en) Shaped fiber composites
US11629942B2 (en) Archery shaft having a braided characteristic
JP2007000528A (ja) 繊維強化複合材料製ゴルフクラブ用シャフト
JPH10235767A (ja) 炭素繊維強化プラスチック製部材
CN2272772Y (zh) 高尔夫球杆的改良结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C53 Correction of patent for invention or patent application
CB02 Change of applicant information

Applicant after: Nippon Oil Mitsubishi Co., Ltd.

Applicant before: Nippon Petroleum Co., Ltd.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: NIPPON OIL CO., LTD. TO: NISSEKI MITSUBISHI CO., LTD.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20031217

Termination date: 20161023

CF01 Termination of patent right due to non-payment of annual fee