CN1210425C - 合成纳米晶钨钴硬质合金复合粉末的方法 - Google Patents

合成纳米晶钨钴硬质合金复合粉末的方法 Download PDF

Info

Publication number
CN1210425C
CN1210425C CN 03118176 CN03118176A CN1210425C CN 1210425 C CN1210425 C CN 1210425C CN 03118176 CN03118176 CN 03118176 CN 03118176 A CN03118176 A CN 03118176A CN 1210425 C CN1210425 C CN 1210425C
Authority
CN
China
Prior art keywords
nano
ball
powder
composite powder
compound powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 03118176
Other languages
English (en)
Other versions
CN1530456A (zh
Inventor
曹顺华
高海燕
李炯义
林信平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN 03118176 priority Critical patent/CN1210425C/zh
Publication of CN1530456A publication Critical patent/CN1530456A/zh
Application granted granted Critical
Publication of CN1210425C publication Critical patent/CN1210425C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

一种合成纳米晶钨钴硬质合金复合粉末的方法。本发明利用反应热处理技术合成烧结稳定性较高和满足纳米晶硬质合金烧结要求的WC-Co复合粉末。即利用高能球磨技术制造W、C、Co活化态复合粉末,外界输入到体系的过剩能量部分转化成随后合成纳米晶WC的固态反应所需的能量。本发明制得的复合粉末中的WC晶粒尺寸可以在很宽的温度范围内进行灵活调整;利用本发明,降低了纳米WC-Co复合粉末颗粒的过高烧结活性,提高了纳米WC晶粒在烧结过程中的尺寸稳定性,在1100℃经过30分钟处理后,纳米WC晶粒尺寸仅为42nm;克服了现有工艺中存在的环境污染问题,便于工业化规模生产。

Description

合成纳米晶钨钴硬质合金复合粉末的方法
[技术领域]本发明属于粉末冶金技术领域,特别是一种利用反应热处理合成纳米晶钨钴硬质合金复合粉末的方法。
[背景技术]WC硬质合金以其高硬度、耐磨性、耐蚀性而著称,广泛用作切削加工刀具、各种钻头、粉末冶金模具材料和耐磨部件。然而,硬质合金属于准脆性材料,硬度的提高必须以其韧性的降低为代价,即因裂纹扩展阻力下降而导致合金强度降低。这一矛盾难以满足科学技术发展对高强、高耐磨材料的需求。纳米晶硬质合金是协调这一矛盾的关键技术途径。纳米晶WC-Co复合粉末是纳米晶硬质合金块体材料的基础。目前,制备纳米复合粉的方法主要有化学法和机械法两大类。化学法包括有喷雾-转换、化学共沉淀、等离子体合成、溶胶-凝胶法等。其中,化学共沉淀、等离子体合成和溶胶-凝胶法制备纳米晶WC-Co复合粉末,难以实现工业化生产并存在一定的环保问题。喷雾-转换工艺合成纳米晶WC-Co复合粉末,虽已成为工业规模,但所得复合粉末大都是粒径为数十微米的空心团聚粒子(包含数十万个纳米WC和Co晶粒),而其中的纳米WC、Co晶粒的烧结活性很高,在烧结时极易造成颗粒内的晶界迁移而形成晶粒内孔隙,成为纳米晶块体材料进一步致密化的障碍,而晶粒内孔隙的消除必须通过空位激活才能实现,导致烧结致密化温度升高,伴随着纳米WC晶粒的进一步急剧长大,成为制约获得纳米晶YG合金的技术瓶颈。利用机械合金化法合成的纳米晶WC-Co复合粉末,粉末颗粒产生大量的变形,晶格畸变严重,过剩的系统能量引起体系的烧结活性极高,纳米WC晶粒尺寸在烧结过程中的稳定性很低。
[发明内容]针对化学法和机械合金化法制备的纳米晶复合粉末中WC晶粒尺寸稳定性差的缺点,特提出本发明。
本发明利用反应热处理技术合成烧结稳定性较高和满足纳米晶硬质合金烧结要求的WC-Co复合粉末。即利用高能球磨技术制造W、C、Co活化态复合粉未,外界输入到体系的过剩能量部分转化成随后合成纳米晶WC的固态反应所需的能量,降低纳米WC-Co复合粉末的过高活性而提高纳米WC晶粒尺寸的烧结稳定性,为制造WC晶粒尺寸在100nm以下的纳米硬质合金创造条件。
根据硬质合金牌号所规定的成份要求,将工业用钨粉(中、粗、细颗粒均可)、碳黑和金属钴粉按比例放入高能搅拌球磨机中,随后按照35-30∶1的球料比加入硬质的钨合金球或硬质合金球,硬质球的大小在5-10mm之间。密封高能球磨机的端盖后,抽真空以尽可能地除去球磨机中的空气。接着通入氩气至微正压,开启球磨机端盖上的排气阀,保持10分钟,以将球磨机的残留空气成分排除。关闭氩气进气阀后再关闭排气阀。高能球磨机的搅拌速度为300-650转/分钟。经过50小时的球磨后,得到机械活化态的W、C、Co复合粉末。为了防止粉末氧化,在卸粉前向球磨机中注入足够的汽油,其添加量以覆盖机内的球料为准。活化W、C、Co复合粉末在真空炉中进行反应热处理。反应热处理温度在750-1100℃之间。反应温度过低,钨转化成碳化钨的反应进行不切底。而反应温度太高,一方面会造成合成的纳米碳化钨晶粒尺寸的过份长大,同时也会提高过程能耗。反应热处理时间一般在30分钟左右。合成的WC-Co复合粉末中的WC晶粒尺寸在9-42nm之间,具体数值主要取决于反应热处理温度。合成的WC-Co复合粉末颗粒尺寸一般在0.1-0.4μm之间(主要取决于反应热处理温度)。
本发明的主要优点和积极效果是:
1纳米晶WC-Co复合粉末中的WC晶粒尺寸可以在很宽的温度范围内进行灵活调整,从而实现纳米WC晶粒尺寸的连续可控;
2由于从外界输入到反应体系中的过剩能量部分被用于形成纳米WC相的固态反应,降低了纳米WC-Co复合粉末颗粒的过高烧结活性,提高了纳米WC晶粒在烧结过程中的尺寸稳定性,如在1100℃经过30分钟处理后,纳米WC晶粒尺寸仅为42nm。
3较现有纳米晶WC-Co复合粉末的制造技术相比较,克服了喷雾-转换工艺存在的可能造成环境污染问题,便于工业化规模生产。
[具体实施方式]
实施例1:制备成份为WC-10Co复合粉末。
称取16.9kg的3μm的工业W粉、1.1kg工业碳黑与2kg金属Co粉末在普通混料机中预混合30分钟后,装入体积为60升的高能球磨机中,再加入600kg的钨合金球。抽真空后填充惰性气体Ar。高能球磨机的转速为500转/分钟,机械活化50小时。球磨后,经小角度X-ray衍射分析得知,活化态混合粉末中的钨粉晶粒尺寸大约为3-5nm。
将活化态的W、C、Co复合粉末置于石墨或镍及其合金坩埚内并放入真空炉或惰性气体保护的管式炉中进行反应热处理。在750℃时热处理30分钟后,粉末中WC晶粒尺寸为9.2nm;而在1100℃处理30分钟后,粉末中WC晶粒尺寸为42nm。并且X-ray衍射分析结果表明,粉末中除WC和Co相外,不存在其它中间相。

Claims (2)

1.一种合成纳米晶钨钴硬质合金复合粉末的方法,其特征在于:将工业用钨粉、碳黑和金属钴粉按比例混合,按照35-30∶1的球料比加入硬质的钨合金球或硬质合金球,硬质球的大小在5-10mm之间,球磨在氩气气氛中进行,球磨机的搅拌速度为300-650转/分钟,球磨时间为50小时,将球磨后得到的机械活化态的W、C、Co复合粉末进行反应热处理,复合粉末中的WC晶粒尺寸在9-42nm之间,反应热处理温度在750-1100℃之间,时间为30分钟。
2.根据权利要求1所述的方法,其特征在于:在卸粉前向球磨机中注入足够的汽油,其添加量以覆盖机内的球料为准。
CN 03118176 2003-03-12 2003-03-12 合成纳米晶钨钴硬质合金复合粉末的方法 Expired - Fee Related CN1210425C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03118176 CN1210425C (zh) 2003-03-12 2003-03-12 合成纳米晶钨钴硬质合金复合粉末的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03118176 CN1210425C (zh) 2003-03-12 2003-03-12 合成纳米晶钨钴硬质合金复合粉末的方法

Publications (2)

Publication Number Publication Date
CN1530456A CN1530456A (zh) 2004-09-22
CN1210425C true CN1210425C (zh) 2005-07-13

Family

ID=34284862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03118176 Expired - Fee Related CN1210425C (zh) 2003-03-12 2003-03-12 合成纳米晶钨钴硬质合金复合粉末的方法

Country Status (1)

Country Link
CN (1) CN1210425C (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070151769A1 (en) * 2005-11-23 2007-07-05 Smith International, Inc. Microwave sintering
CN100409978C (zh) * 2006-06-01 2008-08-13 深圳市格林美高新技术股份有限公司 含稀土纳米晶增强相的钴粉及其制备方法
CN100444997C (zh) * 2006-12-21 2008-12-24 北京工业大学 一种简单快速的超细WC-Co复合粉的制备方法
CN101462163A (zh) 2009-01-16 2009-06-24 江西稀有稀土金属钨业集团有限公司 硬质合金混合料制备的球磨工艺
CN101818275B (zh) * 2010-05-11 2012-06-20 杭州天石硬质合金有限公司 超细硬质合金的制备方法
CN102615874A (zh) * 2012-03-19 2012-08-01 烟台工程职业技术学院 一种SiC纤维-WC-Co硬质合金复合材料及其制备方法
GB201209453D0 (en) * 2012-05-29 2012-07-11 Element Six Gmbh Constructions comprising polycrystalline material,tools comprising same and method for making same
CN104046821B (zh) * 2014-05-13 2016-08-10 厦门钨业股份有限公司 一种表征WC-Co硬质合金混合料烧结活性的方法
CN109266940B (zh) * 2018-10-26 2021-04-09 南方科技大学 一种碳钨钴复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN1530456A (zh) 2004-09-22

Similar Documents

Publication Publication Date Title
CN107552802B (zh) 一种金属陶瓷用碳氮化钛基固溶体粉末及制备方法
EP2101903B1 (en) Abrasive compacts with improved machinability
CN109161774A (zh) 由高熵合金作为粘结剂的硬质碳化钨合金及其制备方法
Bose Advances in particulate materials
CN109943739B (zh) 一种等离子体球磨制备超细晶WC-Co硬质合金的方法
CN102154582B (zh) 以镍-铝金属间化合物Ni3Al为粘结相的硬质合金的制备方法
JP2006299396A (ja) 固溶体粉末、この固溶体粉末の製造方法、この固溶体粉末を用いるセラミック、このセラミックの製造方法、この固溶体粉末を含むサーメット粉末、このサーメット粉末の製造方法、このサーメット粉末を用いるサーメット、及びこのサーメットの製造方法。
EP2183400A1 (en) Ultrahard diamond composites
WO2010128492A1 (en) Ultra-hard diamond composites
CN1210425C (zh) 合成纳米晶钨钴硬质合金复合粉末的方法
CN103834824B (zh) 一种无粘结相碳化钨硬质合金及其制备方法
CN106587088B (zh) 一种新型三元锇钌硼化物硬质材料及其制备方法
CN112063905B (zh) 一种高性能WC-WCoB-Co复相硬质合金及其制备方法
CN106636834A (zh) 抑制硬质合金晶粒长大的方法及超细晶硬质合金制备工艺
CN105369110B (zh) 一种TiC耐热钢结硬质合金的制备方法
CN110029261B (zh) 一种微纳米硬质合金刀具材料的制备方法
CN109518057A (zh) 一种由高熵合金钴镍铁铝铜粘结的碳化钨材料及其制备方法和应用
CN105483488A (zh) 微纳米碳化钨/钼/钽固溶复合粉末及其制备方法
CN108975339B (zh) 一种过渡金属碳化物粉末和过渡金属碳化物-氮化物复合粉末的制备工艺
EP4041510A1 (en) Printable and sinterable cemented carbide and cermet powders for powder bed-based additive manufacturing
JP2004517025A (ja) 粉末状のセラミック材料
CN102021473A (zh) 一种Fe3Al-Al2O3复合材料的制备方法
CN102162058B (zh) 以镍-铝金属间化合物Ni3Al为粘结相的硬质合金及制备方法
CN101307406A (zh) 无钼Ti(C,N)基金属陶瓷及其制备方法
GB2515580A (en) Superhard constructions & methods of making same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee