CN1199658A - 空腔物体的制作方法 - Google Patents
空腔物体的制作方法 Download PDFInfo
- Publication number
- CN1199658A CN1199658A CN98106655.0A CN98106655A CN1199658A CN 1199658 A CN1199658 A CN 1199658A CN 98106655 A CN98106655 A CN 98106655A CN 1199658 A CN1199658 A CN 1199658A
- Authority
- CN
- China
- Prior art keywords
- core
- make
- aluminium alloy
- magnesium
- mentioned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/12—Treating moulds or cores, e.g. drying, hardening
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Coating By Spraying Or Casting (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
制作空腔物体采用一种由铝合金或者镁合金组成的可溶于水的型芯。
Description
本发明涉及一种根据权利要求的前序部分所述的用于制造至少含一个空腔的型体的方法。
在铸造工艺方面,为制造空腔型体而采用砂芯,此外还采用从铸件内分离出来而形成空腔的盐芯。然而,无论是砂芯还是盐芯的机械强度均较低。所以难以操作。由于其强度低,实际上仅能在铸造工艺中用于制作型体,不适用于其他型体的制作。
此外众所周知,制作空腔型体可通过电镀涂敷,采用能导电的腊做成经熔化分离的芯。其缺点是选用材料局限于可分离的电镀金属。
本发明的任务是,提供一种用于制作至少有一个空腔的型体的型芯,这种型芯能快速和简单地从型体分离出来形成空腔,且具有较高的机械强度。
按照本发明权利要求1所说明的方法能达到本目的。在从属权利要求中进一步给出本发明的有利方案。
采用本发明的方法,可以制作任意形状和任意尺寸的型体,其所含有的空腔数量、形状和尺寸是任意的,采用的型芯的数量、形状和尺寸与此相应。这意味着不仅仅空腔体本身,而且也包括高孔隙率或低孔隙率的物体,例如,当空腔为开口小孔时。
依照本发明的方法所采用的水溶性型芯由铝合金或者镁合金组成。因此,其机械强度是高的。它不仅能用做铸造工艺的型芯,也适用于其他加工方法的型芯,使在型芯上或围绕型芯形成型体。例如,本发明所采用的型芯可以采用热喷涂涂敷。因为这种型芯能导电,所以也适用于电镀涂敷。
依照本发明制作的型体可以由任一材料制成,例如金属、陶瓷或塑料。
镁合金和尤其是铝合金,经钝化后溶解于水,但一般速度很慢。现在意外地发现,若采用热喷涂,型体或者铝合金或镁合金的涂层完全丧失这种性能,而能迅速溶解于水。
这是由于采用铝合金或镁合金做为热喷涂的喷涂材料而出现的氧化物高含量和/或高孔隙率的原因。
因此,本发明的型芯最好是最小孔隙率为1%体积和/或最小氧化物含量为1%重量。氧化物含量或者孔隙率越高,型芯一般溶解越快。另一方面,孔隙率或者氧化物含量太高,会大大降低型芯的机械强度。
特别优选的是,孔隙率为5~15%体积,氧化物含量为5~30%重量。采用传统的热喷涂法,尤其采用传统的火焰喷涂法制作型芯可获得这种孔隙率或者氧化物含量。
除热喷涂法外,也可以采用烧结法制作本发明的型芯。为了保证型芯有足够高的氧化物含量,最好使用一种氧化物含量相对高的烧结粉末,例如,在含氧或者含水的大气层中喷射熔化的铝合金或者镁合金而生成的烧结粉末。
可以通过热等静压压制(HIP)或冷等静压压制(CIP)进行烧结。
元素周期表中的Ia、IIa、IIIa(铝除外)、IVa和Va族中的一种或若干种金属是铝合金的优选合金元素。元素周期表中的Ia、IIa(镁除外)、IIIa、IVa和Va族中的一种或若干种金属是镁合金的优选合金元素。
锡、锌和镁特别适合于做铝合金的合金元素。例如,一种由70~90%重量的铝和10~30%重量的锡组成的铝合金具有很高的溶解速度。
铝合金或者镁合金中的合金元素含量一般最少为1%重量,最佳为5~40%重量。
本发明的型芯可以采用中性水或者含水的碱液来溶解,如果型体不受酸腐蚀,有时也可以用酸来溶解。
铝合金或者镁合金在水中溶解时出现强烈的放热反应。产生的热加速溶解过程。
下面借助附图来详细说明本发明的一个实施例,附图中的唯一一个图为火箭发动机的燃烧室壁的一部分的截面图。
燃烧室壁1由一个金属内壁2和一个金属外壁3组成。内壁2外侧设有肋4,使外壁3和内壁2之间形成冷却槽5,例如火箭动力燃料(如液体氢或者液体氧)流经上述槽。
按照本发明,首先制作带肋4的内壁2,然后通过火焰喷涂从上面往内壁2上的肋4之间送入铝合金,装满槽5,形成型芯,制作成壁1。随后,例如通过热喷涂,在肋4上和槽5的型芯上涂外壁3,这样使外壁3和肋4之间形成牢固的连接。外壁3的热喷涂可以采用另外一种喷涂方法,例如高速火焰喷涂法,并采用另一种喷涂材料,例如钢。最后把壁2、壁3和槽5内的火焰喷涂铝合金型芯的复合体浸入水池中,以便溶解型芯。
Claims (10)
1.一种用于制造至少含有一个空腔的物体的方法,在该方法中,首先制作一个带一个水溶性型芯的物体,随后将型芯溶解出来后形成空腔,其特征在于,水溶性型芯由铝合金或者镁合金组成。
2.如权利要求1所述的方法,其特征在于,型芯的孔隙率最小为1%体积,和/或型芯的氧化物含量最小为1%重量。
3.如权利要求1或者2所述的方法,其特征在于,型芯通过热喷涂或者烧结制成。
4.如权利3所述的方法,其特征在于,采用火焰喷涂法进行热喷涂。
5.如上述权利要求中的一项所述的方法,其特征在于,铝合金由铝和元素周期表的Ia至Va族中的至少一种金属组成,镁合金由镁和元素周期表的Ia至Va族中的至少一种金属组成。
6.如权利要求1或者5所述的方法,其特征在于,铝合金或者镁合金的合金元素含量合计为1~50%重量。
7.如权利要求5或者6所述的方法,其特征在于,铝合金的合金元素为锡、锌和/或镁。
8.如上述权利要求中的一项所述的方法,其特征在于,通过重铸型芯做成上述物体。
9.如上述权利要求中的一项所述的方法,其特征在于,制作上述物体用的型芯采用热喷涂涂敷。
10.如以上权利要求中的一项所述的方法,其特征在于,制作上述物体用的型芯采用电镀方法涂敷。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19716524A DE19716524C1 (de) | 1997-04-19 | 1997-04-19 | Verfahren zur Herstellung eines Körpers mit einem Hohlraum |
DE19716524.9 | 1997-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1199658A true CN1199658A (zh) | 1998-11-25 |
Family
ID=7827095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN98106655.0A Pending CN1199658A (zh) | 1997-04-19 | 1998-04-17 | 空腔物体的制作方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6261432B1 (zh) |
JP (1) | JPH10311246A (zh) |
CN (1) | CN1199658A (zh) |
CA (1) | CA2235113A1 (zh) |
DE (1) | DE19716524C1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102294437A (zh) * | 2010-05-28 | 2011-12-28 | 铃木株式会社 | 水溶性型芯的除去方法及装置 |
CN106925721A (zh) * | 2015-12-17 | 2017-07-07 | 通用电气公司 | 用于形成具有限定在其中的内部通路的构件的方法及组件 |
CN109286056A (zh) * | 2018-08-06 | 2019-01-29 | 南京航空航天大学 | 太赫兹金属镀层空芯矩形波导整体制造方法 |
Families Citing this family (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002303207A (ja) * | 2001-04-02 | 2002-10-18 | Advanced Space Technology Kk | 液体ロケットエンジンにおける燃焼室の製造方法 |
US20030196774A1 (en) * | 2001-11-29 | 2003-10-23 | Grigoriy Grinberg | Method to incorporate cooling lines in a spray-formed article |
US6921014B2 (en) * | 2002-05-07 | 2005-07-26 | General Electric Company | Method for forming a channel on the surface of a metal substrate |
US9109429B2 (en) | 2002-12-08 | 2015-08-18 | Baker Hughes Incorporated | Engineered powder compact composite material |
US8403037B2 (en) * | 2009-12-08 | 2013-03-26 | Baker Hughes Incorporated | Dissolvable tool and method |
US9079246B2 (en) | 2009-12-08 | 2015-07-14 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
US9682425B2 (en) | 2009-12-08 | 2017-06-20 | Baker Hughes Incorporated | Coated metallic powder and method of making the same |
US9101978B2 (en) | 2002-12-08 | 2015-08-11 | Baker Hughes Incorporated | Nanomatrix powder metal compact |
US8297364B2 (en) | 2009-12-08 | 2012-10-30 | Baker Hughes Incorporated | Telescopic unit with dissolvable barrier |
US8327931B2 (en) | 2009-12-08 | 2012-12-11 | Baker Hughes Incorporated | Multi-component disappearing tripping ball and method for making the same |
AU2003297513A1 (en) * | 2002-12-23 | 2004-08-23 | Microcell Corporation | Substrate-supported process for manufacturing microfibrous fuel cells |
US20040197557A1 (en) * | 2003-03-27 | 2004-10-07 | Eshraghi Ray R | Process for manufacturing hollow fibers |
JP4653406B2 (ja) * | 2004-03-10 | 2011-03-16 | 株式会社アルバック | 水崩壊性Al複合材料、水崩壊性Al溶射膜、及び水崩壊性Al粉の製造方法、並びに成膜室用構成部材及び成膜材料の回収方法 |
US8211247B2 (en) * | 2006-02-09 | 2012-07-03 | Schlumberger Technology Corporation | Degradable compositions, apparatus comprising same, and method of use |
US10316616B2 (en) * | 2004-05-28 | 2019-06-11 | Schlumberger Technology Corporation | Dissolvable bridge plug |
US8567494B2 (en) | 2005-08-31 | 2013-10-29 | Schlumberger Technology Corporation | Well operating elements comprising a soluble component and methods of use |
US8231947B2 (en) * | 2005-11-16 | 2012-07-31 | Schlumberger Technology Corporation | Oilfield elements having controlled solubility and methods of use |
US8220554B2 (en) * | 2006-02-09 | 2012-07-17 | Schlumberger Technology Corporation | Degradable whipstock apparatus and method of use |
US8770261B2 (en) * | 2006-02-09 | 2014-07-08 | Schlumberger Technology Corporation | Methods of manufacturing degradable alloys and products made from degradable alloys |
US8211248B2 (en) * | 2009-02-16 | 2012-07-03 | Schlumberger Technology Corporation | Aged-hardenable aluminum alloy with environmental degradability, methods of use and making |
DE102007017762B4 (de) * | 2007-04-16 | 2016-12-29 | Hermle Maschinenbau Gmbh | Verfahren zur Herstellung eines Werkstücks mit mindestens einem Freiraum |
DE102007017754B4 (de) | 2007-04-16 | 2016-12-29 | Hermle Maschinenbau Gmbh | Verfahren zur Herstellung eines Werkstücks mit mindestens einem Freiraum |
DE102007017758A1 (de) * | 2007-04-16 | 2008-10-23 | Innovaris Gmbh & Co. Kg | Verfahren zur Herstellung komplexer Bauteile |
DE102009051554A1 (de) * | 2009-10-31 | 2011-05-05 | Mtu Aero Engines Gmbh | Verfahren zum Erzeugen eines Einlaufbelags an einer Strömungsmaschine |
US8573295B2 (en) | 2010-11-16 | 2013-11-05 | Baker Hughes Incorporated | Plug and method of unplugging a seat |
US9227243B2 (en) | 2009-12-08 | 2016-01-05 | Baker Hughes Incorporated | Method of making a powder metal compact |
US8528633B2 (en) | 2009-12-08 | 2013-09-10 | Baker Hughes Incorporated | Dissolvable tool and method |
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
US8425651B2 (en) | 2010-07-30 | 2013-04-23 | Baker Hughes Incorporated | Nanomatrix metal composite |
US9127515B2 (en) | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
US9243475B2 (en) | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
DE102010019958B4 (de) * | 2010-05-08 | 2016-05-04 | MTU Aero Engines AG | Verfahren zur Herstellung eines Einlaufbelags |
US8776884B2 (en) | 2010-08-09 | 2014-07-15 | Baker Hughes Incorporated | Formation treatment system and method |
US9090955B2 (en) | 2010-10-27 | 2015-07-28 | Baker Hughes Incorporated | Nanomatrix powder metal composite |
US8631876B2 (en) | 2011-04-28 | 2014-01-21 | Baker Hughes Incorporated | Method of making and using a functionally gradient composite tool |
US9080098B2 (en) | 2011-04-28 | 2015-07-14 | Baker Hughes Incorporated | Functionally gradient composite article |
US9139928B2 (en) | 2011-06-17 | 2015-09-22 | Baker Hughes Incorporated | Corrodible downhole article and method of removing the article from downhole environment |
US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9643250B2 (en) | 2011-07-29 | 2017-05-09 | Baker Hughes Incorporated | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
US9856547B2 (en) | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
US9109269B2 (en) | 2011-08-30 | 2015-08-18 | Baker Hughes Incorporated | Magnesium alloy powder metal compact |
US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
US9347119B2 (en) | 2011-09-03 | 2016-05-24 | Baker Hughes Incorporated | Degradable high shock impedance material |
US9133695B2 (en) | 2011-09-03 | 2015-09-15 | Baker Hughes Incorporated | Degradable shaped charge and perforating gun system |
US9187990B2 (en) | 2011-09-03 | 2015-11-17 | Baker Hughes Incorporated | Method of using a degradable shaped charge and perforating gun system |
US9284812B2 (en) | 2011-11-21 | 2016-03-15 | Baker Hughes Incorporated | System for increasing swelling efficiency |
DE102011119613B4 (de) * | 2011-11-29 | 2017-07-27 | Airbus Defence and Space GmbH | Formwerkzeug und Herstellvorrichtung zum Herstellen von Kunststoffbauteilen sowie Formwerkzeugherstellverfahren |
US9010416B2 (en) | 2012-01-25 | 2015-04-21 | Baker Hughes Incorporated | Tubular anchoring system and a seat for use in the same |
US9068428B2 (en) | 2012-02-13 | 2015-06-30 | Baker Hughes Incorporated | Selectively corrodible downhole article and method of use |
US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
CA2936851A1 (en) | 2014-02-21 | 2015-08-27 | Terves, Inc. | Fluid activated disintegrating metal system |
US10865465B2 (en) | 2017-07-27 | 2020-12-15 | Terves, Llc | Degradable metal matrix composite |
US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US10689740B2 (en) | 2014-04-18 | 2020-06-23 | Terves, LLCq | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
DE112018000221B4 (de) | 2017-01-25 | 2023-02-16 | Technische Universität Bergakademie Freiberg | Verfahren zur Herstellung von hochtemperaturfesten Erzeugnissen mit verbesserten thermomechanischen Eigenschaften und hochtemperaturfestes Erzeugnis |
DE102017005029A1 (de) | 2017-05-24 | 2018-11-29 | Carbon Rotec Gmbh & Co. Kg | Formwerkzeuganordnung |
DE102017209229B4 (de) * | 2017-05-31 | 2020-07-16 | Hermle Maschinenbau Gmbh | Verfahren zur Herstellung eines Bauteils und Zwischenprodukt in der Herstellung eines Bauteils |
EP3552756B1 (de) | 2018-04-13 | 2020-09-23 | Hermle Maschinenbau GmbH | Verfahren zur herstellung eines metallbauteils mit mindestens einer aussparung |
US11313041B2 (en) | 2018-07-17 | 2022-04-26 | National Research Council Of Canada | Manufactured metal objects with hollow channels and method for fabrication thereof |
KR102174239B1 (ko) * | 2019-07-25 | 2020-11-04 | 엠에이치기술개발 주식회사 | 중력주조용 코어의 제조방법 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3645491A (en) * | 1969-07-22 | 1972-02-29 | Aeroplane Motor Aluminum Casti | Soluble metal casting cores comprising a water-soluble salt and a synthetic resin |
JPS4915140B1 (zh) * | 1969-10-02 | 1974-04-12 | ||
US3963818A (en) * | 1971-10-29 | 1976-06-15 | Toyo Kogyo Co., Ltd. | Water soluble core for pressure die casting and process for making the same |
US4065044A (en) * | 1975-12-29 | 1977-12-27 | Alan Painter | Capstan |
JPS5788942A (en) * | 1980-11-20 | 1982-06-03 | Toshiba Corp | Production of cast rotor |
US4480681A (en) * | 1982-08-30 | 1984-11-06 | Doulton Industrial Products Limited | Refractory mould body and method of casting using the mould body |
FR2585373B1 (fr) * | 1985-07-25 | 1990-05-04 | Univ Toulouse | Procede de fabrication de corps creux, fermes et continus, corps creux obtenus et installation de mise en oeuvre dans le cas de billes creuses |
DE3604370A1 (de) * | 1986-02-12 | 1987-08-13 | Klein Schanzlin & Becker Ag | Verfahren zur herstellung zerfallsfreundlicher formkerne |
US4902386A (en) * | 1989-08-02 | 1990-02-20 | Xerox Corporation | Electroforming mandrel and method of fabricating and using same |
JPH0824996B2 (ja) * | 1989-10-31 | 1996-03-13 | 宇部興産株式会社 | 水溶性中子及びその製造方法 |
US5097586A (en) * | 1990-12-14 | 1992-03-24 | General Electric Company | Spray-forming method of forming metal sheet |
-
1997
- 1997-04-19 DE DE19716524A patent/DE19716524C1/de not_active Expired - Lifetime
-
1998
- 1998-04-17 CN CN98106655.0A patent/CN1199658A/zh active Pending
- 1998-04-17 JP JP10107823A patent/JPH10311246A/ja active Pending
- 1998-04-17 CA CA002235113A patent/CA2235113A1/en not_active Abandoned
- 1998-04-20 US US09/063,620 patent/US6261432B1/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102294437A (zh) * | 2010-05-28 | 2011-12-28 | 铃木株式会社 | 水溶性型芯的除去方法及装置 |
CN106925721A (zh) * | 2015-12-17 | 2017-07-07 | 通用电气公司 | 用于形成具有限定在其中的内部通路的构件的方法及组件 |
CN106925721B (zh) * | 2015-12-17 | 2020-10-09 | 通用电气公司 | 用于形成具有限定在其中的内部通路的构件的方法及组件 |
CN109286056A (zh) * | 2018-08-06 | 2019-01-29 | 南京航空航天大学 | 太赫兹金属镀层空芯矩形波导整体制造方法 |
CN109286056B (zh) * | 2018-08-06 | 2020-10-20 | 南京航空航天大学 | 太赫兹金属镀层空芯矩形波导整体制造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPH10311246A (ja) | 1998-11-24 |
CA2235113A1 (en) | 1998-10-19 |
DE19716524C1 (de) | 1998-08-20 |
US6261432B1 (en) | 2001-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1199658A (zh) | 空腔物体的制作方法 | |
CN1101478C (zh) | 一种泡沫金属制造方法 | |
CN107794417B (zh) | 一种电机机壳的生产工艺 | |
CN108950257A (zh) | 一种提高银金属氧化物电接触材料中增强相分布均匀性的方法 | |
CN109158604A (zh) | 一种铝合金弹壳制造方法及弹壳 | |
CN105350041A (zh) | 电沉积Ni-Co-Al-Cr高温复合镀层及其制备方法 | |
CN110548866B (zh) | 一种表面粗糙的金属粉末、制备方法及在sls/slm技术中的应用 | |
CN105088023A (zh) | 碳纳米管增强铝基复合材料的制备方法 | |
US4381942A (en) | Process for the production of titanium-based alloy members by powder metallurgy | |
JP2713458B2 (ja) | 電気的に析出された耐高温ガス腐食層の製造方法 | |
CN108796297A (zh) | 一种直接用于3d打印的高强度高韧性铜镍锡合金原料及其制备方法和应用 | |
CN104762639B (zh) | 湿法冶金电沉积工序用多孔铝基复合阳极及制备方法 | |
CN109158587A (zh) | 一种适用于3d打印的球形仿金合金粉末及其制备方法 | |
KR100753240B1 (ko) | 합금 나노분말의 제조방법 | |
CN109014137A (zh) | 一种连续覆材复合铸坯及其铸造方法 | |
CN1061365A (zh) | 铸模内衬层产生铸件镀层或渗层的方法 | |
CN109055832A (zh) | 一种高锌铝合金铸棒及其熔炼和铸造方法 | |
CN101736215B (zh) | 一种Mg/SiCp复合材料的制备方法 | |
CN1061629A (zh) | 金属空心制品双极性内电铸成型法及其专用设备 | |
CN202427955U (zh) | 一种喷射成形用导液管 | |
CN113118377B (zh) | 一种彩色铜合金铸件生产方法 | |
CN105499543A (zh) | 固态铜材固液复合及拉拔组合制备双金属复合材料的方法 | |
RU2020034C1 (ru) | Порошковый материал для напыления покрытий и литейная форма многократного использования | |
CN104744055A (zh) | 一种用于制备涂层的溶胶的制备方法及涂层和涂层的制备方法 | |
CN1943977A (zh) | 有色金属合金家具的制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |