CN1199041C - 光学检验系统 - Google Patents

光学检验系统 Download PDF

Info

Publication number
CN1199041C
CN1199041C CNB018111912A CN01811191A CN1199041C CN 1199041 C CN1199041 C CN 1199041C CN B018111912 A CNB018111912 A CN B018111912A CN 01811191 A CN01811191 A CN 01811191A CN 1199041 C CN1199041 C CN 1199041C
Authority
CN
China
Prior art keywords
camera
circuit board
cameras
light illumination
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018111912A
Other languages
English (en)
Other versions
CN1436301A (zh
Inventor
道格拉斯·W·雷蒙德
理查德·D·弗莱明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teradyne Inc
Original Assignee
Teradyne Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teradyne Inc filed Critical Teradyne Inc
Publication of CN1436301A publication Critical patent/CN1436301A/zh
Application granted granted Critical
Publication of CN1199041C publication Critical patent/CN1199041C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/309Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of printed or hybrid circuits or circuit substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • G01N2021/95646Soldering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • G01N2021/95661Inspecting patterns on the surface of objects for PCB's for leads, e.g. position, curvature
    • G01N2021/95669Inspecting patterns on the surface of objects for PCB's for leads, e.g. position, curvature for solder coating, coverage

Abstract

一种自动光学检验系统,包括提供电路板等对象的图象数据的多个可异步触发的相机。电路板被分成在一个或多个照明模式中在一个或多个相机中成像的视场。在跨板的一次通过中在多个照明模式中,每个相机能够将板上的每个位置成像。每个相机的图象数据能够同时直接被传输到主存储器,以便主计算机适时分析。系统使得相机的全带宽能够被利用,以减少板的检验时间。

Description

光学检验系统
技术领域
本发明总体上涉及检验系统;特别涉及自动光学检验系统。
发明背景
自动光学检验系统(AOI)用于检验诸如印刷电路板(PCB)等对象的各种缺陷。所述系统能够检验PCB的正确的组件的存在和取向、正确的焊接结构和焊接搭桥。在一种光学检验应用中,系统能够检验四边扁平封装(QFP)集成电路的趾状填角焊缝。这样的封装具有四个边,从每个边突出有引线。每个引线通过焊缝连接到PCB上的焊接点。用周知的图象处理算法能够测定不正确形成的焊接填角的出现。
这样的AOI系统包括相对于PCB前后往复运动的一个相机头。所述相机头包括照明系统和多个相机。例如,可以将照明系统设置成一个或多个发光二极管(LED),提供照明,以便强光照射PCB上的某些表面,并使得PCB上的其它表面变暗,使得所述相机能够捕获适合图象处理分析的图象。典型情况是,所述灯仅在相机头直接在PCB上的要关注的区域上时才正常开闭。因此,照明系统起一个选通灯的作用。用这个选通灯的方法,为了获得图象相机头不必停止。
仅在灯打开时,在相机头中的每个相机捕获要关注的特定区域的有用图象。而且,取决于在其上设置相机头的要关注的特定区域,照明系统在特定的照明模式中工作,即,所述照明系统提供从各LED(不是所有的)的特定一些发出的光。选择这个照明模式,强化PCB区域的加强照明和变暗,使得容易进行图象处理分析。因此,照明系统在特定相机能够捕获要关注的特定区域中的图象的一系列照明模式中工作。
一般是,被检验的电路板被分成各条。每个条对应一个相机头运行的往复移动路径。每个条被分成各视场(FOV)。因为相机头跨板的各部分往复移动,所以照明系统根据预定的照明模式选通所述灯,从相机头的各相机产生图象流。所述图象经由帧取样器被传送到存储器以供分析。
在美国专利No.5,245,421中公开一项现有技术方法,它公开了从填角的侧面照明填角,同时相机也从侧面观察填角,以沿填角的轴向捕获图象。这样的照明技术或模式产生的填角视图,填角的边显得亮,它的中心显得暗。这样的填角的图片通常被称为具有“蛇眼”或“颊”,因为跨过它的横断面部分是亮的,然后是暗的,又是亮的。有缺陷的填角一般具有低的对比度。例如,带有不足焊料的焊缝不具有弯曲度,看上去较均匀的暗。带有过多焊料的焊缝也具有低的弯曲度,看上去也是较均匀的暗。
一般来说,在惯用的现有技术AOI系统中的检验程序沿被检验的PCB限定一个路径系列或路径图形,如条。相机头沿所述条在预定的图形中往复移动。在相机头中的相对于PCB的每个相机的位置随相机头移动的每次移动而改变。因此,在PCB上的组件不是在相机视场一致的位置中出现。因此,给定的视场含有多个取向的填角。例如,在相机头在一个条中时,给定的视图可能含有一个QFP的左上角,和另一QFP的右上角。但是在另一个视图中,四个QFP可能会聚,以致在视图中有四个分开的QFP的角。一些引线指向东、其它一些的向南,向西和向北。
从北和南照明视场的照明模式,产生向东和向西引线的希望的蛇眼图,但是不产生向北和向南的引线的蛇眼图。因此一个照明模式不能够正确地照明所有的四组趾状填角。
必须用东一西照明模式摄取第二帧,以产生北指向和南指向趾状填角上的蛇眼图象。对于检验板上的给定点需要的每个照明模式,这种设置要求相机头在PCB上通过。在板上每次通过要求很大的时间。因为检验系统往往是生产过程的瓶颈,所以每次附加的通过具有很大影响。
转让到本发明受让人的美国专利No.5,260,779试图通过用对电路板每个点的两个不同照明模式摄取图片,降低PCB的检验时间。这个系统包括在对称四个一组中的排列的带角度的四个相机,所有的四个相机与竖直方向倾斜三十度。每个相机的光轴对准要检验的电路板的平面的公共点。每两个相机方向相对地成为一对,使得在第一对中的相机的相对应方向在垂直相机头的运动的主方向的方向中彼此垂直,在第二对相机中的相机在平行于运动主方向的方向中彼此平行。在第一对中的相机在它们的奇数视场中工作,在第二对中的相机在它们的偶数视场中工作,反之亦然。头的速度被控制使得,对相机头运动的每个视场(FOV),每个相机摄取一个完全的帧。
在美国专利No.5,260,779中说明的照明系统为沿板运动的每个视场值提供两个闪光。一个闪光是为了组成第一相反的对的第一和第二相机,第二闪光是为了组成第二相反的对的第三和第四相机。对每个照明模式/相机对组合,要求相机访问板上给定点一次。因此,如果存在有相机要求的两个照明模式,则将存在两次访问。如果任何相机有三次照明模式,则相机头必须三次访问所述点,依次类推。一般,如果检验程序要求“n”个照明模式,则要求在视场上“n”次通过。
一个典型的电路板检验程序使用三到十个照明模式,因此,要求相机相对于电路板通过三到十次。每次通过要几秒钟,因此在许多自动组装线中,检验设备是最慢的,所以是工艺过程的瓶颈。
已知系统的另一个缺点是,由于图象数据被捕获和存储的方法,可能丢失图象数据。这样的光学检验系统包括具有局部存储器和/或局部处理的帧采集系统。因此,主计算机必须在PCI BUS等总线上存取访问图象数据。
处理器管理这个处理所需要的系统操作和数据传输所需要的时间的结合,显着降低用于分析图象数据的时间。例如,在每个相机具有专用处理器或单一专用的存储器,或两者都有的系统中,分配到特定的繁重使用的相机的处理器会在分配到其它相机的处理器饱和前就饱和。在专用存储器被分配到每个相机的系统中,在相机开始递交下一个FOV的图象数据前,不可能分析在给定FOV中的所有窗口。为了接收从下一个帧来的数据,正在处理的数据被刷新,为新来的数据腾空,或新的数据就写入到老数据上。此时,丢掉老数据,并且相机头必须停止,或回走,稍后重新摄取视图,恢复数据。这导致检验时间的显着延迟。
另外,帧取样系统一般通过多路复用处理多个相机,但是不能够同时处理它们。例如,在上述的四个相机系统,在能够触发第二个相机前,必须传输来自第一个相机的整个图象,且其它相机依此样式进行触发。因此,相机的全带宽不能够被完全利用。
因此,理想地提供一种AOI系统,它异步触发各相机,使得在对象上的单一次通过,能够用多个照明模式成像被检验的对象上的一点。而且在其光学处理系统上能将多个照相机的影像资料同时传送到主存储器进行机遇(opportunistic)处理,这项处理动作在照相机取得下一个“条”(Strip)的影像资料前并不需要一定被完成。
发明内容
本发明提供一种自动光学检验系统(AOI),它使得检验对象所需要的时间最小。虽然主要结合检验印刷电路板(PCB)说明了本发明,但是,应理解,本发明的光学检验系统也能够用于检验具有详细的表面结构特征的各种对象。
本发明的一个方面,AOI系统包括主计算机或处理器,它控制一条一条地进行的AOI系统的整个工作。多个异步地被触发相机能够耦接到相对于PCB等对象定位各相机的可移动的头总成上。照明系统也能够形成所述头总成的一部分或与头总成分开,提供照明PCB的多个照明模式。帧取样器单元从相机接收图象数据,向主计算机能够直接访问的主存储器同时传输所述数据。
在工作中,电路板被分成条,每条进一步被分成一个或多个视场(FOV)。主计算机能够产生视图表,用于确定由哪个相机和在哪种照明模式中成像的各条内的各位置。头总成以可控制的速度跨各条前后移动。所述相机在单一的通过中,在多个希望的照明模式中,将电路板上的各点成像。在一个实施例中,每个相机能够两次将电路板上的给定点成像,每个图象具有不同照明模式。能够选择所述头总成的速度,使得能够在每条上,在一个通过中,用预定数目的照明模式将电路板成像。这个实施例,通过根据在电路板上的每个点要求的照明模式的数目,选择头的速度和在板上通过的次数的最佳参数,使得检验时间为最短。
在本发明的另一方面,所述帧取样器包括多个直接存储器访问信道(DMA),用于在主计算机能够直接访问的存储器中存储数据。用这样的设置,能够同时和快速地从图象采集板到主存储器传送图象,以便立即存储和处理。因此,不刷新或重写数据。
附图简述
结合附图的以下详细说明将使得本发明更明了,其中:
图1是本发明的光学检验系统方框图;
图1A是图1的系统检验的印刷电路板上的条的示意图;
图2是图1的系统的更详细的方框图;
图3是能够形成图1的光学检验系统一部分的具有直接存储器访问信道的帧取样器的方框图;
图4是能够形成图4的光学检验系统一部分的相机的相机照明/曝光和日期传输定时的定时图;
图5是图1的光学检验系统的一半视场时,示范的相机触发顺序的示意图;和
图6是图1光学检验系统检验下的对象上相机如何将给定位置成像的示意图。
具体实施方式
图1示出本发明的自动光学检验(AOI)系统100的示范实施例。一般,系统100利用一系列相机102a-102e光学检验一个对象,如印刷电路板(PCB)10。
见图1A,系统100将PCB10分成所谓的条104,条104又被分成视场(FOV)103,所述视场将被分析,以识别与用电路组件12填充的PCB相关的制造缺陷,如不合格的焊缝。如本领域技术人员所知,相机沿条移动,获得PCB的希望的图象数据。如下面更完全说明的,在任何给定时间,每个相机具有与相机相对于PCB的位置相对应的预定的FOV103。因为检验设备是生产环境中的瓶颈,所以,与已知的光学检验系统相比,电路板的检验时间的降低是本发明的自动检验的重要特征。
见图1,光学检验系统100包括提供PCB10的图象的多个相机102a-102e。相机102a-102e沿各条移动,将板的欲受检测的部分成像。照明系统105位于拱形总成106上,以希望的方式照明PCB10。在一个特定实施例中,照明系统105由多个发光二极管(LED)构成,它们排列在拱形总成106上的矩阵中。在一个示范实施例中,使用五个相机102a-102e。四个相机102a、102b、102d和102e位于相对于电路板10表面垂直线的一个角度上,如三十度,第五个相机102c直接在电路板10上(竖直)。相机102a-102e能够固定到跨板移动的拱形总成106上。
虽然本发明的示范实施例相对于电路板移动相机102a-102e和照明系统105,但是本领域技术人员应理解,在本发明范围内,也能够相对于相机操纵板的位置。另外,也能够独立地操纵照明系统105、相机102a-102e和板10每一个。另外,本领域技术人员应理解,虽然照明系统105在此是由发光二极管构成的,但是,只要是灯或灯的矩阵能够以选通的照明方式工作,并提供需要的照明模式,也可以使用任何类型的灯。还应理解,虽然在此示出五个相机,但是可以使用五个以上或以下的相机。能够改变在任何特定应用中使用的相机的特定数目和定位,以便获得被检验的电路板的欲受检测部份的图象数据。例如,一个另外的实施例可以包括一个或多个竖直的相机。
在一个示范实施例中,主计算机108控制系统100的一条一条的整个工作。用一个或多个相机102成像在各条内的视场。将电路板分成各条和FOV是本领域技术人员所知的。也是周知的是,能够根据板的特征产生FOV的检验程序,这在下面更详细说明。
根据检验程序,主计算机108向伺服控制单元110提供指令,伺服控制单元控制伺服电动机112实现在电路板10每条上拱形总成106的定位。在示范实施例中,拱形总成106在各条上移动,LED105为相机102a-102e的特定一个选通照明板。拱形总成106的实际位置由位置编码器114确定。在一个实施例中,编码器114包括具有线性编码器的传感器型系统,所述线性编码器产生数字正交信号,提供约每米百万分之五的分辨率。数字伺服控制单元110接收这些数字编码器信号,提供跨条正确定位拱形总成106需要的电动机驱动信号校正。本领域技术人员了解拱形总成106的这样的定位和跟踪。
重合测定器116从位置编码器114接收拱形总成的位置信息。重合测定器116将编码器的拱形总成的位置信息,与计算机108提供并存储在事件存储器中的应激发哪一个或多个相机102a-102e的位置相比较。在重合测定器116测定一个匹配时,通告照明/相机控制单元118,激发一个或多个相机,并根据在照明模式控制单元120中的预定照明模式信息,触发选择的LED。
系统100还包括帧取样器122,它从每个相机102接收图象数据,在主计算机108能够直接访问的存储器109中存储所述数据,这在下面说明。一般,这样的设置使得主计算机108能够适时地分析在存储器109中的图象数据,而不象在现有技术系统中那样由于在接收随后的条数据前没有完成当前条数据的处理而损失数据。
耦接到主计算机108与之合作的一个用户接口124使得用户能够执行希望的生产方案,也使得用户能够对要求额外关注的电路板,人工运行选择的检验程序。
图2示出图1的光学检验系统100的更详细的实施方式。主计算机108经由接口128和存储器地址寄存器130,在事件存储器126中,一条一条地存储相机和照明模式信息。对于具有0.4英寸FOV的二十四英寸板,事件存储器126存储六百个事件,如24/0.04。在相机头具有较慢速度时,如在单一的通过中三次成像每个点,则存储九百个事件,例如24/0.027。
在一个示范实施例中,每个事件存储器的存储单元包括拱形总成位置数据、相机激发数据和照明模式数据。事件信息被装入到在每个激发位置控制相机和照明方式的各寄存器中。在一个实施例中,照明总成105是由发光二极管131的矩阵构成,并且包括LED的选通计时器132。选通计时器132能够设置为十六位的计时器,它确定LED工作多长时间,以控制图象的亮度。对于给定的事件,LED列驱动寄存器134控制LED矩阵的哪个列驱动器136工作,并且LED的行驱动寄存器138控制哪个行驱动器140工作。在一个示范实施例中,LED矩阵包括分布在拱形总成106(图1)上的十个行和四十个列。相机触发寄存器142控制针对该事件的哪个相机102a-102e激发。应理解,对于每个事件的激发,能够编程任何数目的相机。相机102a-102e向帧取样器122提供图象数据。
定时顺序发生器144将相机触发的定时与LED协调。一般,在照明周期前触发相机,并在照明周期终止后结束。在事件后,地址序列发生器146递增存储器地址寄存器130,然后它向下一个事件目标寄存器148装入下一个激发位置的存储单元。比较器150接收下一个事件的存储单元数据,并将它与从当前拱形总成位置寄存器154中的拱形总成位置编码器152来的数据比较。在拱形总成位置寄存器154的值匹配下一个事件目标存储器148的值时,比较器150向定时顺序发生器144提供一个指示,以触发一定的相机102和LED105。
为了成像图象数据和向主存储器提供所述数据,能够从具有如速度等的适当性能的各相机102中选择相机。在一个实施例中,相机是Opteon公司供应的,零件号为CA0010B025。这种相机包括电子快门结构,它是所谓的行间传送电荷耦合器件(interline transfer chargecoupled device)(CCD)相机的部分。如本领域技术人员所知,行间CCD相机包括光敏组件,在光照射它们上时它蓄积电荷,并在接收触发脉冲时,它们立刻复位到零(黑色电平)。在曝光间隔后,光敏组件横向对“移位”CCD转储它们的储能,“移位”CCD,则将此储能结果移位到数字取值系统。“移位”CCD并不会被光影响。这具有快门的效果,因为在屏蔽的移位CCD单元中的电荷量是,在触发脉冲和曝光间隔终止之间积累的它的相邻未屏蔽的单元中的电荷量。电子快门优于相对笨重,慢,易磨损的机械快门和如美国专利No5,260,779中公开的液晶快门。
图3示出图1的帧取样器单元122的示范实施例。帧取样器单元122包括第一和第二图象采集板156a和156b,它们可以是麻萨诸塞州Wellesley的Opteon公司制造的描绘主板(depict master board)。图象采集板156耦接到相机102以便从相机接收图象数据。图象采集板156利用直接存储器存取接口(DMA)经由PCI总线,向主计算机存储器158发送图象数据,而没有处理器的介入。在一个示范实施例中,主计算机108一条一条地控制帧取样器单元122,使得在触发寄存器142(图2)中存储的触发控制下,图象采集板156处理在条上的转移。因此,主计算机108的处理的系统操作能够专注于图象分析,而不是控制数据转移。主计算机108能够更有效地处理在存储器中的各帧,并且在图象采集处理同时可以处理“中断”(Interrupt)要求。
这样的设置使得主计算机108,如两个在Window NT下进行的Pentium II处理器160a和160b能够立即分析得到的影像数据,不需要被转移在分开的循环中。处理器160a和160b能够直接访问主存储器,适时地,即一旦在图片准备好由下一个可工作的处理器处理它时,处理五个相机的图象。如这里使用的,直接访问即,主计算机从主存储器存取图象数据,而不在处理器160a和160b所在的电路外的总线(Bus)上传输图象数据。
在示范的五个相机的实施例中,第一和第二相机102a和102b耦接到第一图象采集板156a,第三、第四和第五相机102c-102e耦接到第二图象采集板156b。应理解,虽然在此实施例中,每个图象采集板156a和156b能够处理四个同时的DMA信道(如四个相机每个一个信道),但是,只要是在系统中使用的所有的相机在DMA型处理中,能够同时直接向主存储器158转移它们的数据,能够使用具有任何数目的DMA信道的图象采集板。
如图4所示,五个相机102(图3)的每个与其它的同时传输图象数据。在时间162中,相机移动一个FOV,每个相机能够用多个,如两个照明模式在板上成像一个点。这个配置提供完全5×5的图象采集,因为五个相机的每个在不同相位点上同时工作和以全速传输。因此,能够利用各相机的全带宽。
见图1到图3,在相机102沿它的路径移动时,五个相机的数据流流入到主存储器158。主存储器158的大小至少是足够存储在一条中捕获的所有帧,但是能够增加,以存储附加的条数据。一存在至少一个要处理的视图,主计算机108的处理就开始,并继续到所有视图被处理。如果一个视图处理,要用比一个视图的采集的时间多的时间,则拱形总成或头106仍能够前进,在下一个帧成像时间中处理过程赶上来,或能够在所述条结束,同时所述头停止,使它的运动反向,如改变方向时,赶上来。
主存储器158能够存储足够的帧,以致,即使主计算机108不能够象被采集的那样快地处理帧时,在一次扫描测试下的板当中,存储器不会上溢。因为扫描,如在条上一次通过,机械移动相机102颇费时间,所以,处理器160能够在扫描之间赶上和结束存储器中的帧的处理过程。即,相机102a-102e反向并与下一个条对准要求的时间,为主计算机108完成采集的图象的分析提供了附加的处理时间。
前述的新技术相比于从帧取样板上的局部存储器读出图象数据的现有技术系统,即非直接存取,本发明的设置提供了重大的优点。在现有技术中,一旦相机传输另一个帧,图象数据就被重写或刷新。然后,必须将相机重新送回到板上的那个点,重新捕获所丢掉的图象相对应的数据。相比于通过多路复用数据处理多个相机,即不同时传送图像数据的现有技术光学图象数据采集系统,本发明的其它优点也是明显的。即,在现有技术中,在另一个相机能够传输它的图象数据前,从一个相机来的图象必须完全传输。因此,没有使用相机的全带宽,以致显着降低系统的效率。
在工作中,在开始检验电路板前,主计算机生成视图表。视图表是基于要被分析的板的图象。视图表的功能说明如下。对于特定的板,主计算机确定在板上的什么点应成像,和以哪种照明模式成像。如本领域技术人员所知,一个电路板是用诸如抓放式系统制造和填充组件。然后在填充的板上的所述组件被焊接到板上。检验系统能够分析组件的类型身份、方向和位置,以及焊接的质量。一般,主计算机108利用能够将CAD文件与程序库结合的现有技术的宏扩展设施,产生具有预定组件的板的检验程序,如0402电阻器、0805电容、四面扁平封装(QFP)100的集成电路(IC)的检验程序。CAD文件指定组件位置,组件名和组件方向。宏扩展设施(Macroexpansion Facility)读出CAD文件,并且对CAD文件中的每个组件,搜索与它的类型相对应的库元素。然后,在库元素中以象素为基础分析的窗口被旋转、分配到适当相机和照明模式的结合,并被写入到视场表中。然后主计算机将FOV与在一个照明模式中一个相机检查的板的区域结合。所有窗口表被分类到视图表,使得具有具体相机和照明模式的所有的窗口被置于那个相机和那个照明模式的视图中。
因为每个相机102a-102e异步工作,所以主计算机108便能组织视图表使得它较好地优化,以使得相机头在所述电路板上的通过次数最小。
在现有技术系统中,它的软件将视图表组织到“奇”相机场和“偶”相机场,以致在每一对相机所要求的照明模式超过一次时,相机便被要求在该视图上要多次通过电路板。
相反,本发明使得视图表被组织在五个(使用五个相机时)完全独立的部分中。照明模式能够分为五种分布,而不是两个。在一次通过时在板的任何点上,每个相机可以具有两个或多个照明模式。
见图5和6,在相机头168跨印刷电路板表面1681-168c、170移动时,由四个相机166a-166d组成的相机头168在多个位置中。每个相机166a-166d具有视场172。在相机头168移动时,能够用每个相机166a-166d至少在电路板170上的每个点进行两次成像,如图5的点A。但应理解,在板上单一通过中,单一个点能够被成像两次以上,如通过减小相对于条的相机头的速度。
图5示出一个有阴影的重迭区域200,其中给定相机206的第一和第二视图202和204,在与一个FOV相对应的距离上,两次将点A成像。因此,在点A所在的条上一次通过,相同的相机能够在两个不同的照明模式中成像点A。
在一个实施例中,每个相机166a-166d在板的每个位置上,在一次通过中,在预定数目的照明模式中,采集整个板的帧。在对每个相机需要不同的照明模式的情况中,比现有技术系统减少检验时间,因为如上所述,本发明系统使得能够,在板上的一次通过中,多照明模式地成像在板上的单个点。即,这系统提供每个视场每个相机的多照明模式。例如,如果在条中的第一FOV仅需要相机X的照明模式A和B,并且在条中的不同视图仅需要相机X的照明模式C和D,那么,可以在相机X的单一条中容纳所有的四个照明模式A-D。
通过将相机的带宽尽可能地扩大,能够减少检验板要求的时间。一般,相机能够以最大的每秒的帧数工作。应选择头速度,使得每个相机能够在给定的FOV中至少两次采集给定点的图象,如每FOV/2-次。
在一个实施例中,所述相机能够每秒拍摄到60帧。在约每秒21英寸的相机头速度,如在现有技术设备中那样,每个相机可以每21/60或0.35英寸采集一帧。在0.7英寸的视场大小上,0.35英寸是视场距离的一半。在这样的设置中,在相机运行0.7英寸视场一半各摄取一次,便能够摄取该点的两个完全的图象。对于五个相机的系统,照明系统每秒能够被选通300次,对每个相机每秒60次。
相反,现有技术系统,在照明系统被选通每秒60次的情况,即第一对相机每秒30次和第二对相机每秒30次,在电路板上每次通过,仅允许一种照明模式。
本发明使得能够增加或降低头的速度,相对容易地根据给定检验程序的要求提供最小的检验时间。例如,程序能够要求对板上的一个或多个点的三种照明模式。头的速度能够降到这样的程度,提供每个FOV在板上的给定点三个图象。在条上的一次通过,能够在三种不同的照明模式中,用相同的相机三次将点成像。因此,以较低的头的速度消耗下,一次通过,能够将所述板成像。另外,取决于条上要求的不同照明模式的数目,能够在一条一条的基础上,调节头的速度。根据给定检验程序的要求,主计算机能够考虑到与在板上的每个点相关的照明模式数目,确定最佳的头的速度,并借由此种一次通过受测验板便能取得全部图像的技术,避免相机头必须再回到该受测点,节省机件运作时间,以到达最短的检验时间。
另外,由于相机的异步的特性,提供相机头运动的伺服系统不需要将它本身与相机的帧定时同步。相机能够在适合于移动系统需要的时间被移动。不需要象现有技术设备那样地等待与相机节奏匹配。
基于上述说明本领域技术人员可以理解本发明的优点。因此,除了权利要求说明的外,本发明不限于上述特别的说明。本文中引述的公开文件和对比文件全部作为参考包含于本文。

Claims (15)

1.一种检验对象的光学检验系统,包括:
多个相机,用于将对象成像,每个相机被异步触发;
照明系统,用于提供多个照明模式,照明多个相机的对象;
帧取样器单元,用于从多个相机向存储器传输图象数据;和
主计算机,用于控制对象的图象采集,
其特征在于,帧取样器单元包括多个直接存储器访问信道(DMA),用于在主计算机可直接访问的存储器中存储数据。
2.根据权利要求1的系统,其特征在于:所述存储器是主计算机可直接访问的主存储器。
3.根据权利要求1的系统,其特征在于:多个相机包括至少四个相机。
4.根据权利要求1的系统,其特征在于:帧取样器单元包括至少一个图象采集板,该图象采集板具有多个DMA信道,用于从多个相机中的至少两个向主计算机可直接访问的存储器传输图象数据。
5.根据权利要求1的系统,其特征在于:还包括多个相机固定其上的可移动的头总成,和提供头总成位置信息的位置编码器。
6.根据权利要求5的系统,其特征在于:头总成的速度能够依图像采集与照明模式的需求被调节,以使对象的检验时间最短。
7.根据权利要求1的系统,其特征在于:还包括事件存储器,用于存储激发位置数据、相机触发数据和多个激发位置每个的照明模式。
8.根据权利要求2的系统,其特征在于:主存储器能够存储一个条以上的图象数据。
9.根据权利要求1的系统,其特征在于:对象是印刷电路板。
10.一种检验电路板的方法,包括:
选择支撑多个相机的头总成在各视场时相对于电路板的移动速度;
将电路板分成各视场,每个视场包括多个激发位置;
头总成在所选择的速度下移动至各个激发位置以获取图像;
对于多个激发位置的每个,选择多个异步触发的相机的至少一个和多个照明模式的第一个,
其中,还包括以下步骤:
在多个照明模式的第二和第三个中,利用所选择的多个相机中的第一个在同一视场的不同激发位置上将电路板上的相同位置成像;和
通过帧取样器单元的直接存储器访问信道从多个相机向存储器传输图象数据。
11.根据权利要求10的方法,其特征在于:还包括向分析图象数据的处理器可直接访问的主存储器传输图象数据。
12.根据权利要求11的方法,其特征在于:还包括在多个DMA信道上传输图象数据。
13.根据权利要求12的方法,其特征在于:还包括从多个相机同时传输图象数据。
14.根据权利要求10的方法,其特征在于:还包括在板的每条上一次通过将电路板成像,其中在板上的至少一个位置必须在至少两个不同的照明模式中于不同的激发位置上被成像。
15.一种制造电路板的方法,包括:
制造印刷电路板;
用组件填充电路板;
将组件焊接到电路板,提供电路板总成;
通过下述步骤检验电路板:
选择支撑多个相机的头总成相对于电路板的移动速度;
将电路板分成各视场,每个视场包括多个激发位置;
对于多个激发位置的每个,选择多个异步触发的相机中的至少一个和多个照明模式的第一个;
在多个照明模式的第二和第三个中,利用多个相机中的第一个将电路板上的第一位置成像;和
通过帧取样器单元的直接存储器访问信道从多个相机向存储器传输图象数据。
CNB018111912A 2000-06-14 2001-06-11 光学检验系统 Expired - Fee Related CN1199041C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/593,352 2000-06-14
US09/593,352 US7075565B1 (en) 2000-06-14 2000-06-14 Optical inspection system

Publications (2)

Publication Number Publication Date
CN1436301A CN1436301A (zh) 2003-08-13
CN1199041C true CN1199041C (zh) 2005-04-27

Family

ID=24374382

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018111912A Expired - Fee Related CN1199041C (zh) 2000-06-14 2001-06-11 光学检验系统

Country Status (5)

Country Link
US (1) US7075565B1 (zh)
CN (1) CN1199041C (zh)
AU (1) AU2001268283A1 (zh)
TW (1) TW530155B (zh)
WO (1) WO2001096839A1 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3953988B2 (ja) * 2003-07-29 2007-08-08 Tdk株式会社 検査装置および検査方法
JP4220883B2 (ja) * 2003-11-05 2009-02-04 本田技研工業株式会社 フレームグラバ
KR20060097250A (ko) * 2005-03-04 2006-09-14 아주하이텍(주) 자동 광학 검사 시스템 및 방법
KR101155816B1 (ko) * 2005-06-17 2012-06-12 오므론 가부시키가이샤 3차원 계측을 행하는 화상 처리 장치 및 화상 처리 방법
US20080013823A1 (en) * 2006-06-30 2008-01-17 Behnke Merlin E Overhead traveling camera inspection system
DE102007060355A1 (de) * 2007-12-12 2009-06-25 Vistec Semiconductor Systems Gmbh Verfahren und Vorrichtung zur Verarbeitung der von mindestens einer Kamera aufgenommenen Bilddaten der Oberfläche eines Wafers
IL188825A0 (en) * 2008-01-16 2008-11-03 Orbotech Ltd Inspection of a substrate using multiple cameras
US20110175997A1 (en) * 2008-01-23 2011-07-21 Cyberoptics Corporation High speed optical inspection system with multiple illumination imagery
WO2009094489A1 (en) * 2008-01-23 2009-07-30 Cyberoptics Corporation High speed optical inspection system with multiple illumination imagery
US8872912B2 (en) * 2009-09-22 2014-10-28 Cyberoptics Corporation High speed distributed optical sensor inspection system
US8670031B2 (en) * 2009-09-22 2014-03-11 Cyberoptics Corporation High speed optical inspection system with camera array and compact, integrated illuminator
US8894259B2 (en) * 2009-09-22 2014-11-25 Cyberoptics Corporation Dark field illuminator with large working area
US8388204B2 (en) * 2009-09-22 2013-03-05 Cyberoptics Corporation High speed, high resolution, three dimensional solar cell inspection system
US8681211B2 (en) * 2009-09-22 2014-03-25 Cyberoptics Corporation High speed optical inspection system with adaptive focusing
FI20115241A0 (fi) * 2011-03-10 2011-03-10 Mapvision Ltd Oy Konenäköjärjestelmä laadunvalvontaan
US9417418B2 (en) 2011-09-12 2016-08-16 Commscope Technologies Llc Flexible lensed optical interconnect device for signal distribution
FI125320B (en) * 2012-01-05 2015-08-31 Helmee Imaging Oy ORGANIZATION AND SIMILAR METHOD FOR OPTICAL MEASUREMENTS
CN102788802A (zh) * 2012-08-29 2012-11-21 苏州天准精密技术有限公司 一种多相机的工件质量检测方法
EP2901192B1 (en) 2012-09-28 2020-04-01 CommScope Connectivity UK Limited Fiber optic cassette
US9223094B2 (en) 2012-10-05 2015-12-29 Tyco Electronics Nederland Bv Flexible optical circuit, cassettes, and methods
US9123172B2 (en) 2013-05-20 2015-09-01 Steven Sebring Systems and methods for producing visual representations of objects
CN104422694A (zh) * 2013-09-11 2015-03-18 法国圣戈班玻璃公司 测量数据的处理装置及处理方法、光学测量系统
JP5866673B2 (ja) * 2014-01-22 2016-02-17 トヨタ自動車株式会社 溶接部の画像検査装置及び画像検査方法
KR101705086B1 (ko) * 2014-03-06 2017-02-13 주식회사 미르기술 비전 검사 장치의 영상 신호 제어 장치
KR101886947B1 (ko) * 2014-05-05 2018-08-08 아르코닉 인코포레이티드 용접 측정을 위한 장치 및 방법
CN104483324B (zh) * 2014-12-19 2017-10-20 核工业理化工程研究院华核新技术开发公司 基于多模式配准的在线检测装置
CN104483325B (zh) * 2014-12-19 2017-12-15 华核(天津)新技术开发有限公司 基于多模式配准的在线检测装置及检测方法
CN104469118B (zh) * 2014-12-26 2018-04-27 大族激光科技产业集团股份有限公司 一种相机阵列的视觉增强系统
CN104568985A (zh) * 2014-12-30 2015-04-29 东莞市合易自动化科技有限公司 一种aoi光学检测设备
USD812671S1 (en) 2015-12-03 2018-03-13 Durst Sebring Revolution, Llc 3D imaging system
USD798936S1 (en) 2015-12-03 2017-10-03 Durst Sebring Revolution, Llc Photo booth
USD782559S1 (en) 2015-12-03 2017-03-28 Durst Sebring Revolution, Llc Photo booth
USD781948S1 (en) 2015-12-03 2017-03-21 Durst Sebring Revolution, Llc Photographic imaging system
USD822746S1 (en) 2016-02-05 2018-07-10 Durst Sebring Revolution, Llc Photo booth
MX2020002878A (es) 2017-10-02 2020-07-22 Commscope Technologies Llc Circuito de fibra optica y metodo de preparacion.
US11132787B2 (en) * 2018-07-09 2021-09-28 Instrumental, Inc. Method for monitoring manufacture of assembly units
JP7088874B2 (ja) * 2019-04-09 2022-06-21 株式会社日立製作所 電子部品外観検査システム
CN113064019A (zh) * 2019-12-31 2021-07-02 技嘉科技股份有限公司 功能扩充卡测试平台
RU2727527C1 (ru) * 2020-03-10 2020-07-22 Вячеслав Михайлович Смелков Телевизионная система для наблюдения за перемещением горячего проката
CN112964723B (zh) * 2021-02-01 2023-11-03 苏州百迈半导体技术有限公司 一种双面多目标等间距阵列视觉检测方法及检测系统
DE102021110149A1 (de) * 2021-04-21 2022-10-27 Genesys Elektronik Gmbh Prüfvorrichtung zum Kontrollieren von Bauteiloberflächen und Verfahren dafür

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896211A (en) * 1988-04-26 1990-01-23 Picker International, Inc. Asynchronously triggered single field transfer video camera
US5060065A (en) 1990-02-23 1991-10-22 Cimflex Teknowledge Corporation Apparatus and method for illuminating a printed circuit board for inspection
US5245421A (en) * 1990-09-19 1993-09-14 Control Automation, Incorporated Apparatus for inspecting printed circuit boards with surface mounted components
US5260779A (en) * 1992-02-21 1993-11-09 Control Automation, Inc. Method and apparatus for inspecting a printed circuit board
US5517234A (en) 1993-10-26 1996-05-14 Gerber Systems Corporation Automatic optical inspection system having a weighted transition database
US5550583A (en) 1994-10-03 1996-08-27 Lucent Technologies Inc. Inspection apparatus and method
BE1009814A5 (nl) * 1995-11-06 1997-08-05 Framatome Connectors Belgium Werkwijze en inrichting voor het aanbrengen van elektronische onderdelen in een plaat met gedrukte schakelingen.
US5974480A (en) * 1996-10-18 1999-10-26 Samsung Electronics Co., Ltd. DMA controller which receives size data for each DMA channel
US6064759A (en) * 1996-11-08 2000-05-16 Buckley; B. Shawn Computer aided inspection machine
DE69919059T2 (de) * 1998-02-04 2005-01-27 Texas Instruments Inc., Dallas Datenverarbeitungssytem mit einem digitalen Signalprozessor und einem Koprozessor und Datenverarbeitungsverfahren
US6260081B1 (en) * 1998-11-24 2001-07-10 Advanced Micro Devices, Inc. Direct memory access engine for supporting multiple virtual direct memory access channels

Also Published As

Publication number Publication date
US7075565B1 (en) 2006-07-11
AU2001268283A1 (en) 2001-12-24
TW530155B (en) 2003-05-01
CN1436301A (zh) 2003-08-13
WO2001096839A1 (en) 2001-12-20

Similar Documents

Publication Publication Date Title
CN1199041C (zh) 光学检验系统
CN1299556C (zh) 具有元件布局检查功能的抓取式设备
CN1164083C (zh) 影像信号处理装置及像素缺陷的检测方法
CN1769834B (zh) 用于控制一致精确和高速检查视觉系统的模糊限制基系统和方法
US7630539B2 (en) Image processing apparatus
US20140010438A1 (en) Three dimensional shape measurement apparatus and method
JP7122524B2 (ja) 検査プログラム生成システム、検査プログラムの生成方法、及び検査プログラムの生成用プログラム
CN1317544C (zh) 外观检测装置以及图象获得方法
US20100295935A1 (en) On-head component alignment using multiple area array image detectors
GB2075182A (en) Method of and device for detecting the position of an object
CN1922473A (zh) 用于设计检测路径及用于确定待检测区域的方法
CN1860431A (zh) 使用了区域图像传感器的位置检测装置
US6987894B2 (en) Appearance inspection apparatus and method in which plural threads are processed in parallel
CN1518430A (zh) X线图像诊断装置及x线图像数据的校正方法
WO2020062841A1 (zh) 一种提高数字切片扫描仪建模速度的方法
CN110267031A (zh) 一种摄像机输出图像延迟时间测试方法及系统
CN1296148C (zh) 一种水果外观质量在线检测技术的视觉数据处理系统
CN106645045A (zh) 一种荧光光学显微成像中基于tdi‑ccd的双向扫描成像方法
CN101685000B (zh) 影像边界扫描的计算机系统及方法
CN1968597A (zh) 具有元件布局检查功能的抓取式设备
JP2836835B2 (ja) 外観検査方法および装置
KR20020052940A (ko) 화상 판독 장치 및 화상 판독 방법
CN1108739C (zh) 安装电子元件的方法以及设备
JP3039704B2 (ja) 印字評価方法及び印字評価装置
JPH0644360A (ja) リード付き電子部品の視覚的検査方法および装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: LIANGRUI TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: TERADYNE, INC.

Effective date: 20041022

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20041022

Address after: Taipei County of Taiwan

Applicant after: Teradyne Inc.

Address before: Massachusetts, USA

Applicant before: Teradyne, INC.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050427

Termination date: 20170611