CN1198784A - 复合膜及其在化学合成中的应用 - Google Patents

复合膜及其在化学合成中的应用 Download PDF

Info

Publication number
CN1198784A
CN1198784A CN96197445.1A CN96197445A CN1198784A CN 1198784 A CN1198784 A CN 1198784A CN 96197445 A CN96197445 A CN 96197445A CN 1198784 A CN1198784 A CN 1198784A
Authority
CN
China
Prior art keywords
composite membrane
oxygen
hydrogen
supply house
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96197445.1A
Other languages
English (en)
Other versions
CN1073645C (zh
Inventor
S·P·韦伯
J·A·麦金太尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of CN1198784A publication Critical patent/CN1198784A/zh
Application granted granted Critical
Publication of CN1073645C publication Critical patent/CN1073645C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种用于化学合成的复合膜,一种加有该复合膜的化学反应器,以及使用这种复合膜的方法。该复合膜含有基材、第一面和第二面,其中基材在操作上使第一面和第二面相连,第一面含有氧化催化剂,而第二面含有还原催化剂、还原催化剂含有元素形式或组合形式的镧、锌、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、铋或铟。使用这一复合膜的化学反应器可在没有反应物的直接混合物的条件下。

Description

复合膜及其在化学合成中的应用
发明背景和概述
本发明涉及一种用于化学合成的复合膜及其使用方法。这样的复合膜特别适用于由氢和氧合成过氧化氢。
今天商品的发展方向是使用“环境友好”的材料。一种这样的材料就是过氧化氢。过氧化氢有许多潜在的应用,例如在化学氧化法中的应用。一个特别大的应用领域是用作纸漂白剂。预计今后许多年过氧化氢的需求会迅速增长。因此,开发一种生产这种商品的有效方法是有利的。
大部分过氧化氢(H2O2)由大家熟悉的蒽醌法制造。例如,参看Binran,1 Appl.Chem.Ed.Chem.Soc.302(Japan 1986)。这一方法的缺点是,它需要加入许多有机溶剂,生成许多不希望有的副产物以及需要各种分离步骤。制备H2O2的另一方法是在碱金属氢氧化物溶液中氧的阴极还原法。但是,这一方法消耗大量的电能。生产过氧化氢的另一方法是用悬浮在或溶于含水磺酸溶液和盐酸溶液中的负载型或均相铂族金属催化剂,使氢和氧催化反应。但是,这一方法需要使氢和氧在高压下(为了优化性能,压力通常大于7000kPa)形成危险的、有可能爆炸的混合物,构成严重的安全隐患。
希望有这样一种反应器和方法,它不需要有机溶剂、复杂的电器设备以及有潜在爆炸性反应物的直接混合物,这里公开的本发明试图解决上述的许多困难。现已发现,使用这样一种反应器池设计可提供这样一种环境,在这一环境中,在没有反应物如氢和氧的直接混合物的情况下,可使用相当高的压力。在该反应器池设计中,通过催化上优化的复合膜使反应物彼此受控地分离开。反应器池使用新型的还原催化剂,并可对许多类型的反应优化。此外,因为氢和氧可在单一的反应器中直接反应,所以不必使用有机溶剂。
一方面,本发明涉及一种用于化学合成的复合膜,它含有基材、第一面和第二面,其中基材使第一面和第二面在操作上相连;第一面含有氧化催化剂(如铂),而第二面含有还原催化剂;还原催化剂含有元素形式或组合形式的镧、锌、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、铋或铟。这种复合膜然后可用于适合的反应器设计中。例如,可用于通过氢和氧安全反应合成过氧化氢的适合反应器设计,包括:
(a)上述复合膜,其中第一面为氢接触面,而第二面为氧接触面;
(b)用于氢与复合膜的氢接触面接触的氢供应室;
(c)用于氧与复合膜的氧接触面接触的氧供应室。
复合膜处于氢供应室和氧供应室之间,以致氢接触面在操作上与氢供应室相连,而氧接触面在操作上与氧供应室相连。这类化学化应器也适用于希望在类似条件下进行的其他合成反应。
发明详述
现已发现一种复合膜,它提供一种在没有机溶剂的条件下,在室温下,通过H2和O2在单一的反应器中直接反应,有效合成H2O2的方法。利用这里所述的还原催化剂,这一复合膜也可进行下述许多其他的化学合成反应:烯烃(如丙烯)氧化成烯化氧(如环氧丙烷);由SO2、H2O和O2生产H2SO4(参见Langer et al.,“Chemicals with Power”,Chemtech 226,229(April 1985));由有机硝基化合物生产胺类染料(参见Spillman et al.,“Why Not Make Chemicals in Fuel Cell?”,Chemtech176,182(March 1984);以及由苯生产酚(参见Otsuka et.,al.,“DirectSynthesis of Phenol from Benzene dring O2-H2 Fuel Cell Reactions”,139〔No.9〕J.Eleclrochem.soc.2381(1992))。目前认为H2O2的合成具有重要的意义,在这里将作更具体地讨论。但是,根据以下公开内容,一个熟悉本专业的技术人员还能将本发明的复合膜用于其他反应,只对H2O2合成进行具体的讨论并不意味着要限制本发明的范围。
具体地说,本发明的第一方面是一种含有基材、第一面和第二面的复合膜,其中基材在操作上使第一面和第二面相连。复合膜的第一面含有氧化催化剂,而复合膜的第二面含有还原催化剂。催化剂可为负载型催化剂或非负载型催化剂,可有明显的分层或没有明显的分层。对于本发明来说,“明显分”层是指粘合到或紧邻基材的层,而“没有明显分”层是指催化剂整个直接混合到基材中的层。
基材可为在本发明的方法中有足够离子传导性、优选阳离子传导性的任何膜。但是,对于过氧化氢的合成来说,基材还必需能抑制过氧基阴离子的传导。熟悉本专业的技术人员能确定完成这一功能的有效基材。通常,该基材为聚合物膜。典型的聚合物膜也是有机聚合物膜,如聚合氟磺酸(PFSA)或聚羧酸。PFSA为一种有负电荷基团键联在膜内的离子交换膜。有关某些常用的优选PFSA聚合物以及制备这样的聚合物的方法的讨论,可参见De Vellis等,US4846977第5栏第1-36行(在这里作为参考并入)。也可参见Y.D.Sierke,“PerfluorinatedIonomer Membranes”,ACS Symposium Series No.180,pp.386-88(1982)(在这里作为参考并入)。市售的PFSA聚合物的一个例子是NAFIONTM(E.I.du Pont de Nemours and Company)。另一些有机聚合物膜可为这样一些基材。如接枝在聚四氟乙烯主链上的磺化苯乙烯(例如由RAI Research Corporation提供的RAIPORETM膜)以及乙烯基化合物的交联磺化共聚物(如Ionics,Inc.提供的TYPECRTM膜)。虽然有机聚合物是最常用的,但无机聚合物如陶瓷膜、凝胶、硅氧烷和盐桥也可使用。
氧化催化剂可为任何一种在其使用条件下促进氧化的材料。熟悉本专业的技术人员能在没有过多实验的条件下确定在所需的反应中进行氧化的有效氧化催化剂。例如,在H2O2合成中,复合膜的第一层可使氢氧化成质子和电子是必要的。适用于H2O2合成的第一面的催化剂的例子包括:铂、钯、金、银、汞、铱、钌、二氧化钌、镍、硼化镍、钠钨青铜、三氧化钨、碳化钨、硫化钼、碳化钴、硫化钴、钼酸钴、铂化的碳化硼、酞菁铜、乙酰丙酮化钯、铌以及混合金属和尖晶石电催化剂。潜在的氧化剂的另一些例子通常在以下文献中讨论:Appleby et al.,“Electrocatalysis of Hydrogen”,Fuel Cell Handbook 322-35(VanNostrand Reinhold 1989)、该文献在这里作为参考并入。对于H2O2合成来说,优选的氧化催化剂包括钯、铂、铱及其组合。
在复合膜的第二面上的还原催化剂包括元素形式或组合形式的镧、锌、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、铋或铟。所谓“组合形式”是指还原催化剂也可包括含有上述元素中至少一种元素的混合物和化合物。应当理解,“氧化物”意味着还包括部分氧化物,其中“部分氧化物”是不同化学计量的氧和金属的混合物,以致金属氧化合物的总化学计量不是一个简单的整数。还原催化剂混合物的例子包括:镧-锰、铟-锡氧化物、镨-铟氧化物以及杂多钨酸的镧盐和杂多磷钨酸镧(LaPW12O40)。对于H2O2合成来说,优选的还原催化剂金属包括钆、锌、镧、及其混合物和化合物。
将金属化层沉积和加到基材中的方法在本专业中是大家熟悉的,熟练的技术人员可优化这些沉积方法,以得到本发明的复合膜。这样的沉积方法的例子在以下专利中公开在US4364803(1982,Nidola等)、US5211984(1993,Wilson)和US4328086(1982,Takenaka等)。其相关技术在这里作为参考并入。当使用明显分层的催化剂时,本发明的优选实施方案使用复合膜的第一面和第二面的层厚不大于35微米。所以,优选的催化剂粒度也不大于35微米。更优选的是,粒度小于10微米。
本发明的第二方面是一种包括上述复合膜的反应器。该反应器包括用于第一反应物与复合膜的第一面接触的第一反应物供应室,和用于第二反应物与复合膜的第二面接触的第二反应物供应室。复合膜处于第一反应物供应室和第二反应物供应室之间,以致复合膜的第一面在操作上与第一反应物供应室相连,而复合膜的第二面在操作上与第二反应物供应室相连。通常,第一反应物供应室面向第一面,而第二反应物供应室面向第二面。就供应室和复合膜来说,“操作上相连”指这样来安排供应室,以使其中的相关组合物可与在相关组合物和适合面之间构成界面的复合膜的适合面接触。“供应室”包括能基本上装有相关组合物并易于使任何相关组分与复合膜的适合面之间接触的任何容器、空间、区段等。此外,每一室希望至少有一个提供和/或取出相关组合物、反应产物或两者的开口。
复合膜的第一面和第二面也可在操作上彼此相连。就这两面彼此“操作上相连”来说,这样操作相连,以致离子和电子都可从第一面传导到第二面。电子可外部传导、内部传导或外部和内部一起传导。外部电子操作相连的一个例子是在复合膜的每一面上电流收集板用于电接触,通过外部短棒连接每一板来彼此电接触。内部电操作相连的一个例子是一种电传导材料与离子传导材料的紧密多相混合物,其中电子传导相内部分散在整个离子传导相中。“内部分散的,”指各相独立地和基本上连续地整体相互混合,以致电子传导相是一互穿网络,相对于离子传导相不排除处于外部。这类多相混合物在共同未决的美国专利申请书08/239017中公开(在这里作为参考并入)。
化学反应器还包括将第一反应物提供给第一反应物供应室的设备和将第二反应物提供给第二反应物供应室的设备。这些设备中的每一个都可为任何将相关组合物从组合物源输送到各自供应室的传统体系或设备。例如,每一设备都可为与组合物源操作上相连的泵和管线或通道,以致相关的组合物由组合物源通过管线泵送入各自的供应室。该化学反应器还包括从还原室回收反应产物,如过氧化氢的类似类型的设备。
在一优选的反应器中,复合膜的第一面为氢接触面,第二面为氧接触面,第一反应物供应室为氢供应室,而第二反应物供应室为氧供应室。所以,例如在H2O2合成中,复合膜的第一面使氢氧化成质子和电子,而第二面与第一面产生的电子相配合,使氧还原成氧离子。当至少两个电子和阳离子提供给复合膜的氧接触面时,就生成H2O2
本发明的第三方面是一种使用上述反应器的方法。这一方法的优选实施方案是过氧化氢的合成。但是,使用本发明的反应器也可能合成其他组合物。对于熟悉本专业的技术人员来说,根据以下具体公开的过氧化氢合成方法,这样的一些合成方法将变得很清楚。对于过氧化氢的合成来说,该法的第一步包括使氢与优选反应器中复合膜的上述氢接触面接触,以便产生至少一个电子和至少一个质子。例如,当氢以H2的形式送入时,氧化催化剂(如Pt)促进它氧化成两个质子和两个电子。但是,氢可以任何形式引入(例如,含氢的混合物或化合物),只要氢接触面可产生至少一个电子和至少一个质子。所希望的含氢混合物是与水混合的氢气。水有助于使复合膜水合,从而得到良好的离子传导性。
该方法的第二步包括氧与复合膜的氧接触面接触。氧可以纯氧或以任何含氧的混合物或化合物与复合膜接触。所希望的含氧混合物是空气与水的混合物。使氢/水或氧/水混合物与复合膜接触的方法的例子是,在气体进入反应器以前使氢或氧通过水鼓泡,或者使氢气或氧气作为与水的分隔流与复合膜接触。通常,水有助于稀释过氧化氢产物,从而使它分解的可能性下降。当与氢接触面接触,水也有助于使复合膜水合。
该方法的第三步包括将在复合膜的氢接触面产生的至少一个电子和至少一个质子传导到复合膜的氧接触面和氧之间的界面。在还原催化剂存在下,至少一个电子和至少一个质子与氧反应,生成反应产物;当总计两个电子和两个质子与一个氧反应时,就生成过氧化氢。
如果需要,化学合成的这一方法可在升温下进行。通常,该温度不应超过复合膜中任何一种材料或所需产物明显分解或降解的温度。这一温度以及复合膜降解的明显程度随复合膜的组成变化。熟悉本专业的技术人员能确定进行各种合成反应的适合温度和分解是否明显。在H2O2合成中,本发明的方法优选在温度大于或等于2℃的反应器中进行。优选的是,温度还小于或等于50℃、更优选小于或等于30℃、最优选小于或等于10℃。
此外,氢和氧进料流优选在大于或等于100psi(689kPa)、更优选大于或等于500psi(3447kPa)、最优选大于或等于700psi(4826kPa)的压力下与复合膜接触。
最后,从复合膜的第二面除去任何反应产物是优选的。这样就分离出所需的反应产物并使不希望的副反应如H2O2分解减少。
实施例
根据以下实施例可进一步理解本发明,将把这些实施例纯粹作为本发明应用的例证。
实施例1
将4英寸×4英寸(10.2cm×10.2cm)、800当量重、5密耳厚(127微米)的聚全氟磺酸(PFSA)膜通过在1M NaOH苛性碱中加热1小时,随后在去离子水(DI)中反复清洗的方法转变成钠盐形式,制成基材。用直接涂抹法(DPO)将氧化催化剂和还原催化剂独立地涂布在基材每一侧的3.0×3.5cm面积上。对于DPO法,将每种催化剂中的一种制成两种印墨。印墨通过催化剂/炭黑用碳酸亚丙酯媒质和离子交联聚合物粘合物制成悬浮液来制得。氧化催化剂/炭黑(由E-TEK,Inc.提供)通过Pt和炭黑按20%(重量)Pt混合来制得、还原催化剂/炭黑通过锌粉(由Aldrich Chemical Company提供)和炭黑按20%(重量)Zn混合来制得。离子交联聚合物粘合剂由5%(重量)NAFIONTM的混合醇溶液和水溶液组成(由E.I.du Pont de Nemours and Company提供),它以这样的数量加到每种催化剂/炭黑的混合物中,以致催化剂/炭黑的总重为PFSA/混合醇/H2O粘合剂中的PFSA重的2.5倍。碳酸亚丙酯(由Aldrich Chemical Company提供)以这样的数量加到每种印墨中,以致碳酸亚丙酯的重量为催化剂/炭黑重量的2.5倍。
还原催化剂印墨以足以得到1.25mg/cm2金属载量的数量涂布到基材上。而氧化催化剂印墨以足以得到0.3mg/cm3金属载量的数量涂布到基材的另一面上。印墨一次涂布到基材上,同时基材在加热的(50℃)烧结的真空架上放30分钟。架子确保基材展平,帮助碳酸亚丙酯和粘合剂溶剂蒸发。碳酸亚丙酯媒体和粘合剂溶剂的蒸发剂形成有氧化催化剂层加入到氢接触面和还原催化剂层加入到氧接触面的复合膜。
为了使复合膜两面上的活性催化剂不受以下热压步骤的影响,按以下顺序在复合膜的每一面上形成2.5英寸×2.5英寸(6.35cm×6.35cm)夹层:2密耳(50.8微米)厚KAPTONTM聚亚胺膜的非粘性片;玻璃增强的硅酮橡胶片;以及1/16英寸(1.59mm)厚抛光的镀铬不锈钢板。将这种复合膜夹层在150℃和较小的压力(即板彼此刚接触)下预热5分钟,然后在150℃和1380kPa下热压5分钟。当夹层冷却到室温后,经热压的复合膜从压机中取出。冷却到室温后,将复合膜从夹层中取出,然后通过将复合膜在室温下浸入1N H2SO4中30分钟,使其钠盐形成再次质子化成质子形式。经再次质子化的复合膜然后放回加热的(50℃)烧结的真空架上30分钟再次展平。
然后将角质子化的复合膜操作上连入平行孔道流场燃料电池反应器中(由Fuel Cell Technologies,Inc.提供),以致氧化催化剂面向反应器的氢供应室,而还原催化剂面向反应器的氧供应室。填满两室的是TEFLONTM/炭黑浸渍的碳纤维织物扩散物(由E-TEK,Inc.提供,为ELATTM)。在燃料电池试验台(也由Fuel Cell Technologies,Inc提供)上,反应器在短路条件下操作。对于复合膜的氢接触面来说,反应器的操作压力为45psi(310kPa);而对于氧接触面来说,操作压力为60psi(413kPa)。反应器在室温下(25℃)操作,而氢气进料流在进入反应器的氢供应室以及通过在50℃的水中鼓泡来加湿。氧气进料流保持干燥。产物通过反应器氧供应室出口的knock-out off来收集。反应器在近1Amp(10mA/cm2)下操作,得到3.1%(重量)过氧化物溶液。
当重复如该实施例相同的方法时,得到类似的结果,不是的是氧化锌(ZnO)代替锌粉沉积在炭黑上。由Zn(OAc)2盐得到的ZnO沉积在炭黑上,并在空气中、120℃下焙烧1小时。
实施例2
按上述制得复合膜,但在还原催化剂印墨中的还原催化剂为由结晶Gd(NO3)·6H2O(一种由Aldrich Chemical Company提供的水溶性钆盐)制得的20%氧化钆/炭黑(Gd与Gd加碳的重量比)。钆/炭黑由以下步骤制得。首先将钆盐(0.72g盐/g碳)晶体溶于少量水中。其次,将炭黑加到该盐溶液中形成浆糊,初润湿法本身在本专业中是已知的,再其次,通过缓慢加热浆糊同时在研钵中用研杵研磨的方法,从浆糊中除去水。然后将生成的Gd+3/炭粉末放在对流炉中,并在120℃下保持30分钟,生成还原催化剂/炭黑。
将生成的还原催化剂印墨(如实施例1,含有碳酸亚丙酯媒体和离子交联聚合物粘合剂)以足以得到0.31mg/cm2金属载量的数量涂布到基材上,而将氧化催化剂印墨(20%Pt/炭,含有碳酸亚丙酯媒体和离子交联聚合物粘合剂)以足以得到0.30mg/cm2金属载量的数量涂布到该基材的另一面上。与实施例1相反,热压以后,生成的复合膜仍为钠盐形式。
该复合膜在相同的燃料电池反应器(如实施例1中的一样)操作,但反应器在高压燃料电池试验台上操作,它能在高达900psi下操作。与上述类似,氢供应室用ELATTM填充,但氧供应室用3密耳(76.2微米)厚未处理的炭纤维纸(由Spectrocarb,Corp.提供)填充。与在复合膜的氢接触面上的氧化催化剂接触的氢气进气压力的4830kPa(700psi),而与复合膜的氧接触面上的还原催化剂接触的氧气进气压力也为4830kPa。氧气作为与去离子水(DI)的O2分隔流送入还原催化剂,而水以0.2ml/min的速率加到气体中。反应器在室温下用连续气体进料操作14分钟。生成反应产物,并与加入的水合并,制得浓度为3.0%(重量)的过氧化氢。
通过测定借助标定的短路棒的电压差通过这一设备的电流,对于消耗到生成产物(水或过氧化物)的每一氢原子来说,已确定有一个电子通过该设备。生成的总产物的重量测定值为2.87g。这些测量值总起来可计算按每摩尔氢生成的过氧化的摩尔数计算反应选择性。对于这一实施例来说,在14分钟试验内,从氢接触面到氧接触面产生(通过)0.95A,它对应于生成过氧化氢的氢选择性为62%(摩尔)。对于这一电流和时间,在100%转化率下,计算的最大过氧化氢产量为0.14g。
当相同的复合膜用外部水流为0.05ml/min操作时,生成4.1%(重量)过氧化氢,其氢选择性为44%(摩尔)。
实施例3
如上述实施例2中的那样,进行相同的步骤,不同点如下:(1)使用硝酸镧(处理同硝酸钆)作为氧的还原催化剂;以及(2)热压步骤后,首先冷却到室温,然后在室温下在1N H2SO4中浸泡30分钟,使复合膜从其钠盐形式再质子化成质子形式。通过将它放在加热的(50℃)烧结的真空架上30分钟,将再质子化的复合膜重新展平。
当用这一复合膜进行合成反应时,水送入反应器的流速为0.2ml/min,而生成的产物流为1.3%(重量)过氧化氢,生成过氧化氢的氢选择性为70%(摩尔)。
实施例4
如实施例3中所述,进行相同的步骤;不同的是:用杂多磷钨酸镧(LaPW12O40)代替硝酸镧。当用这一复合膜进行合成反应时,水送入反应器的流速为0.8ml/min,收集的产物为1.1%(重量)过氧化氢,生成过氧化氢的氢选择性为72%(摩尔)。
对于熟悉本专业的技术人员来说,根据这里所述的说明书或本发明的实施,本发明的其他实施方案是很显然的。这一说明书和实施例仅作为例证,本发明的真正范围和实质用以下的权利要求书说明。

Claims (19)

1.一种含有基材、第一面和第二面的复合膜,其中基材在操作上使第一面和第二面相连,第一面含氧化催化剂,而第二面含还原催化剂,还原催化剂含有元素形式或组合形式的镧、锌、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、铋或铟。
2.根据权利要求1的复合膜,其中还原催化剂含有元素形式或组合形式的钆、锌、或镧。
3.根据权利要求1的复合膜,其中其中还原催化剂为氧化物。
4.根据权利要求1的复合膜,其中还原催化剂为杂多磷钨酸镧。
5.根据权利要求1的复合膜,其中氧化催化剂含有元素形式或组合形式的钯、铂或铱。
6.根据权利要求1的复合膜,其中基材为聚合物膜。
7.根据权利要求6的复合膜,其中聚合物膜为有机聚合物膜。
8.根据权利要求7的复合膜,其中有机聚合物膜含有聚全氟磺酸。
9.一种反应器,它有:
(a)权利要求1的复合膜;
(b)使第一反应物与复合膜的第一面接触的第一反应物供应室;以及
(c)使第二反应物与复合膜的第二面接触的第二反应物供应室;
其中,复合膜处于第一反应物供应室和第二反应物供应室之间,以致复合膜的第一面在操作上与第一反应物供应室相连,而复合膜的第二面在操作上与第二反应物供应室相连。
10.根据权利要求9的反应器,其中第一面为氢接触面,第二面为氧接触面,第一反应物供应室为氢供应室,而第二反应物供应室为氧供应室。
11.根据权利要求10的反应器,其中还有回收过氧化氢的设备。
12.一种用权利要求10的反应器合成过氧化氢的方法,该法包括:
(a)使氢与复合膜的氢接触面接触,以便生成至少一个电子和至少一个质子;
(b)使氧与复合膜的氧接触面接触;以及
(c)使步骤(a)中生成的至少一个电子和至少一个质子传导到复合膜的氧接触面和氧的界面,以致至少一个电子和至少一个质子与氧反应,生成含有过氧化氢的反应产物。
13.根据权利要求12的方法,其中步骤(a)中的氢为含氢的混合物。
14.根据权利要求13的方法,其中含氢的混合物含有氢和水。
15.根据权利要求12的方法,其中步骤(a)中的氢为含氢的化合物。
16.根据权利要求12的方法,其中步骤(b)中的氧为含氧的混合物。
17.根据权利要求16的方法,其中含氧的混合物含氧和水。
18.根据权利要求12的方法,其中将反应器的温度维持在2-30℃。
19.根据权利要求12的方法,其中氢和氧在大于100psi(689kPa)下与复合膜接触。
CN96197445A 1995-10-06 1996-09-13 化学合成用的复合膜及加有该膜的反应器及使用该膜的方法 Expired - Fee Related CN1073645C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US492295P 1995-10-06 1995-10-06
US60/004,922 1995-10-06

Publications (2)

Publication Number Publication Date
CN1198784A true CN1198784A (zh) 1998-11-11
CN1073645C CN1073645C (zh) 2001-10-24

Family

ID=21713195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96197445A Expired - Fee Related CN1073645C (zh) 1995-10-06 1996-09-13 化学合成用的复合膜及加有该膜的反应器及使用该膜的方法

Country Status (10)

Country Link
US (1) US5800796A (zh)
EP (1) EP0853687B1 (zh)
JP (1) JPH11512784A (zh)
CN (1) CN1073645C (zh)
AU (1) AU712295B2 (zh)
BR (1) BR9610837A (zh)
CA (1) CA2231566A1 (zh)
DE (1) DE69604193T2 (zh)
ES (1) ES2135930T3 (zh)
WO (1) WO1997013006A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112237935A (zh) * 2020-09-10 2021-01-19 万华化学集团股份有限公司 一种处理含过氧化物废水的催化剂及其制备和使用方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471745B1 (en) * 1996-06-28 2002-10-29 University Of Delaware Nanoporous carbon catalytic membranes and method for making the same
AU8067598A (en) * 1997-07-11 1999-02-08 Dow Chemical Company, The Membrane and method for synthesis of hydrogen peroxide
DE10048030A1 (de) * 2000-09-26 2002-04-11 Degussa Verfahren zur elektrochemischen Herstellung von Wasserstoffperoxid
US20040126313A1 (en) * 2002-06-24 2004-07-01 Haase Richard A. Methods and processes of hydrogen peroxide production
US7122166B2 (en) * 2004-05-11 2006-10-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Concentration of hydrogen peroxide
US8268269B2 (en) 2006-01-24 2012-09-18 Clearvalue Technologies, Inc. Manufacture of water chemistries
US7754064B2 (en) * 2006-09-29 2010-07-13 Eltron Research & Development Methods and apparatus for the on-site production of hydrogen peroxide
WO2009079006A1 (en) 2007-12-17 2009-06-25 Giner Electrochemical Systems, Llc Electrochemical device comprising composite bipolar plate and method of using the same
US9595727B2 (en) 2010-11-16 2017-03-14 Giner, Inc. Electrochemical device comprising an electrically-conductive, selectively-permeable membrane
GB201116635D0 (en) 2011-09-27 2011-11-09 Johnson Matthey Plc Improvements in catalysts
US10159969B2 (en) * 2015-03-31 2018-12-25 Colorado School Of Mines Ammonia synthesis at moderate conditions using hydrogen permeable membrane reactors
SI25590A (sl) 2018-01-15 2019-07-31 Univerza V Ljubljani Postopek priprave izotopsko označenega vodikovega peroksida
JP7105421B2 (ja) * 2018-07-31 2022-07-25 Eneos株式会社 エポキシ誘導体の製造装置、エポキシ誘導体の製造方法およびエポキシ誘導体製造装置の製造方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1146437A (en) * 1965-11-25 1969-03-26 Laporte Chemical Hydrogenation reactions and catalyst
US3578609A (en) * 1967-10-02 1971-05-11 Mobil Oil Corp Ion exchange resin containing zero-valent metal
US3630879A (en) * 1969-01-02 1971-12-28 Gen Electric Internally short-circuited solid oxygen-ion electrolyte cell
US3856640A (en) * 1971-06-02 1974-12-24 Wright H D Production of hydrogen peroxide
JPS602394B2 (ja) * 1979-10-30 1985-01-21 工業技術院長 イオン交換膜−触媒金属接合体の製造方法
IT1130955B (it) * 1980-03-11 1986-06-18 Oronzio De Nora Impianti Procedimento per la formazione di elettroci sulle superficie di membrane semipermeabili e sistemi elettrodo-membrana cosi' prodotti
US4330633A (en) * 1980-08-15 1982-05-18 Teijin Limited Solid electrolyte
US4416801A (en) * 1980-12-15 1983-11-22 E. I. Du Pont De Nemours & Co. Toluic acid
US4384931A (en) * 1981-09-04 1983-05-24 Occidental Research Corporation Method for the electrolytic production of hydrogen peroxide
US4393038A (en) * 1981-10-16 1983-07-12 Atlantic Richfield Company Hydrogen peroxide production
EP0095997B1 (de) * 1982-05-28 1987-04-01 BBC Brown Boveri AG Verfahren zur elektrolytischen Erzeugung von Wasserstoffperoxyd und dessen Verwendung
US4636314A (en) * 1984-03-16 1987-01-13 Uop Inc. Polymer blended membranes
US5141604A (en) * 1984-06-07 1992-08-25 Electron Transfer Technologies, Inc. Dehydrogenation reaction utilizing mobile atom transmissive membrane
GB8517188D0 (en) * 1985-07-06 1985-08-14 Bp Chem Int Ltd Metal perfluorosulphonic acid polymer catalyst
US4908114A (en) * 1985-09-27 1990-03-13 William Ayers Mobile atom insertion reaction, mobile atom transmissive membrane for carrying out the reaction, and reactor incorporating the mobile atom transmissive membrane
US4827071A (en) * 1986-06-09 1989-05-02 Arco Chemical Technology, Inc. Ceramic membrane and use thereof for hydrocarbon conversion
US4791079A (en) * 1986-06-09 1988-12-13 Arco Chemical Company Ceramic membrane for hydrocarbon conversion
US5055171A (en) * 1986-10-06 1991-10-08 T And G Corporation Ionic semiconductor materials and applications thereof
US5211827A (en) * 1986-10-06 1993-05-18 T And G Corporation Electrochemical cell with ionic semiconductor separator
US4846977A (en) * 1986-10-21 1989-07-11 The Dow Chemical Company Method and device for separating polar from non-polar liquids using membranes
US4772458A (en) * 1986-11-19 1988-09-20 E. I. Du Pont De Nemours And Company Catalytic process for making hydrogen peroxide from hydrogen and oxygen employing a bromide promoter
US5306411A (en) * 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
FR2625598B1 (fr) * 1987-12-30 1990-05-04 Commissariat Energie Atomique Polymeres conducteurs electroniques dopes par des heteropolyanions, leur procede de preparation et leur utilisation en catalyse chimique et electrochimique
US4832938A (en) * 1988-05-13 1989-05-23 E. I. Du Pont De Nemours And Company Hydrogen peroxide production method using platinum/palladium catalysts
US4911803A (en) * 1988-07-19 1990-03-27 Kunz Harold R Composite hydrogen purification membrane and method for purifying hydrogen
JP3060499B2 (ja) * 1989-09-01 2000-07-10 三菱瓦斯化学株式会社 過酸化水素の製造方法
US5132099A (en) * 1990-12-27 1992-07-21 Mitsubishi Gas Chemical Company, Inc. Method for producing hydrogen peroxide
US5171644A (en) * 1991-01-09 1992-12-15 The Dow Chemical Company Electrochemical cell electrode
US5211984A (en) * 1991-02-19 1993-05-18 The Regents Of The University Of California Membrane catalyst layer for fuel cells
US5210059A (en) * 1991-10-10 1993-05-11 Exxon Research & Engineering Company Multilayered catalyst for controlled transport of reactant
US5273628A (en) * 1992-05-11 1993-12-28 Gas Research Institute Mixed ionic-electronic conductors for oxygen separation and electrocatalysis
US5342494A (en) * 1993-03-05 1994-08-30 United Technologies Corporation High purity hydrogen and oxygen production and apparatus therefor
US5415888A (en) * 1993-04-26 1995-05-16 E. I. Du Pont De Nemours And Company Method of imprinting catalytically active particles on membrane
US5534471A (en) * 1994-01-12 1996-07-09 Air Products And Chemicals, Inc. Ion transport membranes with catalyzed mixed conducting porous layer
US5512263A (en) * 1994-05-06 1996-04-30 The Dow Chemical Company Method for chemical synthesis employing a composite membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112237935A (zh) * 2020-09-10 2021-01-19 万华化学集团股份有限公司 一种处理含过氧化物废水的催化剂及其制备和使用方法

Also Published As

Publication number Publication date
DE69604193D1 (de) 1999-10-14
JPH11512784A (ja) 1999-11-02
AU7361996A (en) 1997-04-28
BR9610837A (pt) 1999-07-13
DE69604193T2 (de) 1999-12-30
EP0853687A1 (en) 1998-07-22
WO1997013006A1 (en) 1997-04-10
US5800796A (en) 1998-09-01
AU712295B2 (en) 1999-11-04
EP0853687B1 (en) 1999-09-08
ES2135930T3 (es) 1999-11-01
CN1073645C (zh) 2001-10-24
CA2231566A1 (en) 1997-04-10

Similar Documents

Publication Publication Date Title
CN1073645C (zh) 化学合成用的复合膜及加有该膜的反应器及使用该膜的方法
CN103155252B (zh) 固体高分子型燃料电池
EP1171384B1 (en) Proton conducting membrane using a solid acid
EP0758264B1 (en) Composite membrane for chemical synthesis
US8202669B2 (en) Electro-catalyst compositions for fuel cells
JP2003086188A (ja) 燃料電池
EA011179B1 (ru) Углеродный материал с сульфированным электропроводящим привитым полимером для использования в топливных элементах
WO2003100889A1 (en) Proton conductive carbon material
CN1969418A (zh) 液状组合物、其制造方法及固体高分子型燃料电池用膜电极接合体的制造方法
CN113659180A (zh) 含扭转芳基与酮单体阴离子交换膜、粘合剂及制备和应用
WO2013021145A1 (en) Improvements in or relating to catalysts
EP2795707A2 (en) Fuel cell
CN116056788A (zh) 有机碳酸酯合成用催化剂及制法、合成用电极、合成用电池、有机碳酸酯制法和合成系统
US20040053098A1 (en) Electrochemical cell
US7977008B2 (en) High temperature proton exchange membrane using ionomer/solid proton conductor, preparation method thereof and fuel cell containing the same
US9631105B2 (en) PPS electrode reinforcing material/crack mitigant
JP2002289051A (ja) プロトン伝導性膜の製造方法及びプロトン伝導性膜
US11876268B2 (en) Polymer electrolyte membrane with platelets
JP3886213B2 (ja) 新規機能性高分子、それを用いた高分子電解質及び燃料電池
CN1830108A (zh) 无铂电催化剂材料
Haile et al. Proton conducting membrane using a solid acid
MXPA96005377A (en) Method for chemical synthesis using one my member
Linkov et al. Ceramic‐based materials for electrochemical applications
MXPA98002676A (en) Composite membrane and use of it for quim synthesis
WO2003069713A1 (en) Membrane electrode assemblies for electrochemical cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee