CN1196767C - 具有高对比度的近晶型液晶开关或显示设备 - Google Patents

具有高对比度的近晶型液晶开关或显示设备 Download PDF

Info

Publication number
CN1196767C
CN1196767C CNB008108633A CN00810863A CN1196767C CN 1196767 C CN1196767 C CN 1196767C CN B008108633 A CNB008108633 A CN B008108633A CN 00810863 A CN00810863 A CN 00810863A CN 1196767 C CN1196767 C CN 1196767C
Authority
CN
China
Prior art keywords
liquid crystal
smectic
crystal compound
phase
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008108633A
Other languages
English (en)
Other versions
CN1364187A (zh
Inventor
H-R·杜巴尔
B·赫农
野中敏章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Performance Materials Ltd
Merck Patent GmbH
Original Assignee
Clariant International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant International Ltd filed Critical Clariant International Ltd
Publication of CN1364187A publication Critical patent/CN1364187A/zh
Application granted granted Critical
Publication of CN1196767C publication Critical patent/CN1196767C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/345Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing two nitrogen atoms
    • C09K19/3458Uncondensed pyrimidines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • C09K19/0225Ferroelectric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • G02F1/1416Details of the smectic layer structure, e.g. bookshelf, chevron, C1 and C2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/14Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 asymmetric

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

液晶开关或显示设备包含手性近晶型液晶混合物,其中该液晶混合物中的摩擦方向和近晶层法线之间的角度与倾斜角的比率Δ/Θ至少为0.41。优选地,该液晶混合物具有相序I-N-C且在25℃下的倾斜角Θ为19°-39°。

Description

具有高对比度的近晶型液晶开关或显示设备
基于作为电光活性层的近晶型液晶混合物的显示器或电光显示设备正由于其高响应速度而日益重要。
为了近晶型液晶在电光或全光学单元中的应用,需要能够形成倾斜或正交近晶相且本身是光学活性的化合物,或通过用光学活性化合物掺杂尽管能形成这种近晶相但本身不是光学活性的化合物来诱导铁电或电临床(elektroklin)活性近晶相。所需相还应该在尽可能宽的温度范围内稳定以保证显示器具有宽的操作范围。尤其是,可获得的对比度应该在整个操作范围内尽可能高。液晶显示器原则上可作为有源或无源矩阵显示器操作。
在所谓的有源矩阵技术(AMLCD)中,非结构化基质通常与有源矩阵基质混合。电学非线性单元如薄膜晶体管被整合到有源矩阵基质的每个像素中。非线性单元也可以是二极管、金属-绝缘体-金属和类似单元,它们可有利地通过薄膜工艺来生产并描述于相关文献(参见例如T.Tsukuda,TFT/LCD: 通过薄膜晶体管编址的液晶显示器,Gordon和Breach 1996,ISBN 2-919875-01-9以及其中引用的参考文件)。
有源矩阵LCD通常用近晶型液晶以TN(扭曲近晶)、ECB(电控双折射)、VA(垂直排列)、IPS(面内开关)或OCB(光学补偿弯曲)模式操作。在每种情况下,通过有源矩阵在每个像素上产生个体强度的电场,产生排列上的变化和因此的双折射变化,这又在偏振光光学可见。这些工艺的一个严重缺点在于视频能力差,即近晶型液晶的响应时间过慢。尤其是,近晶LCD不能够显示剧烈移动的图画,这例如描述于Sueoka等人(K.Sueoka,H.Nakamura和Y.Taira)的SID 1997,p.203-206,ISSN1083-1312/97/1701-0203。
为此以及其它原因,已经在WO97/12355或在Ferroelctrics1996,179,141-152中或由W.J.A.M.Hartmann(IEEE Trans.Electron.Device 1989, 36,9;Pt.1,pp.1895-9和Dissertation,Eindhoven,荷兰,1990)提出了基于铁电液晶材料和有源矩阵单元组合的液晶显示器,但由于温度范围有限和难以再现近晶结构而在实践上并未成熟。
尽管Hartmann采用电荷控制的双稳性来显示近乎连续的灰度,但Nito等人已经提出了一种单稳定FLC几何(SID杂志,1/2,1993,pp.163-169),其中FLC材料通过较高电压排列使得仅产生单个稳定位置,由此通过薄膜晶体管所施加的电场随后形成许多中间态。如果在正交起偏振器之间单元几何相配,这些中间态对应于许多不同亮度值(灰值)。
Nito等人的FLC的缺点在于出现条纹结构,这限制了该单元的对比度和亮度(参见前述引用文的图8)。另外,该方法仅在最高为倾斜角的最大值的角范围内产生开关,该角在Nito等人所用材料的情况下为约22°(参考165页,图6),因此仅产生两个平行偏振器透射率(Transmission)的50%的最大透射率。
Terada等人已经提出了一种单稳定FLC构型(Terada,M.,Togano,T.,Asao,Y.,Moriyama,T.,Nakamura,S.,Iba,J.,在应用物理会议上提交,1999年3月28日,日本东京;摘要No.28p-V-8)。关于相,Terada等人将序列I-N-C(见下文定义)定义为“充分的”。但这些原型尚未适合在较大温度范围内实际使用。原因之一是,I-N-C实际上是一个必要而非充分条件,而且实际使用中的适应性对液晶提出许多其它条件。
本发明的一个目的是提供一种合适的手性近晶型液晶混合物和包含该合适手性近晶型液晶混合物的开关设备(Schaltvorrichtung)或显示设备,其中所述液晶混合物由于其优异的排列性能和特定的有利排列角而有可能在宽温度范围内获得非常高的对比度。
在宽温度范围内的甚高对比度的前提条件是LCD单元的极小暗透射率(Dunkeltransmission)。这本身又一方面仅在该混合物排列性能优异时才能获得,因为来自暗位置(Dunkelstellung)的方向子(Direktor)的任何缺陷或局部偏差都可明显降低对比度,另一方面在排列仅随着温度稍微变化时才能获得。如果考虑到例如-10℃至+60℃,优选0℃至+55℃,尤其是10℃至50℃的宽操作温度范围,这尤其适用。
按照本发明,该目的通过一种包含手性近晶型液晶混合物的液晶开关或显示设备而实现,其特征在于,该液晶混合物中的磨擦方向和近晶层法线(Schichtennormale)之间的角度与倾斜角(Tiltwinkel)的比率Δ/Θ至少为0.41。
优选地,该目的通过一种采用具有相序I-N-C的手性近晶型液晶混合物的手性近晶开关或显示设备而实现,所述符号具有以下含义:
I=各向同性相
N=向列或胆甾相
C=手性的或包含手性掺杂剂(为了简化表示,省略文献中常见的符号*)的近晶C相(包括C相的所有子类)或另一倾斜相,且所述排列使得定义为w=Δ/Θ的角度比率w至少为0.41,其中Δ是磨擦方向(图1的轴1)和近晶层法线(图1的轴2)之间的角度,其中术语磨擦方向包括通过磨擦处理之外的其它方法如光定向或类似方法得到的优先方向,且Θ是倾斜角,优选利用电压或X-射线分析根据响应行为来确定(分别为图1的轴2和4’或2和4)。
w值优选至少为0.45,特别优选大于0.53,尤其是0.55-0.99,最优选0.60-0.85。
特别优选,w至少为0.41,同时将倾斜角范围限制至19-39°,优选20-36°,特别优选22-34°,最优选23-33°,尤其是24-32°(在25℃下)。
另外,按照本发明,该目的通过一种包含手性近晶型液晶混合物的手性近晶开关或显示设备而实现,所述液晶混合物具有单稳定排列的相序I-N-C,所述排列使得磨擦方向与单稳定位置(最大暗位置,图1中的轴1和3)之间的角度ρ至少为1°,优选至少1.3°,特别优选至少1.6°,尤其是至少1.9°。
优选将本发明液晶开关和显示设备的上述第一和第二、第一和第三、第二和第三、或第一、第二和第三实施方案的特征结合在一起。
特别优选w至少为0.41,同时角度ρ超过1°。
特别优选w至少为0.41,同时将倾斜角范围限制至19-39°(在25℃下),且作为附加条件,角度ρ超过1 °。
特别优选,w至少为0.41,同时将倾斜角范围限制至19-39°(在25℃下),角度ρ超过1°且作为附加条件,自发极化小于150nC/cm2
优选的是具有相序I-N-C的混合物,其中在操作温度范围内的自发极化小于150nC/cm2,特别优选小于70nC/cm2,甚至特别优选小于35nC/cm2,尤其是小于15nC/cm2,最尤其是4.1-9.9nC/cm2
这种显示器具有几乎或完全无缺陷的排列和非常暗的暗位置,并因此在宽温度范围内具有高对比度。这种显示器的例子为有源矩阵显示器或无源矩阵显示器。
按照本发明,该目的同样通过一种手性近晶开关或显示设备,尤其是通过一种包含液晶混合物的有源矩阵显示器和通过具有相(过渡)序列I-N-C的液晶混合物本身而实现,所述液晶混合物具有中度,即不太强和不太弱的的受抑近晶A相,其表现出一个或两个以下特征:
-基于总混合物,增加该混合物中能诱导近晶A相的至少一种组分的浓度25%重量导致在该混合物中出现明显的smA相范围,而增加浓度仅5%重量不会导致出现smA相,或
-基于总混合物,加入10%重量的近晶A诱导物,优选组分A,CAS-Reg.-Nr.156682-16-5,名称:5-[6-(辛基氧基)-3-吡啶基]-2-(辛基氧基)嘧啶
Figure C0081086300071
导致出现低于5.5℃(相宽度)的smA相范围,但在加入基于总混合物25%重量的组分A时至少为0.1℃。
本发明还涉及一种寻找合适的液晶混合物的方法,包括上述方法步骤。
另外,如果该LCD单元具有非对称结构则是有利的,即,除了可能的有源矩阵结构(薄膜晶体管)本身,该单元的上侧和下侧在至少一个特征上不同。这尤其是以下情况:
●如果使用非对称的或非对称处理的排列层(例如在反平行磨擦时)
●如果省略两个排列层之一
●如果省略或改变两个排列层之一的磨擦步骤
●如果例如通过在其上和下侧具有不同性能的附加绝缘层而引入非对称层结构
●采用最终导致液晶域相对平行于电极表面的对称平面暴露于非对称环境的所有措施。
明确包括在内的是,有利地将本发明的新材料和混合物用于有源矩阵显示器、反铁电显示器和近晶显示器,其中术语“显示器”是指任何类型光学显示器或开关设备,与其尺寸、结构、光导、编址和用途无关。
尤其是,本文所用的术语“有源矩阵显示器”也包括LCD,其中两个基质之一由IC芯片(IC=集成电路)的背面替代,如例如描述于D.M.Walba,Science 270,250-251(1995)或http://www.dispaytech.com,即所谓的LCOS(硅上LC)技术。
尤其是,本文所用的术语“有源矩阵显示器”也包括LCD,其中两个基质之一由等离子体单元(等离子体编址LCD)的背面替代。
一般来说,优选的是电极间距0.7-3.0μm的显示器,尤其是电极间距0.8-2.0μm的有源矩阵显示器,其中包含一种具有弱受抑smA相的手性近晶混合物。
特别优选一种采用脉冲或快速变换背光(“顺序背光”技术)的显示器。
该目的同样通过在单稳定开关和显示设备或显示器中使用一种具有相序I-N-C的手性近晶型液晶混合物作为电光活性层而实现,其特征在于,所述手性近晶型液晶混合物具有以下的性能组合:
TC大于50℃和
TNI小于105℃和
19°<倾斜角(25℃)<39°和
自发极化小于150nC/cm2
胆甾型螺旋的螺距大于2μm和
在低于Tc(光学活性近晶相存在范围的上限)15℃和5℃下测定的倾斜角的差值低于9.5°。有利的是该混合物包含总量至少为20%重量的含氮和/或含硫杂环化合物。特别优选至少一种噻吩衍生物。
在附图中:
图1是各个所用角度的相对位置的示意图
图2是实施例1的相图
图3显示对于实施例6化合物,试验单元的光学透射率与电压的之间关系。
本发明通过以下实施例更详细描述
实施例1
为了说明中度受抑smA相,由混合物M1和组分B制备出一种混合物:
Figure C0081086300091
组分B的浓度连续变化。这样,得到该混合物相图的二维部分,描绘于图2。
表1:试验混合物M1的组成
Figure C0081086300101
NAC三临界点出现在([M1]=66%重量,[B]=34%重量)时,例如描绘于图2(在图2中,T表示摄氏温度,[B]表示组分B基于总混合物的重量百分数)。I、N、C已定义如上。A表示近晶A相。按照本发明,NAC点的附近测定如下。
制备出具有以下组成的6种试验混合物:
表2:试验混合物P-U及其相序
混合物 [M1] [B]  相序,
    重量%  相,温度℃
 P  75  25  C 85,3 A 90,6 N 108 I
 Q  66  34  C 85.6(NAC)85.6 N 115 I
 R  60  40  C 85.6 N 116 I
 S  55  45  C 86,5 N 119 I
 T  50  50  C 87 N 122 I
 U  20  80  C 92.7 N 145 I
所得混合物与作为smA诱导物的10%重量组分A(定义如上)混合。得到以下相范围:
表3:加入组分A(参见以上,10%重量)之后的试验混合物PA-UA及其相序
混合物 90重量%  相序,具有10重量%A  smA相的宽度
 相,温度℃  ℃
PA  P  C 82.6 A 94.3 N 103 I  11.7
QA  Q  C 85.5 A 93.0 N 106 I  7.5
RA  R  C 86.8 A 92.5 N 109 I  5.7
SA  S  C 88.2 A 90.6 N 112 I  2.4
TA  T  C 88.5(NAC)88.5 N 114 I  0.0
UA  U  无smA相  0.0
这些数据说明,混合物U、T、S在本发明的优选范围内,因为它们足够远离NAC多临界点且smA足够强地受到抑制。尤其是,通过加入25%的组分A,在混合物T、S和U中出现超过0.1℃的smA相范围。
自发极化可通过加入合适的手性物质或物质混合物而调节至基本上任何值。例如,向混合物T中加入5%重量的组分C8(参见以下实施例3)得到具有相序I 115 N 84 C(Ps=-7,8nC/cm2且倾斜角为27°(在25℃下))的手性近晶混合物。
实施例2 LCD试验单元
LCD试验单元由透明的并涂有氧化锡铟而导电性的市售玻璃板制成。将板旋涂上排列层LQT-120(来自Hitachi Chemicals KK)(2500μ/分钟,10秒),它使用N-甲基吡咯烷酮稀释至其原固体含量的8.3%,加热(230℃,1小时)固化并随后通过将它们进行磨擦工艺(磨擦材料:人造丝型YA-20-R*,间隙0.2毫米,一次,辊速度700rpm,基材速度10厘米/秒,辊直径10厘米)而排列。
将磨擦的玻璃板在与磨擦方向反平行的情况下粘附粘结成试验单元并通过定距片(Abstandhalter)设定1.3μm的间距。
将FLC混合物填入单元中并通过冷却起始排列成近晶或胆甾相。通过进一步冷却,施加3伏特直流电压并在2K/分钟的冷却速率下将单元变换到smC相(手性近晶C)范围内。在此过程中,如果使用按照本发明的混合物,形成单稳定域。
磨擦方向(如果不是已知的)可通过加热变换到近晶相并随后确定正交偏振器之间的暗位置而实验确定。
倾斜角通过在操作温度下开关该单元而实验确定。在此,观察到在正和负压(通常为20V)下的光学透射率的饱和作用,这与特定的旋转角(图1中的轴4,4’)有关。饱和时的角度差异得到值2Θ(=倾斜角的2倍),且角度二等分线得到层法线(图1中的轴2)。暗位置可简单地被确定。
实施例3
实验混合物由以下组分C1-C8(混合物V、W、X,参见表4)制成。描述于实施例2并使用这些混合物制成的单元的相变和某些性能汇总于表5。
Figure C0081086300121
Figure C0081086300122
              组分C1                             组分C2
Figure C0081086300123
Figure C0081086300124
              组分C3                             组分C4
Figure C0081086300125
Figure C0081086300126
              组分C5                             组分C6
              组分C7                             组分C8
表4:混合物V、W、X的组成
组分 V W X
C1 14,4% 7,2%
C2 14,4% 7,2%
C3 14,4% 7,2%
C4 14,4% 21,6% 28,8%
C5 14,4% 21,6% 28,8%
C6 14,4% 21,6% 28,8%
C7 10,0% 10,0% 10,0%
C8 3,6% 3,6% 3,6%
表5:手性近晶混合物和通过实施例2所述方法制成的单元的性能
    10V,60Hz
混合物 Tc ΔSa Ps(nC/cm2)25℃ ΘTc-10 ρ ∑/Θ Δ w=Δ/Θ
V 62,8 1,5 3,7 19,9 - 19,9 1,0 0 0
W 56,1 0 4,8 23,1 3,6 13,7 0,59 9,4 0,41
X 59,2 0 5,9 23,9 4 12,2 0,51 11,7 0,49
混合物W和X具有相序I-N-C和Δ/Θ比率0.41(V)和0.49(W)。相反,使用具有相序I-N-A-C的混合物V不能导致本发明意义上的有利的用途。
实施例4
将混合物W、X又与组分A混合,使得组分A在这些新混合物中的浓度为10%重量。得到以下的smA相宽度(ΔSa):
表6:具有10%重量组分A的smA相范围(℃)
混合物 Tc ΔSa
W 59 4
X 62 2.5
这些数据表明,混合物W和X具有足够强受抑的smA相,它出现在加入10%smA诱导物时,且宽度低于5.5℃。如果加入25%重量的组分A,得到超过0.1℃的smA相范围。
实施例5
检查填充有混合物W和X的试验单元的响应性能(表2)。为此,研究正交偏振器之间光学透射率与所加电压(具有频率60赫兹=8.3ms宽度的双极性脉冲序列)之间的关系。在30℃温度下得到以下结果。
表7:使用混合物W和X的模拟灰度
电压(伏特) 透射率(%)混合物W 透射率(%)混合物X
 0  0  0
 0,5  2  14,8
 1  5,4  24,2
 1,5  12  40,2
 2  21,4  48,4
 2,5  38,2  53,8
 3  48,4  57,6
 3,5  54  60,4
 4  59,6  63,2
 4,5  63,2  65
 5  65,8  66,6
 8  71,2  69,6
 10  72,2  70
混合物W的响应时间(10V):0.22ms(0-50%)或0.15ms(100-50%)
混合物X的响应时间(10V):0.20ms(0-50%)或0.12ms(100-50%)
可有利地使用具有中度但足够强受抑的smA相的两种混合物,因为可在低自发极化值下实现类似的灰度和亚毫秒响应。
实施例6
制备出包含以下组分的其它8种试验混合物:
           组分C9                                    组分C10
           组分C11                                    组分C12
Figure C0081086300153
           组分C13                                      组分C14
Figure C0081086300155
           组分C15                                        组分C16
Figure C0081086300156
组分C17
表8:试验混合物Y1-Y8的组成。数量以重量百分数给出。
组分 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
C9 8.5% 9,7% 10,8% 12,0% 13,0% 9,6% 8,5% 7,4%
C10 2,8% 3,2% 3,6% 4,0% 4,4% 3,2% 2,8% 2,5%
C3 6,8% 7,7% 8,6% 9,5% 10,4% 7,7% 6,8% 5,9%
C12 5,7% 6,5% 7,3% 8.1% 8,8% 6,5% 5,7% 5,0%
C13 5,6% 6,4% 7,1% 7,9% 8,6% 6,4% 5,6% 4,9%
C11 5,5% 6.3% 7,0% 7,8% 8,5% 6.3% 5,5% 4,8%
C14 8,8% 10,0% 11,1% 12,4% 13,5% 10,0% 8,8% 7,7%
C15 12,3% 14,0% 15,6% 17,3% 18,9% 13,9% 12,3% 10,7%
C16 10,0% 10,0% 10,0% 10,0% 10,0% 9,0% 7,9% 6,9%
C4 10,0% 7,5% 5,0% 2,5% 0,0% 4,5% 4,0% 3,4%
C6 10,0% 7,5% 5,0% 2,5% 0,0% 4,5% 4,0% 3,4%
C5 10,0% 7,5% 5,0% 2,5% 0,0% 4,5% 4,0% 3.4%
C17 0,0% 0,0% 0,0% 0,0% 0,0% 10,0% 20,0% 30,0%
C8 4,0% 4,0% 4,0% 4,0% 4,0% 4,0% 4,0% 4,0%
现在研究混合物Y1-Y8的响应性能、排列质量、对比度和倾斜角的温度依赖性、图1所示角、角度比率w和近晶A相的抑制度。实验结果汇总于表9。在该表中,数值TC(对比度的温度依赖性)和排列通过视觉检查和和光学测量划成三类(+良好,0中间,-差)而归类。数值TT由倾斜角在低于Tc(smC存在范围的限度)5℃(Θ5)和15℃(Θ15)下的温度依赖性的测量值确定。即:
             TT=(Θ15-Θ5)/10.
数值Vo和Vs在图3中定义(分别为阈电压和饱和电压)。图3描绘了对于非常合适的混合物Y7,试验单元的光学透射率与电压的之间关系。
表9:试验混合物Y1-Y8的测量数据
测量数据[单位] Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
TNI[℃] 76 79 83 85 86 82 84 84
TNA[℃] 68.8
Tc[℃] 62.8 64.6 66.1 67.0 67.5 63.6 60.7 59.1
ΔsmA[℃] 0 0 0 0 1.3 0 0 0
Θ[°]20V,Tc-30℃ 29.5 28.3 27.6 26.0 23.7 28.2 29.0 29.6
Δ[°] 20.4 18.5 14.7 10.6 0 18.7 22.4 23.6
ρ[°] 3.4 3.5 3.3 3.5 3.0 2.2 3.0
∑[°] 9.1 9.8 12.9 15.4 23.7 9.5 6.6 6
w=Δ/Θ 0.692 0.654 0.533 0.408 0.000 0.663 0.772 0.797
∑/Θ 0.308 0.346 0.467 0.592 1.000 0.337 0.228 0.203
ρ/∑ 0.374 0.357 0.256 0.227 0.316 0.333 0.500
ΔsmA*[℃]+10%组分A 3.2 3.3 5.4 5.7 7.9 0.8 0.0 0.0
Vo[伏特] 0.8 0.7 0.3 1.0 - 0.8 1.0 0.3
Vs[伏特] 6 6 7 6 - 8 4.5 3.8
排列 + + 0 0 - + + +
TK(s.见正文) 0 0 - - - + + +
TT(s.见正文) 0.61 0.62 0.72 0.95 0.75 0.49 0.38 0.29
该单元的总体评估 + + 0 - - + + +

Claims (6)

1.一种包含单稳定排列的手性近晶型液晶混合物的液晶显示设备,特征在于,该液晶混合物中的磨擦方向和近晶层法线之间的角度与倾斜角的比率Δ/Θ至少为0.41,或者所述液晶混合物具有相序I-N-C且摩擦方向和单稳定位置之间的角度ρ至少为1°,或者所述液晶混合物具有相序I-N-C且在低于Tc15℃和5℃下测定的倾斜角的差值低于9.5°,Tc为光学活性近晶相存在范围的上限,所述手性近晶型液晶混合物具有以下的性能:
Tc大于50℃和
TNI小于105℃和
19°<在25℃下的倾斜角<39°和
自发极化小于150nC/cm2
胆甾型螺旋的螺距大于2μm。
2.根据权利要求1所要求的液晶显示设备,特征在于所述设备是有源矩阵或无源矩阵显示器。
3.如权利要求1中所定义的手性近晶型液晶混合物作为电光活性层在单稳定显示设备中的用途,其中该液晶混合物具有相序I-N-C,特征在于,所述手性近晶型液晶混合物具有以下的性能:
Tc大于50℃和
TNI小于105℃和
19°<在25℃下的倾斜角<39°和
自发极化小于150nC/cm2
胆甾型螺旋的螺距大于2μm和
在低于Tc15℃和5℃下测定的倾斜角的差值低于9.5°,所述Tc为光学活性近晶相存在范围的上限。
4.根据权利要求3所要求的用途,特征在于含氮或含硫的杂环化合物在该混合物中的总含量至少为20%重量。
5.根据权利要求4所要求的用途,特征在于所述混合物包含至少一种噻吩衍生物。
6.一种具有相序I-N-C的手性近晶型液晶混合物,特征在于,加入基于总混合物10%重量的近晶A诱导物导致出现低于5.5℃的近晶A相范围,且加入基于总混合物的25%重量的近晶A诱导物导致出现至少为0.1℃的近晶A相范围。
CNB008108633A 1999-07-28 2000-07-24 具有高对比度的近晶型液晶开关或显示设备 Expired - Fee Related CN1196767C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19934798.0 1999-07-28
DE19934798A DE19934798A1 (de) 1999-07-28 1999-07-28 Smektische Flüssigkristallschalt- oder Anzeigevorrichtung mit hohem Kontrast

Publications (2)

Publication Number Publication Date
CN1364187A CN1364187A (zh) 2002-08-14
CN1196767C true CN1196767C (zh) 2005-04-13

Family

ID=7915940

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008108633A Expired - Fee Related CN1196767C (zh) 1999-07-28 2000-07-24 具有高对比度的近晶型液晶开关或显示设备

Country Status (7)

Country Link
US (1) US7019811B1 (zh)
EP (1) EP1208182B1 (zh)
JP (1) JP4700244B2 (zh)
KR (1) KR100673805B1 (zh)
CN (1) CN1196767C (zh)
DE (2) DE19934798A1 (zh)
WO (1) WO2001007535A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19934799B4 (de) * 1999-07-28 2008-01-24 Az Electronic Materials (Germany) Gmbh Chiral-smektische Flüssigkristallmischung und ihre Verwendung in Aktivmatrix-Displays mit hohen Kontrastwerten
JP5391538B2 (ja) * 2006-10-05 2014-01-15 大日本印刷株式会社 液晶表示素子の製造方法
CN104520763B (zh) * 2012-06-25 2017-12-05 汉阳大学校产学协力团 液晶显示装置
CN103666482B (zh) * 2012-09-10 2016-05-25 苏州汉朗光电有限公司 一种近晶a相液晶材料
PL240079B1 (pl) * 2017-10-31 2022-02-14 Wojskowa Akad Tech Smektyczna mieszanina ciekłokrystaliczna domieszkowana związkami jonowymi, sposób jej otrzymywania oraz jej zastosowanie

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941736A (en) * 1985-04-23 1990-07-17 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and driving method therefor
JP2713513B2 (ja) * 1991-08-29 1998-02-16 シャープ株式会社 液晶表示装置
JPH05102227A (ja) * 1991-10-07 1993-04-23 Seiko Epson Corp 半導体製造装置
ATE147519T1 (de) * 1991-10-30 1997-01-15 Canon Kk Flüssigkristallvorrichtung und anzeigevorrichtung
EP0770662B1 (en) * 1991-11-22 2003-03-05 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and display apparatus
JPH05216034A (ja) * 1992-01-31 1993-08-27 Canon Inc 強誘電性液晶素子
JP2994854B2 (ja) * 1992-05-15 1999-12-27 キヤノン株式会社 液晶組成物およびこれを用いる液晶素子
US5629788A (en) * 1992-12-29 1997-05-13 Canon Kabushiki Kaisha Liquid crystal device providing tilt angle inclination angle and ps satisfying relationships at 55 degrees
JP3000504B2 (ja) * 1992-12-29 2000-01-17 キヤノン株式会社 液晶素子
US5547605A (en) * 1993-12-15 1996-08-20 Hoechst Aktiengesellschaft 2-Aryloxytetrafluoropropionic esters, process for their preparation, and their use in liquid-crystalline mixtures
WO1997012355A1 (en) 1995-09-25 1997-04-03 Philips Electronics N.V. Display device
JPH11125843A (ja) * 1997-10-24 1999-05-11 Canon Inc 液晶素子及び液晶表示装置
US6577289B1 (en) * 1999-03-26 2003-06-10 Canon Kabushiki Kaisha Liquid crystal device and display apparatus including the device
JP2001019960A (ja) * 1999-07-08 2001-01-23 Nec Corp スメクティック液晶材料及び液晶光学素子

Also Published As

Publication number Publication date
US7019811B1 (en) 2006-03-28
EP1208182B1 (de) 2004-02-25
JP4700244B2 (ja) 2011-06-15
WO2001007535A1 (de) 2001-02-01
KR20020041406A (ko) 2002-06-01
EP1208182A1 (de) 2002-05-29
DE50005447D1 (de) 2004-04-01
KR100673805B1 (ko) 2007-01-25
DE19934798A1 (de) 2001-02-01
CN1364187A (zh) 2002-08-14
JP2003505729A (ja) 2003-02-12

Similar Documents

Publication Publication Date Title
JP5190818B2 (ja) 液晶素子および液晶素子の製造方法
KR100982454B1 (ko) 액정 디스플레이 소자
US20010048498A1 (en) Liquid display device
KR20080024491A (ko) 액정 디스플레이 소자
CN1645190A (zh) 显示元件和显示装置
CN1201161A (zh) 液晶显示装置及其驱动方法
CN1196767C (zh) 具有高对比度的近晶型液晶开关或显示设备
Iwata et al. Novel super fast response vertical alignment‐liquid crystal display with extremely wide temperature range
CN1914297A (zh) 含有液晶材料和添加剂的组合物
Kim et al. Reduction of gamma distortions in liquid crystal display by anisotropic voltage-dividing layer of reactive mesogens
Tone et al. Alignment of chromonic liquid crystals: A difficult task
CN1064136C (zh) 一种驱动液晶器件的方法
Suh et al. Control of surface anchoring properties of liquid crystal by thermo-transfer printing of siloxane oligomers
JP2002516411A (ja) 単安定強誘電性アクティブマトリックスディスプレイ
Lee et al. Achieving a robust homogenously aligned liquid crystal layer with reactive mesogen for in-plane switching liquid crystal displays
Lee et al. Geometric structure for the uniform splay-to-bend transition in a π-cell
CN1275086C (zh) 液晶显示器件和液晶显示器件的制造方法
US20050140898A1 (en) In plane switching mode liquid crystal display device and method of fabricating the same
CN1312846A (zh) 三稳态液晶显示装置
Lee et al. Anisotropic reactive mesogens transfer onto polyimides-mixture layer via imprinting method for continuous pretilt angle control
Yoon et al. Effect of the polarisation direction and incident angle of a UV light on the electrooptical response of the polymer-stabilised vertically aligned in-plane switching liquid crystal
Kobayashi et al. Alignment films for liquid crystal devices
Wen et al. Dopant-enhanced vertical alignment of negative liquid crystals
CN100347594C (zh) 液晶显示器件及其制造方法
CN1201162A (zh) 液晶显示设备及其驱动方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: AZ ELECTRONIC MATERIALS GERMAN COMPANY

Free format text: FORMER OWNER: CLARIANT INTERNATIONAL LTD.

Effective date: 20070622

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20070622

Address after: Wiesbaden

Patentee after: AZ Electronic Materials (Germany) GmbH

Address before: Swiss Mu Tengci

Patentee before: CLARIANT INTERNATIONAL Ltd.

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Wiesbaden

Patentee after: Merck Performance Materials Ltd.

Address before: Wiesbaden

Patentee before: AZ Electronic Materials (Germany) GmbH

TR01 Transfer of patent right

Effective date of registration: 20151229

Address after: Darmstadt

Patentee after: MERCK PATENT GmbH

Address before: Wiesbaden

Patentee before: Merck Performance Materials Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050413

Termination date: 20160724

CF01 Termination of patent right due to non-payment of annual fee