CN1192004C - 由一氧化碳和氢气制备烃的方法 - Google Patents

由一氧化碳和氢气制备烃的方法 Download PDF

Info

Publication number
CN1192004C
CN1192004C CNB008048703A CN00804870A CN1192004C CN 1192004 C CN1192004 C CN 1192004C CN B008048703 A CNB008048703 A CN B008048703A CN 00804870 A CN00804870 A CN 00804870A CN 1192004 C CN1192004 C CN 1192004C
Authority
CN
China
Prior art keywords
synthetic gas
carbon monoxide
byproduct
organic products
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008048703A
Other languages
English (en)
Other versions
CN1343187A (zh
Inventor
J-P·兰格
I·E·马克斯韦尔
B·谢弗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1343187A publication Critical patent/CN1343187A/zh
Application granted granted Critical
Publication of CN1192004C publication Critical patent/CN1192004C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0485Set-up of reactors or accessories; Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/04Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds
    • C07C27/06Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds by hydrogenation of oxides of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种通过如下步骤由合成气制备至少两种有机产品的方法:(i)将第一合成气进料转化为第一有机产品和第一副产品;(ii)将第二合成气进料转化为第二有机产品和第二副产品;(iii)将第一和/或第二副产品分别与第一和/或第二有机产品分离;和(iv)将分离的第一和/或第二副产品分别与第二和/或第一有机产品混合。优选第一有机产品是链烷烃或氧合物且第二有机产品是烯烃或氧合物。

Description

由一氧化碳和氢气制备烃的方法
本发明涉及一种由一氧化碳和氢气的混合物制备烃的方法。本发明尤其涉及一种由具有给定的H2/CO摩尔比的一氧化碳和氢气的混合物制备烃的方法。
氢气和一氧化碳的混合物通常称为合成气。该合成气可以用于许多众所周知的方法中以生产大量的含碳、氢以及任选含氧的有机化合物。
由一氧化碳和氢气的混合物(合成气)制备链烷烃的方法通常称为费-托合成法。该合成方法包括将合成气在高温高压下与催化剂接触(后者包含作为催化活性组分的VIII族金属,特别是Fe、Ni、Ru或Co)而得到链烷烃。有关该费-托合成方法的一个例子的详细描述可参见EP-A-0428223和EP-A-0174696。
上面提到的费-托合成方法,特别是使用包含Ni、Ru或Co且不具有Co转移活性的催化剂的方法,通常以2.0-3.0,特别是2.0-2.3的H2/CO摩尔用量比消耗合成气,这主要取决于形成的链烷烃的长度。应该理解的是当给定的费-托合成方法以例如2.1的H2/CO摩尔用量比消耗合成气时,H2/CO摩尔进料比应优选也为2.1,以避免H2或CO的过量。
本发明所面临的问题是H2/CO摩尔比为2.1的合成气进料并不易得到且仅能以不可接受的高成本制备。
在本领域已知多种制备合成气的方法。取决于制备合成气的方法和该方法所用有机进料的类型,合成气的H2/CO摩尔比可以在宽范围内变化。若在该方法中使用煤作为有机进料,则所得合成气的H2/CO摩尔比通常比使用天然气作为有机进料要低。使用天然气作为有机进料的蒸气甲烷重整方法通常产生H2/CO摩尔比至少为3的合成气。涉及天然气的部分氧化(自动热氧化或催化氧化)的方法通常产生H2/CO摩尔比为1.7的合成气。使用煤或渣油作为有机进料的部分氧化方法通常产生H2/CO摩尔比为0.5的合成气。
因此,为了得到H2/CO摩尔比例如为2.1的合成气,必须使用至少两种不同的方法制备合成气,例如蒸气甲烷重整和天然气的部分氧化的组合,并且将如此得到的两种H2/CO混合物混合。例如EP-A-0168892和EP-A-0178007公开了从能量上讲是有效的方法,以从两种不同的方法制备合成气。另外,可以通过一种合成气制备方法制备合成气并将如此制备的合成气与单独的氢气或一氧化碳料流混合以达到所需的氢气/一氧化碳比。
应该理解最为理想的是能够在合成方法中使用合成气进料,该合成气进料仅由一种合成气制备方法得到,不需将合成气进料与另一具有不同氢气/一氧化碳比的合成气或单独的氢气或一氧化碳料流混合。
GB-A-2243616公开了一种由碳质原料生产链烷烃和芳烃的方法。该方法涉及将碳质原料转化为H2/CO摩尔比低于2.1的合成气,将该合成气部分转化为链烷烃并将剩余的合成气转化为芳烃。该制备链烷烃的方法以高于H2/CO进料比的H2/CO用量比消耗合成气,而制备芳烃的方法以低于H2/CO进料比的H2/CO用量比消耗合成气。如该文献中所概括的,最有效的转化在总的H2/CO用量比与H2/CO进料比相同时得到。
EP-A-0679620描述了通过使H2和CO在非转移催化剂存在下在第一阶段中反应,分离液体产品并使剩余的气体料流在转移催化剂存在下反应而呈基本单程的烃合成。
其他众所周知的由合成气制备有机产品的方法实例是制备含氧烃如甲醇、高级醇或二甲基醚的方法且在本领域是众所周知的。
GB-A-2092172公开了一种在第一步中由H2/CO摩尔比至少为0.5的合成气制备含氧有机化合物和在第二步中由来自第一步的未转化合成气制备链烷烃的方法。在第一步中得到的含氧化合物可以作为中间体用于生产其他有机化合物如烯烃。
直接由合成气制备烯烃的方法对本领域熟练技术人员而言是众所周知的。US-A-4518707和EP-A-0446035公开了这类制备方法的实例。
US-A-4624968公开了经如下步骤生产石蜡的多级费-托方法:在第一步中将合成气转化为烯烃,在第二步中将烯烃和任何额外的合成气转化为链烷烃。通过在一个催化剂床中使用所要求的不同催化剂的混合物可以将这两个步骤合并成一个步骤。制备链烷烃的该两级排列据说可提供的优点是与以一步生产链烷烃相比得到增加量的重质烃和对甲烷和乙烷而言较低的选择性。
使用合成气作为原料的方法所具有的问题之一是副产品的产生。EP-A-0153781公开了制备链烷烃的两步方法。在第一步中,使用能够产生仅含有限量的副产品的产品的催化剂。但是,副产品存在于该方法的产物中。若需要制备用于化学工业中的有机产品,则副产品的形成成为更重要的问题。例如,如果需要生产烯烃,则链烷烃的形成成为问题。
副产品可以通过本领域已知的方式如分子筛、吸附、蒸馏或洗涤而与所需产品分离,但这较为昂贵且鉴于所产生的副产品量有限而通常并不经济可行(即不具备规模经济性)。
理想的是使用合成气进料的合成方法的副产品能够以经济可行的方式与主产品分离并使用。
与副产品的分离一样,由合成气生产有机产品也由规模经济性所控制。因此优选由合成气大规模生产有机产品。然而,若需要制备用于化学工业中的有机产品,与使这些有机产品的制备经济可行所要求的规模相比,市场可能较小,因此不能经济地生产这些产品。
尽管在本领域的研究已经成熟且尽管每年在该领域出版了大量出版物,但据信没人考虑在第一步中制备第一有机产品和第一副产品,在第二步中制备第二有机产品和第二副产品,并在第三步中例如将第一副产品与第一有机产品分离并将第一副产品与来自第二步的产品混合。
本发明因此提供了一种通过如下步骤由合成气制备至少两种有机产品的方法:
(i)将第一合成气进料转化为第一有机产品和第一副产品;
(ii)将第二合成气进料转化为第二有机产品和第二副产品;
(iii)分别将第一和/或第二副产品与第一和/或第二有机产品分离,和
(iv)分别将第一和/或第二副产品与第二和/或第一有机产品混合,
其中第一和第二有机产品的结构通式独立地选自分类为烯烃,链烷烃、链烷醇、醛和酮的组;且包含氢气和一氧化碳的混合物的合成气具有的氢气/一氧化碳摩尔比为F,该方法包括在第一阶段进行下列程序之一:
(a)在一氧化碳转化率为Xi且氢气与一氧化碳的摩尔用量比为Fi的条件下将所述第一合成气进料转化为第一有机产品和第一副产品,其中Fi大于F;或
(b)在一氧化碳转化率为Xii且氢气与一氧化碳的摩尔用量比为Fii的条件下将所述第二合成气进料转化为第二有机产品和第二副产品,其中Fii低于F;
并将未转化的一氧化碳和氢气供应到第二阶段中,在该阶段进行程序(a)或(b)的另一个;第一和第二阶段在满足下列关系式的条件下进行:
F=Xi·Fi+Xii·Fii+c                   (I)
其中c至多为0.2。
应该理解当在分别含有第二或第一有机产品的混合物中第一或第二副产品的值比相反情况高时是特别有利的。一个例子是例如第一副产品形成含有用于进一步处理的第二有机产品的起始混合物。
优选该方法包括在步骤(iii)中将第一和第二副产品二者分别与第一和第二有机产品分离。更优选该方法进一步包括在步骤(iv)中将第一和第二副产品分别与第二和第一有机产品混合。
应该理解最有利的是第一副产品具有与第二有机产品相同的结构通式。另外,最有利的是第二副产品具有与第一有机产品相同的结构通式。而对于各副产品,生产量可能太低而不能确保商业开发,特别是在全世界各个地方,混有主产品即第一或第二有机产品的副产品可以非常好地确保商业开发。
典型的是,第一和第二有机产品的结构通式独立地选自分类为烯烃、链烷烃、链烷醇、醛或酮的组。
在本发明的另一实施方案中,进行该方法以使基本上所有的合成气被消耗掉且不剩下氢气或一氧化碳。在另一方面,由合成气转化为第一有机产品的氢气/一氧化碳用量比高于合成气的进料比,而转化为第二有机产品的用量比低于合成气的进料比。
在本发明中,优选c至多为0.1。最优选c等于0。顺便说一下,c可以略呈负数,即由于在第一和/或第二阶段中的CO-转移反应而低至-0.1。CO-转移反应( )的摩尔用量比为-1。应该理解低至-0.1的负值包括在上面提到的术语至多0.2和至多0.1的含意内。
应该理解Xi和Xii代表基于合成气中所存在的一氧化碳的总一氧化碳转化率。因此,一氧化碳转化率Xi通过将在第一合成方法(即制备第一有机产品的方法)中转化的一氧化碳总量除以合成气中最初存在的一氧化碳总量而计算。转化率Xi和Xii并不必与每次流程的转化率相同。每次流程的转化率例如可以因具有不同氢气/一氧化碳摩尔比的合成气的循环环路而较低。
因此,应该理解第一或第二合成气进料的H2/CO摩尔比不必与在合成气生产方法中生产的合成气的H2/CO摩尔比相同。例如,第一或第二合成气进料的H2/CO摩尔比可以通过任何未转化的合成气循环料流而改变。如前所述,在由合成气制备链烷烃时,可以优选使用H2/CO摩尔比显著低于合成方法的用量比的合成气进料。在本发明的优选实施方案中,程序(a)或(b)的至少部分未转化的一氧化碳和氢气是另一程序的唯一合成气进料。
如上所述的方法优选使用氢气/一氧化碳摩尔比F低于2.1的合成气作为原料进行。在优选的实施方案中,合成气通过催化或自动热部分氧化方法由天然气制备,这些方法在本领域是已知的。其优点在于所生产的合成气具有的H2/CO摩尔比在1.5-1.9的范围内。这在需要一个步骤中生产大量H2/CO用量比较为接近合成气的摩尔比的第一产品如链烷烃且在第二步骤中生产较少量的待用作化学原料且H2/CO用量比与合成气的摩尔比大为不同的产品时是特别有利的。待用作化学原料的该类产品的实例是烯烃和含氧产品。因此,在本发明的一个优选实施方案中,使用氢气/一氧化碳摩尔比F为1.5-1.9,特别是1.7的合成气。
典型的是,将第一合成气进料转化为作为第一有机产品的链烷烃。该转化通常使用含第VIII族金属的所谓的费-托催化剂进行。费-托催化剂对本领域熟练技术人员来说是众所周知的。对合成气向链烷烃的转化具有选择性的合适费-托催化剂的例子是含有钴或钌作为活性金属的那些,特别是EP-A-0428223和EP-A-0510771中所述的那些。
该转化的摩尔合成气用量比Fi一般在2.0-2.3的范围内,特别是2.1。然而,已经发现有利的是对该方法使用氢气/一氧化碳摩尔比为0.6-1.4,特别是1.1的合成气进料。使用氢气/一氧化碳比例显著低于实际用量比的合成气进料对该方法对长链链烷烃的选择性是特别有利的。缺点在于使用该类进料导致产生较多的副产品。典型的是,将合成气进料转化为链烷烃的方法产生烯烃和/或氧合物作为副产品。
因此,在本发明的一个方面,第一合成气进料转化为作为第一有机产品的链烷烃和作为第一副产品的氧合物和/或烯烃。
由合成气制备链烷烃的反应条件可以在宽范围内变化。典型的是链烷烃的制备在100-400℃,特别是200-250℃范围内的温度下进行。总压力可以选择为0.1-10MPa,特别是2-6MPa。气时空速(GHSV)典型的是可以选自100-10000Nl/l/h,优选500-2000Nl/l/h。优选反应条件应使使用给定的催化剂时转化率Xi使式I得以满足。该类反应条件的确定属于本领域熟练技术人员的普通技能范围内。
在一个实施方案中,将第二合成气进料转化为烯烃,特别是作为第二有机产品。该转化典型的是使用烯烃合成催化剂进行。烯烃合成催化剂对本领域熟练技术人员来说是众所周知的。合适的烯烃合成催化剂的例子是含有第VIII族金属如铁的那些,任选混有碱金属如钾和/或任选选自过渡金属,特别是《化学和物理手册》,第65版所出版的元素周期表第Ib、IIb、Vb、VIb、VIIb或VIII族过渡金属的金属,优选锰或锌。任选地,将催化活性金属载负于载体上,典型的是耐火氧化物载体。可以在该方法中产生的副产品包括氧合物和/或链烷烃。
因此,在本发明的另一方面,将第二合成气进料转化为作为第二有机产品的烯烃和作为第二副产品的氧合物和/或链烷烃。
由合成气制备烯烃的反应条件可以在宽范围内变化。典型的是烯烃的制备在100-400℃,特别是250-300℃范围内的温度下进行。总压力可以选择为0.1-10MPa,特别是0.5-4MPa。气时空速(GHSV)典型的是可以选自100-10000Nl/l/h,优选500-2000Nl/l/h。优选反应条件应使使用给定的催化剂时转化率Xii使式I得以满足。该类反应条件的确定属于本领域熟练技术人员的普通技能范围内。
该转化的摩尔合成气用量比Fii在0.5-1.2,特别是0.5-0.8的范围内。将合成气转化为烯烃所用的合成气用量比通常显著低于将合成气转化为链烷烃所用的用量比。这是由于许多烯烃合成催化剂也具有CO-转移活性,特别是含有碱金属的那些。
具有CO-转移活性的催化剂对将一氧化碳和水转化为氢气和二氧化碳具有活性,反之依然。应该理解水应存在于反应器中以使CO-转移形成氢气和二氧化碳。水可以与合成气一起注入,或也可以在烯烃合成方法中产生。
在本发明的一个优选实施方案中,第二合成气进料与具有CO转移活性的催化剂接触,该活性更多地依赖于反应器温度而不是催化剂在向烯烃转化时的烯烃选择性。这样的优点在于通过改变反应器温度可以改变合成气用量比,同时烯烃产品保持基本稳定。因此,通过使用该催化剂在不同的温度下操作该方法,可以非常容易地改变转化率Xi和Xii,同时仍然满足式I。优选该催化剂包含VIII族金属,特别是铁。优选该催化剂还包含第IIb或VIIb族金属,特别是锰或锌,任选混有IIb、Vb或VIb族金属,特别是钒或铈。更优选该催化剂还包含碱金属,特别是钾。优选K/Fe原子比在0.03-0.3范围内且(Zn和/或Mn)/Fe原子比在0.3-3范围内。该催化剂可含或可不含载体。应该理解用量比随温度的具体变化主要取决于使用的具体催化剂。然而,该关系可以由本领域熟练技术人员通过常规试验容易地确定。
在本发明的另一实施方案中,将第二合成气进料转化为作为第二有机产品的氧合物,优选链烷醇,以及作为第二副产品的另一氧合物,优选另一链烷醇。更优选将第二合成气进料转化为作为第二有机产品的2-甲基-1-链烷醇,特别是异丁醇和甲醇的混合物以及作为第二副产品的其他氧合物。
若将第一合成气进料转化为链烷烃,则第二副产品可以用作含有在汽油或柴油沸程范围内沸腾的链烷烃的共混组分。
2-甲基-1-链烷醇和甲醇的混合物可以通过使合成气在合成条件下与本领域熟练技术人员已知的催化剂接触而产生。合适催化剂的实例包括碱促进的ZnCr或Cu/ZnO催化剂。
操作条件可以在宽范围内变化且取决于所用的具体催化剂。对特定催化剂而言最佳的操作条件可以由本领域熟练技术人员通过常规试验容易地确定。反应温度典型的在300-500℃的范围内,优选在320-450℃的范围内选择。总压力并不关键且可以为3-50MPa。优选压力在9-18MPa的范围内选择。GHSV典型的是可以选自100-100000Nl/l/h,优选1000-10000Nl/l/h。
应该理解也可以优选制备作为第二有机产品的其他氧合物,如伯链烷醇,特别是在其结构中含有2-15个碳原子的伯链烷醇。本领域已知的催化剂包含一种或多种金属作为催化活性组分,其选自VIII族、Ib族和/或VIb族,特别是铁、镍、钴、铜和/或钼。各种由合成气合成伯链烷醇的方法的综述已经由Forzatti等在Catal.Rev.Sci.Eng.,33(1&2),109-168(1991)中给出。
在本发明的还一实施方案中,将第一合成气进料转化为作为第一有机产品的氧合物,优选链烷醇,特别是甲醇,以及任选作为第一副产品的其他氧合物。合适催化剂的一个例子包含在耐火氧化物载体,特别是氧化铝载体上的铜和锌。
操作条件可以在宽范围内变化且取决于所用的具体催化剂。对特定催化剂而言最佳的操作条件可以由本领域熟练技术人员通过常规试验容易地确定。反应温度典型的在100-400℃的范围内,优选在240-280℃的范围内选择。总压力并不关键且可以为1-20MPa。优选压力在5-10MPa的范围内选择。GHSV典型的是可以选自100-10000Nl/l/h,优选1000-5000Nl/l/h。
应该理解本发明并不限于仅由一种第一合成反应生产第一有机产品且仅由一种第二合成反应生产第二有机产品的方法。因此,第一和第二有机产品可以包含几种第一和第二合成反应的混合物。此外,当然可以作为第一有机产品生产例如链烷烃和作为第二有机产品单独地生产烯烃和氧合物。应该理解在这种情况下式I中的式FiiXii由两种亚式FiiXii(烯烃)和FiiXii(氧合物)的总和构成。优选可以分离一种或两种有机副产品并与第一有机产品混合。
在另一实施方案中,本发明涉及一种由合成气制备至少两种有机产品的方法,其中包含氢气和一氧化碳的混合物的合成气具有的氢气/一氧化碳摩尔比为F,该方法包括在第一阶段进行下列程序之一:
(a)在一氧化碳转化率为Xi且氢气与一氧化碳的摩尔用量比为Fi的条件下将第一合成气进料转化为链烷烃或氧合物,特别是甲醇,其中Fi大于F;或
(b)在一氧化碳转化率为Xii且氢气与一氧化碳的摩尔用量比为Fii的条件下将第二合成气进料转化为烯烃或氧合物,特别是甲醇和异丁醇的混合物,其中Fii低于F;
并将未转化的一氧化碳和氢气供应到第二阶段中,在该阶段进行程序(a)或(b)的另一个;第一和第二阶段在满足下列关系式的条件下进行:
F=Xi·Fi+Xii·Fii+c              (I)
其中c至多为0.2,优选至多为0.1。
有利的操作通过将大规模链烷烃合成单元与较小规模烯烃合成单元组合而得到,后一单元例如为生产容量为链烷烃合成单元的约1/3或1/4的单元。由于其规模大,例如合适的是生产容量至少为20,000桶/天,尤其是至少50,000桶/天,更优选至少100,000桶/天,链烷烃合成单元将具有大规模生产的优点,因此在烯烃合成单元中生产的链烷烃将具有相同的优点。烯烃合成单元将以化学上的大规模生产烯烃且具有生产成本较低的优点。烯烃合成单元中生产的链烷烃量通常为25-60重量%,合适的是约40重量%。当不与大规模链烷烃合成单元组合时,链烷烃的(燃烧)值将较低或链烷烃甚至被认为是废品。因此,这两种烃合成单元的组合导致在进料料流以及产品料流中产生协同效应。
本发明将借助下列实施例进一步描述。
实施例I
在本发明的一个实施方案中,典型的工艺方案如下。通过在1200℃的温度下在氧气的存在下以O2/CH4摩尔比为0.6部分氧化天然气而制备合成气。合成气具有的氢气/一氧化碳摩尔比为1.7。
将合成气与循环合成气混合以产生氢气/一氧化碳摩尔比为1.1的合成气进料。将合成气进料以800Nl/l/h的GHSV导入重质链烷烃合成反应器(HPS反应器)中。该HPS反应器含有费-托催化剂,该催化剂含有18重量份钴/100pbw二氧化硅载体。将该合成气进料与该催化剂在220℃的温度和2.8MPa的压力下接触。氢气/一氧化碳用量比Fi为2.1。操作该方法以达到总一氧化碳转化率Xi为0.75。该方法产生下列产品(表I):
                    表I
    碳链长度     链烷烃     烯烃(重量%)
    C1     5.5
    C2     0.4     0.1
    C3     0.5     1.5
    C4     0.5     1.5
    C5-C9     15.0     *
    C10 +     75.0     *
*=未分离
离开HPS反应器的合成气的氢气/一氧化碳摩尔比为0.5。部分合成气循环使用(循环合成气)以生产供入HPS反应器中的第一合成气进料,其氢气/一氧化碳摩尔比为1.1。
C2-C4烯烃通过蒸馏而与链烷烃分离。
氢气/一氧化碳比例为0.5的剩余合成气用作烯烃合成方法的第二合成气进料。将该合成气进料以1000Nl/l/h的GHSV导入烯烃合成反应器(HOS反应器)中。该HOS反应器含有烯烃合成催化剂,所述催化剂以如下原子比包含铁、钾、铜和锰:Fe∶Mn∶K∶Cu=100∶33∶3∶1。该催化剂不含载体。合成气进料与催化剂在270℃的温度和1.0MPa的压力下接触。氢气/一氧化碳用量比Fii为0.5。操作该方法以达到总一氧化碳转化率Xii为0.25。该方法将50%的CO转化为CO2并产生下列烃产品(表II):
                   表II
    碳链长度     链烷烃(重量%)     烯烃(重量%)
    C1     9.1
    C2     1.4     6.3
    C3     2.1     9.8
    C4     2.1     7.7
    C5-C9     16.8     25.2
    C10 +     9.8     9.8
通过蒸馏将C1-C4链烷烃与C2-C4烯烃分离并与在第一重质链烷烃合成方法中得到的C1-C4链烷烃混合。通过吸附方法将C5-C9链烷烃与C5-C9烯烃分离,吸附装置可以商标“OLEX”购自UOP。通过相同的方法将C10 +链烷烃与C10 +烯烃分离。
来自第二步的C10 +链烷烃与来自第一步的C10 +链烷烃混合并送入重质链烷烃转化单元以将部分该进料转化为C5-C9链烷烃。合适的是来自HPS反应器、HOS反应器和重质链烷烃转化单元的C5-C9链烷烃可以合并并用作热裂解器(石脑油裂解器)的进料以将C5-C9链烷烃转化为C2-C4烯烃。
实施例II
在本发明的另一实施方案中,一个典型工艺方案如下所述。通过在1200℃的温度下在氧气的存在下以O2/CH4摩尔比为0.57部分氧化天然气而制备合成气。合成气具有的氢气/一氧化碳摩尔比为1.7。
将合成气与循环合成气混合以产生氢气/一氧化碳摩尔比为1.1的合成气进料。将合成气进料以800Nl/l/h的GHSV导入重质链烷烃合成反应器(HPS反应器)中。该HPS反应器含有费-托催化剂,该催化剂含有18pbw钴/100pbw二氧化硅载体。将该合成气进料与该催化剂在220℃的温度和2.8MPa的压力下接触。氢气/一氧化碳用量比Fi为2.1。操作该方法以达到总一氧化碳转化率Xi为0.71。离开HPS反应器的合成气的氢气/一氧化碳摩尔比为0.7。部分合成气循环使用(循环合成气)以生产供入HPS反应器中的第一合成气进料,其氢气/一氧化碳摩尔比为1.1。
氢气/一氧化碳比例为0.7的剩余合成气用作醇合成方法的第二合成气进料。将该合成气进料以3000Nl/l/h的GHSV导入醇合成反应器(AS反应器)中。该AS反应器含有醇合成催化剂,所述催化剂以如下原子比包含锌和铬:Zn∶Cr=3.7∶1。该催化剂还含有2.6重量%的K。合成气进料与催化剂在400℃的温度和5.0MPa的压力下接触。氢气/一氧化碳用量比Fii为0.7。操作该方法以达到总一氧化碳转化率Xii为0.29。该方法将30重量%的CO转化为CO2并产生甲醇(20重量%)和异丁醇(20重量%)的混合物作为第二有机产品。副产品包含其他氧合物(30重量%)和烃(30重量%)。后者可以与在HPS反应器中生产的C2-C4链烷烃混合。其他氧合物通过蒸馏与甲醇和异丁醇分离并与第一方法中得到的C5-C9链烷烃或C10 +链烷烃混合,所得混合物待用作汽油或柴油沸程产品。任选地,在第一方法中得到的链烷烃在与来自第二方法的氧合物混合并将该混合物用作汽油沸程产品之前可以经过例如催化重整方法。若需要,可以将甲醇和异丁醇用于生产甲基叔丁基醚(MTBE),后者可以用作汽油的共混组分。
实施例III
在本发明的另一实施方案中,一个典型工艺方案如下所述。
通过如实施例II所述部分氧化天然气而制备合成气。
将合成气导入重质链烷烃合成反应器(HPS反应器,参见实施例II,使用钴/锰/二氧化钛催化剂)中。该反应器可以以“单程”方式操作或带有气体循环。将来自HPS反应的产品分离成气态级分(包含氢气、一氧化碳、甲烷、C2-C4链烷烃和C2-C4烯烃以及惰性气体)和液态级分(C5 +化合物)。
将气态级分(包含未转化的合成气)导入烯烃合成反应器(HOS反应器,参见实施例I)中。将该HOS反应的产品分离成气态级分(包含某些未反应的合成气、C2-C4化合物和惰性气体)和液态级分(C5 +化合物)。
将HOS反应的液态级分分离成C5-C15级分(该级分然后分离成C5-C15烯烃和C5-C15链烷烃)以及C15 +级分。
将HPS反应的液态级分与HOS反应的C15 +级分一起送入重质链烷烃转化单元(HPC)以在氢气和适当催化剂的存在下氢化裂化该化合物。除了氢化裂化外,还发生氢化和加氢异构化。
HPC反应的产品与来自HOS反应的C5-C15链烷烃级分一起分离成石脑油级分,煤油级分,柴油级分和重质产品,这要求三个分离单元。将重质级分再循环至HPC反应器中。
HPS和HPC反应器中一氧化碳转化率与氢气/一氧化碳摩尔用量比结合应使式I的要求得到满足。
与单独的(stand-alone)链烷烃合成单元相比,基本为非烃产生单元的(相当复杂的)HMU(氢气制造单元,为将氢气/一氧化碳比例从1.7-1.8增加至2.15所必需的,用量比)已经被烃产生单元所代替,产生高度有用的化学中间体。

Claims (7)

1.一种通过如下步骤由合成气制备至少两种有机产品的方法:
(i)将第一合成气进料转化为第一有机产品和第一副产品;
(ii)将第二合成气进料转化为第二有机产品和第二副产品;
(iii)分别将第一和/或第二副产品与第一和/或第二有机产品分离,和
(iv)分别将所述分离的第一和/或第二副产品与第二和/或第一有机产品混合,
其中第一有机产品选自链烷烃或氧合物且第二有机产品选自烯烃或氧合物;
且包含氢气和一氧化碳的混合物的合成气具有的氢气/一氧化碳摩尔比为F,该方法包括在第一阶段进行下列程序之一:
(a)在一氧化碳转化率为Xi且氢气与一氧化碳的摩尔用量比为Fi的条件下将所述第一合成气进料转化为第一有机产品和第一副产品,其中Fi大于F;或
(b)在一氧化碳转化率为Xii且氢气与一氧化碳的摩尔用量比为Fii的条件下将所述第二合成气进料转化为第二有机产品和第二副产品,其中Fii低于F;
并将未转化的一氧化碳和氢气供应到第二阶段中,在该阶段进行程序(a)或(b)的另一个;第一和第二阶段在满足下列关系式的条件下进行:
F=Xi·Fi+Xii·Fii+c                  (I)
其中c至多为0.2。
2.根据权利要求1的方法,包括(iii)分别将第一和第二副产品与第一和第二有机产品分离。
3.根据权利要求2的方法,包括(iv)分别将第一和第二副产品与第二和第一有机产品混合。
4.根据权利要求1-3中任一项的方法,其中第一副产品的结构通式与第二有机产品相同和/或第二副产品的结构通式与第一有机产品相同。
5.根据权利要求1-3中任一项的方法,其中将第一合成气进料转化为作为第一有机产品的链烷烃和作为第一副产品的氧合物和/或烯烃。
6.根据权利要求1-3中任一项的方法,其中将第二合成气进料转化为作为第二有机产品的烯烃和作为第二副产品的氧合物和/或链烷烃。
7.根据权利要求1-3中任一项的方法,其中将第二合成气进料转化为作为第二有机产品的氧合物和作为第二副产品的另一氧合物。
CNB008048703A 1999-02-15 2000-02-10 由一氧化碳和氢气制备烃的方法 Expired - Fee Related CN1192004C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP99301099.0 1999-02-15
EP99301099 1999-02-15

Publications (2)

Publication Number Publication Date
CN1343187A CN1343187A (zh) 2002-04-03
CN1192004C true CN1192004C (zh) 2005-03-09

Family

ID=8241223

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008048703A Expired - Fee Related CN1192004C (zh) 1999-02-15 2000-02-10 由一氧化碳和氢气制备烃的方法

Country Status (14)

Country Link
US (1) US6479557B1 (zh)
EP (1) EP1153004B1 (zh)
JP (1) JP2002537275A (zh)
CN (1) CN1192004C (zh)
AT (1) ATE261922T1 (zh)
AU (1) AU760785B2 (zh)
CA (1) CA2362687A1 (zh)
DE (1) DE60009039T2 (zh)
DZ (1) DZ2966A1 (zh)
GC (1) GC0000088A (zh)
ID (1) ID29612A (zh)
NO (1) NO20013949L (zh)
RU (1) RU2228922C2 (zh)
WO (1) WO2000048969A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740683B2 (en) * 2001-05-23 2004-05-25 Sasol Technology (Proprietary) Limited Chemicals from synthesis gas
US20030070808A1 (en) * 2001-10-15 2003-04-17 Conoco Inc. Use of syngas for the upgrading of heavy crude at the wellhead
US6774148B2 (en) 2002-06-25 2004-08-10 Chevron U.S.A. Inc. Process for conversion of LPG and CH4 to syngas and higher valued products
US6787576B2 (en) 2002-12-27 2004-09-07 Exxonmobil Research And Engineering Company Linear alpha olefins from natural gas-derived synthesis gas over a nonshifting cobalt catalyst
US20040158112A1 (en) * 2003-02-10 2004-08-12 Conocophillips Company Silicon carbide-supported catalysts for oxidative dehydrogenation of hydrocarbons
CA2496839A1 (en) * 2004-07-19 2006-01-19 Woodland Chemical Systems Inc. Process for producing ethanol from synthesis gas rich in carbon monoxide
EP1861478B1 (en) 2005-03-16 2012-02-22 Fuelcor LLC Systems and methods for production of synthetic hydrocarbon compounds
KR20080108605A (ko) 2006-04-05 2008-12-15 우드랜드 바이오퓨엘스 인크. 합성 가스에 의해 바이오매스를 에탄올로 전환시키는 시스템 및 방법
EP1852182A1 (en) * 2006-05-01 2007-11-07 Engelhard Corporation Fischer-Tropsch Catalyst comprising cobalt and zinc oxide
AU2007331785B2 (en) * 2006-12-13 2012-04-05 Haldor Topsoe A/S Process for the synthesis of hydrocarbon constituents of gasoline
US20080260631A1 (en) 2007-04-18 2008-10-23 H2Gen Innovations, Inc. Hydrogen production process
US20090165368A1 (en) * 2007-12-28 2009-07-02 Yunquan Liu Process and apparatus for reforming gaseous and liquid fuels
US8394154B2 (en) * 2007-12-28 2013-03-12 Texaco Inc. Counter-current oxidation and steam methane reforming process and reactor therefor
US20090170967A1 (en) * 2007-12-28 2009-07-02 Lixin You Concurrent oxidation and steam methane reforming process and reactor therefor
US7989511B2 (en) * 2008-05-21 2011-08-02 Texaco Inc. Process and apparatus for synthesis gas and hydrocarbon production
WO2010143980A1 (en) * 2009-06-08 2010-12-16 Ignite Energy Resources Nz Limited A process for integration of a methanol plant and an oil hydroprocessing plant
EP3473609A1 (en) * 2011-09-08 2019-04-24 Expander Energy Inc. Enhancement of fischer-tropsch for hydrocarbon fuel formulation in a gtl environment
CN103864556A (zh) * 2012-12-13 2014-06-18 中国科学院大连化学物理研究所 一种合成气经低碳烷烃制低碳烯烃的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8006751A (nl) 1980-12-12 1982-07-01 Shell Int Research Werkwijze voor de bereiding van zuurstofhoudende organische verbindingen en paraffinische koolwaterstoffen.
DE3484793D1 (de) 1983-12-19 1991-08-14 Spectrum Control Inc Miniaturisierter monolithischer mehrschichtkondensator sowie geraet und verfahren zur herstellung.
NL8400608A (nl) 1984-02-28 1985-09-16 Shell Int Research Werkwijze voor de bereiding van koolwaterstoffen.
GB2163449B (en) 1984-07-18 1988-06-02 Shell Int Research Production of gas mixtures containing hydrogen and carbon monoxide
US4599481A (en) 1984-09-13 1986-07-08 Shell Oil Company Process for the preparation of hydrocarbons
GB2165551B (en) 1984-10-10 1988-08-17 Shell Int Research Process for the production of synthesis gas
US4624968A (en) 1985-12-30 1986-11-25 Exxon Research And Engineering Company Multi-stage Fischer-Tropsch process
GB8925979D0 (en) 1989-11-16 1990-01-04 Shell Int Research Process for the preparation of extrudates,extrudates,and use of the extrudates
GB2243616A (en) * 1990-05-04 1991-11-06 Shell Int Research Preparation of paraffinic and aromatic hydrocarbons
GB9108663D0 (en) 1991-04-23 1991-06-12 Shell Int Research Process for the preparation of a catalyst or catalyst precursor
US5498638A (en) * 1994-04-29 1996-03-12 Exxon Research & Engineering Co. Staged hydrocarbon synthesis process

Also Published As

Publication number Publication date
GC0000088A (en) 2004-06-30
DE60009039D1 (de) 2004-04-22
AU3153800A (en) 2000-09-04
RU2228922C2 (ru) 2004-05-20
ATE261922T1 (de) 2004-04-15
CN1343187A (zh) 2002-04-03
DZ2966A1 (fr) 2004-03-15
DE60009039T2 (de) 2004-11-11
AU760785B2 (en) 2003-05-22
WO2000048969A1 (en) 2000-08-24
JP2002537275A (ja) 2002-11-05
EP1153004A1 (en) 2001-11-14
ID29612A (id) 2001-09-06
NO20013949L (no) 2001-10-10
EP1153004B1 (en) 2004-03-17
CA2362687A1 (en) 2000-08-24
NO20013949D0 (no) 2001-08-14
US6479557B1 (en) 2002-11-12

Similar Documents

Publication Publication Date Title
CN1192004C (zh) 由一氧化碳和氢气制备烃的方法
CN1174945C (zh) 从甲烷和/或乙烷制备轻烯烃的三步工艺
CN1239442C (zh) 费-托合成与合成气生产的最佳整合
CA2780483C (en) Method for generating hydrocarbons, in particular gasoline, from synthesis gas
CN1189147A (zh) 生产氧化产物的方法
Xiang et al. Catalytic conversion of bioethanol to value-added chemicals and fuels: A review
CN1480437A (zh) 在含有正丁烯的烃物流中低聚异丁烯的方法
CN101583581A (zh) 含氧化合物通过二聚和复分解向烯烃的转化
EP2130812B1 (en) Process for producing light olefins from a feed containing triglycerides
SG192401A1 (en) Biorenewable naphtha
CN100389180C (zh) 一种集成式费托合成油加氢提质方法
CN1854265A (zh) 一种从费托合成油多产中间馏分油的方法
CA2467499A1 (en) Integrated process to convert heavy oils from oil sands to petrochemical feedstock
CN1035762C (zh) 丙烷均相氧化脱氢及丙烯氧化制取丙烯酸的方法及其装置
CN101029250A (zh) 利用轻质烃类原料催化裂解制备低碳烯烃的方法及装置
CN1699520A (zh) 一种用费托合成产物生产乙烯装置专用石脑油原料的方法
Chen et al. Most recent developments in ethylene and propylene production from natural gas using the UOP/Hydro MTO process
CN114989865B (zh) 费托合成油耦合低碳醇醚含氧化合物生产低碳烯烃的方法
US20180044308A1 (en) Systems and methods related to the production of ethylene oxide, ethylene glycol, and/or ethanolamines
JP2010001241A (ja) 一酸化炭素と水素からの炭化水素の製造方法
CN101460438A (zh) 用于将合成气转化为含氧物的方法
Vasiliadou et al. Production of biopropylene using biomass-derived sources
CN110105168B (zh) 一种利用合成气高选择性生产低碳混合醇的设备及方法
KR102147421B1 (ko) 2이상의 ft 모드로 작동하는 슬러리 기포탑 반응기 구비한 합성연료 제조 장치
CN116178107A (zh) 一种费托合成与氢甲酰化联用制混合醇的方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050309