CN1190279A - 电力变换器控制装置 - Google Patents

电力变换器控制装置 Download PDF

Info

Publication number
CN1190279A
CN1190279A CN97114005A CN97114005A CN1190279A CN 1190279 A CN1190279 A CN 1190279A CN 97114005 A CN97114005 A CN 97114005A CN 97114005 A CN97114005 A CN 97114005A CN 1190279 A CN1190279 A CN 1190279A
Authority
CN
China
Prior art keywords
voltage
control
phase sequence
deviation
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97114005A
Other languages
English (en)
Other versions
CN1071952C (zh
Inventor
真田和法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN1190279A publication Critical patent/CN1190279A/zh
Application granted granted Critical
Publication of CN1071952C publication Critical patent/CN1071952C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明揭示一种电力变换器控制装置,其电压调整电路(201)在各相具有:取逆变器输出电压检测值(VLU、VLV、VLW)的平均值,检测相对于单相平均值电压指令的偏差加以控制的控制手段(202~205);由该偏差求电压偏差率,再乘以各电压检测值后,作为新的电压检测值的手段(206~208)。其逆变器3相输出连接不平衡负载不影响电流控制,能保持3相输出电压平衡,即使连接非线性负载也能抑制高次谐波电压成分,提供稳定且高精度的3相电压。

Description

电力变换器控制装置
本发明涉及具有如UPS(不间断电源)或SIV那样的把直流变换为交流的直流/交流电力变换器(下文,称为逆变器)的电力变换器的控制装置。
图8是第77~81次电源电子设备研究会讲演论文集第14卷(1988)128~137页所刊载的“矩阵法PWM逆变器的非相干控制系统构成法”一文中所示的瞬时控制逆变器的控制电路构成图。该控制电路,把作为电力变换器的逆变器1输出的3相逆变器输出电流,经电流传感器4、5、6输出至由电感器和电容器构成的滤波器2。经过滤波器2后的逆变器输出提供给负载电路3。
又,为了检测直流成分,由电流传感器4、5、6检出的3相逆变器输出电流用3相/dq轴变换电路105变换成基准频率正相序d轴电流、q轴电流。
提供到负载电路2的逆变器1的三相输出电压VLU、VLV、VLW由电压传感器7检测。检出的三相输出电压VLU、VLV、VLW由3相/dq轴变换电路114变换成基准频率正相序的d轴电压VLd、q轴电压VLq,输入减法器116。
减法器116从由3相/dq轴变换电路114输出的基准频率正相序的d轴电压VLd、q轴电压VLq中分别减去由电压指令电路115输出的VLd指令、VLq指令,求出其偏差量。
电压控制电路100根据减法器116求出的偏差量,输出电压d指令、电流q指令,使逆变器1的输出电压VLU、VLV、VLW,符合作为电压指令的VLd指令、VLq指令。这些电流d指令、电流q指令由限制器101加以限制使之不超过最大通过电流,然后输出至电流控制电路102。电流控制电路102根据电流d指令、电流q指令及基准频率正相序的d轴电流、q轴电流,向dq轴/3相变换电路103输出逆变器1的电流指令。
dq轴/3相变换电路103,根据逆变器1的电流指令,把基准频率正相序的d轴电流、q轴电流变换成3相逆变器输出电流指令。选通信号发生电路104根据3相逆变器输出电流指令,在构成逆变器1的功率半导体开关元件上产生选通信号。
由上述构成可知,若电压控制电路100输入减法电路116的电压指令与电压检测值的差,则以往的瞬时控制逆变器的控制电路输出电流指令,使输出电压与电压指令相符。且,用限制器101限制电流指令使之不超过最大通过电流。电流控制电路102进行电流控制动作,使根据经限制的电流d指令、电流q指令流过电流。其结果是,防止构成逆变器1的功率半导体元件所通过的电流超过最大(允许)通过电流,从而保护功率半导体元件免遭破坏。
在这样构成的逆变器控制电路上连接单相负载时,电压控制电路动作,以消除3相不平衡电压。但,由于控制响应,会产生稳态偏差。即,这种逆变器的开关频率是5~15KHz,只能作5000~15000rad/sec的响应。与此相反,例如若基频为60Hz,则11次谐波为660Hz,约4150rad/sec。为了跟踪该高次谐波并加以控制,则通常必须有上述速率5倍左右,即大于20750rad/sec的响应。因此,由于控制响应跟不上会产生稳态偏差。
另一方面,作为修正3相不平衡电压,有特开平6-38538公报中所揭示的用于不间断电源装置的平衡制3相输出电压的逆变器控制电路。该逆变器控制电路,分别检测三相电压,根据各单相全波整流的平均值与三相全波整流的平均值(Vset)的偏差,控制逆变器。这时,仅进行电压控制,不能设置图8的已有技术例子中的电流控制电路102,因而不能保护构成逆变器的开关元件避免过电流。
以往的逆变器控制电路,如上述构成,因而在连接单相负荷时,虽以消除3相不平衡电压的方式运转,但由于该运转的控制响应,产生稳态偏差。又,用软件处理使控制电路动作时,若为了廉价构成控制电路而使用处理速率慢的微机,则更存在因控制响应慢而使稳态偏差增大的问题。
本发明为解决上述课题,其目的在于提供一种即使在逆变器3相输出端连接不平衡负载,也不对电流控制产生影响,能保持3相输出电压平衡的电力变换器的控制装置。又,本发明的目的还在于提供一种即使连接非线性负载,也能抑制高次谐波电压成分,并向负载提供稳定且高精度的3相电压的电力变换器的控制装置。
权利要求1所述的电力变换器控制装置包括:在电力变换器各相设定应输出的电压指令值的电压指令值设定手段;检测所述电力变换器各相的输出电压的电压检测手段;检测所述检测得到的输出电压的平均值的平均值检测手段;进行控制,使所述检测得到的平均值与所述电压指令值的偏差越大则所输出的输出偏差越大的偏差控制手段;根据所述偏差控制手段的控制结果与所述电压指令值,计算电压偏差率的偏差率计算手段;根据所述电压偏差率修正所述输出电压,求修正输出电压的输出电压修正手段;根据所述修正输出电压进行所述电力变换器的输出控制。
权利要求2所述的电力变换器控制装置,还设置把由偏差率计算手段算出的电压偏差率限制在预定值以下的限制手段;所述输出电压修正手段,根据所述限定手段所限制的电压偏差率,修正输出电压。
权利要求3所述的电力变换器控制装置包括:设定电力变换器输出电压中应控制的基准频率的成分指令值的频率成分指令值设定手段;检测所述电力变换器输出电压的电压检测手段;把所述检测得到的输出电压中的所述基准频率成分作为基准频率直流电压加以检测的频率成分检测手段;进行控制,使所述检测的基准频率直流电压与基准频率成分指令值的偏差越大则所输出的输出偏差越大的频率成分偏差控制手段;以所述基准频率为基准,把所述频率成分偏差控制手段的控制结果变换为交流控制量的交流变换手段;把所述检测得到的输出电压与所述交流控制量相加的加法手段;根据所述加法手段的相加结果进行所述电力变换器的输出控制。
权利要求4所述的电力变换器控制装置,其频率成分偏差控制手段具有对检测的基准频率直流电压与基准频率成分指令值的偏差不灵敏的不灵敏区。
权利要求5所述的电力变换器的控制装置,包括:设定电力变换器的输出电压中应控制的基准频率成分指令值的频率成分设定手段;检测所述电力变换器输出电压的电压检测手段;把所述检测得到的输出电压中的所述基准频率的正相序成分作为正相序dq轴电压加以检测的正相序dq轴成分检测手段;进行控制,使所述正相序dq轴电压与所述基准频率成分指令值的偏差越大则所输出的输出偏差越大的正相序偏差控制手段;把所述检测得到的输出电压中的基准频率的逆相序成分作为逆相序dq轴电压加以检测的逆相序dq轴成分检测手段;进行控制,使所述逆相序dq轴电压与所述基准频率成分指令值的偏差越大则所输出的输出偏差越大的逆相序偏差控制手段;把所述逆相序偏差控制手段的控制结果变换为正相序dq轴电压的逆相序dq轴正相序dq轴变换手段;把所述正相序偏差控制手段的控制结果和由所述逆相序dq轴正相序dq轴变换手段变换成正相序dq轴电压的所述逆相序偏差控制手段的控制结果相加,并以所述基准频率为基准,变换成正相序交流控制量的正相序dq轴交流变换手段;把所述检测的输出电压与所述正相序交流控制量相加的加法手段;根据所述加法手段的相加结果,进行所述电力变换器的输出控制。
图1是本发明实施例1的电力变换器控制装置的构成图。
图2是实施例1的电压调整电路的构成图。
图3是实施例2的电压调整电路中1相的不平衡电压率控制电路的构成图。
图4是本发明实施例3的电压调整电路的构成图。
图5是本发明实施例4的电压调整电路的构成图。
图6是本发明实施例5的电压调整电路的构成图。
图7是本发明实施例6的电压调整电路的构成图。
图8是已有技术例子的电力变换器的控制装置构成图。
实施例1
下文,参照附图,说明本发明的实施例1。图1是本发明的电力变换器控制装置总体构成图。图中,与图8相同的标号表示相同或相当部分。在该图,电压调整电路20输入电压传感器7的输出(即,各相的电压VLU、VLV、VLW)和电压指令发生电路115输出的VLd指令、VLq指令,输出新的3相电压检测值VLU2、VLV2、VLW2。其它构成与以往的瞬时控制逆变器控制电路相同。
图2是实施例1的电压调整电路20的构成图。电压电路20包括根据电压指令发生电路115输出的VLd指令、VLq指令,分别对U相、V相、W相产生单相平均值指令的单相指令产生电路200,以及按照单相平均值指令运算各相U、V、W的不平衡电压率的不平衡电压率控制电路201U、201V、201W。
U相不平衡电压率控制电路201U由对作为电压传感器7输出的U相电压VLU进行全波整流的单相全波整流器202、对全波整流输出进行滤波,并检测出每相平均值的低通滤波电路203、从低通滤波电路203输出减去单相指令发生电路200输出(单相平均值),求出偏差率的减法器204、作为控制偏差的偏差控制手段,并进行比例积分控制的控制电路205、把控制电路205的输出与单相平均值指令相加的加法器206、用单相平均值指令除加法器206输出的除法器207、把除法器207的输出与U相电压VLU相乘的器208构成。
单相全波整流器202和低通滤波电路203、减法器204和控制电路205、加法器206和除法器207、乘法器208分别构成平均值检测手段、偏差控制手段、偏差率计算手段、输出电压修正手段。又V相、W相的不平衡电压率控制电路201V、201W与U相不平衡电压率控制电路2 01U的构成相同。
下文,对本实施例的动作加以说明。在单相指令发生电路200中,作以下计算后,输出单相平均值指令。
SQR(VLd指令×VLd指令×CLq指令×CLq指令)×KC
式中:KC是3相有效值变换为单相平均值的增益,为2×SQR(2)/(SQR)
(3×π))
另一方面,在不平衡电压率控制电路201U中,U相电压VLU由全波整流器202作全波整流后,加至低通滤波器203,检测出每1相的平均值。然后,该平均值馈送至减法器204与单相平均值相减。由相减结果运算自低通滤波器电路203输出的平均值比单相平均值指令大还是小,运算结果输出至控制电路205。
控制电路205根据单相平均值指令和平均值的偏差,进行比例+积分动作,求出相对于单相平均值指令的偏差率。由控制电路205求得的偏差率,在乘法器208中,与由电压传感器7检测的相电压VLU相乘,由此能放大减法电路116求得的平均电压偏差。若该放大的电压偏差输入电压控制电路100,能得到大的控制量。其它二相也作同样处理,结果3相输出电压平均地平衡。
实施例2
又,在上述实施例中,在各相设置不平衡电压率控制电路201U、201V、201W,使3相电压平衡。但象装置起动/停止等时那样,单相平均值指令变动时,由于控制电路205有积分要素,检出的电压偏差率大,从而电压传感器7检测出的实际的相电压VLU、VLV、VLW与不平衡电压率控制电路201U、201V、201W的输出电压VLU2、VLV2、VLW2差异很大,变动复原前的过渡响应欠佳。
因此,如图3所示,在除法器207的输出端设置作为限制手段的限制电路210,通过限制电路210向乘法器208输出相除结果。这时,限制电路210将限制电平设置在正常想要控制的范围(比仅用电压控制电路100控制时产生的正常电压不平衡率稍大,例如5%,的工作范围)。
结果,过渡性电压差异被抑制至最低限度,从而提高了控制性能。进而,在限制电路210的输出侧与控制电路205的控制信号输入侧间设置由乘法器212与减法器213构成的逆变器电路211,使限制电路210的输出与控制电路205的输出关系始终一致。
逆运算电路211进行与自控制电路205至限制电路210所进行的处理相反的处理,因此能防止加上限制器时控制电路205内的积分电路的过冲,进一步改善过渡性能。但,在控制电路205中没有积分要素的场合,例如后述的实施例6的控制电路205A的场合,不需要该逆运算电路。
这里详细说明各电路的动作。设控制电路205的控制结果(即输出偏差)为A、单相平均值指令为B,则加法器206的输出C为C=A+B。该输出C输入除法器207,自除法器207输出D=(A+B)/B至限制电路210。
该输出D经限制电路210输出E=Limit[(A+B)/B]。逆运算电路211使B与限制电路210的输出E相乘,然后用减法器213减去单相平均值指令B,其输出AA=Limit[A]送回控制电路205。
由此,控制电路205的输出偏差修正为AA=Limit[A],与限制电路210的输出E的关系一致,防止控制电路205内的积分电路过冲。
实施例3
上述实施例1、2,在各相设置不平衡电压率控制电路201U、201V、201W,使3相电压平衡。但是,该电路构成用单相全波整器202与低通滤波电路203滤除基准频率以外的频率成分。结果,只能取含3相间的基准频率成分电压的平均均衡。因此,用示于图4的电压调整电路20A进行基准频率和基准频率以外的任意高次谐波成分的修正。
电压调整电路20A备有:作为发生想要抑制的高次谐波的基准频率的频率成分指令设定手段的高次谐波检测基准发生电路214;根据高次谐波检测基准发生电路214的基准频率,把电压传感器7检测到的3相电压VLU、VLV、VLW变换为基准频率成分,并当作基准频率正相序d轴电压VLd、q轴电压VLq的频率成分检测手段的高次谐波正相序3相/dq轴变换电路215;将基准频率成分的d轴电压VLd、q轴电压VLq作为直流取出的低通滤波器216d、216q;从来自低通滤波器216d、216q的直流输出分别减去高次谐波d轴指令、q轴指令(通常,由于不输出高次谐波,该指令为零)的减法器217d、217q;从相减结果的差求出用于抑制3相电压VLU、VLV、VLW的频率成分中基准频率的修正量,并当作频率成分偏差控制手段的控制电路218d、218q;把用d轴电压VLd、q轴电压VLq表示的修正量变换成原来3相电压,并当作交流变换手段的高次谐波正相序dq轴/3相变换电路219;把自高次谐波正相序dq轴/3相变换电路219输出的修正量与3相电压VLU、VLV、VLW相加,并当作加法手段的加法器220U、220V、220W。又,电压调整电路20中,加法器220U、220V、220W以外的电路构成特定高次谐波控制电路。
3相输出电压VLU2、VLV2、VLW2,如图1所示,输出至没有图示的3相/dq轴变换电路114,变换成基准频率正相序的d轴电压VLd、q轴电压VLq。
然后,对本实施例的动作加以说明。
电压传感器7检测的3相电压VLU、VLV、VLW输入高次谐波正相序3相/dq轴变换电路215,变换成基准频率正相序的d轴电压VLd、q轴电压VLq。
这时,由高次谐波检测基准发生电路214,在高次谐波正相序3相/dq轴变换电路215上产生想要抑制的基准频率,该基准频率成分的3相电压VLU、VLV、VLW变换成基准频率正相序的d轴电压VLd、q轴电压VLq。
经变换的基准频率正相序的d轴电压VLd、q轴电压VLq,施加于低通滤波器216d、216q,取出直流成分。又,低通滤波器216d、216q的输出在减法器217q中,减去高次谐波d轴指令、q轴指令(通常,由于不输出高次谐波,该指令为0),求出偏差量。
这些偏差量分别输入控制电路218d、218q,由这些偏差量求在3相电压VLU、VLV、VLW的频率成分中用于抑制基准频率数值的修正量。这些求得的修正量,在高次谐波正相序dq轴/3相变换器219中,变换成3相电压,输入至各加法器220U、220V、220W。
各加法器220U、220V、220W,把高次谐波正相序dq轴/3相变换器219输出的3相电压与3相电压VLU、VLV、VLW相加。结果,3相电压VLU、VLV、VLW将想要抑止的频率成分加以扩大后,输入至减法电路116。想要抑制的频率成分作为大偏差量,从减法电路116输出至控制电路110。由控制110输出大的修正量,因而能抑制特定的高次谐波成分。
实施例4
上述实施例3,其电压调制电路20A构成使特定的高次谐波成分减少。但是,如图5所示,用多个特定频率控制电路225、226构成电压调整电路20B,由此能从3相电压VLU、VLV、VLW去除各式各样的频率成分。
在控制电路218d、218q的前面分别设置仅在高次谐波d轴指令及q轴指令与低通滤波器216d、216q输出的基准频率成分直流值间偏差大于某种程度时才动作的、作为不灵敏区设定手段的不灵敏区电路223d、223q。
图5为例如用2个特定高次谐波控制电路225、226构成电压调整电路20B的例子。为了从3相电压VLU、VLV、VLW抑制各特定高次谐波成分,各特定高次谐波控制电路225、226,演算各个修正量,用高次谐波正相序dq轴/3相变换器219,把该修正量变换成3相电压,输出至加法器224U、224V、224W。
加法器224U、224V、224W把特定高次谐波控制电路225、226输出的修正量加至3相电压VLU、VLV、VLW后,得到的新的3相电压VLU2、VLV2、VLW2作为检测值。结果,从原来的3相电压VLU、VLV、VLW中去除2种类型的高次谐波频率成分。
又,用多个特定高次谐波控制电路225、226构成电压调整电路20B时,若不能完全去除其它电路的控制频率,则电路间有发生干扰的可能。例如,用5次及7次谐波控制电路构成特定频率控制电路225、226时,由于5次谐波控制电路225中不能完全去除7次谐波成分,因而低通滤波器216d、216q输出的直流成分中会混入若干7次谐波成分。
同样,7次谐波控制电路226中不能完全去除5次谐波成分,因而没有图示的低通滤波器输出的直流成分中会混入若干5次谐波成分。因而,若不设置不灵敏区域,则要消除5次谐波控制电路225中混入的7次谐波成分,又要消除7次谐波控制电路226中混入的5次谐波,因而两控制电路225、226间有发生干扰的可能。
因此,设置不灵敏区电路223d、223q,允许有某种程度的高次谐波,由此谋求去除干扰成分。利用上述方法,进行逆变器控制,使之满足负载侧电压高次谐波的指标。
实施例5
用实施例3、4的高次谐波正相序dq轴变换电路,仅3相共同产生的高次谐波成分能转换成直流。因此,在将单相负载连接至3相输出逆变器电路时,负载仅连接至两线间,产生3相不平衡高次谐波。
如所周知,用正相序d、q轴变换,3相不平衡成分不能检测作为直流成分,因此用实施例4的方法不能抑制3相不平衡高次谐波,从而不能良好地进行逆变器控制。抑制这种情况下产生的高次谐波的特定高次谐波控制电路20C示于图6。
在图6中,高次谐波正相序3相/dq轴变换电路228把由3相电压VLU、VLV、VLW的高次谐波正相序成分在高次谐波检测基准发生电路214产生的频率成分,通过下述变换式,变换成正相序d、q轴成分。该正相序d、q轴成分包含目标频率正相序成分以外的成分并作为交流成分,因而用低通滤波器229滤除交流成分,并提取变成直流的目标频率正相序成分。经低通滤波器229输出的变为直流的目标频率正相序成分输入减法器230,求出与高次谐波成分指令的偏差量。根据该偏差量,控制电路231求出抑制3相正相序电压VLU、VLV、VLW中的特定高次谐波成分的修正量。
Figure A9711400500121
(式1)
然后,高次谐波逆相序3相/dq轴变换电路232把用高次谐波检测基准发生电路214从3相电压VLU、VLV、VLW的高次谐波逆相序成分中产生的高次谐波成分,通过下述变换式,变换成逆相序d、q轴成分。该逆相序d、q轴成分包含目标频率逆相序成分以外的成分并把它作为交流成分,因而,用低通滤波器233滤除交流成分并提取变成直流的目标频率逆相序成分。经低通滤波器233输出的变为直流的目标频率逆相序成分输入减法器234,求出与高次谐波成分指令的偏差量。根据该偏差量,控制电路235求出抑制3相逆相序电压VLU、VLV、VLW中的特定高次谐波成分的修正量。
Figure A9711400500122
(式2)
控制电路235输出的逆相序dq轴成分的修正量由高次谐波逆相序dq轴/3相变换电路236恢复为3相电压,然后由高次谐波正相序3相/dq轴变换电路237变换成正相序dq轴成分。经变换的正相序dq轴成分与控制电路231输出的正相序dq轴成分用加法器238相加后,由高次谐波正相序dq轴/3相变换器239变换成3相电压。又,高次谐波正相序dq轴/3相变换器239变换的3相电压在作为加法手段的加法器240U、240V、240W中,与3相电压VLU、VLV、VLW相加。
下面对本实施例的动作加以说明。若3相均匀的频率成分变换到正相序dq轴,则成为完全的直流。但是,若单相负载的负载电压作3相正相序dq轴变换,则产生直流和2倍谐波的高次谐波成分。另一方面,若单相负载的负载电流作3相逆相序dq轴变换,则正相序变换时产生的直流成分变成2倍谐波的高次谐波成分,而2倍谐波的高次谐波成分变成直流成分。
在本实施例中,由高次谐波正相序3相/dq轴变换电路228和高次谐波逆相序3相/dq轴变换电路232,从3相电压VLU、VLV、VLW检测正相序高次谐波成分和逆相序高次谐波成分,施加至低通滤波器229、223,分别滤除2倍谐波,从而消除相互干扰。
在每一相,由减法器230、234求与高次谐波dq指令的差,根据该偏差量,控制电路231、235进行控制以求出修正量。但是,因为总的控制是正相序控制,因而作为逆相序控制的控制结果的控制电路235的输出,经高次谐波逆相序dq轴/3相变换电路236和高次谐波正相序3相/dq轴变换电路237,变换成正相序dq轴成分。
加法器238把控制电路231的运算结果与由高次谐波正相序3相/dq轴变换电路237输出的、变换成正相序dq轴成分后的运算结果相加,由高次谐波正相序dq轴/3相变换电路239恢复成3相电压作为运算结果。加法器240U、240V、240W把由高次谐波正相序dq轴/3相变换电路239输出的运算结果与3相电压VLU、VLV、VLW相加,作为新的3相电压值VLU2、VLV2、VLW2。由此,去除了3相不平衡高次谐波成分。
如上所述,若把高次谐波检测基准发生电路214的基准频率作为基波,也能进行基准频率成分的3相平衡控制。进而,若用多个电路构成新的电路,能完全消除要控制的3相不平衡及高次谐波成分。
实施例6
图7是本发明另一实施例的电压调整电路的构成图。图中,电压调整电路20D具有作为偏差率控制手段的控制电路205A。控制电路205A作比例控制,其作为偏差的输出如下式所示。
OUT=Kp×IN式中:Kp(Kp>1)是比例增益,IN是控制电路205A的输入(偏差值)。
这时,调整比例增益,使稳态偏差满足作为目标的电压平衡率和电压失真率,而且在电压指令和实际电压间不产生稳态偏差。作为控制电路205A控制结果的偏差OUT,输出至加法器206,与单相平均值指令相加。
除法器207用单相平均值指令除加法器206的输出,求出(OUT+单相平均值指令)/单相平均值。乘法器208把除法器207的输出与U相电压VLU相乘。
本实施例的其它构成,与图2所示相同,其相当部分附注相同符号并省略其说明。
在上述构成的电压调整电路20D中,控制电路205A输入的偏差IN越大,输出的偏差OUT越大。
例如,若设IN=0.8,Kp=5,则偏差OUT=4,偏差OUT扩大5倍输出。
根据该控制结果,由加法器206、除法器207求偏差率。例如,设单相平均值指令为100(V),则偏差率为:
偏差率=(4+100)/100=1.04
若通过乘法器208,把电压传感器7检测的相电压VLU(100+0.8=100.8(V))与偏差率相乘,则可求出以下的值作为修正后的新的检测电压VLUC
VLUC=100.8×1.04≈104.8(V)
如上文所述,本实施例的动作可提高电压传感器7的视在灵敏度,改善了3相输出电压的平衡度。
根据权利要求1发明,本发明所述的一种电力变换器的控制装置,包括:在电力变换器各相设定应输出的电压指令值的电压指令值设定手段;检测所述电力变换器各相的输出电压的电压检测手段;检测所述检测所得输出电压的平均值的平均值检测手段;进行控制,使所述检测得到的平均值与所述电压指令值的偏差越大则所输出的输出偏差越大的偏差控制手段;根据所述偏差控制手段的控制结果与所述电压指令值,计算电压偏差率的偏差率计算手段;根据所述电压偏差率修正所述输出电压,求修正输出电压的输出电压修正手段;根据所述修正输出电压进行所述电力变换器的输出控制。由此,即使逆变器的3相输出连接不平衡负载,也不会对电流控制产生影响,能保持平衡的3相输出电压;同时,即使连接非线性负载,也能抑制高次谐波电压成分,向负载提供稳定的高精度3相电压。
根据权利要求2的发明,电力变换器控制装置进一步包括,限制由偏差率计算手段算出的电压偏差率为预定值以下的限制手段;所述输出电压修正手段,根据所述限制手段所限制的电压偏差率,修正输出电压。由此,能把实际检测的电压与修正输出电压的过渡性差异抑制至最低限度,能提高控制性能。
根据权利要求3的发明,所述的电力变换器控制装置,包括:设定电力变换器输出电压中应控制的基准频率的成分指令值的频率成分指令值设定手段;检测所述电力变换器输出电压的电压检测手段;把所述检测得到的输出电压中的所述基准频率成分作为基准频率直流电压加以检测的频率成分检测手段;进行控制,使所述检测的基准频率直流电压与基准频率成分指令值的偏差越大则所输出的输出偏差越大的频率成分偏差控制手段;以所述基准频率为基准,把所述频率成分偏差控制手段的控制结果变换为交流控制量的交流变换手段;把所述检测得到的输出电压与所述交流控制量相加的加法手段;根据所述加法手段的相加结果进行所述电力变换器的输出控制。由此,能用基准频率成分降低想要抑制的特定的高次谐波成分。
根据权利要求4的发明,所述的电力变换器控制装置中,所述频率成分偏差控制手段具有对检测所得基准频率直流电压与基准频率成分指令值的偏差不灵敏的不灵敏区。由此,具有对逆变器进行控制,使之满足负载侧电压高次谐波指标等的效果。
根据权利要求5的发明,所述的电力变换器的控制装置,包括:设定电力变换器的输出电压中应控制的基准频率成分指令值的频率成分设定手段;检测所述电力变换器输出电压的电压检测手段;把所述检测得到的输出电压中的所述基准频率的正相序成分作为正相序dq轴电压加以检测的正相序dq轴成分检测手段;进行控制,使所述正相序dq轴电压与所述基准频率成分指令值的偏差越大则所输出的输出偏差越大的正相序偏差控制手段;把所述检测得到的输出电压中的基准频率的逆相序成分作为逆相序dq轴电压加以检测的逆相序dq轴成分检测手段;进行控制,使所述逆相序dq轴电压与所述基准频率成分指令值的偏差越大则所输出的输出偏差越大的逆相序偏差控制手段;把所述逆相序偏差控制手段的控制结果变换为正相序dq轴电压的逆相序dq轴正相序dq轴变换手段;把所述正相序偏差控制手段的控制结果和由所述逆相序dq轴正相序dq轴变换手段变换成正相序dq轴电压的所述逆相序偏差控制手段的控制结果相加,并以所述基准频率为基准,变换成正相序交流控制量的正相序dq轴交流变换手段;把所述检测得到的输出电压与所述正相序交流控制量相加的加法手段;根据所述加法手段的相加结果,进行所述电力变换器的输出控制。具有能去除3相不平衡高次谐波成分的效果。

Claims (5)

1.一种电力变换器的控制装置,其特征在于包括:在电力变换器各相设定应输出的电压指令值的电压指令值设定手段;检测所述电力变换器各相的输出电压的电压检测手段;检测所述检测所得输出电压的平均值的平均值检测手段;进行控制,使所述检测得到的平均值与所述电压指令值的偏差越大则所输出的输出偏差越大的偏差控制手段;根据所述偏差控制手段的控制结果与所述电压指令值,计算电压偏差率的偏差率计算手段;根据所述电压偏差率修正所述输出电压,求修正输出电压的输出电压修正手段;根据所述修正输出电压进行所述电力变换器的输出控制。
2.如权利要求1所述的的电力变换器控制装置,其特征在于,进一步包括,限制由偏差率计算手段算出的电压偏差率为预定值以下的限制手段;所述输出电压修正手段,根据所述限定手段所限制的电压偏差率,修正输出电压。
3.一种电力变换器控制装置,其特征在于包括:设定电力变换器输出电压中应控制的基准频率的成分指令值的频率成分指令值设定手段;检测所述电力变换器输出电压的电压检测手段;把所述检测得到的输出电压中的所述基准频率成分作为基准频率直流电压加以检测的频率成分检测手段;进行控制,使所述检测的基准频率直流电压与基准频率成分指令值的偏差越大则所输出的输出偏差越大的频率成分偏差控制手段;以所述基准频率为基准,把所述频率成分偏差控制手段的控制结果变换为交流控制量的交流变换手段;把所述检测得到的输出电压与所述交流控制量相加的加法手段;根据所述加法手段的相加结果进行所述电力变换器的输出控制。
4.如权利要求3所述的电力变换器控制装置,其特征在于,所述频率成分偏差控制手段具有对检测的基准频率直流电压与基准频率成分指令值的偏差不灵敏的不灵敏区。
5.一种电力变换器的控制装置,其特征在于包括:设定电力变换器的输出电压中应控制的基准频率成分指令值的频率成分设定手段;检测所述电力变换器输出电压的电压检测手段;把所述检测得到的输出电压中的所述基准频率的正相序成分作为正相序dq轴电压加以检测的正相序dq轴成分检测手段;进行控制,使所述正相序dq轴电压与所述基准频率成分指令值的偏差越大则所输出的输出偏差越大的正相序偏差控制手段;把所述检测得到的输出电压中的基准频率的逆相序成分作为逆相序dq轴电压加以检测的逆相序dq轴成分检测手段;进行控制,使所述逆相序dq轴电压与所述基准频率成分指令值的偏差越大则所输出的输出偏差越大的逆相序偏差控制手段;把所述逆相序偏差控制手段的控制结果变换为正相序dq轴电压的逆相序dq轴正相序dq轴变换手段;把所述正相序偏差控制手段的控制结果和由所述逆相序dq轴正相序dq轴变换手段变换成正相序dq轴电压的所述逆相序偏差控制手段的控制结果相加,并以所述基准频率为基准,变换成正相序交流控制量的正相序dq轴交流变换手段;把所述检测的输出电压与所述正相序交流控制量相加的加法手段;根据所述加法手段的相加结果,进行所述电力变换器的输出控制。
CN97114005A 1997-02-05 1997-06-28 电力变换器控制装置 Expired - Lifetime CN1071952C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP02241897A JP3411462B2 (ja) 1997-02-05 1997-02-05 電力変換器の制御装置
JP022418/1997 1997-02-05
JP022418/97 1997-02-05

Publications (2)

Publication Number Publication Date
CN1190279A true CN1190279A (zh) 1998-08-12
CN1071952C CN1071952C (zh) 2001-09-26

Family

ID=12082132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97114005A Expired - Lifetime CN1071952C (zh) 1997-02-05 1997-06-28 电力变换器控制装置

Country Status (4)

Country Link
US (1) US5909366A (zh)
JP (1) JP3411462B2 (zh)
CN (1) CN1071952C (zh)
CA (1) CA2208330C (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101248576B (zh) * 2006-05-23 2011-06-01 三菱电机株式会社 功率变换装置
US8750009B2 (en) 2007-12-27 2014-06-10 Mitsubishi Electric Corporation Controller of a power converter that uses pulse width modulation
CN105680714A (zh) * 2014-11-19 2016-06-15 国家电网公司 逆变器输出电压的控制方法及装置
CN111656665A (zh) * 2018-11-21 2020-09-11 东芝三菱电机产业系统株式会社 电力转换装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324085B2 (en) * 1999-12-27 2001-11-27 Denso Corporation Power converter apparatus and related method
JP4575547B2 (ja) * 2000-04-18 2010-11-04 トヨタ自動車株式会社 モータの制御装置
JP4585774B2 (ja) * 2003-03-07 2010-11-24 キヤノン株式会社 電力変換装置および電源装置
US6950321B2 (en) * 2003-09-24 2005-09-27 General Motors Corporation Active damping control for L-C output filters in three phase four-leg inverters
JP4980743B2 (ja) * 2007-02-15 2012-07-18 三菱電機株式会社 電力変換装置
JP4968089B2 (ja) * 2008-01-28 2012-07-04 アイシン・エィ・ダブリュ株式会社 電動機制御装置および駆動装置
JP5121514B2 (ja) * 2008-03-11 2013-01-16 三菱電機株式会社 逆相制御による過電圧抑制制御方式
JP5004366B2 (ja) * 2009-12-07 2012-08-22 株式会社京三製作所 不平衡電圧補償方法、不平衡電圧補償装置、三相コンバータの制御方法、および、三相コンバータの制御装置
DE102010024138A1 (de) * 2010-06-17 2011-12-22 Siemens Aktiengesellschaft Vorrichtung zur Netzspannungssymmetrisierung
EP2523298B1 (en) * 2011-05-12 2018-01-10 ABB Schweiz AG Method and apparatus for controlling electric grid in islanding mode
US9742286B2 (en) * 2011-06-08 2017-08-22 L-3 Communications Magnet-Motor Gmbh Method of controlling a DC/AC converter
FR2982680B1 (fr) * 2011-11-15 2013-11-22 Schneider Toshiba Inverter Procede et systeme de commande pour corriger les tensions a appliquer a une charge electrique
US20130208517A1 (en) * 2012-02-15 2013-08-15 Clipper Windpower, Inc. Method of Damping Harmonic Output
CN103197144B (zh) * 2013-04-11 2015-09-02 中国电子科技集团公司第十四研究所 一种用于逆变装置的三相电相序检测方法
CN104393609B (zh) * 2014-10-17 2017-06-13 国家电网公司 静止同步发电机故障穿越控制方法
JP6344332B2 (ja) * 2015-07-31 2018-06-20 株式会社安川電機 電力変換装置、発電システム、非基本波成分検出装置および非基本波成分検出方法
EP4228139A1 (en) * 2020-10-05 2023-08-16 Toshiba Mitsubishi-Electric Industrial Systems Corporation Control device of power converter device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128691A (ja) * 1989-07-27 1991-05-31 Seiko Epson Corp 電圧形pwmコンバータ・インバータシステムとその制御方式
US5047910A (en) * 1990-07-09 1991-09-10 Teledyne Inet Ideal sinusoidal voltage waveform synthesis control system
EP0471107A1 (de) * 1990-08-16 1992-02-19 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Symmetrierung eines Drehstromsystems
JPH05260781A (ja) * 1992-03-09 1993-10-08 Mitsubishi Electric Corp 電力変換装置
JPH0638538A (ja) * 1992-07-17 1994-02-10 Meidensha Corp 無停電電源装置の三相出力電圧平衡方式
US5369353A (en) * 1992-12-08 1994-11-29 Kenetech Windpower, Inc. Controlled electrical energy storage apparatus for utility grids
US5648894A (en) * 1994-09-30 1997-07-15 General Electric Company Active filter control
JPH08122192A (ja) * 1994-10-21 1996-05-17 Mitsubishi Electric Corp 誘導電動機の負荷状態検出装置及び方法
US5502360A (en) * 1995-03-10 1996-03-26 Allen-Bradley Company, Inc. Stator resistance detector for use in electric motor controllers
JP3271478B2 (ja) * 1995-07-19 2002-04-02 松下電器産業株式会社 電流指令型pwmインバータ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101248576B (zh) * 2006-05-23 2011-06-01 三菱电机株式会社 功率变换装置
US8750009B2 (en) 2007-12-27 2014-06-10 Mitsubishi Electric Corporation Controller of a power converter that uses pulse width modulation
CN105680714A (zh) * 2014-11-19 2016-06-15 国家电网公司 逆变器输出电压的控制方法及装置
CN111656665A (zh) * 2018-11-21 2020-09-11 东芝三菱电机产业系统株式会社 电力转换装置
CN111656665B (zh) * 2018-11-21 2023-04-07 东芝三菱电机产业系统株式会社 电力转换装置

Also Published As

Publication number Publication date
JP3411462B2 (ja) 2003-06-03
CN1071952C (zh) 2001-09-26
JPH10225131A (ja) 1998-08-21
US5909366A (en) 1999-06-01
CA2208330A1 (en) 1998-08-05
CA2208330C (en) 1999-08-31

Similar Documents

Publication Publication Date Title
CN1071952C (zh) 电力变换器控制装置
AU669587B2 (en) Harmonic controller for an active power line conditioner
AU713034B2 (en) Multilevel power converting apparatus
CN102017395A (zh) 直交流转换器控制装置及功率转换装置
JP2714195B2 (ja) 電圧変動及び高調波の抑制装置
CN110086173B (zh) 并联型apf谐波放大效应抑制方法以及系统
US5359275A (en) Load current fundamental filter with one cycle response
EP0187042A2 (en) Apparatus for operating cycloconverters in parallel fashion
CN1327600C (zh) 变换器的控制装置
US4418380A (en) Method and apparatus for controlling the circulating current of a cycloconverter
Hunasikatti et al. Implementation of FPGA Based Closed Loop V/f Speed Control of Induction Motor Employed for Industrial Applications
Joos et al. Four switch three phase active filter with reduced current sensors
RU2442275C1 (ru) Способ управления трехфазным статическим преобразователем при несимметричной нагрузке
JPH10111725A (ja) パワーラインコンディショナの補償電力分担方式
JP2926931B2 (ja) 高調波抑制装置
RU2444833C1 (ru) Векторный способ управления трехфазным статическим преобразователем при несимметричной нагрузке
Mehta et al. Design, analysis and implementation of DSP based single-phase shunt active filter controller
CN107069725B (zh) 基于链式变流器的配电网电能质量综合控制方法及系统
CN107332242B (zh) 能馈滤波一体化装置的控制电路及控制方法
JP2737299B2 (ja) 電力用アクティブフィルタ
JPH10222235A (ja) アクティブフィルタ装置の制御回路
KR0186048B1 (ko) 3상인버터의 출력전압 제어장치
Chauhan et al. A Study Paper Based On Space Vector Pulse Width Modulation Technique For Power Quality Improvement
JP6846089B2 (ja) 電力変換装置
Wekhande et al. Wind driven self-excited induction generator with simple de-coupled excitation control

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: TOSHIBA MITSUBISHI ELECTRIC INDUSTRIAL SYSTEM CO.

Free format text: FORMER OWNER: MITSUBISHI ELECTRIC CO., LTD.

Effective date: 20050909

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20050909

Address after: Tokyo, Japan

Patentee after: Toshiba Mitsubishi Electric Industrial Systems Co., Ltd.

Address before: Tokyo, Japan

Patentee before: Missubishi Electric Co., Ltd.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20010926