CN118272397A - 基因组合、含其的基因工程菌及其在l-赖氨酸生产中的应用 - Google Patents

基因组合、含其的基因工程菌及其在l-赖氨酸生产中的应用 Download PDF

Info

Publication number
CN118272397A
CN118272397A CN202211715874.6A CN202211715874A CN118272397A CN 118272397 A CN118272397 A CN 118272397A CN 202211715874 A CN202211715874 A CN 202211715874A CN 118272397 A CN118272397 A CN 118272397A
Authority
CN
China
Prior art keywords
gene
genetically engineered
corynebacterium glutamicum
combination
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211715874.6A
Other languages
English (en)
Inventor
张明明
刘文波
刘修才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cathay R&D Center Co Ltd
CIBT America Inc
Original Assignee
Cathay R&D Center Co Ltd
CIBT America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cathay R&D Center Co Ltd, CIBT America Inc filed Critical Cathay R&D Center Co Ltd
Priority to CN202211715874.6A priority Critical patent/CN118272397A/zh
Publication of CN118272397A publication Critical patent/CN118272397A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供一种基因组合、含其的基因工程菌及其在L‑赖氨酸生产中的应用。所述基因组合包含来源于丙酮丁醇梭菌、乔斯特金黄杆菌、变形链球菌、栖鱼金黄杆菌或冲击地土地杆菌的NADP依赖型的甘油醛3‑磷酸脱氢酶基因gapdh‑n,且所述基因组合还包含来源于谷氨酸棒状杆菌的葡萄糖6‑磷酸脱氢酶基因zwf1和/或来源于谷氨酸棒状杆菌的转醛醇酶基因tkt1。本发明提供的基因组合导入出发菌后,戊糖磷酸途径关键酶和甘油醛3‑磷酸脱氢酶的表达增强,有效改善赖氨酸生物合成过程中辅因子供应等,从而提高葡萄糖利用效率,进而提高L‑赖氨酸的产量。

Description

基因组合、含其的基因工程菌及其在L-赖氨酸生产中的应用
技术领域
本发明属于基因工程技术领域,具体涉及一种基因组合、含其的基因工程菌及其在L-赖氨酸生产中的应用。
背景技术
赖氨酸(lysine)又名2,6-二氨基己酸,属于碱性氨基酸。赖氨酸具有重要的营养生理功能,在医药、食品和饲料工业中应用广泛。同时,其也可作为前体物质用于合成尼龙聚合材料。赖氨酸的生产途径主要包括蛋白水解法、化学合成法以及发酵法三种,其中,微生物发酵法具有生产成本低、生产强度高、特异性高、环境污染小等特点,成为赖氨酸工业化生产应用最广的方法。
用于生产赖氨酸的原核微生物主要包括棒状杆菌、短杆菌、诺卡氏菌、假单胞菌、埃希氏菌、芽孢杆菌等。谷氨酸棒状杆菌(C.glutamicum)是发酵生产氨基酸最为重要和安全的菌株,通过代谢改造提高它过量合成各种氨基酸的能力一直是研究热点。例如,过表达赖氨酸合成途径的相关基因和反馈抑制脱敏的相关基因,或者从葡萄糖代谢开始的能量供应途径强化以及优化细胞膜上赖氨酸转运蛋白等都有效提高了赖氨酸的生产率。
除了不断加强生成赖氨酸的代谢途径,打开非赖氨酸代谢的其他旁路的发酵方法,也值得深入挖掘。还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)是细胞代谢中最重要的氧化还原载体,被认为是重要辅因子,其不仅作为催化底物分解代谢的电子受体,也为能量依赖型的氧化还原反应提供还原力,是多种代谢产物(包括赖氨酸)合成中的主要驱动力。但是现在从增加胞内NADPH供应同时减少ATP消耗的角度生产赖氨酸尚无报道。
发明内容
针对现有技术中缺少一种L-赖氨酸高产菌株的缺陷,本发明提供一种基因组合、含其的基因工程菌及其在L-赖氨酸生产中的应用。具体而言,本发明提供了一种能提高谷氨酸棒状杆菌的赖氨酸产量的基因组合和能利用木质纤维素物料的水解液高效生产赖氨酸的基因工程菌。所述基因工程菌可以在木质纤维素物料的水解液中有效利用木质纤维素物料中的葡萄糖。本发明通过增强磷酸戊糖途径、弱化糖酵解途径,同时将NAD依赖型的甘油醛3-磷酸脱氢酶替换为NADP依赖型的甘油醛3-磷酸脱氢酶,优化胞内辅因子供应,同时减少ATP损耗,最终实现L-赖氨酸产量的提升。
为解决上述技术问题,本发明提供的技术方案之一为:一种基因组合,所述基因组合包含NADP依赖型的甘油醛3-磷酸脱氢酶基因gapdh-n,且所述基因组合还包含来源于谷氨酸棒状杆菌(Corynebacterium glutamicum)的葡萄糖6-磷酸脱氢酶基因zwf1和/或来源于谷氨酸棒状杆菌的转醛醇酶基因tkt1;所述gapdh-n来源于丙酮丁醇梭菌(Clostridiumacetobutylicum)、乔斯特金黄杆菌(Chryseobacterium joostei)、变形链球菌(Streptococcus mutans)、栖鱼金黄杆菌(Chryseobacterium piscicola)或冲击地土地杆菌(Pedobacter alluvionis)。
如技术方案之一所述的基因组合,所述丙酮丁醇梭菌为丙酮丁醇梭菌LJ4,所述变形链球菌为变形链球菌血清型c(Streptococcus mutans serotype c)。
本发明所述谷氨酸棒状杆菌可为野生型菌株,也可为经修饰的菌株。
本发明所述“修饰”指的是基因修饰,主要是指利用生物化学方法修改菌株的DNA序列,将目的基因片段导入宿主菌内,或者将特定基因片段从基因组中删除,从而达到改变宿主菌基因型或者使得原有基因型得到加强的作用。
在本发明的优选实施方案中,所述经修饰的菌株的L-赖氨酸生产能力得到加强。
在本发明的具体实施方案中,所述谷氨酸棒状杆菌为保藏编号为CCTCC NO:M20211495的谷氨酸棒状杆菌CathS141,或为谷氨酸棒状杆菌B253。
本发明所述的C.glutamicum B253购买自上海工业微生物所。
在本发明的优选实施方案中,所述gapdh-n的核苷酸序列如SEQ ID NO:3和SEQ IDNO:9~12中任一所示,所述zwf1的核苷酸序列如SEQ ID NO:5所示,和/或,所述tkt1的核苷酸序列如SEQ ID NO:7所示。
为解决上述技术问题,本发明提供的技术方案之二为:一种重组表达载体组合,所述重组表达载体组合包括携带如技术方案之一所述的基因组合中的所定义的gapdh-n的重组表达载体,且所述重组表达载体组合还包括携带如技术方案之一所述的基因组合中的所定义的zwf1和/或tkt1的重组表达载体。
在本发明的优选实施方案中,所述重组表达载体的骨架质粒为pK18mob。
所述pK18mob的具体信息可参考如下网页:http://www.biovector.net/product/1089.html。
为解决上述技术问题,本发明提供的技术方案之三为:一种基因工程菌,所述基因工程菌为在出发菌谷氨酸棒状杆菌中过表达如技术方案之一所述的基因组合中所定义的基因的菌株。
本发明所述出发菌可为谷氨酸棒状杆菌的野生型菌株,也可为其经修饰的菌株。
在本发明的具体实施方案中,所述出发菌为保藏编号为CCTCC NO:M 20211495的谷氨酸棒状杆菌CathS141或谷氨酸棒状杆菌B253。
在本发明的较佳实施方案中,所述基因工程菌包含如技术方案之二所述的重组表达载体组合。
在本发明的更佳实施方案中,所述重组表达载体中的基因通过同源重组方式整合在所述出发菌的基因组中,或以非整合形式存在于所述出发菌中。
如技术方案之三所述的基因工程菌,所述基因工程菌不表达自身的NAD依赖型的甘油醛3-磷酸脱氢酶基因gapdh1,且还不表达果糖-1,6-二磷酸酶基因fbp1和/或ATP依赖性磷酸果糖激酶基因pfk1;例如,gapdh1、fbp1和pfk1被敲除。
在本发明的优选实施方案中,所述gapdh1的核苷酸序列如SEQ ID NO:4所示,所述pfk1的核苷酸序列如SEQ ID NO:6所示,和/或,所述fbp1的核苷酸序列如SEQ ID NO:8所示。
如技术方案之三所述的基因工程菌,所述基因组合中的基因整合至gapdh1、fbp1和/或pfk1被敲除后的位点上。
在本发明中,所述基因组合中的基因可一同被整合到同一个被敲除后的基因位点上,也可以分别整合到不同的被敲除后的基因位点上,所整合的位点与被整合的基因并非唯一对应。
在本发明的优选实施方案中,gapdh-n整合至gapdh1被敲除后的位点上,zwf1整合至pfk1被敲除后的位点上,tkt1整合至fbp1被敲除后的位点上。
为解决上述技术问题,本发明提供的技术方案之四为:一种制备L-赖氨酸的方法,所述方法包括发酵培养如技术方案之三所述的基因工程菌,和从发酵培养的培养液中回收L-赖氨酸。
在某一较佳实施方案中,所述发酵培养在适合所述基因工程菌生长的发酵培养基中进行。
在某一较佳实施方案中,所述发酵培养基含有不低于25g/L的葡萄糖,例如80-150g/L的葡萄糖。除葡萄糖外,发酵培养基中还含有供所述基因工程菌生长、繁殖或合成L-赖氨酸的其他成分,例如磷酸二氢钾,和/或,尿素,和/或,硫酸镁,和/或,甲硫氨酸,和/或,玉米浆,和/或,酵母膏。
在某一较佳实施方案中,所述发酵的温度为28~37℃,例如30℃、35℃。
在某一较佳实施方案中,所述发酵的pH为6~8,例如7。
在某一较佳实施方案中,所述发酵培养基含有木质纤维素物料的水解液。
在某一较佳实施方案中,所述发酵培养基中的碳源来源于木质纤维素物料的水解液。所述碳源较佳为葡萄糖。
所述木质纤维素物料的水解液为木质纤维素物料经酶解糖化后形成。所述酶解使用的是纤维素酶。
所述木质纤维素物料包括但不限于秸秆、稻草、稻壳、蔗渣、木材和木屑中的至少一种。所述秸秆优选包括玉米秸秆、小麦秸秆或棉花秸秆。
在某一较佳实施方案中,在所述酶解糖化前对所述木质纤维素物料进行预处理,所述预处理包括筛分、除杂、干酸预处理和/或脱毒处理。
在一些具体实施方案中,所述木质纤维素物料的粒径为2-20mm,例如5mm或10mm。
为解决上述技术问题,本发明提供的技术方案之五为:一种如技术方案之三所述的基因工程菌的构建方法,所述构建方法包括向所述出发菌中转入如技术方案之一所述的基因组合或如技术方案之二所述的重组表达载体组合。
为解决上述技术问题,本发明提供的技术方案之六为:如技术方案之一所述的基因组合、如技术方案之二所述的重组表达载体组合或如技术方案之三所述的基因工程菌在L-赖氨酸生产中的应用。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
本发明提供的基因组合导入出发菌后,表达增强戊糖磷酸途径关键酶和甘油醛3-磷酸脱氢酶,有效改善赖氨酸生物合成过程中辅因子供应等,从而提高葡萄糖利用效率,进而提高L-赖氨酸的产量。当使用木质纤维素物料的水解液时,本发明的基因工程菌的赖氨酸产量比出发菌明显提升。本发明提供的基因工程菌可以有效利用秸秆等农业废料进行发酵,具备良好的应用前景,这也将有助于赖氨酸衍生物,如戊二胺的高效生产。
生物材料的保藏
本发明的谷氨酸棒状杆菌菌株CathS141,已于2021年11月29日保藏在中国典型培养物保藏中心(CCTCC),保藏地址:中国武汉,武汉大学,邮编430072,保藏编号为:CCTCCNO:M 20211495,培养物名称为CathS141,分类名称为:谷氨酸棒状杆菌(Corynebacteriumglutamicum)。
本发明的宛氏拟青霉CATHTD891,已于2021年11月4日保藏在中国典型培养物保藏中心(CCTCC),保藏地址:中国武汉,武汉大学,邮编430072,保藏编号为:CCTCC NO:M20211366,培养物名称是CATHTD891,分类名称为:宛氏拟青霉(Paecilomyces variotiiBainier)。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
一、本发明所使用的菌株
大肠杆菌E.coli DH5α用于表达质粒和敲除质粒的构建,谷氨酸棒状杆菌、谷氨酸棒状杆菌C.glutamicum CathS141是一株用于生产赖氨酸的菌株,本实验中C.glutamicumCathS141主要作为出发菌株进行使用。
二、试剂与培养基
纤维素酶CTec 2.0用于水解木质纤维素中的纤维素和半纤维素,购自中国北京的诺维信(中国)公司。限制性内切酶用于切割质粒或基因片段产生粘性末端,购自ThermoScientific(Wilmington,DE,USA)。DNA聚合酶用于扩增基因片段,DNA连接酶用于连接酶切过的基因片段和质粒载体,这两种酶都是购自Takara(Otsu,Japan)。无缝克隆试剂盒用于连接含有同源片段的基因片段和质粒载体,购自汉恒生物科技公司(Nanjing,China)。质粒抽提试剂盒,PCR产物纯化回收试剂盒和凝胶回收试剂盒都是购自上海捷瑞生物科技公司(Shanghai,China)。其他试剂从本地供应商处购买。
培养大肠杆菌使用的培养基是Luria-Bertani(LB)培养基,具体成分如下:10.0g/L氯化钠,10.0g/L蛋白胨和5.0g/L酵母提取物。
培养谷氨酸棒状杆菌所用的培养基具体成分如下:
(1)种子培养基:25g/L葡萄糖,1.5g/L磷酸二氢钾,2.5g/L尿素和0.6g/L硫酸镁,25g/L玉米浆。
(2)发酵培养基:1g/L磷酸二氢钾,3g/L尿素,0.6g/L硫酸镁,20g/L玉米浆,视情况添加葡萄糖或含葡萄糖的水解液作为碳源。
实施例1:出发菌谷氨酸棒杆菌CathS141的获得
收集新疆乌苏的土壤样品,每1g土壤样品添加至10mL无菌水中,剧烈混匀1min后将静置沉淀一段时间,再将原样品分别稀释成10-3、10-4、10-5涂布在含有100mg/L制霉菌素的LB琼脂平板上,并在30℃下培养。经多次划线分离培养,获得纯化单菌落。通过16S rDNA序列比对,鉴定该菌株为谷氨酸棒杆菌(Corynebacterium glutamicum)。
小麦秸秆经过酸预处理、脱毒和酶水解后得到小麦秸秆水解液,以上述分离纯化得到的谷氨酸棒杆菌为出发菌株,通过使用紫外线、亚硝基胍、5-氟尿嘧啶、ARTP等多次单独诱变及复合诱变,获得能够在秸秆水解液中进行正常的生长和赖氨酸生产的稳定菌株。将该菌株命名为CathS141,现保藏于中国典型培养物保藏中心,地址:中国武汉,武汉大学,邮编430072,保藏编号CCTCC NO:M 20211495,保藏日期2021年11月29日。
实施例2:构建出发菌株gapdh1敲除载体
以C.glutamicum CathS141的基因组为模板,通过本领域常规技术手段设计引物和PCR的方法扩增得到gapdh-up片段(如SEQ ID NO:1所示);以C.glutamicum CathS141的基因组为模板,通过PCR的方法扩增得到gapdh-down片段(如SEQ ID NO:2所示);以gapdh-up片段,gapdh-down片段为模板,通过重叠延伸PCR的方式得到delta-gapdh1融合片段。用EcoRI和XbaI内切酶处理pK18mob质粒,之后与delta-gapdh1片段通过Gibson方式进行连接,通过常规化学转化方法转入大肠杆菌中。期间,可利用含有卡那霉素抗性的种子培养平板筛选连接成功的质粒,命名为pcg0。
gapdh-up核苷酸序列(SEQ ID NO:1)
aggaaacagctatgacatgattacgaattcgaagaaatttagatgattgaagcctaaaaacgaccgagcctattgggattaccattgaagccagtgtgagttgcatcacattggcttcaaatctgagactttaatttgtggattcacgggggtgtaatgtagttcataattaaccccattcgggggagcagatcgtagtgcgaacgatttcaggttcgttccctgcaaaaactatttagcgcaagtgttggaaatgcccccgtttggggtcaatgtccatttttgaatgtgtctgtatgattttgcatctgctgcgaaatctttgtttccccgctaaagttgaggacaggttgacacggagttgactcgacgaattatccaatgtgagtaggtttggtgcgtgagttggaaaaattcgccatactcgcccttgggttctgtcagctcaagaattcttgagtgaccgatgctctgattgacctaactgcttgacacattgcatttcctacaatctttagaggagacacaac
gapdh-down核苷酸序列(SEQ ID NO:2)
ttagttcacatcgctaacgtgggcgatcgatgctcacggtgatgtgtcatcccaatagcccggggtgtgcctcggcgcaccccgggctattttgtgtctttaatcaatacaattgaataccggtgccagcgccacacaatgtgtggcaatctgggacagtgcatcacattgcaccagaagaattttttaaacaatcaaatctccaaggagtacggcatggctgttaagaccctcaaggacttgctcgacgaaggcgtagacggacgccacgtcatcgttcgatctgacttcaatgttcccctcaacgatgaccgcgagatcaccgataagggccgaatcattgcctccctaccaacccttaaagcactgagcgaaggtggcgcaaaggtcatcgtcatggctcaccttggccgcccaaagggcgaggtcaacgagaagtactccctcgcacctgtcgctgaggcactctccgatgagcttggccagtacgttgcacttgctctagagtcgacctgcaggcatgcaagctt
实施例3:构建含NADP依赖型甘油醛3-磷酸脱氢酶的工程菌
参考Clostridium sp.NJ4中甘油醛3-辛酸脱氢酶编辑基因序列,在华大基因进行合成,得到gapdh-n,其核苷酸序列如SEQ ID NO:3所示。然后通过Gibson方法将gapdh-n(SEQ ID NO:3)连入用BamHI酶切后的pcg0载体,获得的质粒命名为pcg1,即构建NADP依赖型的甘油醛3-磷酸脱氢酶编码基因gapdh-n(SEQ ID NO:3)取代NAD依赖型的甘油醛3-磷酸脱氢酶编码基因gapdh1(SEQ ID NO:4)的表达载体。
接着通过电转的方式将质粒pcg1转入CathS141中。通过PCR方式筛选出发生正确同源重组的菌株,得到重组谷氨酸棒状杆菌,命名ncg1。
gapdh-n核苷酸序列(SEQ ID NO:3)
atgtttgaaaatatatcatcaaatggagtttataaaaatctatttgatggaaaatgggttgaaagtaagacaaataaaaccatagaaacgcattctccttatgatggaagtttaattggaaaagttcaggccttatcaaaagaggaagttgatgagatttttaaaagttcaagaacagctcagaaaaaatggggtgaaactccaataaatgagcgtgctagaatcatgcgtaaagcagctgatatactagatgataacgcagaatatatagcaaaaattctttcaaatgagatagcaaaagatttaaaatcttctctttcagaagtaaaaagaacagctgattttataagatttacagctaatgaaggtactcatatggaaggagaagctattaactcagataattttcctggttctaaaaaagataaactttctctagttgaaagagttcctttaggaatagttttagctatatctccttttaattatcctgtaaatctttctgggtctaaggttgctccagcacttatagctggaaatagtgttgttttaaaaccttctacaactggtgctataagcgcacttcatcttgcagaaatttttaatgcagctggtcttccagcaggtgttttaaacactgtaacaggaaaagggtctgaaataggcgattatttaattacccatgaagaagtaaactttattaactttacgggaagctctgctgtaggtaagcatatttcaaaaatagctggaatgatacctatggttcttgagcttggtggtaaagatgctgctatagttctcgaagatgccaatcttgaaacaacagctaaaagcatagtatctggagcatatggatactccggccaaaggtgtactgctgtaaaaagagttcttgtaatggataaagtagctgatgaattagttgaacttgttacaaaaaaagttaaagaattaaaggtaggtaatccttttgatgatgttacaataaccccacttatagacaacaaggcagcagattatgttcaaactctcattgacgacgctatcgaaaagggtgcaactcttatcgttggaaataagcgtaaagaaaatttaatgtatcctactttatttgataatgtaactgctgatatgcgtattgcttgggaagaaccatttggaccagttttacctattattcgtgtaaaaagcatggatgaagcaatagaattagcaaatagatctgaatatggtcttcaatctgcagtatttactgaaaatatgcatgatgccttttatattgccaataaattagatgttggaactgttcaagtaaataataagcctgaaagaggcccagatcacttcccattccttggaacaaagtcatcaggtatgggcactcaaggaattcgatacagtatagaggcaatgacaaggcataaatcaatagttttaaacctataa
gapdh1核苷酸序列(SEQ ID NO:4)
atgaccattcgtgttggtattaacggatttggccgtatcggacgtaacttcttccgcgcagttctggagcgcagcgacgatctcgaggtagttgcagtcaacgacctcaccgacaacaagaccctttccacccttctcaagttcgactccatcatgggccgccttggccaggaagttgaatacgacgatgactccatcaccgttggtggcaagcgcatcgctgtttacgcagagcgcgatccaaagaacctggactgggctgcacacaacgttgacatcgtgatcgagtccaccggcttcttcaccgatgcaaacgcggctaaggctcacatcgaagcaggtgccaagaaggtcatcatctccgcaccagcaagcaacgaagacgcaaccttcgtttacggtgtgaaccacgagtcctacgatcctgagaaccacaacgtgatctccggcgcatcttgcaccaccaactgcctcgcaccaatggcaaaggtcctaaacgacaagttcggcatcgagaacggcctcatgaccaccgttcacgcatacactggcgaccagcgcctgcacgatgcacctcaccgcgacctgcgtcgtgcacgtgcagcagcagtcaacatcgttcctacctccaccggtgcagctaaggctgttgctctggttctcccagagctcaagggcaagcttgacggctacgcacttcgcgttccagttatcaccggttccgcaaccgacctgaccttcaacaccaagtctgaggtcaccgttgagtccatcaacgctgcaatcaaggaagctgcagtcggcgagttcggcgagaccctggcttactccgaagagccactggtttccaccgacatcgtccacgattcccacggctccatcttcgacgctggcctgaccaaggtctccggcaacaccgtcaaggttgtttcctggtacgacaacgagtggggctacacctgccagctcctgcgtctgaccgagctcgtagcttccaagctctaa
实施例4构建工程菌优化葡萄糖流向磷酸戊糖途径
参考实施例2和实施例3,构建葡萄糖6-磷酸脱氢酶编码基因zwf1(SEQ ID NO:5)取代ATP依赖性磷酸果糖激酶编码基因pfk1(SEQ ID NO:6)的表达载体,之后参考实施例3将其转入ncg1菌株中,获得工程菌ncg2。
zwf1核苷酸序列(SEQ ID NO:5)
atggtgatcttcggtgtcactggcgacttggctcgaaagaagctgctccccgccatttatgatctagcaaaccgcggattgctgcccccaggattctcgttggtaggttacggccgccgcgaatggtccaaagaagactttgaaaaatacgtacgcgatgccgcaagtgctggtgctcgtacggaattccgtgaaaatgtttgggagcgcctcgccgagggtatggaatttgttcgcggcaactttgatgatgatgcagctttcgacaacctcgctgcaacactcaagcgcatcgacaaaacccgcggcaccgccggcaactgggcttactacctgtccattccaccagattccttcacagcggtctgccaccagctggagcgttccggcatggctgaatccaccgaagaagcatggcgccgcgtgatcatcgagaagcctttcggccacaacctcgaatccgcacacgagctcaaccagctggtcaacgcagtcttcccagaatcttctgtgttccgcatcgaccactatttgggcaaggaaacagttcaaaacatcctggctctgcgttttgctaaccagctgtttgagccactgtggaactccaactacgttgaccacgtccagatcaccatggctgaagatattggcttgggtggacgtgctggttactacgacggcatcggcgcagcccgcgacgtcatccagaaccacctgatccagctcttggctctggttgccatggaagaaccaatttctttcgtgccagcgcagctgcaggcagaaaagatcaaggtgctctctgcgacaaagccgtgctacccattggataaaacctccgctcgtggtcagtacgctgccggttggcagggctctgagttagtcaagggacttcgcgaagaagatggcttcaaccctgagtccaccactgagacttttgcggcttgtaccttagagatcacgtctcgtcgctgggctggtgtgccgttctacctgcgcaccggtaagcgtcttggtcgccgtgttactgagattgccgtggtgtttaaagacgcaccacaccagcctttcgacggcgacatgactgtatcccttggccaaaacgccatcgtgattcgcgtgcagcctgatgaaggtgtgctcatccgcttcggttccaaggttccaggttctgccatggaagtccgtgacgtcaacatggacttctcctactcagaatccttcactgaagaatcacctgaagcatacgagcgcctcattttggatgcgctgttagatgaatccagcctcttccctaccaacgaggaagtggaactgagctggaagattctggatccaattcttgaagcatgggatgccgatggagaaccagaggattacccagcgggtacgtggggtccaaagagcgctgatgaaatgctttcccgcaacggtcacacctggcgcaggccataa
pfk1核苷酸序列(SEQ ID NO:6)
atggaagacatgcgaattgctactctcacgtcaggcggcgactgccccggactaaacgccgtcatccgaggaatcgtccgcacagccagcaatgaatttggctccaccgtcgttggttatcaagacggttgggaaggactgttaggcgatcgtcgcgtacagctgtatgacgatgaagatattgaccgaatcctccttcgaggcggcaccattttgggcactggtcgcctccatccggacaagtttaaggccggaattgatcagattaaggccaacttagaagacgccggcatcgatgcccttatcccaatcggtggcgaaggaaccctgaagggtgccaagtggctgtctgataacggtatccctgttgtcggtgtcccaaagaccattgacaatgacgtgaatggcactgacttcaccttcggtttcgatactgctgtggcagtggctaccgacgctgttgaccgcctgcacaccaccgctgaatctcacaaccgtgtgatgatcgtggaggtcatgggccgccacgtgggttggattgctctgcacgcaggtatggccggcggtgctcactacaccgttattccagaagtacctttcgatattgcagagatctgcaaggcgatggaacgtcgcttccagatgggcgagaagtacggcattatcgtcgttgcggaaggtgcgttgccacgcgaaggcaccatggagcttcgtgaaggccacattgaccagttcggtcacaagaccttcacgggaattggacagcagatcgctgatgagatccacgtgcgcctcggccacgatgttcgtacgaccgttcttggccacattcaacgtggtggaaccccaactgctttcgaccgtgttctggccactcgttatggtgttcgtgcagctcgtgcgtgccatgagggaagctttgacaaggttgttgctttgaagggtgagagcattgagatgatcacctttgaagaagcagtcggaaccttgaaggaagttccattcgaacgctgggttactgcccaggcaatgtttggatag
参考实施例2和实施例3,构建转醛醇酶编码基因tkt1(SEQ ID NO:7)取代果糖-1,6-二磷酸酶编码基因fbp1(SEQ ID NO:8)的表达载体,之后参考实施例3将其转入ncg2菌株中,获得工程菌ncg3。
tkt1核苷酸序列(SEQ ID NO:7)
atgtctcacattgatgatcttgcacagctcggcacttccacttggctcgacgacctctcccgcgagcgcattacttccggcaatctcagccaggttattgaggaaaagtctgtagtcggtgtcaccaccaacccagctattttcgcagcagcaatgtccaagggcgattcctacgacgctcagatcgcagagctcaaggccgctggcgcatctgttgaccaggctgtttacgccatgagcatcgacgacgttcgcaatgcttgtgatctgttcaccggcatcttcgagtcctccaacggctacgacggccgcgtgtccatcgaggttgacccacgtatctctgctgaccgcgacgcaaccctggctcaggccaaggagctgtgggcaaaggttgatcgtccaaacgtcatgatcaagatccctgcaaccccaggttctttgccagcaatcaccgacgctttggctgagggcatcagcgttaacgtcaccttgatcttctccgttgctcgctaccgcgaggtcatcgctgcgttcatcgagggcatcaagcaggctgctgcaaacggccacgacgtctccaagatccactctgtggcttccttcttcgtctcccgcgtcgacgttgagatcgacaagcgcctcgaggcaatcggatccgatgaggctttggctctgcgcggcaaggcaggcgttgccaacgctcagcgcgcttacgctgtgtacaaggagcttttcgacgccgccgagctgcctgaaggtgccaacactcagcgcccactgtgggcatccaccggcgtgaagaaccctgcgtacgctgcaactctttacgtttccgagctggctggtccaaacaccgtcaacaccatgccagaaggcaccatcgacgcggttctggagcagggcaacctgcacggtgacaccctgtccaactccgcggcagaagctgacgctgtgttctcccagcttgaggctctgggcgttgacttggcagatgtcttccaggtcctggagaccgagggtgtggacaagttcgttgcttcttggagcgaactgcttgagtccatggaagctcgcctgaagtag
fbp1核苷酸序列(SEQ ID NO:8)
atggagctggtgcgagttacggaagcagctgcactggcttctggacgttgggttggacgtggcatgaagaatgaaggcgacggtgccgctgttgacgccatgcgccagctcatcaactcagtgaccatgaagggcgtcgttgttatcggcgagggcgaaaaagacgaagctccaatgctgtacaacggcgaagaggtcggaaccggctttggacctgaggttgatatcgcagttgacccagttgacggcaccaccctgatggctgagggtcgccccaacgcaatttccattctcgcagctgcagagcgtggcaccatgtacgatccatcctccgtcttctacatgaagaagatcgccgtgggacctgaggccgcaggcaagatcgacatcgaagctccagttgcccacaacatcaacgcggtggcaaagtccaagggaatcaacccttccgacgtcaccgttgtcgtgcttgaccgtcctcgccacatcgaactgatcgcagacattcgtcgtgcaggcgcaaaggttcgtctcatctccgacggcgacgttgcaggtgcagttgcagcagctcaggattccaactccgtggacatcatgatgggcaccggcggaaccccagaaggcatcatcactgcgtgcgccatgaagtgcatgggtggcgaaatccagggcatcctggccccaatgaacgatttcgagcgccagaaggcacacgacgctggtctggttcttgatcaggttctgcacaccaacgatctggtgagctccgacaactgctacttcgtggcaaccggtgtgaccaacggtgacatgctccgtggcgtttcctaccgcgcaaacggcgcaaccacccgttccctggttatgcgcgcaaagtcaggcaccatccgccacatcgagtctgtccaccagctgtccaagctgcaggaatactccgtggttgactacaccaccgcgacctaa
实施例5评价工程菌株在葡萄糖培养基中发酵性能
将基因工程菌株ncg1、ncg2、ncg3和出发菌株谷氨酸棒状杆菌CathS141接种到种子培养基中进行两轮活化,然后转接到发酵培养基中。发酵培养基添加80g/L葡萄糖作为碳源。发酵在250mL的摇瓶中进行,接种量10%(v/v),培养条件为30℃,200rpm,控制pH值为6.5,以葡萄糖耗完为发酵终止时间。发酵结果如表1所示,发现工程菌ncg1、ncg2、ncg3的葡萄糖-赖氨酸转化率比对照菌株CathS141均有提高,且工程菌ncg3提升最为显著,结果表明通过调控胞内葡萄糖代谢流向以及增强胞内NADPH产生能力是提高赖氨酸生产的一种有效手段。
表1不同重组谷氨酸棒杆菌的发酵
菌株 葡萄糖-赖氨酸转化率(%)
CathS141 22.80±0.34
ncg1 24.55±0.20
ncg2 25.93±0.36
ncg3 28.78±0.19
本发明也测试用其它来源的NADP依赖型甘油醛3-磷酸脱氢酶(如Chryseobacterium joostei,Streptococcus mutans serotype c,Chryseobacteriumpiscicola和Pedobacter alluvionis来源,其核苷酸序列分别如SEQ ID NO:9~12所示)取代ncg3中Clostridium sp.NJ4来源的酶gapdh-n(SEQ ID NO:3),并分别标记为工程菌ncg32、ncg33、ncg34、ncg35,并与出发菌一并进行发酵实验,本实施例的发酵参数均相同,发酵结果如表2所示。结果发现上述其它来源的NADP依赖型甘油醛3-磷酸脱氢酶对葡萄糖-赖氨酸转化率也都具有提升效果。
表2不同重组谷氨酸棒杆菌的发酵
SEQ ID NO:9(来源于Chryseobacterium joostei)
atgagttcagtaaacagtgcatcatttcaagatatttttaaaagcgaaaccgaaattcccgaagaattcaaggttcctgaaatccatcagaaagtttatcttctcaatggtgaattggtagagtggaaaggagatacccaaaatatttattcccccgtgtgtataccaacagaaaacggattggagaggaagctattgggaagcattccgaatatcggtcctgatgaggcgatggaagttcttgaagcctgtgtaaaagcctatgataatggccttggtgagtggcccacgatgtctgtggagggaagaatcaagtgcatgcagaagtttgtatacctgatgatacagcagcgagatctggtcattaaattattaatgtgggagatcggaaaaacgctggcagattctaccaaggagtttgaccgtaccgcagattacatcaaccagacaatagatgcgcttaaggatctggatagagaatcttcccgttttcaggaggctgaagggaccattgctcaaatcagaagagcaccgcttggagtagtcttgagtatgggtccattcaattatccgttaaatgagatctttactacattgattccagcgttgatcatgggaaatacaattttgtttaaacttccaaaacatggtgtgttggctcattatcctttgttgaatgcctttaaagaagctttcccaaaaggaacagtgaatactttatatggaaaaggttcagaaattatcacaccaattatggaaagcggaaaggtcaatgtactggcatttatcggatctagtaaagtggctaacgggctgaaaaaactacatccaaaagtcaaccgtttaagagcaattttaagtcttgatgctaaaaatgcagccattgtaactaaaaatgcaaaccttgatgtggcagtgagcgaatgtattctgggagcactttcttttaacggacaacgttgtacagccctaaagttgatctttgttcagaaagagattgcaggagaatttaccaaaaagttaagcgaagctgtttctgcgctgaaagccggattgccatgggaaaaagatgtgaaggttaccccacttccggaagtaaataaacctccttatttgaaagaatgtattgatgatgcattatcgaaaggggccacagttttgaataaagacggaggctatacggaagaatcttttgtatttccggcagtagtatatcctgtgaacagtgatatgaagctgtatcatgaagaacagttcggtcctgtgattcctgttgtgccatttgaggatatcgaagaacctatagattatcaggtgaatgcttcccatggaatgcaggtaagcattttcagcgaagatccacatgaggtagcgaaactcattgatccttttgtaaatctggtaagccgtgtgaatatcaattgtcaggcacagcgtggtccggatgtatttccgtttacaggtagaaaggatagtgcagagggaacgctttctgtttttgatgcccttcgttcattttcaatccggtctttggtggctgcaaaactgacggaatccaacaaaacattattaaataccattgtgagagaacatgattccaacttcttaagtaccgactatattttctag
SEQ ID NO:10(来源于Streptococcus mutans serotype c)
ttgacaaaacaatataaaaattatgtcaatggcgagtggaagctttcagaaaatgaaattaaaatctacgaaccggccagtggagctgaattgggttcagttccagcaatgagtactgaagaagtagattatgtttatgcttcagccaagaaagctcaaccagcttggcgatcactttcatacatagaacgtgctgcctaccttcataaggtagcagatattttgatgcgtgataaagaaaaaataggtgctgttctttccaaagaggttgctaaaggttataaatcagcagtcagcgaagttgttcgtactgcagaaatcattaattatgcagctgaagaaggccttcgtatggaaggtgaagtccttgaaggcggcagttttgaagcagccagcaagaaaaaaattgccgttgttcgtcgtgaaccagtaggtcttgtattagctatttcaccatttaactaccctgttaacttggcaggttcgaaaattgcaccggctcttattgcgggaaatgttattgcttttaaaccaccgacgcaaggatcaatctcagggctcttacttgctgaagcatttgctgaagctggacttcctgcaggtgtctttaataccattacaggtcgtggttctgaaattggagactatattgtagaacatcaagccgttaactttatcaatttcactggttcaacaggaattggggaacgtattggcaaaatggctggtatgcgtccgattatgcttgaactcggtggaaaagattcagccatcgttcttgaagatgcagaccttgaattgactgctaaaaatattattgcaggtgcttttggttattcaggtcaacgctgtacagcagttaaacgtgttcttgtgatggaaagtgttgctgatgaactggtcgaaaaaatccgtgaaaaagttcttgcattaacaattggtaatccagaagacgatgcagatattacaccgttgattgatacaaaatcagctgattatgtagaaggtcttattaatgatgccaatgataaaggagccgctgcccttactgaaatcaaacgtgaaggtaatcttatctgtccaatcctctttgataaggtaacgacagatatgcgtcttgcttgggaagaaccatttggtcctgttcttccgatcattcgtgtgacatctgtagaagaagccattgaaatttctaacaaatcggaatatggacttcaggcttctatctttacaaatgatttcccacgcgcttttggtattgctgagcagcttgaagttggtacagttcatatcaataataagacacagcgcggtacggacaacttcccattcttaggggctaaaaaatcaggtgcaggtattcaaggggtaaaatattctattgaagctatgacaactgttaaatccgtcgtatttgatatcaaataa
SEQ ID NO:11(来源于Chryseobacterium piscicola)
atgaattcagagaacgcctcaacattcggacaaatttttaaaagtgaaaacgaaataccggaagaatataaaatcaaagaaattcatcagaaagaatatcttctcaacggggaacttatccaatggaacggcgagaccacagccatttattctccggtttacatccgtacagaaaatggtttagaaaggaaacttttgggcagcattcctaatattggtgtaaaagaagcaatagaaatactcgatgcatctgtaaaagcttatgacagcggatttggagaatggccaacgatgtctgttgaaaatagaataaaatgcatgcagaaatttgtatatctcatgattaagcagagagatttagttataaaactgctcatgtgggaaattggaaaaactttacctgactctactaaagaatttgacagaactgtagactacattaatcaaaccatagatgctcttaaagatctcgaccgagaatcttcgcgttttgagcaagctgaaggtacaattgcccaaatcagaagagcgccacttggggtagttttaagcatgggacccttcaattatcctttaaatgaaatttttactacgcttattcctgcattgattatggggaacaccctattgtttaaacttccaaaacatggtgttttagcacattatccgctgttgaatgcttttaaagaagcttttccgaaaggtacagttaatactttatatggcaaaggctcagagattattactccaattatggaaagcggaaaagtaaacgttctggcattcataggatctagtaaagtagccaacggactgaaaaaattacacccaaaagtgaaccgcttgagagcaattttaagtttagatgcaaaaaacgcagctattgtaacgaaaaatgcggatcttgatgttgcagtgagtgagtgtattttgggtgcattatcttttaacggacaaagatgtacagctttgaaattaatttttgtgcagaaagaaattgcggaagagtttactcaaaaattaagcaatgctgtacgcgaattgaaaccgggacttccttgggaaaaagacgtaaaaataaccccgcttcccgaagtaaataaaccacaatatcttaaagaatgtatagatgatgctctacaaaaaggtgccaaagttttgaatgaaaatggtggttttaccgatgaatcttttgttttccctgcagttgtttttcctgtaaattctgagatgaaattataccacgaagaacaattcgggccgattattcctattgtaccatttgaaaacatcaatgaaccaattgattatcaaataaatgcatctcacggaatgcaggtaagtattttcagtgaagatgctaaagaagtttcacagttgatagattctttcgttaatttagtgagtcgtgtaaacatcaattgccaagctcagcgaggaccagatgtatttcctttcactgggcgaaaagacagtgcagaaggcactctttctgtttttgatgctttgcgatcgttctcaatacgttctttggtagctgctaaagcaacagaatccaacaaaaatcttttgaatactattgtaagagatcatgattcaaactttttgagtacagattatcttttttaa
SEQ ID NO:12(来源于Pedobacter alluvionis)
atgaaaccatggaacggaccatttaatgaagttttttctccggtatgcgtaaaaacccctgagggcttaaaacggaagcgtatcggtagtttccctgtttgcacggagaaagagtctagagaagctttagatgcagctgtagccgcttatgataatggccgcgggcagtggccaactatgagcgttgctgatcggattagctgcgtggaaaactttacgcataaaatgattgagcaaaaggagattgttgcgaagctcattatgtgggagattggtaaatcttatgccgattcggtaaaagagttcgatcgtacagttgaatatatctatgctacgatcgatgcattaaaagatattgacagacagtcatcgcgctttgaaatcgagcagggaattgtggcccaggtacgccgttctccacttggggtggtactttgtatggggccgtttaattatcctttaaacgagacttttacaaccctgatcccggctttgattatgggcaatacgcttttattcaaaccacctaaacacggtactttattacattaccctttattggaggctttccgttccagttttcctaagggtgtggtaaatacgatttatggtcgaggcaatacaatcgttccgggattgatgaaatcgggaaaaatcaatgtgcttaccttaattggctcaagtaaggttgccaacgaacttaaaaaactgcaccctaaagtaaaccggttaagggctattttaggtttagatgccaaaaatgcagcgatcatcaccaaagatgccgacctggatttagcggtttctgaaaccgtattaggttcactttcttttaacggacaacgttgtacagccattaaaatagtttatgtacaccgcagtttagcacaggaatttttaaaacgtttatctgcagaggtagaaaaactgaagtttggcatgccgtgggaaaaaggcgtaaaccttacccccctgccggagctgaacaaacccgagtatttaaaagaatgtattgatgatgccgtttcgcacggggcaaaagtggtgaacaaaaatggtggacaaactttagaaacttttgtttatcctgccattgtttatcccgtaaacagtaacatgaaactgtaccgcgaagagcagtttggaccgattgtacctgttgtgccttttgatgacctggaagaacctatcgagtatttaattggctcgccacacggccagcaggtgagtatttttagcaacaatgctgcggtaatttcttcactgatcgatcctttggttaaccaggtaagtcgtgtaaatattaattgccaatgtcagcgtggaccagatgtttttccttttactgggcgtaaagacagtgccgaaggaacactttctgtggtggatgccctgcgttcgttctctatccgctctttagtagccactaagtttacagaggataataaaaagttacttaacgaaattgtgaggggagatgattcgaacttcttaagtacgaagtatattttttaa
实施例6:整合gapdh-n、zwf1和tkt1的突变体构建
参考实施例2中构建方法,本发明也构建了仅在出发菌株CathS141中额外整合gapdh-n(SEQ ID NO:3)、zwf1(SEQ ID NO:5)和tkt1(SEQ ID NO:7)三个基因,而不敲除gapdh1、pfk1和fbp1的菌株。参考实施例5中发酵方式比较发现其葡萄糖-赖氨酸转化率为25.93±0.41%(P<0.05),其比对照菌株CathS141提高了13.7%。
此外,实际研究过程中发现,仅在出发菌株CathS141中额外整合gapdh-n(SEQ IDNO:3)和zwf1(SEQ ID NO:5)两个基因,或仅在出发菌株CathS141中额外整合gapdh-n(SEQID NO:3)和tkt1(SEQ ID NO:7)两个基因,分别标记为工程菌ncg4、ncg5,参考实施例5中发酵方式进行发酵实验,发酵结果如表3所示,结果发现对葡萄糖-赖氨酸转化率都具有提升效果。
表3不同重组谷氨酸棒杆菌的发酵
菌株 葡萄糖-赖氨酸转化率(%)
CathS141 22.80±0.34
ncg4(gapdh-n+zwf1) 24.65±0.15
ncg5(gapdh-n+tkt1) 25.04±0.25
对比例1:PPP途径和EMP途径中其它基因对发酵的影响
本发明对PPP途径以及EMP途径中其它基因对谷氨酸棒状杆菌的赖氨酸生产的影响也进行了探究,参考文献“王路平,徐建中,张伟国.不同辅因子NADPH水平对谷氨酸棒杆菌生长及产物合成的影响[J].食品与生物技术学报,2021,40(04):44-57”所记载的方法,结合本发明实施例2中载体的构建方法,构建突变体(本发明以CathS141为出发菌,过表达其gnd基因(6-磷酸葡萄糖酸脱氢酶基因)、zwf基因(葡萄糖-6-磷酸脱氢酶基因),同时敲除其pgi基因(6-磷酸葡萄糖异构酶基因)),参考实施例5中发酵方式比较发现其葡萄糖-赖氨酸转化率为24.55±0.18%,虽然与对照菌株CathS141相比有微弱提高,但是效果不如本发明提供的其他工程菌。
实施例7:评价工程菌在木质纤维素水解液中的发酵性能
选用的木质纤维素物料为小麦秸秆,将小麦秸秆经过粉碎后筛分,粒径为10毫米,再经过水洗除去泥土、石块和金属等杂质,在105℃烘箱中烘干至恒重。烘干后小麦秸秆加入浓度8wt%硫酸溶液,控制固液比(g/g)7:3,180℃饱和水蒸汽加热10min,然后利用纤维素酶在温度为50℃酶解,获得小麦秸秆水解液。向小麦秸秆水解液中接种脱毒菌株宛氏拟青霉(Paecilomyces variotii Bainier)CATHTD891(保藏编号为CCTCC NO:M20211366),在33℃条件下进行生物脱毒36h,然后离心,收集上清液,获得脱毒后的小麦秸秆水解液,其含有95.4g/L葡萄糖,以提供碳源。在小麦秸秆水解液中添加发酵培养基(不额外添加葡萄糖),接种改造得到的菌株ncg3、ncg32、ncg33、ncg34、ncg35和出发菌株CathS141进行发酵对比,发酵在250mL的摇瓶中进行,接种量10%(v/v),培养条件为35℃,200rpm,控制pH值为6.5,以葡萄糖耗完为发酵终止时间。
发酵结果如表4所示,结果发现对葡萄糖-赖氨酸转化率都具有提升效果。
表4不同重组谷氨酸棒杆菌的发酵
表4的结果表明,以小麦秸秆水解液作为培养基碳源时,出发菌株和工程菌在赖氨酸产量上均出现显著差异(P<0.05)。
此外,当使用谷氨酸棒状杆菌B253为出发菌,按照和菌株ncg3相同的改造方法改造得到菌株命名为Bcg4,验证其在上述相同的发酵条件下发酵的发酵效果,发现Bcg4最终葡萄糖-赖氨酸转化率比对照菌株B253提高了10.09%(P<0.05)。
据此可知,本发明得到的重组菌株在真实物料秸秆水解液中具有高效的赖氨酸生产能力,因而具备良好的应用前景。
以上具体描述了本发明技术方案的操作实例,不视为对本发明的应用限制。凡操作条件的等同替换,均在本发明的保护范围之内。

Claims (10)

1.一种基因组合,其特征在于,所述基因组合包含NADP依赖型的甘油醛3-磷酸脱氢酶基因gapdh-n,且所述基因组合还包含来源于谷氨酸棒状杆菌(Corynebacteriumglutamicum)的葡萄糖6-磷酸脱氢酶基因zwf1和/或来源于谷氨酸棒状杆菌的转醛醇酶基因tkt1;
所述gapdh-n来源于丙酮丁醇梭菌(Clostridium acetobutylicum)、乔斯特金黄杆菌(Chryseobacteriumjoostei)、变形链球菌(Streptococcus mutans)、栖鱼金黄杆菌(Chryseobacterium piscicola)或冲击地土地杆菌(Pedobacter alluvionis)。
2.如权利要求1所述的基因组合,其特征在于,所述丙酮丁醇梭菌为丙酮丁醇梭菌LJ4,所述变形链球菌为变形链球菌血清型c(Streptococcus mutans serotype c);和/或,
所述谷氨酸棒状杆菌为保藏编号为CCTCC NO:M 20211495的谷氨酸棒状杆菌CathS141,或为谷氨酸棒状杆菌B253;
优选地,所述gapdh-n的核苷酸序列如SEQ ID NO:3和SEQ ID NO:9~12中任一所示,所述zwf1的核苷酸序列如SEQ ID NO:5所示,和/或,所述tkt1的核苷酸序列如SEQ ID NO:7所示。
3.一种重组表达载体组合,其特征在于,所述重组表达载体组合包括携带如权利要求1或2所述的基因组合中的所定义的gapdh-n的重组表达载体,且所述重组表达载体组合还包括携带如权利要求1或2所述的基因组合中的所定义的zwf1和/或tkt1的重组表达载体;
优选地,所述重组表达载体的骨架质粒为pK18mob。
4.一种基因工程菌,其特征在于,所述基因工程菌为在出发菌谷氨酸棒状杆菌中过表达如权利要求1或2所述的基因组合中所定义的基因的菌株;所述出发菌优选为保藏编号为CCTCC NO:M 20211495的谷氨酸棒状杆菌CathS141或谷氨酸棒状杆菌B253;
较佳地,所述基因工程菌包含如权利要求3所述的重组表达载体组合;
更佳地,所述重组表达载体中的基因通过同源重组方式整合在所述出发菌的基因组中,或以非整合形式存在于所述出发菌中。
5.如权利要求4所述的基因工程菌,其特征在于,所述基因工程菌不表达自身的NAD依赖型的甘油醛3-磷酸脱氢酶基因gapdh1,且还不表达果糖-1,6-二磷酸酶基因fbp1和/或ATP依赖性磷酸果糖激酶基因pfk1;例如,gapdh1、fbp1和pfk1被敲除;
优选地,所述gapdh1的核苷酸序列如SEQ ID NO:4所示,所述pfk1的核苷酸序列如SEQID NO:6所示,和/或,所述fbp1的核苷酸序列如SEQ ID NO:8所示。
6.如权利要求5所述的基因工程菌,其特征在于,所述基因组合中的基因整合至gapdh1、fbp1和/或pfk1被敲除后的位点上;
优选地,gapdh-n整合至gapdh1被敲除后的位点上,zwf1整合至pfk1被敲除后的位点上,tkt1整合至fbp1被敲除后的位点上。
7.一种制备L-赖氨酸的方法,其特征在于,所述方法包括发酵培养如权利要求4~6任一项所述的基因工程菌,和从发酵培养的培养液中回收L-赖氨酸;
优选地,所述发酵培养使用的发酵培养基含有不低于25g/L的葡萄糖,例如80-150g/L的葡萄糖;和/或,所述发酵培养的条件为:温度为28-37℃和/或pH为6-8。
8.如权利要求7所述的方法,其特征在于,所述发酵培养基中的葡萄糖来源于木质纤维素物料的水解液;所述木质纤维素物料包括秸秆、稻草、稻壳、蔗渣、木材、木屑中的至少一种。
9.一种如权利要求4~6任一项所述的基因工程菌的构建方法,其特征在于,所述构建方法包括向所述出发菌中转入如权利要求1或2所述的基因组合或如权利要求3所述的重组表达载体组合。
10.如权利要求1或2所述的基因组合、如权利要求3所述的重组表达载体组合或如权利要求4~6任一项所述的基因工程菌在L-赖氨酸生产中的应用。
CN202211715874.6A 2022-12-29 2022-12-29 基因组合、含其的基因工程菌及其在l-赖氨酸生产中的应用 Pending CN118272397A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211715874.6A CN118272397A (zh) 2022-12-29 2022-12-29 基因组合、含其的基因工程菌及其在l-赖氨酸生产中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211715874.6A CN118272397A (zh) 2022-12-29 2022-12-29 基因组合、含其的基因工程菌及其在l-赖氨酸生产中的应用

Publications (1)

Publication Number Publication Date
CN118272397A true CN118272397A (zh) 2024-07-02

Family

ID=91640738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211715874.6A Pending CN118272397A (zh) 2022-12-29 2022-12-29 基因组合、含其的基因工程菌及其在l-赖氨酸生产中的应用

Country Status (1)

Country Link
CN (1) CN118272397A (zh)

Similar Documents

Publication Publication Date Title
CN105121637B (zh) 酿酒酵母中替代甘油形成的消耗电子的乙醇生产途径
US9803221B2 (en) Engineering microorganisms to increase ethanol production by metabolic redirection
WO2007005646A9 (en) Recombinant host cells and media for ethanol production
US20100105114A1 (en) Methods and Compositions for Regulating Sporulation
JP4124270B1 (ja) グルコース・マンノース・キシロース並行発酵性菌およびそれを用いるバイオエタノールの製造方法
Liao et al. The significance of proline on lignocellulose-derived inhibitors tolerance in Clostridium acetobutylicum ATCC 824
JP2013545491A (ja) バイオマス加水分解物培地中でのキシロース資化性ザイモモナス・モビリスによるエタノール産生の向上
CN105647844B (zh) 一种利用木糖生产乙醇酸的重组菌及其构建方法与应用
US20110230682A1 (en) Microorganisms with inactivated lactate dehydrogenase gene (ldh) for chemical production
CN108753672B (zh) 一种木糖醇基因工程生产菌及其构建方法和应用
CN102433292B (zh) 一种高产环磷酸腺苷的重组大肠杆菌及其应用
CN113278568A (zh) 生产l-缬氨酸的重组大肠杆菌及其应用
Hu et al. Efficient production of d-1, 2, 4-butanetriol from d-xylose by engineered Escherichia coli whole-cell biocatalysts
CN110551648B (zh) 发酵木糖生产琥珀酸的谷氨酸棒杆菌及用途
US8629255B2 (en) Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol
CN101463358A (zh) 一种腈水合酶基因簇及其应用
CN101469318B (zh) (r)-羰基还原酶与甲酸脱氢酶偶联促进(r)-苯基乙二醇的合成
CN118272397A (zh) 基因组合、含其的基因工程菌及其在l-赖氨酸生产中的应用
CN111394396B (zh) 一种微生物利用甘油发酵生产1,3-丙二醇的方法
CN114410562A (zh) 一种克雷伯氏菌工程菌及其在生产乙醇中的应用
Cao et al. Enhanced photo fermentative H2 production from cornstalk by acid-tolerant R. capsulatus mutation
Dai et al. Metabolic engineering of Thermoanaerobacterium aotearoense strain SCUT27 for biofuels production from sucrose and molasses
CN117987444A (zh) 表达盒、含其的基因工程菌及其在l-赖氨酸生产中的应用
CN117417874B (zh) 一种工程菌株hc6-mt及其在低温生产海藻糖中的应用
CN116411010A (zh) 用于发酵生产l-赖氨酸的表达盒、菌株及其应用

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination