CN113278568A - 生产l-缬氨酸的重组大肠杆菌及其应用 - Google Patents

生产l-缬氨酸的重组大肠杆菌及其应用 Download PDF

Info

Publication number
CN113278568A
CN113278568A CN202010460035.9A CN202010460035A CN113278568A CN 113278568 A CN113278568 A CN 113278568A CN 202010460035 A CN202010460035 A CN 202010460035A CN 113278568 A CN113278568 A CN 113278568A
Authority
CN
China
Prior art keywords
gene
dna
microorganism
valine
escherichia coli
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010460035.9A
Other languages
English (en)
Other versions
CN113278568B (zh
Inventor
张学礼
郭恒华
刘萍萍
张冬竹
唐金磊
韩成秀
唐思青
刘树蓬
马延和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayannur Huaheng Biotechnology Co ltd
Tianjin Institute of Industrial Biotechnology of CAS
Anhui Huaheng Biotechnology Co Ltd
Original Assignee
Bayannur Huaheng Biotechnology Co ltd
Tianjin Institute of Industrial Biotechnology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayannur Huaheng Biotechnology Co ltd, Tianjin Institute of Industrial Biotechnology of CAS filed Critical Bayannur Huaheng Biotechnology Co ltd
Priority to CN202010460035.9A priority Critical patent/CN113278568B/zh
Priority to EP20930653.9A priority patent/EP3943595A4/en
Priority to US17/604,770 priority patent/US20230084158A1/en
Priority to PCT/CN2020/137779 priority patent/WO2021238184A1/zh
Publication of CN113278568A publication Critical patent/CN113278568A/zh
Application granted granted Critical
Publication of CN113278568B publication Critical patent/CN113278568B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01005L-Amino-acid dehydrogenase (1.4.1.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01086Ketol-acid reductoisomerase (1.1.1.86)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01009Leucine dehydrogenase (1.4.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/0101Phosphoglucokinase (2.7.1.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明通过增强L‑缬氨酸发酵菌株的氨基酸脱氢酶活性,和/或激活恩特纳‑杜德洛夫代谢(Entner‑Doudoroff,ED)途径,解决了L‑缬氨酸发酵过程中的还原力不平衡的问题,从而提高大肠杆菌生产L‑缬氨酸的产量和转化率,并实现一步法厌氧发酵L‑缬氨酸。

Description

生产L-缬氨酸的重组大肠杆菌及其应用
技术领域
本发明涉及生产L-缬氨酸的重组微生物的构建方法,所述构建方法获得的重组微生物,具体是重组大肠杆菌,以及通过发酵法生产L-缬氨酸的方法。
发明背景
L-缬氨酸作为三大支链氨基酸(Branched-chainaminoacid,BCAA)的一种,属于必需氨基酸,在人和动物中不能合成,只能通过从外界补充获得。目前,L-缬氨酸被广泛用于食品和医药领域,主要包括食品添加剂、营养增补液及风味剂等;广泛用于化妆品制备、以及用作抗生素或者除草剂前体等;另外,随着对饲料质量和配比需求的提高,在未来L-缬氨酸在饲料添加剂行业中的作用将越来越重要,需求量会越来越大,未来市场具有极大的潜力。
微生物细胞可以直接合成L-缬氨酸,但胞内大量反馈抑制等调控网络极大地限制了野生细胞的生产能力。要想获得能够高效生产L-缬氨酸的发酵菌株,必须有效解除微生物细胞这些自我调节机制。目前,世界范围内L-缬氨酸主要通过发酵法生产获得。用于发酵的生产菌株多通过诱变而来,出发菌株主要包括谷氨酸棒杆菌、黄色短杆菌、黄色短杆菌等。如陈宁等以黄色短杆菌为出发菌株,使用原生质体紫外诱变并结合DES化学诱变的策略,筛选获得了一株L-缬氨酸高产菌TV2564,L-缬氨酸产量高达29.39g/L。但是,传统诱变获得的菌株具有很强的随机性,并且遗传背景不清晰,副产物多,并且不容易进一步通过改造获得更加高产的菌株。
近年来,随着合成生物学和代谢工程的迅速发展,通过遗传改造获得能够高效生产L- 缬氨酸、遗传背景清晰、且易于培养的重组工程菌株应运而生并取得了很好的效果。谢希贤等整合枯草芽孢杆菌乙酰乳酸合酶的编码基因alsS,解除了L-缬氨酸对合成通路的反馈抑制,同时整合大肠杆菌ppGpp3’-焦磷酸水解酶的突变基因spoTM,增强了丙酮酸供应,增强了出发菌株VHY03的摇瓶发酵生产L-缬氨酸的水平。SangYupLee课题组2007年从大肠杆菌W3110出发,结合理性代谢工程、转录组分析和遗传改造、以及基因敲除等手段获得了一株能够生产L-缬氨酸的工程菌。该菌株在好氧条件下批式培养(batchculture)以生产,培养过程中需要持续通氧,且培养过程中需要添加L-异亮氨酸保证细胞正常生长。进一步的,课题组使用类似的策略从对L-缬氨酸具有更高耐受性的大肠杆菌W出发重新构建了1株新的L-缬氨酸工程菌。该菌株同样需要在好氧条件下培养。
上述报道虽然提高了L-缬氨酸的发酵产量,但是L-缬氨酸的生产过程多是好氧或者微好氧条件下完成的,无法实现一步法厌氧发酵。好氧工艺在生产过程中需要用空气,能耗很大。更关键的是,有相当一部分碳源进入三羧酸循环(TCA)从而被用于细胞生长,导致转化率比理论最大值要低很多。因此好氧工艺成本高,且对设备有要求,操作步骤繁杂。厌氧工艺和好氧相比,具有低能耗、高转化率的优点,生产过程中不需要通空气,大大节约能耗;产品的转化率通常接近理论最大值。氨基酸生产的厌氧发酵最早是在丙氨酸生产过程中实现的,目前其他氨基酸的生产目前未有纯厌氧发酵工艺的报道。
另外,L-缬氨酸工程菌改造过程中关键基因的过表达都是通过外源质粒转化宿主菌实现,这就导致发酵过程中需要添加抗生素维持质粒存在,极大的增加了生产成本并存在在产业化生产中质粒丢失的风险。
因此,本领域仍需要提供高产、节能、简便、稳定的生产L-缬氨酸的重组微生物以及相应的L-缬氨酸的生产制备方法。
发明内容
本发明通过增强L-缬氨酸发酵菌株的氨基酸脱氢酶活性,和/或激活恩特纳-杜德洛夫代谢(Entner-Doudoroff,ED)途径,解决了L-缬氨酸发酵过程中的还原力不平衡的问题,从而提高大肠杆菌生产L-缬氨酸的产量和转化率,并实现一步法厌氧发酵L-缬氨酸。
本发明的第一个方面,是提供一种L-缬氨酸的重组微生物的构建方法,经该方法获得的重组微生物具有稳定遗传背景、且具备平衡的L-缬氨酸还原力,适宜一步法厌氧发酵。
在本申请中,酶的活性“增强”是指提高微生物中有相应的DNA编码的一种或多种酶的胞内活性,增强活性可以通过本领域已知的任何合适方法实现,例如通过过表达,包括但不限于提高所述基因或等位基因的拷贝数,修饰指导或控制基因表达的核苷酸序列,使用强启动子使蛋白质活性或浓度比起始微生物水平提高10%-500%。
在本申请中,“激活”是指通过本领域已知的方式使得所述的待激活的代谢途径产生或增强,如通过向微生物中导入代谢途径上的相关基因,使得代谢途径产生;或通过将待激活的代谢途径的相关基因置于合适的调控元件的控制下,例如置于增强子序列下,以使得这些基因的表达强度提高。
在一个实施方式中,包括向所述微生物中导入氨基酸脱氢酶基因,使得所述酶活性增强。
在一个优选的实施方式中,通过向所述微生物中导入氨基酸脱氢酶基因,使得所述酶活性增强。
在一个实施方式中,包括激活微生物中的ED途径的步骤。
在某些优选的实施方式中,包括向微生物中导入氨基酸脱氢酶基因,以及激活微生物中的ED途径的步骤。
在一个实施方式中,本发明导入的氨基酸脱氢酶基因对于被导入的微生物而言是外源的。所述氨基酸脱氢酶基因可以是来自任何微生物例如乳球菌、芽孢杆菌等的相应基因。
在一个实施方式中,所述氨基酸脱氢酶基因是NADH依赖型的。
在厌氧发酵时,葡萄糖的代谢主要是通过糖酵解途径(EMP途径),1mol葡萄糖代谢生产 2mol丙酮酸的同时,会生成2molATP和2molNADH。因此,这就导致了厌氧条件下代谢工程改造的大肠杆菌中出现氧化还原力供给不平衡的问题,即NADH过剩,而NADPH供给不足。因此为实现在厌氧条件下高效生产L-缬氨酸,须解决辅因子不平衡问题。本发明选择NADH依赖型的氨基酸脱氢酶基因能够使得厌氧条件下过剩的NADH得到消耗,解决厌氧发酵时还原力平衡的问题。
在一个实施方式中,所述氨基酸脱氢酶基因是亮氨酸脱氢酶基因,优选地,所述的亮氨酸脱氢酶基因是leuDH。
在一个实施方式中,所述激活ED途径包括提高6-磷酸葡萄糖脱氢酶(zwf)基因、内酯酶编码基因(pgl)、6-磷酸葡糖酸脱水酶基因(edd)和2-酮-3-脱氧-6-磷酸葡糖酸醛缩酶基因(eda)的表达强度的步骤。
本领域技术人员能够理解,可通过增加zwf、pgl、edd和eda基因的拷贝数,或者通过将这些基因置于合适的调控元件的控制下,提高所述基因的表达强度。
在一个实施方式中,还包括向微生物中导入乙酰羟基酸还原异构酶编码基因的步骤,使得所述酶活性增强;优选地,所述乙酰羟基酸还原异构酶编码基因选自ilvC。
所述的“导入”可以以本领域已知的任何合适方式,例如以质粒形式,或者整合入基因组中的形式存在与所述微生物中。在一个实施方式中,所述整合入基因组中的酶编码基因置于合适的调控元件的控制下。
所述调控元件选自M1-93人工调控元件、MRS1人工调控元件、RBS人工调控元件或M1-46人工调控元件;
在一个实施方式中,M1-93人工调控元件调控leuDH基因、zwf基因和pgl基因;
在一个实施方式中,MRS1人工调控元件调控edd基因。
在一个实施方式中,RBS人工调控元件调控基因eda。
在一个实施方式中,M1-46人工调控元件调控ilvC基因。
在一个实施方式中,本发明还包括敲除上述重组微生物的6-磷酸葡萄糖激酶基因(pfkA) 的步骤。
在一个实施方式中,本发明还包括对上述重组微生物的以下酶基因中的一种或几种进行如下改造,以使得这些酶的活性降低或失活。
(1)敲除甲基乙二醛合酶(mgsA)基因;
(2)敲除乳酸脱氢酶(ldhA)基因;
(3)敲除磷酸乙酰转移酶(pta)和/或乙酸激酶(ackA)基因;
(4)敲除丙酸激酶(tdcD)和/或甲酸乙酰转移酶(tdcE)基因;
(5)敲除醇脱氢酶(adhE)基因;
(6)敲除富马酸还原酶(frd)和/或丙酮酸甲酸裂解酶(pflB)基因。
本申请所述“敲除”,是指用本领域已知的方式进行基因敲除,使得所述酶的活性被降低或失活。所述的敲除操作针对的是出发微生物内源性的酶基因,使得微生物的上述内源性酶活性降低或失活。
还可以通过同源重组等基因工程的方式,以另一基因的编码序列取代上述(1)-(6) 中所述酶基因的编码序列,从而使得微生物的上述内源性酶活性降低或失活。替代这些内源性酶的基因可以是待增强表达的基因,如上述的ilvC基因或leuDH基因。
在一个实施方式中,还包括:
(7)增强本发明的重组微生物中的乙酰乳酸合成酶(AHAS)和/或二羟酸脱水酶(ilvD) 的活性。
在一个优选地实施方式中,AHAS选自ilvBN、ilvGM或ilvIH,它们中至少一种酶的活性被增强。
在一个优选地实施方式中,可以通过将ilvBN、ilvGM基因置于合适的调控元件的控制下,以使得所述基因的表达增强。所述调控原件优选M1-93人工调控元件。
通过在一个优选地实施方式中,ilvIH的活性通过解除缬氨酸对ilvIH的反馈抑制得到增强,例如通过突变ilvH基因解除缬氨酸对ilvIH的反馈抑制。
就涉及L-缬氨酸生物合成的乙酰羟酸合成酶而言,除了同功酶Ⅱ(这里也称为AHASⅡ),还知道有同功酶Ⅲ(这里也称为AHASⅢ)。AHASⅢ由ilvIH操纵子编码,该操纵子由编码大亚基(催化亚基)的ilvI和编码小亚基(控制亚基)的ilvH组成。AHASⅢ受L-缬氨酸的反馈抑制。可采用已报道的方法突变ilvI基因,例如ilvH14Gly→Asp的氨基酸取代(Vyazmensky,M. 等,《生物化学》35:10339-10346(1996))和/或ilvH17Ser→Phe(US6737255B2);以及ilvH612 (DeFelice等,《细菌学杂志》120:1058-1067(1974))等。
在一个实施方式中,本发明的重组微生物中的二羟酸脱水酶(ilvD)的活性被增强,例如通过向微生物中导入ilvD基因增强ilvD的活性。
第(7)项操作,任选地结合上述(1)-(6)任一项或几项改造进行。
在一个实施方式中,结合第(2)项改造进行操作。
在一个实施方式中,结合第(6)项改造进行操作。
在一个实施方式中,结合第(2)项和第(5)项改造进行操作。
在一个实施方式中,结合第(2)项和第(6)项改造进行操作。
在一个实施方式中,结合第(1)项、第(3)-(6)项改造进行操作。
在一个实施方式中,结合第(1)-(6)项改造进行操作。
在一个实施方法中,任选地,以ilvC基因替换微生物内源性的mgsA基因来实现第(1)项敲除。
在一个实施方式中,以ilvD基因替换微生物内源性的pflB基因,和/或以leuDH基因替换微生物内源性的frd基因来实现第(6)项敲除。
所述替换可以本领域技术人员已知的方式,将待插入的基因的编码序列整合到所述微生物染色体中被替换的基因编码序列位点,使得原位点基因编码序列被整合插入的基因的编码序列所取代。
优选地,ilvC、ilvD和leuDH的替换同时发生。
在一个实施方式中,所述的微生物为大肠杆菌。
在一个实施方式中,所述的微生物为大肠杆菌ATCC8739。
在一个实施方式中,使用至少一个调控元件调控上述涉及的酶的基因。
所述调控元件选自M1-93人工调控元件、MRS1人工调控元件、RBS人工调控元件或M1-46人工调控元件;
在一个实施方式中,M1-93人工调控元件调控ilvD、leuDH、ilvBN、zwf、pgl和ilvGM基因。
在一个实施方式中,MRS1人工调控元件调控edd基因。
在一个实施方式中,RBS人工调控元件调控基因eda。
在一个实施方式中,M1-46人工调控元件调控ilvC基因。
调控元件可通过已知的基因工程方法插入所述基因的上游。所述方法包括但不限于以基因重组的方式,例如以同源重组的方式调控元件的序列插入目标酶的基因编码序列上游,以增强目标基因表达的强度。
在一个实施方式中,其中所述酶编码基因和所述的调控元件整合入所述微生物的基因组中。
在一个实施方式中,将包含所述述酶编码基因和所述的调控元件序列的质粒导入所述微生物中。
在一个实施例中,以整合入所述微生物的基因组的方法完成目标酶基因的导入、突变或敲除。
在一个实施例中,以同源重组的方法完成所述酶基因的导入、突变或敲除。
在一个实施例中,以两步同源重组的方法完成所述酶基因的导入、突变或敲除。
可采用本领域已知的同源重组系统,如大肠杆菌RecA重组系统,Red重组系统进行同源重组以实现目标基因的导入、突变或敲除。
以两步同源重组的方法导入、突变或敲除目标基因包括如下步骤(以大肠杆菌为例):
(1)DNA片段I的制备:以pXZ-CS质粒(Tan,etal.,ApplEnvironMicrobiol,2013,79:4838-4844)DNA为模板,使用扩增引物1扩增出DNA片段I,用于第一步同源重组;
(2)第一步同源重组:将pKD46质粒(DatsenkoandWanner2000,ProcNatlAcadSciUSA 97:6640-6645)转化至大肠杆菌,然后将DNA片段I转至pKD46的大肠杆菌,使用检测引物 1验证转化的菌并挑选菌落;
(3)DNA片段II的制备:以出发大肠杆菌为模板,用扩增引物2扩增出DNA片段II。DNA片段II用于第二次同源重组。
(4)第二步同源重组:将DNA片段II转化至第二步挑选获得的菌落;使用检测引物2验证转化的菌并挑选菌落。
本发明的第二个方面,是提供了一种利用上述构建方法得到的用于生产L-缬氨酸的重组微生物,具体是一种重组大肠杆菌,其包含乙酰羟酸异构还原酶和/或氨基酸脱氢酶基因,在一个实施方式中,采用大肠杆菌ATCC8739作为出发菌株,通过基因同源重组实现胞内辅因子NADH供给和细胞生长的偶联,从而实现厌氧条件下细胞生长和L-缬氨酸生产的偶联(图1)。
在一个实施方式中,利用上述构建方法得到的重组大肠杆菌,进一步经过代谢进化,经过例如50代、70代、80代、90代、100代、120代获得了高产L-缬氨酸的重组大肠杆菌。在一个实施方式中,经70代代谢进化获得了一株产L-缬氨酸的重组大肠杆菌,其保藏号为:CGMCC19457,分类命名为:大肠埃希氏菌(Escherichiacoli),生物材料已于2020年3月 6日提交保藏,保藏单位:中国微生物菌种保藏管理委员会普通微生物中心,保藏地址为北京市朝阳区北辰西路1号院3号。
本发明的第三方面,是上述方法获得的重组微生物在生产L-缬氨酸中的应用。
本发明的第四方面,是利用上述构建获得的重组微生物发酵生产L-缬氨酸的方法,包括:(1)发酵培养构建获得的重组微生物;(2)分离并收获L-缬氨酸。
在一个实施方式中,所述发酵培养为厌氧发酵培养。
在一个实施方式中,所述厌氧发酵包括如下步骤:
(1)种子培养:挑取平板上的克隆接种到种子培养基中,37℃,振荡培养,获得种子培养液;
(2)发酵培养:将种子培养液接种于发酵培养基,37℃,150rpm,发酵4天,得到发酵液。控制发酵罐的pH在7.0。培养过程不通任何气体。
其中种子培养基由以下成分组成(溶剂为水):葡萄糖20g/L,玉米浆干粉10g/L,KH2PO4 8.8g/L、(NH4)2SO42.5g/L、MgSO4·7H2O2g/L。
发酵培养基和种子培养基成分相同,区别仅在于葡萄糖浓度为50g/L。
本发明的有益效果:
(1)相对于之前的生产方法和菌株,本发明实现了一步法厌氧发酵生产L-缬氨酸,降低了生产成本、提高了转化率。
(2)本发明优选对重组微生物的基因组而非以质粒形式构建稳定遗传的L-缬氨酸生产菌株,不需要额外添加抗生素和诱导剂等物质,生产工艺稳定易操作。
(3)通过代谢进化方式,提高了重组微生物的L-缬氨酸的产量和转化率以及细胞耐受性。
附图说明
图1:L-缬氨酸合成途径。
图2:高效液相色谱测定L-缬氨酸的标准品。
图3:高效液相色谱测定Sval048菌株发酵液组分。
图4:代谢进化发酵培养获得Sval049菌株。
图5:高效液相色谱测定L-缬氨酸的标准品。
图6:高效液相色谱测定Sval049菌株发酵液组分。
具体实施方式
本发明通过下述实施例进一步阐明,但任何实施例或其组合不应当理解为对本发明的范围或实施方式的限制。本发明的范围由所附权利要求书限定,结合本说明书和本领域一般常识,本领域普通技术人员可以清楚地明白权利要求书所限定的范围。在不偏离本发明的精神和范围的前提下,本领域技术人员可以对本发明的技术方案进行任何修改或改变,这种修改和改变也包含在本发明的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
本研究中所构建的菌株和质粒详见表1,所用引物详见表2。
表1本发明所用的菌株和质粒
Figure RE-GDA0002668931190000081
Figure RE-GDA0002668931190000091
表2本发明所用的引物
Figure RE-GDA0002668931190000092
Figure RE-GDA0002668931190000101
Figure RE-GDA0002668931190000111
Figure RE-GDA0002668931190000121
Figure RE-GDA0002668931190000131
Figure RE-GDA0002668931190000141
实施例1:ATCC8739菌株中甲基乙二醛合酶编码基因mgsA的敲除
从大肠杆菌ATCC8739出发,采用两步同源重组的方法敲除甲基乙二醛合酶编码基因 mgsA,具体步骤如下:
第一步,以pXZ-CS质粒DNA为模板,使用引物mgsA-cs-up/mgsA-cs-down扩增出2719bp的DNA片段I,用于第一步同源重组。
扩增体系为:Phusion5X缓冲液(NewEnglandBiolabs)10μl、dNTP(每种dNTP各10mM)1μl、DNA模板20ng、引物(10μM)各2μl、PhusionHigh-FidelityDNA聚合酶(NewEnglandBiolabs)(2.5U/μl)0.5μl、蒸馏水33.5μl,总体积为50μl。
扩增条件为98℃预变性2分钟(1个循环);98℃变性10秒、56℃退火10秒、72℃延伸2分钟(30个循环);72℃延伸10分钟(1个循环)。
将上述DNA片段I用于第一次同源重组:首先将pKD46质粒(购买于美国耶鲁大学CGSC大肠杆菌保藏中心,CGSC#7739)通过电转化法转化至大肠杆菌ATCC8739,然后将 DNA片段I电转至带有pKD46的大肠杆菌ATCC8739。
电转条件为:首先准备带有pKD46质粒的大肠杆菌ATCC8739的电转化感受态细胞;将50μl感受态细胞置于冰上,加入50ngDNA片段I,冰上放置2分钟,转移至0.2cm的 Bio-Rad电击杯。使用MicroPulser(Bio-Rad公司)电穿孔仪,电击参数为电压2.5kv。电击后迅速将1mlLB培养基转移至电击杯中,吹打5次后转移至试管中,75rpm,30℃孵育2小时。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB 平板上,30℃过夜培养后,挑选单菌落进行PCR验证,所用引物XZ-mgsA-up/XZ-mgsA-down,正确的菌落扩增产物为3646bp的片段,挑选一个正确的单菌落,命名为Sval001。
第二步,野生型大肠杆菌ATCC8739的基因组DNA为模板,用引物 XZ-mgsA-up/mgsA-del-down扩增出566bp的DNA片段II。DNA片段II用于第二次同源重组。扩增条件和体系同第一步中所述。将DNA片段II电转至菌株Sval001。
电转条件为:首先准备带有pKD46质粒的Sval001的电转化感受态细胞(Doweretal., 1988,NucleicAcidsRes16:6127-6145);将50μl感受态细胞置于冰上,加入50ngDNA片段 II,冰上放置2分钟,转移至0.2cm的Bio-Rad电击杯。使用MicroPulser(Bio-Rad公司)电穿孔仪,电击参数为电压2.5kv。电击后迅速将1mlLB培养基转移至电击杯中,吹打5次后转移至试管中,75转,30℃孵育4小时。将菌液转移至含有10%蔗糖的没有氯化钠的LB 液体培养基(250ml烧瓶中装50ml培养基),培养24小时后在含有6%蔗糖的没有氯化钠的 LB固体培养基上划线培养。经过PCR验证,所用引物为XZ-mgsA-up/XZ-mgsA-down,正确的菌落扩增产物为1027bp的片段,挑选一个正确的单菌落,将其命名为Sval002(表1)。
实施例2:乳酸脱氢酶编码基因ldhA的敲除
从Sval002出发,通过两步同源重组的方法敲除乳酸脱氢酶编码基因ldhA,具体步骤如下:
第一步,以pXZ-CS质粒DNA为模板,使用引物ldhA-cs-up/ldhA-cs-down扩增出2719 bp的DNA片段I,用于第一步同源重组。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Sval002。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval002,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval002。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-ldhA-up/XZ-ldhA-down进行验证,正确的PCR产物应该3448bp,挑选一个正确的单菌落,命名为Sval003。
第二步,以野生型大肠杆菌ATCC8739的DNA为模板,用引物 XZ-ldhA-up/ldhA-del-down扩增出476bp的DNA片段II。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Sval003。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-ldhA-up/XZ-ldhA-down,正确的菌落扩增产物为829bp 的片段,挑选一个正确的单菌落,将其命名为Sval004(表1)。
实施例3:磷酸乙酰转移酶编码基因pta和乙酸激酶编码基因ackA的敲除
从Sval004出发,通过两步同源重组的方法敲除磷酸乙酰转移酶编码基因pta和乙酸激酶编码基因ackA,具体步骤如下:
第一步,以pXZ-CS质粒DNA为模板,使用引物ackA-cs-up/pta-cs-down扩增出2719bp 的DNA片段I,用于第一步同源重组。扩增体系和扩增条件与实施例1中所述一致。将DNA 片段I电转至Sval004。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval004,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval004。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-ackA-up/XZ-pta-down进行验证,正确的PCR产物应该3351bp,挑选一个正确的单菌落,命名为Sval005。
第二步,以野生型大肠杆菌ATCC8739的DNA为模板,用引物 XZ-ackA-up/ackA-del-down扩增出371bp的DNA片段II。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Sval005。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-ackA-up/XZ-pta-down,正确的菌落扩增产物为732bp的片段,挑选一个正确的单菌落,将其命名为Sval006(表1)。
实施例4:丙酸激酶编码基因tdcD和甲酸乙酰转移酶编码基因tdcE的敲除
从Sval006出发,通过两步同源重组的方法敲除丙酸激酶编码基因tdcD和甲酸乙酰转移酶编码基因tdcE,具体步骤如下:
第一步,以pXZ-CS质粒DNA为模板,使用引物tdcDE-cs-up/tdcDE-cs-down扩增出2719 bp的DNA片段I,用于第一步同源重组。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Sval006。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval006,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval006。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-tdcDE-up/XZ-tdcDE-down进行验证,正确的PCR产物应该4380bp,挑选一个正确的单菌落,命名为Sval007。
第二步,以野生型大肠杆菌ATCC8739的DNA为模板,用引物 XZ-tdcDE-up/tdcDE-del-down扩增出895bp的DNA片段II。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Sval007。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-tdcDE-up/XZ-tdcDE-down,正确的菌落扩增产物为1761bp的片段,挑选一个正确的单菌落,将其命名为Sval008(表1)。
实施例5:醇脱氢酶基因adhE的敲除
从Sval008出发,通过两步同源重组的方法敲除醇脱氢酶基因adhE,具体步骤包括:
第一步,以pXZ-CS质粒DNA为模板,使用引物adhE-cs-up/adhE-cs-down扩增出2719 bp的DNA片段I,用于第一步同源重组。扩增体系和扩增条件与实施例1中所述一致。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval008,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval008。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-adhE-up/XZ-adhE-down进行验证,正确的PCR产物应该3167bp,挑选一个正确的单菌落,命名为Sval009。
第二步,以野生型大肠杆菌ATCC8739的DNA为模板,用引物 XZ-adhE-up/adhE-del-down扩增出271bp的DNA片段II。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Sval009。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-adhE-up/XZ-adhE-down,正确的菌落扩增产物为548bp 的片段,挑选一个正确的单菌落,将其命名为Sval010(表1)。
实施例6:乙酰羟基酸还原异构酶编码基因ilvC在甲基乙二醛合酶编码基因mgsA位点的整合
从Sval010出发,通过两步同源重组的方法将来自大肠杆菌的乙酰羟基酸还原异构酶编码基因ilvC整合到甲基乙二醛合酶编码基因mgsA位点,具体步骤包括:
第一步,在Sval010菌株中mgsA位点整合cat-sacB片段,cat-sacB片段的PCR、整合、验证同实施例1中mgsA基因敲除的第一步完全一致,获得的克隆命名为Sval011。
第二步,以野生型大肠杆菌ATCC8739的DNA为模板,用引物 mgsA-ilvC-up/mgsA-ilvC-down扩增出1576bp的DNA片段II。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Sval011。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-mgsA-up/XZ-mgsA-down,正确的菌落扩增产物为2503bp的片段,挑选一个正确的单菌落,将其命名为Sval012(表1)。
实施例7:乙酰羟基酸还原异构酶编码基因ilvC的调控
从Sval012出发,使用人工调控元件调控整合在甲基乙二醛合酶编码基因mgsA位点的乙酰羟基酸还原异构酶编码基因ilvC的表达,具体步骤如下:
第一步,以pXZ-CS质粒DNA为模板,使用引物mgsA-Pcs-up/mgsA-Pcs-down扩增出2719bp的DNA片段I,用于第一步同源重组。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Sval012。
将DNA片段I用于第一次同源重组:首先将pKD46质粒(购买于美国耶鲁大学CGSC大肠杆菌保藏中心,CGSC#7739)通过电转化法转化至大肠杆菌Sval012,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval012。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-mgsA-up/ilvC-YZ347-down进行验证,正确的PCR产物应该3482bp,挑选一个正确的单菌落,命名为Sval013。
第二步,以M1-46(Lu,etal.,ApplMicrobiolBiotechnol,2012,93:2455-2462)的基因组 DNA为模板,用引物mgsA-P46-up/ilvC-P46-down扩增出188bp的DNA片段II。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Sval013。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-mgsA-up/ilvC-YZ347-down,正确的菌落扩增产物为951bp的片段,挑选一个正确的单菌落,将其命名为Sval014(表1)。
实施例8:二羟酸脱水酶编码基因ilvD的整合
从Sval014出发,通过两步同源重组的方法将来自大肠杆菌的二羟酸脱水酶编码基因 ilvD整合到丙酮酸甲酸裂解酶编码基因pflB位点并替换掉pflB基因,即在整合ilvD的同时敲除pflB基因,具体步骤如下:
第一步,以pXZ-CS质粒DNA为模板,使用引物pflB-CS-up/pflB-CS-down扩增出2719 bp的DNA片段I,用于第一步同源重组。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Sval014。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval014,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval014。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-pflB-up600/XZ-pflB-down进行验证,正确的PCR产物应该3675bp,挑选一个正确的单菌落,命名为Sval015。
第二步,以大肠杆菌MG1655(来自ATCC,编号700926)的基因组DNA为模板,用引物pflB-ilvD-up/pflB-ilvD-down扩增出1951bp的DNA片段II。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Sval015。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-pflB-up600/XZ-pflB-down,正确的菌落扩增产物为2907bp 的片段,挑选一个正确的单菌落,将其命名为Sval016(表1)。
实施例9:二羟酸脱水酶编码基因ilvD的表达调控
从Sval016出发,使用人工调控元件调控整合在丙酮酸甲酸裂解酶编码基因pflB位点的二羟酸脱水酶编码基因ilvD的表达,具体步骤如下:
第一步,以pXZ-CS质粒DNA为模板,使用引物pflB-Pcs-up/pflB-Pcs-down扩增出2719 bp的DNA片段I,用于第一步同源重组。扩增体系和扩增条件与实施例1中所述一致。将DNA片段I电转至Sval016。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval016,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval016。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-pflB-up600/ilvD-YZ496-down进行验证,正确的PCR产物应该3756bp,挑选一个正确的单菌落,命名为Sval017。
第二步,以M1-93(Lu,etal.,ApplMicrobiolBiotechnol,2012,93:2455-2462)的基因组 DNA为模板,用引物pflB-Pro-up/ilvD-Pro-down扩增出189bp的DNA片段II。DNA片段 II用于第二次同源重组。将DNA片段II电转至菌株Sval017。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-pflB-up600/ilvD-YZ496-down,正确的菌落扩增产物为1226 bp的片段,挑选一个正确的单菌落,将其命名为Sval018(表1)。
实施例10:乙酰乳酸合成酶基因ilvBN的调控
使用人工调控元件M1-93通过两步同源重组的方法调控乙酰乳酸合成酶基因ilvBN的表达,具体步骤如下:
第一步,以pXZ-CS质粒DNA为模板,使用引物ilvBpro-catup/ilvBpro-catdown扩增出2719bp的DNA片段I,用于第一步同源重组。扩增体系和扩增条件与实施例1中所述一致。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval018,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval018。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物ilvBpro-YZup/ilvBpro-YZdown进行验证,正确的PCR产物应该2996bp,挑选一个正确的单菌落,命名为Sval019。
第二步,以M1-93的基因组DNA为模板,用引物ilvBpro-up/ilvBpro-down扩增出188 bp的DNA片段II。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Sval019。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为ilvBpro-YZup/ilvBpro-YZdown,正确的菌落扩增产物为465bp的片段,挑选一个正确的单菌落,将其命名为Sval020。
实施例11:乙酰乳酸合成酶基因ilvGM的调控
使用人工调控元件M1-93通过两步同源重组的方法调控乙酰乳酸合成酶基因ilvGM的表达,具体步骤如下:
第一步,以pXZ-CS质粒DNA为模板,使用引物ilvGpro-catup/ilvGpro-catdown扩增出2719bp的DNA片段I,用于第一步同源重组。扩增体系和扩增条件与实施例1中所述一致。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval020,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval020。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物ilvGpro-YZup/ilvGp-YZdown进行验证,正确的PCR产物应该2993bp,挑选一个正确的单菌落,命名为Sval021。
第二步,以M1-93的基因组DNA质粒DNA为模板,用引物ilvGpro-up/ilvGpro-down扩增出188bp的DNA片段II。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Sval021。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为ilvGpro-YZup/ilvGp-YZdown,正确的菌落扩增产物为462bp的片段,挑选一个正确的单菌落,将其命名为Sval022。
实施例12:乙酰乳酸合成酶基因ilvH的突变
通过两步同源重组的方法在ilvH基因中引入突变解除L-缬氨酸的反馈抑制,具体步骤如下:
第一步,以pXZ-CS质粒DNA为模板,使用引物ilvH*-cat-up/ilvH*-cat-down扩增出 2719bp的DNA片段I,用于第一步同源重组。扩增体系和扩增条件与实施例1中所述一致。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval022,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval022。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物ilvH*-mutYZ-up/ilvH*-mut-down进行验证,正确的PCR产物应该3165bp,挑选一个正确的单菌落,命名为Sval023。
第二步,以野生型大肠杆菌ATCC8739的DNA为模板,用引物ilvH*-mut-up/ ilvH*-mut-down扩增出467bp的DNA片段II。DNA片段II用于第二次同源重组。将DNA 片段II电转至菌株Sval023。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为ilvH*-mutYZ-up/ilvH*-mut-down,正确的菌落扩增产物为619 bp的片段,挑选一个正确的单菌落,将其命名为Sval024。
实施例13:使用重组菌株Sval024发酵生产L-缬氨酸
种子培养基由以下成分组成(溶剂为水):
葡萄糖20g/L,玉米浆干粉10g/L,KH2PO48.8g/L、(NH4)2SO42.5g/L、MgSO4·7H2O2g/L。
发酵培养基大部分和种子培养基相同,区别仅在于葡萄糖浓度为50g/L
Sval024的厌氧发酵包括以下步骤:
(1)种子培养:将LB平板上新鲜的克隆接种到含有4ml种子培养基的试管中,37℃,250rpm振荡培养过夜。然后,按照2%(V/V)的接种量将培养物转接到含有30ml种子培养基的250ml三角瓶中,在37℃,250rpm振荡培养12小时得到种子培养液用于发酵培养基接种。
(2)发酵培养:500ml厌氧罐中发酵培养基体积为250ml,将种子培养液按照终浓度OD550=0.1的接种量接种于发酵培养基,37℃,150rpm,发酵4天,得到发酵液。中和剂为5M氨水,使发酵罐的pH控制在7.0。培养过程中不通任何气体。
分析方法:使用安捷伦(Agilent-1260)高效液相色谱仪对发酵4天的发酵液中的组分进行测定。发酵液中的葡萄糖和有机酸浓度测定采用伯乐(Biorad)公司的AminexHPX–87H有机酸分析柱。氨基酸测定使用Sielc氨基酸分析柱primesep100250×4.6mm。
结果发现:Sval024菌株在厌氧条件下发酵4天,能够生产1.3g/L的L-缬氨酸(出现与图2对应位置的L-缬氨酸峰),糖酸转化率0.31mol/mol。
实施例14:亮氨酸脱氢酶编码基因leuDH的克隆与整合
leuDH基因是根据文献报道(Ohshima,T.et.al,Propertiesofcrystallineleucine dehydrogenasefromBacillussphaericus.TheJournalofbiologicalchemistry253,5719-5725 (1978))的来自LysinibacillussphaericusIFO3525菌株的leuDH序列并经过密码子优化(优化序列如序列号90所示)后通过全基因合成获得,合成时在leuDH基因前加上M1-93人工调控元件用于启动leuDH基因的表达,插入pUC57载体,构建获得质粒pUC57-M1-93-leuDH (南京金斯瑞生物科技有限公司完成基因合成和载体构建)。将M1-93人工调控元件和leuDH基因一起通过来两步同源重组的方法整合到Sval024菌株中富马酸还原酶编码基因 frd位点并替换掉frd基因,即在整合leuDH的同时敲除frd基因。具体步骤包括:
第一步,以pXZ-CS质粒DNA为模板,使用引物frd-cs-up/frd-cs-down扩增出2719bp 的DNA片段I,用于第一步同源重组。扩增体系和扩增条件与实施例1中所述一致。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval024,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval024。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物XZ-frd-up/XZ-frd-down进行验证,正确的PCR产物应该3493bp,挑选一个正确的单菌落,命名为Sval025。
第二步,以pUC57-M1-93-leuDH质粒DNA为模板,用引物frd-M93-up/frd-leuDH-down 扩增出1283bp的DNA片段II。DNA片段II用于第二次同源重组。将DNA片段II电转至菌株Sval025。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为XZ-frd-up/XZ-frd-down,正确的菌落扩增产物为2057bp的片段,挑选一个正确的单菌落,将其命名为Sval026。
实施例15:使用重组菌株Sval026发酵生产L-缬氨酸
种子培养基和发酵培养基的组成和配制同实施例13中所述相同。
发酵在500mL的发酵罐中进行,发酵过程和分析过程同实施例13中所述Sval024的发酵过程和分析过程一致。
结果发现:Sval026菌株在厌氧条件下发酵4天,能够生产1.8g/L的L-缬氨酸(出现与图2对应位置的L-缬氨酸峰),糖酸转化率0.56mol/mol。
实施例16:6-磷酸葡萄糖脱氢酶编码基因zwf的调控
从Sval026出发,通过两步同源重组的方法使用人工调控元件调控zwf基因的表达,获得重组大肠杆菌Sval041,具体包括以下步骤:
第一步,以pXZ-CS质粒DNA为模板,使用引物Zwf-Pcat-up/Zwf-PsacB-down扩增出2719bp的DNA片段I,用于第一步同源重组。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval026,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval026。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物zwf-YZ442-up/zwf-YZ383-down,正确的菌落扩增产物为3339bp的片段,挑选一个正确的单菌落,命名为Sval041。
第二步,以M1-93的基因组DNA为模板,用引物zwf-RBS1-up/zwf-RBS1-down扩增获得189bp的DNA片段II,用于第二步同源重组。扩增条件和体系同(1)中所述。将DNA 片段II电转至菌株Sval041。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为zwf-YZ442-up/zwf-YZ383-down,正确的菌落扩增产物为809bp的片段,挑选一个正确的单菌落,将其命名为Sval042(表1)。
实施例17:内酯酶编码基因pgl的调控
从Sval033出发,通过两步同源重组的方法使用人工调控元件调控pgl基因的表达,获得重组大肠杆菌Sval042,具体包括以下步骤:
第一步,以pXZ-CS质粒DNA为模板,使用引物pgl-Pcat-up/pgl-PsacB-down扩增出2719bp的DNA片段I,用于第一步同源重组。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval033,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval042。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物pgl-YZ308-up/pgl-YZ341-down进行验证,正确的PCR产物应该3248bp,挑选一个正确的单菌落,命名为Sval043。
第二步,以M1-93(Lu,etal.,ApplMicrobiolBiotechnol,2012,93:2455-2462)的基因组 DNA为模板,使用引物pgl-RBS2-up/pgl-RBS2-down扩增获得189bp的DNA片段II,用于第二步同源重组。扩增条件和体系同(1)中所述。将DNA片段II电转至菌株Sval043。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为pgl-YZ308-up/pgl-YZ341-down,正确的菌落扩增产物为718bp的片段,挑选一个正确的单菌落,将其命名为Sval044(表1)。
实施例18:ZymomonasmobilismobilisZM4菌株来源edd和eda基因的克隆与整合
根据文献(ThegenomesequenceoftheethanologenicbacteriumZymomonasmobilisZM4, Nat.Biotechnol.,2005,23(1):63-68)报道的ZymomonasmobilismobilisZM4来源的edd和eda 基因的序列,通过全基因合成ZymomonasmobilismobilisZM4来源的edd和eda基因,其中 edd基因前加上人工调控元件MRS1,edd和eda基因之间通过人工RBS元件(CAGGAAACAGCT)连接。全基因合成的MRS1-edd-RBS-eda片段通过EcoRV连接到 pUC57载体中。序列的全基因合成由南京金斯瑞生物科技有限公司完成,pUC57载体同样来自于南京金斯瑞生物科技有限公司。将MRS1-edd-RBS-eda通过两步同源重组的方法整合到大肠杆菌自身edd-eda位点并替换掉大肠杆菌自身edd-eda基因,具体步骤如下:
第一步,以pXZ-CS质粒(Tan,etal.,ApplEnvironMicrobiol,2013,79:4838-4844)DNA 为模板,使用引物edd-cat-up/eda-sacB-down扩增出2719bp的DNA片段I,用于第一步同源重组。
将DNA片段I用于第一次同源重组:首先将pKD46质粒通过电转化法转化至大肠杆菌 Sval044,然后将DNA片段I电转至带有pKD46的大肠杆菌Sval044。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物edd-YZ-up/edd-YZ-down进行验证,正确的PCR产物应该3123bp,挑选一个正确的单菌落,命名为Sval045。
第二步,以pUC57-MRS1-edd-eda的质粒DNA为模板,使用引物Edd-int-up/Eda-int-down 扩增获得2651bp的DNA片段II,用于第二步同源重组。扩增条件和体系同(1)中所述。将DNA片段II电转至菌株Sval045。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为edd-YZ-up/edd-YZ-down,正确的菌落扩增产物为3055bp的片段,挑选一个正确的单菌落,将其命名为Sval046(表1)。
实施例19:6-磷酸葡萄糖激酶编码基因pfkA的敲除
在Sval037菌株中通过敲除糖酵解途径中关键酶6-磷酸葡萄糖激酶基因pfkA实现重组菌株利用ED途径发酵生产L-缬氨酸。通过两步同源重组的方法敲除pfkA基因,具体步骤包括:
第一步,以pXZ-CS质粒(Tan,etal.,ApplEnvironMicrobiol,2013,79:4838-4844)DNA 为模板,使用引物pfkAdel-cat-up/pfkAdel-sacB-down扩增出2719bp的DNA片段I,用于第一步同源重组。
将DNA片段I用于第一次同源重组:首先将pKD46质粒(DatsenkoandWanner2000,Proc NatlAcadSciUSA97:6640-6645;质粒购买于美国耶鲁大学CGSC大肠杆菌保藏中心,CGSC#7739)通过电转化法转化至大肠杆菌Sval046,然后将DNA片段I电转至带有pKD46 的大肠杆菌Sval046。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第一步方法一致。取200μl菌液涂在含有氨苄霉素(终浓度为100μg/ml)和氯霉素(终浓度为34μg/ml)的LB平板上,30℃过夜培养后,挑选单菌落进行PCR验证,使用引物pfkAdel-up/pfkAdel-YZ-down进行验证,正确的PCR产物应该3145bp,挑选一个正确的单菌落,命名为Sval047。
第二步,以野生型ATCC8739基因组DNA为模板,使用引物pfkAdel-up/pfkAdel-down 扩增获得379bp的DNA片段II,用于第二步同源重组。扩增条件和体系同(1)中所述。将DNA片段II电转至菌株Sval047。
电转条件和步骤同实施例1中所述用于mgsA基因敲除的第二步方法一致。菌落PCR对克隆进行验证,所用引物为pfkAdel-up/pfkAdel-YZ-down,正确的菌落扩增产物为526bp的片段,挑选一个正确的单菌落,将其命名为Sval048(表1)。
实施例20:使用重组菌株Sval048生产L-缬氨酸
种子培养基和发酵培养基的组成和配制同实施例13中所述相同。
发酵在500mL的发酵罐中进行,发酵过程和分析过程同实施例13中所述Sval024的发酵过程和分析过程一致。
结果发现:Sval048菌株在厌氧条件下发酵4天,能够生产1.9g/L的L-缬氨酸,糖酸转化率0.82mol/mol。图2为L-缬氨酸标准品的谱图,图3为Sval048发酵液的谱图。
实施例21:重组菌株Sval049构建
从Sval048开始,通过代谢进化同步提高细胞生长和L-缬氨酸的生产能力。
代谢进化过程使用500ml的发酵罐,发酵培养基为250ml。使用5M氨水为中和剂,使发酵罐的pH控制在7.0。进化代谢所用的发酵培养基组成和配制同实施例18中发酵培养基所述。每24小时,将发酵液转接到新的发酵罐中,使初始OD550达0.1。经过100代进化,获得菌株Sval049(图4)。Sval049菌株的保藏号为CGMCC19457,保藏于中国普通微生物菌种保藏管理中心(CGMCC)。
实施例22:重组菌株Sval049在500mL发酵罐中发酵生产L-缬氨酸
种子培养基的组成和配制同实施例13中所述相同。
发酵在500mL的发酵罐中进行,发酵培养基为250ml。发酵培养基基本上和种子培养基相同,区别是葡萄糖浓度为100g/L,使用的中和剂为5M氨水,使发酵罐的pH控制在7.0。
结果发现:Sval049在500mL发酵罐发酵48小时后,L-缬氨酸产量达47g/L,产率达0.91mol/mol,无杂酸等杂质生成。
实施例23:重组菌株Sval049在5L发酵罐中发酵生产L-缬氨酸
种子培养基的组成和配制、分析方法同实施例13中所述相同。发酵培养基基本上和种子培养基相同,区别是葡萄糖浓度为140g/L。
发酵在5L发酵罐(上海保兴,BIOTECH-5BG)中厌氧进行,包括以下步骤:
(1)种子培养:500ml三角瓶中种子培养基为150ml,115℃灭菌15min。冷却后将重组大肠杆菌Sval041按照1%(V/V)的接种量接种于种子培养基,在37℃和100rpm的条件下培养12小时得到种子液,用于发酵培养基接种。
(2)发酵培养:5L中发酵培养基体积为3L,115℃灭菌25min。将种子液按照终浓度OD550=0.2的接种量接种于发酵培养基,37℃厌氧培养48小时,搅拌转速200rpm,得到发酵液。发酵液为发酵罐内所有物质。培养过程没有通任何气体。
结果发现:Sval049在5L发酵罐中发酵48小时后,L-缬氨酸产量达87g/L,产率达0.92 mol/mol,无杂酸等杂质生成。图5为L-缬氨酸标准品的谱图,图6为Sval049发酵液的谱图。
序列表
<120> 生产L-缬氨酸的重组大肠杆菌及其应用
<160> 90
<170> SIPOSequenceListing 1.0
<210> 1
<211> 73
<212> DNA
<213> mgsA-cs-up(Escherichia coli)
<400> 1
gtaggaaagt taactacgga tgtacattat ggaactgacg actcgcactt tgtgacggaa 60
gatcacttcg cag 73
<210> 2
<211> 75
<212> DNA
<213> mgsA-cs-down(Escherichia coli)
<400> 2
gcgtttgcca cctgtgcaat attacttcag acggtccgcg agataacgct ttatttgtta 60
actgttaatt gtcct 75
<210> 3
<211> 20
<212> DNA
<213> XZ-mgsA-up(Escherichia coli)
<400> 3
cagctcatca accaggtcaa 20
<210> 4
<211> 20
<212> DNA
<213> XZ-mgsA-down(Escherichia coli)
<400> 4
aaaagccgtc acgttattgg 20
<210> 5
<211> 70
<212> DNA
<213> mgsA-del-down(Escherichia coli)
<400> 5
gcgtttgcca cctgtgcaat attacttcag acggtccgcg agataacgct aagtgcgagt 60
cgtcagttcc 70
<210> 6
<211> 72
<212> DNA
<213> mgsA-ilvC-up(Escherichia coli)
<400> 6
gtaggaaagt taactacgga tgtacattat ggaactgacg actcgcactt atggctaact 60
acttcaatac ac 72
<210> 7
<211> 75
<212> DNA
<213> mgsA-ilvC-down(Escherichia coli)
<400> 7
gcgtttgcca cctgtgcaat attacttcag acggtccgcg agataacgct ttaacccgca 60
acagcaatac gtttc 75
<210> 8
<211> 73
<212> DNA
<213> mgsA-Pcs-up(Escherichia coli)
<400> 8
gtaggaaagt taactacgga tgtacattat ggaactgacg actcgcactt tgtgacggaa 60
gatcacttcg cag 73
<210> 9
<211> 75
<212> DNA
<213> mgsA-Pcs-down(Escherichia coli)
<400> 9
agctgtgcca gctgctggcg cagattcagt gtattgaagt agttagccat ttatttgtta 60
actgttaatt gtcct 75
<210> 10
<211> 70
<212> DNA
<213> mgsA-P46-up(Escherichia coli)
<400> 10
gtaggaaagt taactacgga tgtacattat ggaactgacg actcgcactt ttatctctgg 60
cggtgttgac 70
<210> 11
<211> 72
<212> DNA
<213> ilvC-P46-down(Escherichia coli)
<400> 11
agctgtgcca gctgctggcg cagattcagt gtattgaagt agttagccat agctgtttcc 60
tggtttaaac cg 72
<210> 12
<211> 20
<212> DNA
<213> ilvC-YZ347-down(Escherichia coli)
<400> 12
cgcactacat cagagtgctg 20
<210> 13
<211> 73
<212> DNA
<213> ldhA-cs-up(Escherichia coli)
<400> 13
ttcaacatca ctggagaaag tcttatgaaa ctcgccgttt atagcacaaa tgtgacggaa 60
gatcacttcg cag 73
<210> 14
<211> 75
<212> DNA
<213> ldhA-cs-down(Escherichia coli)
<400> 14
agcggcaaga ttaaaccagt tcgttcgggc aggtttcgcc tttttccaga ttatttgtta 60
actgttaatt gtcct 75
<210> 15
<211> 20
<212> DNA
<213> XZ-ldhA-up(Escherichia coli)
<400> 15
gataacggag atcgggaatg 20
<210> 16
<211> 20
<212> DNA
<213> XZ- ldhA-down(Escherichia coli)
<400> 16
ctttggctgt cagttcacca 20
<210> 17
<211> 71
<212> DNA
<213> ldhA-del-down(Escherichia coli)
<400> 17
agcggcaaga ttaaaccagt tcgttcgggc aggtttcgcc tttttccaga tttgtgctat 60
aaacggcgag t 71
<210> 18
<211> 73
<212> DNA
<213> ackA-cs-up(Escherichia coli)
<400> 18
aggtacttcc atgtcgagta agttagtact ggttctgaac tgcggtagtt tgtgacggaa 60
gatcacttcg cag 73
<210> 19
<211> 75
<212> DNA
<213> pta-cs-down(Escherichia coli)
<400> 19
ggtcggcaga acgctgtacc gctttgtagg tggtgttacc ggtgttcaga ttatttgtta 60
actgttaatt gtcct 75
<210> 20
<211> 20
<212> DNA
<213> XZ-ackA-up(Escherichia coli)
<400> 20
cgggacaacg ttcaaaacat 20
<210> 21
<211> 20
<212> DNA
<213> XZ-pta-down(Escherichia coli)
<400> 21
attgcccatc ttcttgttgg 20
<210> 22
<211> 71
<212> DNA
<213> ackA-del-down(Escherichia coli)
<400> 22
ggtcggcaga acgctgtacc gctttgtagg tggtgttacc ggtgttcaga aactaccgca 60
gttcagaacc a 71
<210> 23
<211> 73
<212> DNA
<213> tdcDE-cs-up(Escherichia coli)
<400> 23
ccgtgattgg tctgctgacc atcctgaaca tcgtatacaa actgttttaa tgtgacggaa 60
gatcacttcg cag 73
<210> 24
<211> 75
<212> DNA
<213> tdcDE-cs-down(Escherichia coli)
<400> 24
cgcctggggc acgttgcgtt tcgataatct ttttcataca tcctccggcg ttatttgtta 60
actgttaatt gtcct 75
<210> 25
<211> 21
<212> DNA
<213> XZ-tdcDE-up(Escherichia coli)
<400> 25
tgatgagcta cctggtatgg c 21
<210> 26
<211> 24
<212> DNA
<213> XZ-tdcDE-down(Escherichia coli)
<400> 26
cgccgacaga gtaataggtt ttac 24
<210> 27
<211> 77
<212> DNA
<213> tdcDE-del-down(Escherichia coli)
<400> 27
cgcctggggc acgttgcgtt tcgataatct ttttcataca tcctccggcg ttaaaacagt 60
ttgtatacga tgttcag 77
<210> 28
<211> 72
<212> DNA
<213> adhE-cs-up(Escherichia coli)
<400> 28
ataactctaa tgtttaaact cttttagtaa atcacagtga gtgtgagcgc tgtgacggaa 60
gatcacttcg ca 72
<210> 29
<211> 75
<212> DNA
<213> adhE-cs-down(Escherichia coli)
<400> 29
ccgtttatgt tgccagacag cgctactgat taagcggatt ttttcgcttt ttatttgtta 60
actgttaatt gtcct 75
<210> 30
<211> 74
<212> DNA
<213> adhE-del-down(Escherichia coli)
<400> 30
ccgtttatgt tgccagacag cgctactgat taagcggatt ttttcgcttt gcgctcacac 60
tcactgtgat ttac 74
<210> 31
<211> 21
<212> DNA
<213> XZ-adhE-up(Escherichia coli)
<400> 31
catgctaatg tagccaccaa a 21
<210> 32
<211> 20
<212> DNA
<213> XZ-adhE-down(Escherichia coli)
<400> 32
ttgcaccacc atccagataa 20
<210> 33
<211> 73
<212> DNA
<213> pflB-CS-up(Escherichia coli)
<400> 33
aaacgaccac cattaatggt tgtcgaagta cgcagtaaat aaaaaatcca tgtgacggaa 60
gatcacttcg cag 73
<210> 34
<211> 75
<212> DNA
<213> pflB-CS-down(Escherichia coli)
<400> 34
cggtccgaac ggcgcgccag cacgacgacc gtctggggtg ttacccgttt ttatttgtta 60
actgttaatt gtcct 75
<210> 35
<211> 70
<212> DNA
<213> pflB-ilvD-up(Escherichia coli)
<400> 35
aaacgaccac cattaatggt tgtcgaagta cgcagtaaat aaaaaatcca atgcctaagt 60
accgttccgc 70
<210> 36
<211> 74
<212> DNA
<213> pflB-ilvD-down(Escherichia coli)
<400> 36
cggtccgaac ggcgcgccag cacgacgacc gtctggggtg ttacccgttt ttaacccccc 60
agtttcgatt tatc 74
<210> 37
<211> 21
<212> DNA
<213> XZ-pflB-up600(Escherichia coli)
<400> 37
ctgcggagcc gatctcttta c 21
<210> 38
<211> 22
<212> DNA
<213> XZ-pflB-down(Escherichia coli)
<400> 38
cgagtaataa cgtcctgctg ct 22
<210> 39
<211> 72
<212> DNA
<213> pflB-Pcs-up(Escherichia coli)
<400> 39
aaacgaccac cattaatggt tgtcgaagta cgcagtaaat aaaaaatcca tgtgacggaa 60
gatcacttcg ca 72
<210> 40
<211> 75
<212> DNA
<213> pflB-Pcs-down(Escherichia coli)
<400> 40
cccgccatat tacgaccatg agtggtggtg gcggaacggt acttaggcat ttatttgtta 60
actgttaatt gtcct 75
<210> 41
<211> 70
<212> DNA
<213> pflB-Pro-up(Escherichia coli)
<400> 41
aaacgaccac cattaatggt tgtcgaagta cgcagtaaat aaaaaatcca ttatctctgg 60
cggtgttgac 70
<210> 42
<211> 78
<212> DNA
<213> ilvD-Pro-down(Escherichia coli)
<400> 42
cccgccatat tacgaccatg agtggtggtg gcggaacggt acttaggcat tgctgacctc 60
ctggtttaaa cgtacatg 78
<210> 43
<211> 20
<212> DNA
<213> ilvD-YZ496-down(Escherichia coli)
<400> 43
caaccagatc gagcttgatg 20
<210> 44
<211> 20
<212> DNA
<213> XZ-frd-up(Escherichia coli)
<400> 44
tgcagaaaac catcgacaag 20
<210> 45
<211> 20
<212> DNA
<213> XZ-frd-down(Escherichia coli)
<400> 45
caccaatcag cgtgacaact 20
<210> 46
<211> 72
<212> DNA
<213> frd-cs-up(Escherichia coli)
<400> 46
gaaggcgaat ggctgagatg aaaaacctga aaattgaggt ggtgcgctat tgtgacggaa 60
gatcacttcg ca 72
<210> 47
<211> 75
<212> DNA
<213> frd-cs-down(Escherichia coli)
<400> 47
tctcaggctc cttaccagta cagggcaaca aacaggatta cgatggtggc ttatttgtta 60
actgttaatt gtcct 75
<210> 48
<211> 70
<212> DNA
<213> frd-M93-up(Escherichia coli)
<400> 48
gaaggcgaat ggctgagatg aaaaacctga aaattgaggt ggtgcgctat ttatctctgg 60
cggtgttgac 70
<210> 49
<211> 77
<212> DNA
<213> frd-leuDH-down(Escherichia coli)
<400> 49
tctcaggctc cttaccagta cagggcaaca aacaggatta cgatggtggc ttaacggccg 60
ttcaaaatat ttttttc 77
<210> 50
<211> 72
<212> DNA
<213> ilvB pro-catup(Escherichia coli)
<400> 50
ctgacgaaac ctcgctccgg cggggttttt tgttatctgc aattcagtac tgtgacggaa 60
gatcacttcg ca 72
<210> 51
<211> 75
<212> DNA
<213> ilvB pro-catdown(Escherichia coli)
<400> 51
tctgcgccgg taaagcgctt acgcgtcgat gttgtgcccg aacttgccat ttatttgtta 60
actgttaatt gtcct 75
<210> 52
<211> 70
<212> DNA
<213> ilvB pro-up(Escherichia coli)
<400> 52
ctgacgaaac ctcgctccgg cggggttttt tgttatctgc aattcagtac ttatctctgg 60
cggtgttgac 70
<210> 53
<211> 70
<212> DNA
<213> ilvB pro-down(Escherichia coli)
<400> 53
tctgcgccgg taaagcgctt acgcgtcgat gttgtgcccg aacttgccat agctgtttcc 60
tggtttaaac 70
<210> 54
<211> 22
<212> DNA
<213> ilvB pro-YZup(Escherichia coli)
<400> 54
gttctgcgcg gaacacgtat ac 22
<210> 55
<211> 20
<212> DNA
<213> ilvB pro-YZdown(Escherichia coli)
<400> 55
ccgctacagg ccatacagac 20
<210> 56
<211> 72
<212> DNA
<213> ilvG pro-catup(Escherichia coli)
<400> 56
tgaactaaga ggaagggaac aacattcaga ccgaaattga atttttttca tgtgacggaa 60
gatcacttcg ca 72
<210> 57
<211> 75
<212> DNA
<213> ilvG pro-catdown(Escherichia coli)
<400> 57
ttcacaccct gtgcccgcaa cgcatgtacc acccactgtg cgccattcat ttatttgtta 60
actgttaatt gtcct 75
<210> 58
<211> 70
<212> DNA
<213> ilvG pro-up(Escherichia coli)
<400> 58
tgaactaaga ggaagggaac aacattcaga ccgaaattga atttttttca ttatctctgg 60
cggtgttgac 70
<210> 59
<211> 71
<212> DNA
<213> ilvG pro-down(Escherichia coli)
<400> 59
ttcacaccct gtgcccgcaa cgcatgtacc acccactgtg cgccattcat agctgtttcc 60
tggtttaaac g 71
<210> 60
<211> 22
<212> DNA
<213> ilvG pro-YZup(Escherichia coli)
<400> 60
gcataagata tcgctgctgt ag 22
<210> 61
<211> 20
<212> DNA
<213> ilvG p-YZdown(Escherichia coli)
<400> 61
gccagttttg ccagtagcac 20
<210> 62
<211> 72
<212> DNA
<213> ilvH*-cat-up(Escherichia coli)
<400> 62
agaacctgat tatgcgccgg atattatcag tcttactcga aaatgaatca tgtgacggaa 60
gatcacttcg ca 72
<210> 63
<211> 75
<212> DNA
<213> ilvH*-cat-down(Escherichia coli)
<400> 63
ttcatcgccc acggtctgga tggtcatacg cgataatgtc ggatcgtcgg ttatttgtta 60
actgttaatt gtcct 75
<210> 64
<211> 74
<212> DNA
<213> ilvH*-mut-up(Escherichia coli)
<400> 64
agaacctgat tatgcgccgg atattatcag tcttactcga aaatgaatca gacgcgttat 60
tccgcgtgat tggc 74
<210> 65
<211> 21
<212> DNA
<213> ilvH*-mut-down(Escherichia coli)
<400> 65
cacaccagag cgagcaacct c 21
<210> 66
<211> 23
<212> DNA
<213> ilvH*-mutYZ-up(Escherichia coli)
<400> 66
atgagctgga aagcaaactt agc 23
<210> 67
<211> 72
<212> DNA
<213> Zwf-Pcat-up (Escherichia coli)
<400> 67
agttttgccg cactttgcgc gcttttcccg taatcgcacg ggtggataag tgtgacggaa 60
gatcacttcg ca 72
<210> 68
<211> 75
<212> DNA
<213> Zwf-PsacB-down (Escherichia coli)
<400> 68
gcgccgaaaa tgaccaggtc acaggcctgg gctgtttgcg ttaccgccat ttatttgtta 60
actgttaatt gtcct 75
<210> 69
<211> 70
<212> DNA
<213> zwf-RBS1-up (Escherichia coli)
<400> 69
agttttgccg cactttgcgc gcttttcccg taatcgcacg ggtggataag ttatctctgg 60
cggtgttgac 70
<210> 70
<211> 78
<212> DNA
<213> zwf-RBS1-down (Escherichia coli)
<400> 70
gcgccgaaaa tgaccaggtc acaggcctgg gctgtttgcg ttaccgccat attgtttctc 60
ctggtttaaa cgtacgtg 78
<210> 71
<211> 20
<212> DNA
<213> zwf-YZ442-up (Escherichia coli)
<400> 71
cgaatggatc gcgttatcgg 20
<210> 72
<211> 21
<212> DNA
<213> zwf-YZ383-down (Escherichia coli)
<400> 72
caaattgcgc caaaagtgct g 21
<210> 73
<211> 72
<212> DNA
<213> pgl-Pcat-up (Escherichia coli)
<400> 73
ttcagcattc accgccaaaa gcgactaatt ttagctgtta cagtcagttg tgtgacggaa 60
gatcacttcg ca 72
<210> 74
<211> 75
<212> DNA
<213> pgl-PsacB-down (Escherichia coli)
<400> 74
acgtgaattt gctggctctc agggctggcg atataaactg tttgcttcat ttatttgtta 60
actgttaatt gtcct 75
<210> 75
<211> 70
<212> DNA
<213> pgl-RBS2-up (Escherichia coli)
<400> 75
ttcagcattc accgccaaaa gcgactaatt ttagctgtta cagtcagttg ttatctctgg 60
cggtgttgac 70
<210> 76
<211> 88
<212> DNA
<213> pgl-RBS2-down (Escherichia coli)
<400> 76
acgtgaattt gctggctctc agggctggcg atataaactg tttgcttcat acgtttcctc 60
ctggtttaaa cgtacatgct aacaatac 88
<210> 77
<211> 20
<212> DNA
<213> pgl-YZ308-up (Escherichia coli)
<400> 77
gatgaatagc gacgtgatgg 20
<210> 78
<211> 20
<212> DNA
<213> pgl-YZ341-down (Escherichia coli)
<400> 78
ccatcttcca gacgcgttac 20
<210> 79
<211> 72
<212> DNA
<213> Edd-cat-up (Escherichia coli)
<400> 79
tggtcgttcc tggaatgagt ttgagtaata tctgcgctta tcctttatgg tgtgacggaa 60
gatcacttcg ca 72
<210> 80
<211> 75
<212> DNA
<213> Eda-sacB-down (Escherichia coli)
<400> 80
gcaaaaaaac gctacaaaaa tgcccgatcc tcgatcgggc attttgactt ttatttgtta 60
actgttaatt gtcct 75
<210> 81
<211> 70
<212> DNA
<213> Edd-int-up (Escherichia coli)
<400> 81
tggtcgttcc tggaatgagt ttgagtaata tctgcgctta tcctttatgg ttatctctgg 60
cggtgttgac 70
<210> 82
<211> 72
<212> DNA
<213> Eda-int-down (Escherichia coli)
<400> 82
gcaaaaaaac gctacaaaaa tgcccgatcc tcgatcgggc attttgactt ttaggcaaca 60
gcagcgcgct tg 72
<210> 83
<211> 20
<212> DNA
<213> Edd-YZ-up (Escherichia coli)
<400> 83
gcatctggcg gatgcctatg 20
<210> 84
<211> 23
<212> DNA
<213> Edd-YZ-down (Escherichia coli)
<400> 84
caactgacca gtcagaatgt cac 23
<210> 85
<211> 72
<212> DNA
<213> pfkAdel-cat-up (Escherichia coli)
<400> 85
ggtatcgacg cgctggtggt tatcggcggt gacggttcct acatgggtgc tgtgacggaa 60
gatcacttcg ca 72
<210> 86
<211> 75
<212> DNA
<213> pfkAdel-sacB-down (Escherichia coli)
<400> 86
gtggcccagc acagttgcgc gggtttcacg accggtttct ttctcgatga ttatttgtta 60
actgttaatt gtcct 75
<210> 87
<211> 21
<212> DNA
<213> pfkAdel-up (Escherichia coli)
<400> 87
atgattaaga aaatcggtgt g 21
<210> 88
<211> 70
<212> DNA
<213> pfkAdel-down (Escherichia coli)
<400> 88
gtggcccagc acagttgcgc gggtttcacg accggtttct ttctcgatga gcacccatgt 60
aggaaccgtc 70
<210> 89
<211> 21
<212> DNA
<213> pfkAdel-YZ-down (Escherichia coli)
<400> 89
gtcgatgatg tcgtggtgaa c 21
<210> 90
<211> 1095
<212> DNA
<213> LeuDH (Lysinibacillus sphaericus)
<400> 90
atggaaatct tcaagtatat ggaaaagtat gattatgaac aattggtatt ttgccaagac 60
gaagcatctg ggttaaaagc gattatcgct atccatgaca caacacttgg accagcatta 120
ggtggtgctc gtatgtggac ctacgcgaca gaagaaaatg cgattgagga tgcattaaga 180
ttagcacgcg ggatgacata taaaaatgca gctgctggtt taaaccttgg cggtggaaaa 240
acggtcatta ttggggaccc atttaaagat aaaaacgaag aaatgttccg tgctttaggt 300
cgtttcattc aaggattaaa cggtcgctat attaccgctg aagatgttgg tacaaccgta 360
acagatatgg atttaatcca tgaggaaaca aattacgtta caggtatatc gccagcgttt 420
ggttcatcgg gtaatccttc accagtaact gcttatggcg tttatcgtgg catgaaagca 480
gcggcgaaag aagcatttgg tacggatatg ctagaaggtc gtactatatc ggtacaaggg 540
ctaggaaacg tagcttacaa gctttgcgag tatttacata atgaaggtgc aaaacttgta 600
gtaacagata ttaaccaagc ggctattgat cgtgttgtca atgattttgg cgctacagca 660
gttgcacctg atgaaatcta ttcacaagaa gtcgatattt tctcaccgtg tgcacttggc 720
gcaattttaa atgacgaaac gattccgcaa ttaaaagcaa aagttattgc tggttctgct 780
aataaccaac tacaagattc acgacatgga gattatttac acgagctagg cattgtttat 840
gcacctgact atgtcattaa tgcaggtggt gtaataaatg tcgcggacga attatatggc 900
tataatcgtg aacgagcgtt gaaacgtgta gatggtattt acgatagtat tgaaaaaatc 960
tttgaaattt ccaaacgtga tagtattcca acatatgttg cggcaaatcg tttggcagaa 1020
gaacgtattg ctcgtgtagc gaaatcgcgt agtcagttct taaaaaatga aaaaaatatt 1080
ttgaacggcc gttaa 1095

Claims (10)

1.一种生产L-缬氨酸的重组微生物的构建方法,其包括:向微生物中导入氨基酸脱氢酶基因、和/或激活微生物中恩特纳-杜德洛夫代谢途径(ED途径)的步骤;
任选地,还包括敲除6-磷酸葡萄糖激酶基因(pfkA)的步骤;
任选地,还包括向微生物中导入乙酰羟基酸还原异构酶编码基因的步骤;所述乙酰羟基酸还原异构酶编码基因优选ilvC;
优选地,所述氨基酸脱氢酶基因是NADH依赖型的;
优选地,所述氨基酸脱氢酶基因是亮氨酸脱氢酶基因,例如leuDH基因;
优选地,所述激活恩特纳-杜德洛夫代谢途径包括提高zwf基因、pgl基因、edd基因和eda基因的表达强度的步骤。
2.根据权利要求1所述的构建方法,还包括对权利要求1所述的重组微生物进行以下(1)-(7)一种或几种的改造:
(1)敲除基因mgsA;
(2)敲除基因ldhA;
(3)敲除基因pta和/或ackA;
(4)敲除基因tdcD和/或tdcE;
(5)敲除基因adhE;
(6)敲除基因frd和/或pflB;
(7)增强AHAS和/或ilvD的活性;
优选地,AHAS为ilvBN或ilvGM或ilvIH;任选地,所述ilvIH的活性通过解除缬氨酸对ilvH的反馈抑制得到增强,例如通过突变ilvH基因得到增强;
优选地,选择上述第(7)项进行改造;
优选地,选择上述第(7)和第(2)项进行改造;
优选地,选择上述第(7)和第(6)项进行改造;
优选地,选择上述第(7)项、第(2)项和第(5)项进行改造;
优选地,选择上述第(7)项、第(2)项和第(6)项进行改造;
优选地,选择上述第(7)项、第(1)项、第(3)-(6)项进行改造;
优选地,选择上述第(1)-(7)项进行改造;
优选地,以ilvD基因替换微生物本身的pflB基因的方式实现第(6)项;
优选地,以leuDH基因替换微生物本身的frd基因的方式实现第(6)项;
优选地,以ilvC基因替换微生物本身的mgsA基因的方式实现第(1)项。
3.根据权利要求1或2所述的构建方法,所述的微生物为大肠杆菌;更优选的,所述的微生物为大肠杆菌ATCC 8739。
4.根据权利要求1-3任一项所述的构建方法,其特征在于,使用至少一个调控元件激活或增强所述酶的编码基因的活性;
优选地,所述调控元件选自M1-93人工调控元件、MRS1人工调控元件、RBS人工调控元件或M1-46人工调控元件;
优选地,M1-93人工调控元件调控ilvD、leuDH、ilvBN、zwf、pgl和ilvGM基因;
MRS1人工调控元件调控edd基因;
RBS人工调控元件调控基因eda;
M1-46人工调控元件调控ilvC基因。
5.根据权利要求1-4任一项所述的构建方法,其特征在于,其中所述酶编码基因的一个或多个拷贝和所述的调控元件整合入所述微生物的基因组中,或者将包含所述酶编码基因的质粒导入所述微生物中;
优选地,以整合入所述微生物的基因组的方法完成所述酶基因的导入、突变、敲除、激活或调控;
优选地,以同源重组的方法完成所述酶基因的导入、突变、敲除、激活或调控;
优选地,以两步同源重组的方法完成所述酶基因的导入、突变、敲除、激活或调控。
6.利用权利要求1-5任一所述构建方法得到的重组微生物。
7.一种获得高产L-缬氨酸的重组微生物的方法,其特征在于,在权利要求6所述的重组微生物的基础上,经过代谢进化获得。
8.一种重组微生物,其保藏号为CGMCC 19457。
9.权利要求6和权利要求8所述的重组微生物在生产L-缬氨酸中的应用。
10.一种生产L-缬氨酸的方法,包括:(1)发酵培养权利要求6或8所述的重组微生物;(2)分离并收获L-缬氨酸;优选地,所述发酵培养为厌氧发酵培养。
CN202010460035.9A 2020-05-27 2020-05-27 生产l-缬氨酸的重组大肠杆菌及其应用 Active CN113278568B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010460035.9A CN113278568B (zh) 2020-05-27 2020-05-27 生产l-缬氨酸的重组大肠杆菌及其应用
EP20930653.9A EP3943595A4 (en) 2020-05-27 2020-12-18 RECOMBINANT MICROORGANISM FOR THE PRODUCTION OF L-VALINE, PROCESS FOR ITS PRODUCTION AND ITS USE
US17/604,770 US20230084158A1 (en) 2020-05-27 2020-12-18 Recombinant microorganism for producing L-valine, construction method and application thereof
PCT/CN2020/137779 WO2021238184A1 (zh) 2020-05-27 2020-12-18 生产l-缬氨酸的重组微生物、其构建方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010460035.9A CN113278568B (zh) 2020-05-27 2020-05-27 生产l-缬氨酸的重组大肠杆菌及其应用

Publications (2)

Publication Number Publication Date
CN113278568A true CN113278568A (zh) 2021-08-20
CN113278568B CN113278568B (zh) 2022-10-21

Family

ID=77275636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010460035.9A Active CN113278568B (zh) 2020-05-27 2020-05-27 生产l-缬氨酸的重组大肠杆菌及其应用

Country Status (4)

Country Link
US (1) US20230084158A1 (zh)
EP (1) EP3943595A4 (zh)
CN (1) CN113278568B (zh)
WO (1) WO2021238184A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116555153A (zh) * 2023-07-04 2023-08-08 黑龙江伊品生物科技有限公司 一种用于生产l-缬氨酸的大肠杆菌的构建方法与应用
CN116555151A (zh) * 2023-07-04 2023-08-08 黑龙江伊品生物科技有限公司 产l-缬氨酸工程菌及构建方法与应用
WO2023178849A1 (zh) * 2022-03-21 2023-09-28 江南大学 合成l-缬氨酸的大肠杆菌及其构建方法与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116555150B (zh) * 2023-06-27 2023-10-31 北京中科伊品生物科技有限公司 用于发酵生产l-缬氨酸的重组大肠杆菌

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219882A1 (en) * 2002-03-27 2003-11-27 Ajinomoto Co., Inc. Method for producing L-amino acid
CN110607268A (zh) * 2019-10-24 2019-12-24 天津科技大学 一株高产l-缬氨酸的基因工程菌及发酵生产l-缬氨酸方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2209246C2 (ru) 2000-01-26 2003-07-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Малая субъединица изозима iii и изозим iii синтетазы ацетогидроксикислот из escherichia coli, фрагмент днк (варианты), штамм бактерии escherichia coli - продуцент l-валина (варианты) и способ получения l-валина
AU4277001A (en) * 2000-03-24 2001-10-03 Kyowa Hakko Kogyo Co. Ltd. Process for producing l-amino acid via fermentation method
MX2014013446A (es) * 2012-05-11 2014-12-08 Butamax Advanced Biofuels Llc Enzimas de cetol-acido reductoisomerasa y metodos de uso.
CN103642766B (zh) * 2013-07-02 2016-12-28 廊坊梅花生物技术开发有限公司 蛋白、dna分子、含有该dna的转化宿主及该转化宿主用于生产l‑缬氨酸的方法
CN107287196B (zh) * 2017-05-27 2020-05-26 中国科学院微生物研究所 ilv衰减子的突变体、相关工程菌及其在生产缬氨酸中的应用
CN106520651A (zh) * 2016-11-08 2017-03-22 江南大学 一种利用酶法转化生产l‑正缬氨酸的方法
CN106520655A (zh) * 2016-12-29 2017-03-22 廊坊梅花生物技术开发有限公司 重组菌株及其制备方法和生产l‑缬氨酸的方法
CN114457123B (zh) * 2020-05-13 2023-06-20 安徽华恒生物科技股份有限公司 生产l-缬氨酸的重组微生物及构建方法、应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219882A1 (en) * 2002-03-27 2003-11-27 Ajinomoto Co., Inc. Method for producing L-amino acid
CN110607268A (zh) * 2019-10-24 2019-12-24 天津科技大学 一株高产l-缬氨酸的基因工程菌及发酵生产l-缬氨酸方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EKATERINA A. SAVRASOVA等: "Application of leucine dehydrogenase Bcd from Bacillus subtilis for L-valine synthesis in Escherichia coli under microaerobic conditions", 《HELIYON》, vol. 5, no. 4, 30 April 2019 (2019-04-30), pages 4, XP055866421, DOI: 10.1016/j.heliyon.2019.e01406 *
JIN HWAN PARK等: "Escherichia coli W as a New Platform Strain for the Enhanced Production of L-Valine by Systems Metabolic Engineering", 《BIOTECHNOLOGY AND BIOENGINEERING》, vol. 108, no. 5, 31 May 2011 (2011-05-31), pages 1, XP055804146, DOI: 10.1002/bit.23044 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178849A1 (zh) * 2022-03-21 2023-09-28 江南大学 合成l-缬氨酸的大肠杆菌及其构建方法与应用
CN116555153A (zh) * 2023-07-04 2023-08-08 黑龙江伊品生物科技有限公司 一种用于生产l-缬氨酸的大肠杆菌的构建方法与应用
CN116555151A (zh) * 2023-07-04 2023-08-08 黑龙江伊品生物科技有限公司 产l-缬氨酸工程菌及构建方法与应用
CN116555153B (zh) * 2023-07-04 2023-09-29 黑龙江伊品生物科技有限公司 一种用于生产l-缬氨酸的大肠杆菌的构建方法与应用
CN116555151B (zh) * 2023-07-04 2023-10-17 黑龙江伊品生物科技有限公司 产l-缬氨酸工程菌及构建方法与应用

Also Published As

Publication number Publication date
EP3943595A4 (en) 2022-10-12
US20230084158A1 (en) 2023-03-16
WO2021238184A1 (zh) 2021-12-02
CN113278568B (zh) 2022-10-21
EP3943595A1 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
CN113278568B (zh) 生产l-缬氨酸的重组大肠杆菌及其应用
CN113278655B (zh) 生产l-缬氨酸的重组微生物及构建方法、应用
Zhang et al. Production of L-alanine by metabolically engineered Escherichia coli
JP7373661B2 (ja) L-アルギニンを生産する遺伝子組換え菌、その構築方法及び使用
EP2379730B1 (en) Method for the preparation of diols
CN113278641B (zh) 生产l-缬氨酸的重组大肠杆菌、其构建方法及其应用
CN110272857B (zh) β-丙氨酸生产菌及其制备方法和用途
CN112522223B (zh) 一种用于l-肌氨酸生产的基因工程菌及构建方法与应用
CN113278569A (zh) 无质粒、无诱导剂使用的产d-泛酸基因工程菌及构建方法
Wang et al. Heterotrophic and autotrophic production of L-isoleucine and L-valine by engineered Cupriavidus necator H16
CN115612694A (zh) 高效转化葡萄糖生产四氢嘧啶重组菌的构建方法及其应用
WO2023246071A1 (zh) 一种mreC突变体及其在L-缬氨酸发酵生产中的应用
US11479795B2 (en) Genetically engineered bacterium for sarcosine production as well as construction method and application
WO2024124711A1 (zh) 构建l-缬氨酸生产菌株的方法、l-缬氨酸生产菌株及其应用
CN115197954B (zh) 用于发酵生产1,5-戊二胺的重组dna、菌株及其用途
RU2820627C1 (ru) Генно-инженерные бактерии для продуцирования l-аргинина и способ конструирования и применения генно-инженерных бактерий
CN118726215A (zh) 一种产泛解酸的重组微生物及其应用
WO2024197704A1 (zh) 一种产泛解酸的重组微生物及其应用
US20150247174A1 (en) Engineering bacteria for producing dl-alanine and method for producing dl-alanine by using engineering bacteria
CN118109425A (zh) 一种sucC突变体及其在L-缬氨酸发酵生产中的应用
CN117946950A (zh) 一种新的生产2-羟基异戊酸的脱氢酶及2-羟基异戊酸工程菌的构建和应用
CN117987444A (zh) 表达盒、含其的基因工程菌及其在l-赖氨酸生产中的应用
CN118165905A (zh) 一株产l-丝氨酸的谷氨酸棒杆菌突变株的构建与应用
CN118272397A (zh) 基因组合、含其的基因工程菌及其在l-赖氨酸生产中的应用
CN115109736A (zh) 一种产泛解酸的微生物及其构建方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211009

Address after: 231131 Shuangfeng Industrial Zone, Changfeng County, Hefei City, Anhui Province

Applicant after: ANHUI HUAHENG BIOTECHNOLOGY Co.,Ltd.

Applicant after: Bayannur Huaheng Biotechnology Co.,Ltd.

Applicant after: TIANJIN INSTITUTE OF INDUSTRIAL BIOTECHNOLOGY, CHINESE ACADEMY OF SCIENCES

Address before: 015000 Bayannur Huaheng Biotechnology Co., Ltd., Hangjinhou banner, Bayannur City, Inner Mongolia Autonomous Region

Applicant before: Bayannur Huaheng Biotechnology Co.,Ltd.

Applicant before: TIANJIN INSTITUTE OF INDUSTRIAL BIOTECHNOLOGY, CHINESE ACADEMY OF SCIENCES

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant