CN118043995A - 一种二次电池、电池模块、电池包和用电装置 - Google Patents

一种二次电池、电池模块、电池包和用电装置 Download PDF

Info

Publication number
CN118043995A
CN118043995A CN202280064878.4A CN202280064878A CN118043995A CN 118043995 A CN118043995 A CN 118043995A CN 202280064878 A CN202280064878 A CN 202280064878A CN 118043995 A CN118043995 A CN 118043995A
Authority
CN
China
Prior art keywords
positive electrode
battery
secondary battery
equal
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280064878.4A
Other languages
English (en)
Inventor
别常峰
朱畅
刘宏宇
董苗苗
欧阳少聪
倪欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Contemporary Amperex Technology Co Ltd
Original Assignee
Contemporary Amperex Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Contemporary Amperex Technology Co Ltd filed Critical Contemporary Amperex Technology Co Ltd
Publication of CN118043995A publication Critical patent/CN118043995A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请涉及一种二次电池,其包含正极极片、负极极片和电解液,其中所述正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包含正极活性材料,所述正极活性材料包含S1)橄榄石结构的含锂化合物,和S2)通式为j(M2O)·kVO x的钒氧化物,其中M为碱金属中的一种或多种,0≤j≤1,1≤k≤5,1≤x≤2.5;其中S1与S2的放电平台电压的差值为E,其中0.2V≤E≤2.8V。所述二次电池在保证优异的循环性能和克容量下具有非常好的低温性能,例如即使在较高的放电倍率下,也能保持很好的低温容量保持率。

Description

一种二次电池、电池模块、电池包和用电装置 技术领域
本申请涉及锂电池技术领域,尤其涉及一种二次电池、电池模块、电池包和用电装置。
背景技术
近年来,随着锂离子电池的应用范围越来越广泛,市场对锂离子电池的要求不断提高。追求能量密度的同时,高倍率耐低温电池的研发和工业化,越来越受到业界的关注,例如军工上的应用,如电磁干扰、电磁轨道发射器、磁控管等设备;在民用方面,如低温地区车载冷启动电源,高功率电动工具,极寒地区通讯基站电源。以上应用场景对于低温性能和倍率性能的要求是更加的严苛。电池正极材料是决定电池系统电化学性能、安全性能、能量密度等的关键因素。
具有橄榄石结构的磷酸系正极材料(LiMPO 4,其中M可以是Fe、Co、Zn、Ni、Cu、Mn中的一种或者两种以上的组合)是当前大规模商业化的正极材料之一,具有较高的克容量发挥和放电电压,并且其放电电压输出稳定,合成原材料成本低,寿命优异,安全性能好,在动力电池和储能电池方面获得了大规模的应用。
通过测试表明,LiMPO 4型正极材料具有非常低的电子导电性和离子导电性,以磷酸铁锂材料为例,LiFePO 4的不足之处在于电子电导率和离子电导率较低,分别为10 -9S·cm1和10 -10-10 -15cm2·s1,作为正极材料应用于锂离子电池表现出较差的倍率性能和低温放电性能。通过包覆或掺杂等手段来改善材料的倍率性能和低温性能等是目前比较有效的手段,但是电化学性能仍未能达到令人满意的结果。寻找合适的低温助剂,采用恰当的复合方式,是改善磷酸铁锂正极材料的一种有效途径。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种二次电池,其正极膜层包含通式为j(M 2O)·kVO X的钒氧化物,使得所述二次电池在保证优异的循环性能和克容量下具有非常好的低温性能,例如即使在较高的放电倍率下,也能保持很好的低温容量 保持率。
本申请的第一方面提供了一种二次电池,其包含正极极片、负极极片和电解液,其中所述正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包含正极活性材料,所述正极活性材料包含S1)橄榄石结构的含锂化合物,和S2)通式为j(M 2O)·kVO X的钒氧化物,其中M为碱金属中的一种或多种,0≤j≤1,1≤k≤5,1≤x≤2.5;其中S1与S2的放电平台电压的差值为E,其中0.2V≤E≤2.8V。
由此,本申请通过在正极活性材料中包含特定放电平台电压的两种特定的活性材料,使得所述二次电池在保证优异的循环性能下具有非常好的低温性能例如即使在较高的放电倍率下,也能保持很好的低温容量保持率。
在任意实施方式中,在组分S2中,M为选自Li或Na中一种或两种,可选地为Li;0≤j/k≤1,优选0.2≤j/k≤0.6。由此,进一步优选钒氧化物,可以提升低温助剂中活性锂或者钠含量,有利于提升低温下二次电池的容量发挥,同时保持很好的低温容量保持率。
在任意实施方式中,S1为通式LiA 1-n*y/2M yPO 4的化合物,其中0≤y≤0.1,
A选自Fe、Co、Ni、Cu、Mn、Zn中的至少一种,
n为M金属的价态,n=+2、+3、+4或+5价价,
M选自Cr、Pb、Ca、Sr、Ti、Mg、V、Nb、Zr中的至少一种;
A与M相同或不同。
由此,使用上述类型的磷酸锂类正极活性材料,结合钒氧化物,进一步提高了所述电池的低温性能,同时保证其循环性能。
在任意实施方式中,S1组分为LiFe 1-n*y/2M yPO 4的化合物,其中y、M和n如上所述定义;
S2包括LiVO 3、Li 3V 2O 5、Li 4V 3O 8、LiV 3O 8、Li 2VO 3、LiVO 2;V 2O 5、V 2O 3、V 3O 4;以及上述组分相应的Na掺杂物Li 0.95Na 0.05VO 3、Li 2.95Na 0.05V 2O 5、Li 3.95Na 0.05V 3O 8。使用上述类型的磷酸锂类正极活性材料,结合钒氧化物,进一步提高了所述电池的低温性能,同时保证其循环性能。
在任意实施方式中,钒元素的含量为1重量%-5重量%,基于所述正极活性材料的重量计;在正极活性材料中,钒元素与锂元素的摩尔比为1:5-20,优选为1:6-10。由此,通过控制正极活性材料中锂与钒的含量以及相对比例,可以进一步改善所述电池的低温性能。
在任意实施方式中,S1组分与S2组分的重量比为3-30:1,优选为4-10:1。由此,通过控制正极活性材料中S1组分与S2组分的重量比,可以进一步改善所述电池的低温性能并保证电池的循环性能。
在任意实施方式中,S1组分的放电平台电压为3.1-4.8V,S2组分的放电平台电压为1.0-3.0V。由此,通过控制正极活性材料中S1组分与S2组分的放电平台电压,可进一步改善所述电池的低温性能并保证电池的循环性能。
在任意实施方式中,S2组分被碳包覆或者导电聚合物包覆。由此,通过控制正极活性材料中S2组分的组成,可进一步改善所述电池的低温性能并保证电池的循环性能。
本申请的第二方面还提供一种电池模块,包括本申请的第一方面的二次电池。
本申请的第三方面提供一种电池包,包括本申请的第二方面的电池模块。
本申请的第四方面提供一种用电装置,包括选自本申请的第一方面的二次电池、本申请的第二方面的电池模块或本申请的第三方面的电池包中的至少一种。
本申请的二次电池通过其正极活性材料中包含含锂化合物以及钒氧化物,并保证两者之间的放电平台电压的差值在特定范围内,就可以使得所述二次电池在保证优异的循环性能下具有非常好的低温性能例如即使在较高的放电倍率下,也能保持很好的低温容量保持率;而且使得所述电池在低温下容量得到更好地发挥。
附图说明
图1为本申请一实施方式的正极活性材料的扫描电镜图。
图2为本申请一实施方式的正极活性材料的X射线能谱仪(EDS)面扫描图。
图3是本申请一实施方式的二次电池的示意图。
图4是图3所示的本申请一实施方式的二次电池的分解图。
图5是本申请一实施方式的电池模块的示意图。
图6是本申请一实施方式的电池包的示意图。
图7是图6所示的本申请一实施方式的电池包的分解图。
图8是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53顶盖组件
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的正极活性材料及其制造方法、正极极片、二次电池、电池模块、电池包和电学装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组 分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
具有橄榄石结构的磷酸系正极材料(LiMPO 4,其中M可以是Fe、Co、Zn、Ni、Cu、Mn中的一种或者两种以上的组合)是当前大规模商业化的正极材料之一,具有较高的克容量发挥和放电电压。且放电电压输出稳定,合成原材料成本低,寿命优异,安全性能好,在动力电池和储能电池方面获得了大规模的应用。
通过测试表明,LiMPO 4型正极材料具有非常低的电子导电性和离子导电性,以磷酸铁锂材料为例,LiFePO 4的不足之处在于电子电导率和离子电导率较低,分别为10 -9S·cm1和10 -10-10 -15cm2·s1,作为正极材料应用于锂离子电池表现出较差的倍率性能和低温放电性能。通过包覆或掺杂等手段来改善材料的倍率性能和低温性能等是目前比较有效的手段,但是电化学性能仍未能达到令人满意的结果。寻找合适的低温助剂,采用恰当的复合方式,是改善磷酸铁锂正极材料的一种有效途径。申请人研究发现本申请第一方面的二次电池通过其正极活性材料中包含含锂化合物以及钒氧化物,并保证两者之间的放电平台电压的差值在特定范围内,就可以使得所述二次电池在保证优异的循环性能和克容量下具有非常好的低温性能例如即使在较高的放电倍率下,也能保持很好的低温容量保持率以及低SOC下的电池表现出优异的功率性能。
二次电池
本申请的第一方面提供了一种二次电池,其包含正极极片、负极极片和电解液,其中所述正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包含正极活性材料,所述正极活性材料包含S1)橄榄石结构的含锂化合物,和S2)通式为j(M 2O)·kVO X的钒氧化物,其中M为碱金属中的一种或多种,0≤j≤1,1≤k≤5,1≤x≤2.5;其中S1与S2的放电平台电压的差值为E,其中0.2V≤E≤2.8V。
不囿于任何理论,现认为,电池放电到较低的荷电状态(SOC)时,电池的放电功率会急剧衰减,且在低温放电时,该现象更加明显。提升电池低SOC放电条件下的放电功率,显得尤为重要。本申请通过在正极活性材料中包含含锂化合物以及钒氧化物,并保证两者之间的放电平台电压的差值在特定范围内,所述电池在低温下借助钒氧化物 的反应提供能量输出,同时电芯内部温度可以提升,电芯放电容量得以提高,从而使得所述二次电池在保证优异的循环性能下具有非常好的低温性能例如即使在较高的放电倍率下,也能保持很好的低温容量保持率;而且使得所述电池在低温下容量得到更好地发挥。
在一些实施方式中,在组分S2中,M为选自Li或Na中一种或两种,可选地为Li;0≤j/k≤1,优选0.2≤j/k≤0.6。由此,进一步优选钒氧化物,有利于提升低温下二次电池的容量发挥,同时保持很好的低温容量保持率。
在一些实施方式中,S1为通式LiA 1-n*y/2M yPO 4的化合物,其中0≤y≤0.1,
A选自Fe、Co、Ni、Cu、Mn、Zn中的至少一种,
n为M金属的价态,n=+2、+3、+4或+5价,
M选自Cr、Pb、Ca、Sr、Ti、Mg、V、Nb、Zr中的至少一种;
A与M相同或不同。
由此,使用上述类型的磷酸锂类正极活性材料,结合钒氧化物,进一步提高了所述电池的低温性能,同时保证其循环性能。
在一些实施方式中,S1组分可选为LiFe 1-n*y/2M yPO 4的化合物,其中y、M、n如上所述定义,优选0<y≤0.1,M和n如上所述定义;进一步优选为LiFePO 4、LiFe 1-n*y/2M yPO 4,更优选LiTi xFe 1-n*y/2-2xMn yPO 4、LiTi yFe 1-n*y/2PO 4、LiMg xFe 1-n*y/2-xMn yPO 4、LiV xFe 1- n*y/2-5x/2Mn yPO 4,其中y和n如上所述定义,0.005≤x≤0.1;最优选LiFePO 4、LiTi yFe 1- n*y/2PO 4,其中y和n如上所述定义。
在一些实施方式中,S2为LiVO 3、Li 3V 2O 5、Li 4V 3O 8、LiV 3O 8、Li 2VO 3、Li 3VO 4、LiVO 2;V 2O 5、V 2O 3、V 3O 4;以及上述组分相应的Na掺杂物例如Li 3-xNa xVO 4、Li 1-xNa xV 3O 8和Li 1-xNa xVO 3其中0.005≤x≤0.1,优选为Li 3VO 4、V 2O 5、LiV 3O 8、LiVO 3及其Na掺杂物Li 0.95Na 0.05VO 3、Li 2.95Na 0.05V 2O 5、Li 3.95Na 0.05V 3O 8。由于钒和氧形成的酸根形式非常丰富,例如正钒酸根,偏钒酸根,焦钒酸根,多钒酸根等,因此S2组分不限于以上化合物。由此,使用上述类型的磷酸锂类正极活性材料,结合钒氧化物,进一步提高了所述电池的低温性能,同时保证其循环性能。
在一些实施方式中,钒元素的含量为1重量%-5重量%,优选2重量%-4重量%,基于所述正极活性材料的重量计;在正极活性材料中,锂元素与钒元素的摩尔比为5-20:1,优选为6-10:1。由此,通过控制正极活性材料中锂与钒的含量以及相对比例,可以 进一步改善所述电池的低温性能。
在一些实施方式中,S1组分与S2组分的重量比为3-20:1,优选为4-10:1。由此,通过控制正极活性材料中S1组分与S2组分的重量比,可以进一步改善所述电池的低温性能并保证电池的循环性能。
在一些实施方式中,S1组分的放电平台电压为3.1-4.8V,S2组分的放电平台电压为1.0-3.0V。由此,通过控制正极活性材料中S1组分与S2组分的放电平台电压,可以进一步改善所述电池的低温性能并保证电池的循环性能。如果S1或S2组分具有多个放电平台电压,那么本发明中所述的S1或S2的放电平台电压为其最高的放电平台电压。
在一些实施方式中,S2组分被碳包覆或者导电聚合物包覆。由此,通过控制正极活性材料中S2组分的组成,可以进一步改善所述电池的低温性能并保证电池的循环性能。在一些实施方式中,所述表面修饰的碳或导电聚合物可选自无定形碳、石墨烯、石墨化碳层、聚乙炔、聚吡咯、聚噻吩、聚亚苯基、聚苯乙炔、聚苯胺、聚多巴胺等中的一种或多种。
在一些实施方式中,所述S1组分的平均体积粒径Dv50为1-5um。所述平均体积粒径Dv50为样品的体积累计分布百分数达到50%时对应的粒径,采用激光粒度分析仪测定,例如采用英国马尔文仪器有限公司的Mastersizer 3000型激光粒度分析仪。
在一些实施方式中,所述正极活性材料可以本领域已知的方法制备,例如,S1组分与S2组分物理混合得到所述正极活性材料,或者在S2组分表面包覆或掺杂S2组分得到所述正极活性材料。
在一些实施方式中,在S2组分表面包覆或掺杂S2组分时,所述正极活性材料通常如下制备:
将锂源、A金属源、磷源、M金属源按一定的摩尔比相混合形成混合物,在混合物中加入碳源和助剂,将以上混合物经过研磨形成均匀的混合物浆料,将得到的浆料进行喷雾干燥得到前驱体。将前驱体进行惰性气氛下烧结得到碳包覆的S1组分材料,将得到的S1组分材料和任选的锂源、金属钒源按一定比例进行混合,进一步补充一定量的碳源,继续至于惰性气氛下烧结得到本申请的正极活性材料。
混合物中,锂源、A金属源、磷源、M金属按摩尔比Li∶A∶P∶M为0.95-1∶0.95-1∶0.95-1∶0-0.05的比例混合。
锂源为氧化锂、氢氧化锂、乙酸锂、碳酸锂、硝酸锂、亚硝酸锂、磷酸锂、磷酸二 氢锂、草酸锂、氯化锂、钼酸锂、钒酸锂中的一种或多种的组合。
A金属源包括铁源、铜源、钴源、镍源、锌源、锰源;优选为铁源和锰源,例如磷酸铁(锰)、磷酸亚铁(锰)、焦磷酸亚铁(锰)、碳酸亚铁(锰)、氯化亚铁(锰)、氢氧化亚铁(锰)、硝酸亚铁(锰)、草酸亚铁(锰)、氯化铁(锰)、氢氧化铁(锰)、硝酸铁(锰)、柠檬酸铁(锰)、三氧化二铁(锰)中的一种或多种的组合。
磷源为磷酸、磷酸氢二铵、磷酸二氢铵、磷酸铁、磷酸二氢锂中的一种或多种的组合。
M金属源还包括铜、钒、镁、铝、锌、锰、钛、锆、铌、铬的化合物及稀土元素化合物中的一种或多种的组合。
碳源为柠檬酸、苹果酸、酒石酸、草酸、水杨酸、琥珀酸、甘氨酸、乙二胺四乙酸、蔗糖、葡萄糖中的一种或多种的组合。
溶剂为水、甲醇、乙醇、丙醇、异丙醇、正丁醇、异丁醇、正戊醇、正己醇、正庚醇、丙酮、丁酮、丁二酮、戊酮、环戊酮、己酮、环己酮、环庚酮中的一种或多种的组合。
助剂为聚乙烯醇、聚乙二醇、聚氧化乙烯、聚苯乙烯磺酸钠、聚氧乙烯壬基苯基醚、十六烷基三甲基氯化铵、十六烷基三甲基溴化铵、十八烷基三甲基氯化铵、十八烷基三甲基溴化铵中的一种或多种的组合。
金属钒源为五氧化二钒,二氧化钒,钒金属粉末,氯化钒、偏钒酸铵中的一种或者几种。
另外,以下适当参照附图对本申请的二次电池进行说明。
通常情况下,二次电池包括正极极片、负极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料。图1示出了包含本发明的正极活性材料的极片的剖面SEM图,图2示出了包含本发明的正极活性材料的极片的EDS面扫描图,以表征磷、钒和氧元素的分布。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极活性材料还可包含本领域公知的用于电池的其他正极活性材料。作为示例,其他正极活性材料还可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。除了这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些其他正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。所述正极活性材料在正极膜层中的重量比为80-100重量%,基于正极膜层的总重量计。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。所述粘结剂在正极膜层中的重量比为0-20重量%,基于正极膜层的总重量计。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包 括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。所述导电剂在正极膜层中的重量比为0-20重量%,基于正极膜层的总重量计。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料,其中所述正极浆料固含量为40-80wt%,室温下的粘度调整到5000-25000mPa·s,将正极浆料涂覆在正极集流体的表面,烘干后经过冷轧机冷压后形成正极极片;正极粉末涂布单位面密度为150-350mg/m 2,正极极片压实密度为1-5g/cm3,优选2.0-2.6g/m 3
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。所述负极活性材料在负极膜层中的重量比为80-100重量%,基于负极膜层的总重量计。
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯 醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。所述粘结剂在负极膜层中的重量比为0-20重量%,基于负极膜层的总重量计。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。所述导电剂在负极膜层中的重量比为0-20重量%,基于负极膜层的总重量计。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。所述其他助剂在负极膜层中的重量比为0-15重量%,基于负极膜层的总重量计。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料,其中所述负极浆料固含量为30-70wt%,室温下的粘度调整到2000-10000mPa·s;将所得到的负极浆料涂覆在负极集流体上,经过干燥工序,冷压例如对辊,得到负极极片。负极粉末涂布单位面密度为75-220mg/m2,负极极片压实密度1.2-2.0g/m 3
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、高氯酸锂(LiClO4)、六氟砷酸锂(LiAsF6)、双氟磺酰亚胺锂(LiFSI)、双三氟甲磺酰亚胺锂(LiTFSI)、三氟甲磺酸锂(LiTFS)、二氟草酸硼酸锂(LiDFOB)、二草酸硼酸锂(LiBOB)、二氟磷酸锂(LiPO2F2)、二氟二草酸磷酸锂(LiDFOP)及四氟草酸磷酸锂(LiTFOP)中的一种或几种。所述电解质盐的浓度通常为0.5-5mol/L。
在一些实施方式中,溶剂可选自氟代碳酸乙烯酯(FEC)、碳酸亚乙酯(EC)、碳酸亚丙基酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸亚丁酯(BC)、 甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)及二乙砜(ESE)中的一种或几种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,所述隔离膜的厚度为6-40um,可选为12-20um。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图3是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图4,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图5是作为一个示例的电池模块4。参照图5,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图6和图7是作为一个示例的电池包1。参照图6和图7,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图8是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
为了使本申请所解决的技术问题、技术方案及有益效果更加清楚,以下将结合实施例和附图对本申请进行进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性 的,决不作为对本申请及其应用的任何限制。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例都属于本申请保护的范围。
实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
一、制备实施例
制备实施例1
(1)在室温下,将碳酸锂、草酸亚铁、磷酸二氢铵、二氧化钛按摩尔比1:2:2:0.01混合形成混合物。在所述混合物中加入重量比为3:1:0.3的葡萄糖和PEG以及柠檬酸表面活性剂,其中葡萄糖在全部原料重量的10%,柠檬酸占全部原料重量的1%。加入1000mL水作为分散介质。然后采用砂磨机在1000rpm下将以上混合物研磨4小时,形成均匀的混合物浆料,其中浆料的固含量为40%。将得到的浆料使用喷雾干燥设备进行喷雾干燥得到S1组分的前驱体。
(2)将S1组分前驱体进行惰性气氛氮气(氧氛控制在20ppm以内)下烧结,其中升温速率为10℃/min,匀速升温到760℃,保温10h,然后采用冷氮气吹扫进行降温5h,降温到物料表面温度为40℃。将烧结完成的物料进行气流粉碎,获得的S1组分,其分子式为LiTi 0.005Fe 0.99PO 4,平均体积粒径Dv50为1.5um。
(3)将S1组分材料和碳酸锂、偏钒酸铵、碳源葡萄糖进一步混合,其中,基于混合物的总重量计,S1组分的重量比为80%,碳酸锂和偏钒酸铵的重量比15%,碳源葡萄糖的重量比为5%;其中碳酸锂和偏钒酸铵的摩尔比为1.5:1。
(4)将所述混合物在球磨机设备中球磨2小时。然后将所述混合物置于氮气保护条件下烧结,其中升温速率为10℃/min,匀速升温到560℃,保温10h,然后采用冷氮气吹扫进行降温5h,直到物料表面温度为40℃。整个烧结过程采用氮气气氛保护,且气氛的氧氛控制在20ppm以内。最终得到表面包覆1.5Li 2O·VO 2.5的本发明的正极活性材料,其平均体积粒径Dv50为1.8um。
制备实施例2-12
其正极活性材料与制备实施例1的正极活性材料的制备方法相似,但是调整了原料的组成和产品参数,不同的产品参数详见表1。
制备实施例13
以制备实施例1的正极活性材料的制备方法中步骤(1)和(2)制备S1组分;
将碳酸锂、偏钒酸铵、碳源葡萄糖混合,其中,基于混合物的总重量计,碳酸锂和偏钒酸铵的重量比75%,碳源葡萄糖的重量比为25%;其中碳酸锂和偏钒酸铵的摩尔比为1.5:1。将所述混合物在球磨机设备中球磨2小时。然后将所述混合物置于氮气保护条件下烧结,其中升温速率为10℃/min,匀速升温到560℃,保温10h,然后采用冷氮气吹扫进行降温5h,直到物料表面温度为40℃,获得S2组分。整个烧结过程采用氮气气氛保护,且气氛的氧氛控制在20ppm以内。将上述获得的S1组分与S2组分以8:1的重量比物理混合,得到本发明的正极活性材料。不同的产品参数详见表1。
制备对比例1
仅进行制备实施例1的步骤(1)和(2),得到S1组分用作正极活性材料。不同的产品参数详见表1。
表1各制备实施例和制备对比例获得的正极活性材料组成和相关参数
二、应用实施例
实施例1
1)正极极片的制备
将制备实施例1的正极活性材料粉末、导电剂、粘结剂按照重量比例96:2:2进行干混,加入NMP溶剂。在真空搅拌机的作用下激烈搅拌直到形成均匀的正极浆料,浆料固含量为60wt%,室温下粘度调整到8000mPa·s,将正极浆料涂覆在正极集流体铝箔的表面,烘干后经过冷轧机冷压后形成正极极片,正极粉末涂布单位面密度控制到200mg/m 2,正极极片压实密度如表1中所示。
2)负极极片的制备
将负极活性材料石墨、增稠剂羧甲基纤维素钠(CMC-Na)、粘接剂丁苯橡胶(SBR)、导电剂炭黑,按照质量比97:1:1:1进行混合,加入去离子水,搅拌混合均匀,得到负极浆料。浆料固含量为50wt%,室温下粘度调整到4000mPa·s;将所得到的负极浆料涂覆在铜箔上,经过干燥工序,对辊,得到负极极片。负极粉末涂布单位面密度控制到145mg/m 2,负极极片压实密度1.35g/m 3
3)隔离膜
使用厚度0.012mm的聚乙烯膜作为隔离膜。
4)电解液的制备
将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按照按体积比1:1:1进行,混合得到有机溶剂,接着将充分干燥的锂盐LiPF6溶解于混合后的有机溶剂中,配制成浓度为1mol/L的电解液。
5)电池的制备
将上述制备的正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正、负极极片之间起到隔离的作用,然后卷绕得到容量为3Ah的裸电芯;将裸电芯置于外包装壳中,干燥后注入10g电解液,经过真空封装、静置、化成、整形等工序,获得锂离子电池。
实施例2-13的二次电池和对比例1的二次电池与实施例1的二次电池制备方法相似,但是使用了相应制备实施例获得的正极活性材料。
三、电池性能测试
1、-20℃低温性能测试
在25℃下,先以0.5C的恒定电流对电池充电至3.65V,进一步以3.65V恒定电压充电至电流为0.025C,静置2h,然后以1C的恒定电流将电池放电至2.0V,放电容量 记为C0;然后25℃静置2h,重复以0.5C的恒定电流对电池充电至3.65V并横流充电至0.025C,电池置于-20℃条件下静置2h,然后以1C的恒定电流将电池放电至2.0V,放电容量记为D1;然后25℃静置2h,重复以0.5C的恒定电流对电池充电至3.65V并横流充电至0.025C,电池置于-20℃条件下静置2h,然后以3C的恒定电流将电池放电至2.0V,放电容量记为D3。分别计算电芯在-20℃,以1C、3C倍率放电的容量保持率D1/D0和D3/D0。
2、循环性能测试
在25℃下,1.先以0.5C的恒定电流对电池充电至3.65V,2.进一步以3.65V恒定电压充电至电流为0.025C,记录为第1次充电容量,3.静置2h,4.然后以1C的恒定电流将电池放电至2.0V,记录为第1次放电容量;5.然后25℃静置2h,重复1-4过程,记录每一次循环过程中的充电容量和放电容量;以第500次的放电容量除以第一次的放电容量即为电池的第n次循环的容量保持率。
3.0.5C放电容量克容量的测试
在25℃下,先以0.5C的恒定电流对电池充电至3.65V,进一步以3.65V恒定电压充电至电流为0.025C,静置2h,然后以0.5C的恒定电流将电池放电至2.0V,放电容量记为C ,克容量c=C /正极材料的质量。
四、各实施例、对比例测试结果
按照上述方法分别制备各实施例和对比例的电池,并测量各项性能参数,结果见下表2。
表2各实施例和对比例的电池的性能
从实施例1-7,通过在LiTi 0.005Fe 0.99PO 4表面包覆形成1.5Li 2O·VO 2.5包覆层,可提升混合正极材料的低温性能,低温性能明显均高于对比例1。另一方面,随着锂钒氧化物比例的增加,电芯的循环寿命降低,主要原因是锂钒氧化物在脱锂和嵌锂过程中,涉及到钒元素多种价态的变换,结构衰减速度高于磷酸铁锂材料;进一步数据分析,看到当1.5Li 2O·VO 2.5含量合适时,混合正极材料具有最优的低温放电性能;可见在实施例3条件下,电池综合性能最优。
同时,锂钒氧化物可以起到正极补锂的作用,其使得电池的克容量发挥得到显著提升。进一步,实施例12在1.5Li 2O·VO 2.5化合物组分中进行Na离子掺杂,得到1.45Li 2O·0.05Na 2O·VO 2.5,可以进一步改善电池的综合性能,这是因为Na与Li为同族元素,Na离子的半径(0.1nm)大于Li离子半径(0.7nm),适当的Na+取代Li+的位置可以拓宽材料层间间距,为锂离子在材料体相扩散提供更大的空间,减少扩散阻力,提升材料的倍率性能和低温性能。
实施例8-11,采用0.5Li 2O·3VO 2.5低温助剂,相对于实施例1-7,j值是相对较低的,因此,电池的克容量发挥降低,电池的低温改善幅度随之提升,这是因为锂钒氧化物中钒氧基体占比增加,锂离子传输过程中的阻力降低,对于低温性能提升具有显著的效果。实施例8-11中随着0.5Li 2O·3VO 2.5低温助剂的添加量提升,和1-7实施例表现相似的规律。
实施例12相比于实施例3,改变了低温助剂和主体材料混合的方式,采用了单纯物理混合的方式,即分别合成S1和S2,在将S1和S2连同正极配方其它助剂进行制备得到正极极片。测试结果发现,实施例12同样表现出较好的低温性能提升。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (11)

  1. 一种二次电池,其包含正极极片、负极极片和电解液,其中所述正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包含正极活性材料,所述正极活性材料包含S1)橄榄石结构的含锂化合物,和S2)通式为j(M 2O)·kVO X的钒氧化物,其中M为碱金属中的一种或多种,0≤j≤1,1≤k≤5,1≤x≤2.5;其中S1与S2的放电平台电压的差值为E,其中0.2V≤E≤2.8V。
  2. 根据权利要求1所述的二次电池,其特征在于,在组分S2中,M为选自Li或Na中一种或两种,可选地为Li;0≤j/k≤1,优选0.2≤j/k≤0.6。
  3. 根据权利要求1或2所述的二次电池,其特征在于,S1为通式LiA 1-n*y/2M yPO 4的化合物,其中0≤y≤0.1,
    A选自Fe、Co、Ni、Cu、Mn、Zn中的至少一种,
    n为M金属的价态,n=+2、+3、+4或+5价价,
    M选自Cr、Pb、Ca、Sr、Ti、Mg、V、Nb、Zr中的至少一种;
    A与M相同或不同。
  4. 根据权利要求1-3中任一项所述的二次电池,其特征在于,S1组分可选为LiFe 1-n*y/2M yPO4的化合物,其中n、y、M如权利要求3所述定义;
    S2包括LiVO 3、Li 3V 2O 5、Li 4V 3O 8、LiV 3O 8、Li 2VO 3、LiVO 2;V 2O 5、V 2O 3、V 3O 4;以及上述组分相应的Na掺杂物Li 0.95Na 0.05VO 3、Li 2.95Na 0.05V 2O 5、Li 3.95Na 0.05V 3O 8
  5. 根据权利要求1-4中任一项所述的二次电池,其特征在于,钒元素的含量为1重量%-5重量%,基于所述正极活性材料的重量计;在正极活性材料中,钒元素与锂元素的摩尔比为1:5-20,优选为1:6-10。
  6. 根据权利要求1-5中任一项所述的二次电池,其特征在于,S1组分与S2组分的重量比为3-20:1,优选为4-10:1。
  7. 根据权利要求1-6中任一项所述的二次电池,其特征在于,S1组分的放电平台电压为3.1-4.8V,S2组分的放电平台电压为1.0-3.0V。
  8. 根据权利要求1-7中任一项所述的二次电池,其特征在于,S2组分被碳包覆或者导电聚合物包覆。
  9. 一种电池模块,其特征在于,包括权利要求1-8中任一项所述的二次电池。
  10. 一种电池包,其特征在于,包括权利要求9所述的电池模块。
  11. 一种用电装置,其特征在于,包括选自权利要求1-8中任一项所述的二次电池、权利要求9所述的电池模块或权利要求10所述的电池包中的至少一种。
CN202280064878.4A 2022-06-27 2022-06-27 一种二次电池、电池模块、电池包和用电装置 Pending CN118043995A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101487 WO2024000101A1 (zh) 2022-06-27 2022-06-27 一种二次电池、电池模块、电池包和用电装置

Publications (1)

Publication Number Publication Date
CN118043995A true CN118043995A (zh) 2024-05-14

Family

ID=89383643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280064878.4A Pending CN118043995A (zh) 2022-06-27 2022-06-27 一种二次电池、电池模块、电池包和用电装置

Country Status (2)

Country Link
CN (1) CN118043995A (zh)
WO (1) WO2024000101A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130171502A1 (en) * 2011-12-29 2013-07-04 Guorong Chen Hybrid electrode and surface-mediated cell-based super-hybrid energy storage device containing same
JP6226412B2 (ja) * 2012-03-14 2017-11-08 セイコーインスツル株式会社 非水電解質二次電池用の正極及びこれを用いた非水電解質二次電池
CN103066258B (zh) * 2012-12-06 2016-06-01 合肥国轩高科动力能源有限公司 一种高振实密度的钒氧化物与磷酸铁锂复合材料的制备方法
CN105633366A (zh) * 2015-12-30 2016-06-01 镇江宜能新能源材料科技有限公司 C及锂钒氧化物导电层共包覆磷酸锰铁锂正极材料及其制备方法
CN107611420B (zh) * 2017-08-29 2020-01-17 合肥国轩高科动力能源有限公司 一种锂电池纳米电极材料LiNaV2O6及其制备方法
CN109616656B (zh) * 2018-12-17 2021-08-24 蔡杰 锂电池用铜镁掺杂的包覆磷酸镍锂正极材料及制备方法
CN110085854B (zh) * 2019-06-05 2020-12-22 骆驼集团武汉光谷研发中心有限公司 一种磷酸钒锂正极材料及其制备方法

Also Published As

Publication number Publication date
WO2024000101A1 (zh) 2024-01-04

Similar Documents

Publication Publication Date Title
KR102502618B1 (ko) 이차 전지, 이차 전지를 포함하는 전지 모듈, 전지 팩 및 장치
EP3159955B1 (en) Negative electrode material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and method for producing negative electrode active material particles
KR101678798B1 (ko) 비수 전해액 2차 전지의 제조 방법
CN116231091B (zh) 锂二次电池用电解液、二次电池和用电装置
KR101570977B1 (ko) 리튬 이차전지
KR101570975B1 (ko) 리튬 이차전지
CN112514133A (zh) 锂二次电池
EP4231407A1 (en) Electrolyte solution, secondary battery comprising same, and preparation method for secondary battery
CN118043997A (zh) 正极材料及其制备方法、具备其的二次电池
US20220102788A1 (en) Secondary battery and apparatus containing the same
CN118043995A (zh) 一种二次电池、电池模块、电池包和用电装置
KR20170009472A (ko) 저온 특성이 향상된 리튬 이차전지용 음극 및 이를 포함하고 있는 리튬 이차전지
CN117199506B (zh) 电池单体及其制备方法、电池和用电装置
CN116053469B (zh) 正极活性材料、正极极片、二次电池和用电装置
EP4213264A1 (en) Electrolyte, secondary battery, battery module, battery pack, and electric device
EP4276964A1 (en) Secondary battery, method for preparing secondary battery, battery module, battery pack, and power consumption apparatus
EP4325616A1 (en) Secondary battery, battery module, battery pack, and electric device
WO2023082866A1 (zh) 二次电池、用于制备二次电池的方法、电池模块、电池包及用电装置
US20240194873A1 (en) Secondary battery, method for preparing corresponding positive electrode active material, battery module, battery pack, and electrical apparatus
US20240234724A1 (en) Positive electrode active material, method for preparing positive electrode material, positive electrode plate, secondary battery, battery module, battery pack and electrical apparatus
EP4235871A1 (en) Modified graphite and preparation method therefor, carbon-coated negative electrode active material and preparation method therefor, negative electrode piece, secondary battery, battery module, battery pack, and electric device
EP4329010A1 (en) Positive electrode active material, secondary battery, battery module, battery pack, and electric device
KR20230070442A (ko) 음극판, 이차전지, 전지모듈, 전지팩 및 전기기기
CN117501502A (zh) 一种电解液、二次电池、电池模块、电池包和用电装置
CN116830319A (zh) 负极极片、二次电池和用电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination