CN117856815A - 全双工发射接收电路、串行电路芯片、电子设备及车辆 - Google Patents

全双工发射接收电路、串行电路芯片、电子设备及车辆 Download PDF

Info

Publication number
CN117856815A
CN117856815A CN202410076695.5A CN202410076695A CN117856815A CN 117856815 A CN117856815 A CN 117856815A CN 202410076695 A CN202410076695 A CN 202410076695A CN 117856815 A CN117856815 A CN 117856815A
Authority
CN
China
Prior art keywords
resistor
field effect
effect tube
transmitting module
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410076695.5A
Other languages
English (en)
Inventor
沈勇
刘昕
王文波
曾华阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kangzhi Integrated Circuit Shanghai Co ltd
Original Assignee
Kangzhi Integrated Circuit Shanghai Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kangzhi Integrated Circuit Shanghai Co ltd filed Critical Kangzhi Integrated Circuit Shanghai Co ltd
Priority to CN202410076695.5A priority Critical patent/CN117856815A/zh
Publication of CN117856815A publication Critical patent/CN117856815A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

本公开涉及电子电器技术领域,提供了一种全双工发射接收电路、串行电路芯片、电子设备及车辆。该全双工发射接收电路包括第一发射模块、第二发射模块和处理模块,第一发射模块和第二发射模块均为源系列终端架构,其通过增加一路可与第一发射模块发射相同正向差分信号的第二发射模块以及处理模块,进而该处理模块能够根据第二发射模块发射的正向差分信号,将混合信号中第一发射模块发射的正向差分信号去除,获得反向差分信号,由此实现了在同一信道上的全双工通信,无需额外增设信道,成本低,适用范围广泛。

Description

全双工发射接收电路、串行电路芯片、电子设备及车辆
技术领域
本公开涉及电子电器技术领域,特别是涉及一种全双工发射接收电路、串行电路芯片、电子设备及车辆。
背景技术
SERDES(SERializer-DESERializer,串行器和解串器)是一种在发送端多路低速并行信号被转换成高速串行信号,经过传输媒体(比如光纤、同轴电缆等)后,在接收端高速串行信号重新转换成低速并行信号的通信技术。
目前,相关技术中串行器和解串器之间一般是单向通道,也就是说不具有回传功能,即便有部分协议通过增设额外信道来回传控制信息,比如DP(Display Port,显示接口),但这种方式会显著增加成本,不利于广泛应用。
发明内容
基于此,有必要针对上述缺陷或不足,提供一种全双工发射接收电路、串行电路芯片、电子设备及车辆,能够在同一信道上实现全双工通信,降低成本。
第一方面,本公开实施例提供了一种全双工发射接收电路,所述全双工发射接收电路包括第一发射模块、第二发射模块和处理模块,所述第一发射模块和所述第二发射模块均为源系列终端架构;
所述第一发射模块的第一端连接所述第二发射模块的第一端,所述第一发射模块的第二端连接所述第二发射模块的第二端,所述第一发射模块的第三端连接所述处理模块的第一端,所述第一发射模块的第四端连接所述处理模块的第二端,所述第二发射模块的第三端连接所述处理模块的第三端,所述第二发射模块的第四端连接所述处理模块的第四端;
所述第一发射模块被配置为发射混合信号至所述处理模块,所述混合信号包括正向差分信号和反向差分信号;所述第二发射模块被配置为发射所述正向差分信号至所述处理模块;
所述处理模块被配置为根据所述第二发射模块发射的正向差分信号,将所述混合信号中所述第一发射模块发射的正向差分信号去除,获得所述反向差分信号。
可选地,在本公开一些实施例中,所述处理模块包括接收提取单元、参考信号单元和滤波放大单元;
所述接收提取单元的第一端连接所述第一发射模块的第三端,所述接收提取单元的第二端连接所述第一发射模块的第四端,所述接收提取单元的第三端分别连接所述参考信号单元的第一端和所述滤波放大单元的第一端,所述接收提取单元的第四端分别连接所述参考信号单元的第二端和所述滤波放大单元的第二端,所述参考信号单元的第三端连接所述第二发射模块的第三端,所述参考信号单元的第四端连接所述第二发射模块的第四端;
所述参考信号单元被配置为提供所述正向差分信号;所述接收提取单元被配置为从接收到的混合信号中减去所述正向差分信号,得到所述反向差分信号;所述滤波放大单元被配置为对所述反向差分信号进行滤波和放大。
可选地,在本公开一些实施例中,所述接收提取单元包括第一电阻、第一场效应管、第二电阻、第三电阻、第二场效应管、第四电阻和第一电流源;
所述第一电阻的第一端连接所述第一发射模块的第三端,所述第一电阻的第二端连接所述第一场效应管的第一端,所述第一场效应管的第二端连接所述第一电流源的第一端,所述第一电流源的第二端接地,所述第一场效应管的第三端分别连接所述第二电阻的第一端和所述参考信号单元的第一端,所述第二电阻的第二端连接电源,所述第三电阻的第一端连接所述第一发射模块的第四端,所述第三电阻的第二端连接所述第二场效应管的第一端,所述第二场效应管的第二端连接所述第一电流源的第一端,所述第二场效应管的第三端分别连接所述第四电阻的第一端和所述参考信号单元的第二端,所述第四电阻的第二端连接电源。
可选地,在本公开一些实施例中,所述参考信号单元包括第五电阻、第三场效应管、第六电阻、第四场效应管和第二电流源;
所述第五电阻的第一端连接所述第二发射模块的第三端,所述第五电阻的第二端连接所述第三场效应管的第一端,所述第三场效应管的第二端连接所述第二电流源的第一端,所述第二电流源的第二端接地,所述第三场效应管的第三端分别连接所述接收提取单元的第三端和所述滤波放大单元的第一端,所述第六电阻的第一端连接所述第二发射模块的第四端,所述第六电阻的第二端连接所述第四场效应管的第一端,所述第四场效应管的第二端连接所述第二电流源的第一端,所述第四场效应管的第三端分别连接所述接收提取单元的第四端和所述滤波放大单元的第二端。
可选地,在本公开一些实施例中,所述滤波放大单元包括第七电阻、第一电容、第八电阻和第二电容;
所述第七电阻的第一端分别连接所述接收提取单元的第三端和所述参考信号单元的第一端,所述第七电阻的第二端连接所述第一电容的第一端,所述第一电容的第二端接地,所述第八电阻的第一端分别连接所述接收提取单元的第四端和所述参考信号单元的第二端,所述第八电阻的第二端连接所述第二电容的第一端,所述第二电容的第二端接地。
可选地,在本公开一些实施例中,所述第一发射模块包括第五场效应管、第九电阻、第十电阻、第六场效应管、第七场效应管、第十一电阻、第十二电阻和第八场效应管;
所述第五场效应管的第一端接入一路正向差分信号并分别连接所述第六场效应管的第一端和所述第二发射模块的第一端,所述第五场效应管的第二端接地,所述第五场效应管的第三端连接所述第九电阻的第一端,所述第九电阻的第二端分别连接所述第十电阻的第一端和所述处理模块的第一端,所述第六场效应管的第二端连接电源,所述第六场效应管的第三端连接所述第十电阻的第二端;
所述第七场效应管的第一端接入另一路正向差分信号并分别连接所述第八场效应管的第一端和所述第二发射模块的第二端,所述第七场效应管的第二端接地,所述第七场效应管的第三端连接所述第十一电阻的第一端,所述第十一电阻的第二端分别连接所述第十二电阻的第一端和所述处理模块的第二端,所述第八场效应管的第二端连接电源,所述第八场效应管的第三端连接所述第十二电阻的第二端。
可选地,在本公开一些实施例中,所述第二发射模块包括第九场效应管、第十三电阻、第十四电阻、第十五电阻、第十场效应管、第十一场效应管、第十六电阻、第十七电阻和第十二场效应管;
所述第九场效应管的第一端和所述第十场效应管的第一端均连接所述第五场效应管的第一端,所述第九场效应管的第二端接地,所述第九场效应管的第三端连接所述第十三电阻的第一端,所述第十三电阻的第二端分别连接所述第十四电阻的第一端、第十五电阻的第一端和所述处理模块的第三端,所述第十场效应管的第二端连接电源,所述第十场效应管的第三端连接所述第十五电阻的第二端;
所述第十一场效应管的第一端和所述第十二场效应管的第一端均连接所述第七场效应管的第一端,所述第十一场效应管的第二端接地,所述第十一场效应管第三端连接所述第十六电阻的第一端,所述第十六电阻的第二端分别连接所述第十四电阻的第二端、所述第十七电阻的第一端和所述处理模块的第四端,所述第十二场效应管的第二端连接电源,所述第十二场效应管的第三端连接所述第十七电阻的第二端。
第二方面,本公开实施例提供了一种串行电路芯片,所述串行电路芯片包括第一方面中任意一项所述的全双工发射接收电路。
第三方面,本公开实施例提供了一种电子设备,所述电子设备包括解串电路芯片、传输媒体以及第二方面所述的串行电路芯片,其中所述传输媒体设置在所述解串电路芯片与所述串行电路芯片之间。
第四方面,本公开实施例提供了一种车辆,所述车辆包括第三方面所述的电子设备。
从以上技术方案可以看出,本公开实施例具有以下优点:
本公开实施例所提供了一种全双工发射接收电路、串行电路芯片、电子设备及车辆,通过增加一路可与第一发射模块发射相同正向差分信号的第二发射模块以及处理模块,进而该处理模块能够根据第二发射模块发射的正向差分信号,将混合信号中第一发射模块发射的正向差分信号去除,获得反向差分信号,由此实现了在同一信道上的全双工通信,无需额外增设信道,成本低,适用范围广泛。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本公开的其它特征、目的和优点将会变得更明显:
图1为本公开实施例提供的一种全双工发射接收电路的应用框图;
图2为本公开实施例提供的一种SST架构的示意图;
图3为本公开实施例提供的一种全双工发射接收电路的结构框图;
图4为本公开实施例提供的另一种全双工发射接收电路的结构框图;
图5为本公开实施例提供的一种全双工发射接收电路的具体示例;
图6为本公开实施例提供的一种串行电路芯片的结构框图;
图7为本公开实施例提供的一种电子设备的结构框图;
图8为本公开实施例提供的一种车辆的结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
为了便于更好地理解本公开,现结合图1所示的应用框图进行说明。示例性地,本公开实施例提供的基于SST(Source Series Terminated,源系列终端)架构的全双工发射接收电路可以应用在STP(Shielded Twisted Pair,屏蔽双绞线)传输模式中,即发送端为Serializer(串行器)电路,接收端为Deserilalizer(解串器)电路,二者之间通过STP这个传输媒体进行信号传输。其中,FC表示正向通道,FC_driver表示正向驱动,FC_receiver表示正向接收,RC表示反向通道,RC_driver表示反向驱动,RC_receiver表示反向接收,TX表示发送以及RX表示接收。
进一步地,如图2所示本公开实施例提供的SST架构包括场效应管Q01、电阻R01、电阻R02、场效应管Q02、场效应管Q03、电阻R03、电阻R04和场效应管Q04。其中,场效应管Q01的源极连接电源(VDD),场效应管Q01的栅极通过端脚TX_IN接入一路正向差分信号,场效应管Q01的漏极连接电阻R01的第一端,电阻R01的第二端分别与电阻R02的第一端和芯片端脚TX_OP相连接,电阻R02的第二端连接场效应管Q02的漏极,场效应管Q02的栅极连接场效应管Q01的栅极,场效应管Q02的源极接地,场效应管Q03的源极连接电源(VDD),场效应管Q03的栅极通过端脚TX_IP接入另一路正向差分信号,场效应管Q03的漏极连接电阻R03的第一端,电阻R03的第二端分别与电阻R04的第一端和芯片端脚TX_ON相连接,电阻R04的第二端连接场效应管Q04的漏极,场效应管Q04的栅极连接场效应管Q03的栅极,场效应管Q04的源极接地。
下面通过图3至图8详细地阐述本公开实施例提供的全双工发射接收电路、串行电路芯片、电子设备及车辆。
请参考图3,其为本公开实施例提供的一种全双工发射接收电路的结构框图,该全双工发射接收电路1包括第一发射模块11、第二发射模块12和处理模块13,第一发射模块11和第二发射模块12均为源系列终端架构,比如图2所示。其中,第一发射模块11的第一端连接第二发射模块12的第一端,第一发射模块11的第二端连接第二发射模块12的第二端,第一发射模块11的第三端连接处理模块13的第一端,第一发射模块11的第四端连接处理模块13的第二端,第二发射模块12的第三端连接处理模块13的第三端,第二发射模块12的第四端连接处理模块13的第四端。实际使用时,第一发射模块11能够发射混合信号至处理模块13,混合信号包括正向差分信号和反向差分信号,第二发射模块12能够发射正向差分信号至处理模块13,而处理模块13能够根据第二发射模块12发射的正向差分信号,将混合信号中第一发射模块11发射的正向差分信号去除,获得反向差分信号。
可选地,如图4所示,本公开一些实施例中处理模块13可以包括接收提取单元131、参考信号单元132和滤波放大单元133,该参考信号单元132能够提供正向差分信号,该接收提取单元131能够从接收到的混合信号中减去正向差分信号,得到反向差分信号,而滤波放大单元133能够对反向差分信号进行滤波和放大。其中,接收提取单元131的第一端连接第一发射模块11的第三端,接收提取单元131的第二端连接第一发射模块11的第四端,接收提取单元131的第三端分别连接参考信号单元132的第一端和滤波放大单元133的第一端,接收提取单元131的第四端分别连接参考信号单元132的第二端和滤波放大单元133的第二端,参考信号单元132的第三端连接第二发射模块12的第三端,参考信号单元132的第四端连接第二发射模块12的第四端。
示例性地,请参考图5,下面对全双工发射接收电路1中各个组成模块或者单元的具体电路结构进行详细说明。
比如,处理模块13中接收提取单元131可以包括但不限于第一电阻R1、第一场效应管Q1、第二电阻R2、第三电阻R3、第二场效应管Q2、第四电阻R4和第一电流源A1。其中,第一电阻R1的第一端(对应处理模块13的第一端)连接第一发射模块11的第三端,第一电阻R1的第二端连接第一场效应管Q1的第一端,第一场效应管Q1的第二端连接第一电流源A1的第一端,第一电流源A1的第二端接地,第一场效应管Q1的第三端分别连接第二电阻R2的第一端和参考信号单元132的第一端,第二电阻R2的第二端连接电源(VDD),第三电阻R3的第一端(对应处理模块13的第二端)连接第一发射模块11的第四端,第三电阻R3的第二端连接第二场效应管Q2的第一端,第二场效应管Q2的第二端连接第一电流源A1的第一端,第二场效应管Q2的第三端分别连接第四电阻R4的第一端和参考信号单元132的第二端,第四电阻R4的第二端连接电源(VDD)。
可选地,本公开实施例中第一场效应管Q1和第二场效应管Q2均为NMOS管,则第一场效应管Q1的第一端为NMOS管的栅极(g),第一场效应管Q1的第二端为NMOS管的源极(s),第一场效应管Q1的第三端为NMOS管的漏极(d),以及第二场效应管Q2的第一端为NMOS管的栅极(g),第二场效应管Q2的第二端为NMOS管的源极(s),第二场效应管Q2的第三端为NMOS管的漏极(d)。
再如,处理模块13中参考信号单元132可以包括但不限于第五电阻R5、第三场效应管Q3、第六电阻R6、第四场效应管Q4和第二电流源A2。其中,第五电阻R5的第一端(对应处理模块13的第三端)连接第二发射模块12的第三端,第五电阻R5的第二端连接第三场效应管Q3的第一端,第三场效应管Q3的第二端连接第二电流源A2的第一端,第二电流源A2的第二端接地,第三场效应管Q3的第三端分别连接接收提取单元131的第三端和滤波放大单元133的第一端,第六电阻R6的第一端(对应处理模块13的第四端)连接第二发射模块12的第四端,第六电阻R6的第二端连接第四场效应管Q4的第一端,第四场效应管Q4的第二端连接第二电流源A2的第一端,第四场效应管Q4的第三端分别连接接收提取单元131的第四端和滤波放大单元133的第二端。
可选地,本公开实施例中第三场效应管Q3和第四场效应管Q4均为NMOS管,则第三场效应管Q3的第一端为NMOS管的栅极(g),第三场效应管Q3的第二端为NMOS管的源极(s),第三场效应管Q3的第三端为NMOS管的漏极(d),以及第四场效应管Q4的第一端为NMOS管的栅极(g),第四场效应管Q4的第二端为NMOS管的源极(s),第四场效应管Q4的第三端为NMOS管的漏极(d)。
再如,处理模块13中滤波放大单元133可以包括但不限于第七电阻R7、第一电容C1、第八电阻R8和第二电容C2。其中,第七电阻R7的第一端(对应RCH_OP)分别连接接收提取单元131的第三端和参考信号单元132的第一端,第七电阻R7的第二端连接第一电容C1的第一端,第一电容C1的第二端接地,第八电阻R8的第一端(对应RCH_ON)分别连接接收提取单元131的第四端和参考信号单元132的第二端,第八电阻R8的第二端连接第二电容C2的第一端,第二电容C2的第二端接地。
又如,第一发射模块11可以包括但不限于第五场效应管Q5、第九电阻R9、第十电阻R10、第六场效应管Q6、第七场效应管Q7、第十一电阻R11、第十二电阻R12和第八场效应管Q8。其中,第五场效应管Q5的第一端(对应第一发射模块11的第一端,即FCTX_IP)接入一路正向差分信号并分别连接第六场效应管Q6的第一端和第二发射模块12的第一端,第五场效应管Q5的第二端接地,第五场效应管Q5的第三端连接第九电阻R9的第一端,第九电阻R9的第二端(对应第一发射模块11的第三端,即FCH_TX_ON)分别连接第十电阻R10的第一端和处理模块13的第一端,第六场效应管Q6的第二端连接电源(VDD),第六场效应管Q6的第三端连接第十电阻R10的第二端。而第七场效应管Q7的第一端(对应第一发射模块11的第二端,即FCTX_IN)接入另一路正向差分信号并分别连接第八场效应管Q8的第一端和第二发射模块12的第二端,第七场效应管Q7的第二端接地,第七场效应管Q7的第三端连接第十一电阻R11的第一端,第十一电阻R11的第二端(对应第一发射模块11的第四端,即FCH_TX_OP)分别连接第十二电阻R12的第一端和处理模块13的第二端,第八场效应管Q8的第二端连接电源(VDD),第八场效应管Q8的第三端连接第十二电阻R12的第二端。
可选地,本公开实施例中第五场效应管Q5和第七场效应管Q7为NMOS管,而第六场效应管Q6和第八场效应管Q8为PMOS管,则第五场效应管Q5的第一端为NMOS管的栅极(g),第五场效应管Q5的第二端为NMOS管的源极(s),第五场效应管Q5的第三端为NMOS管的漏极(d);第六场效应管Q6的第一端为PMOS管的栅极(g),第六场效应管Q6的第二端为PMOS管的源极(s),第六场效应管Q6的第三端为PMOS管的漏极(d);第七场效应管Q7的第一端为NMOS管的栅极(g),第七场效应管Q7的第二端为NMOS管的源极(s),第七场效应管Q7的第三端为NMOS管的漏极(d);以及,第八场效应管Q8的第一端为PMOS管的栅极(g),第八场效应管Q8的第二端为PMOS管的源极(s),第八场效应管Q8的第三端为PMOS管的漏极(d)。
另如,第二发射模块12可以包括但不限于第九场效应管Q9、第十三电阻R13、第十四电阻R14、第十五电阻R15、第十场效应管Q10、第十一场效应管Q11、第十六电阻R16、第十七电阻R17和第十二场效应管Q12。其中,第九场效应管Q9的第一端和第十场效应管Q10的第一端(对应第二发射模块12的第一端)均连接第五场效应管Q5的第一端,第九场效应管Q9的第二端接地,第九场效应管Q9的第三端连接第十三电阻R13的第一端,第十三电阻R13的第二端(对应第二发射模块12的第三端)分别连接第十四电阻R14的第一端、第十五电阻R15的第一端和处理模块13的第三端,第十场效应管Q10的第二端连接电源(VDD),第十场效应管Q10的第三端连接第十五电阻R15的第二端。而第十一场效应管Q11的第一端和第十二场效应管Q12的第一端(对应第二发射模块12的第二端)均连接第七场效应管Q7的第一端,第十一场效应管Q11的第二端接地,第十一场效应管Q11第三端连接第十六电阻R16的第一端,第十六电阻R16的第二端(对应第二发射模块12的第四端)分别连接第十四电阻R14的第二端、第十七电阻R17的第一端和处理模块13的第四端,第十二场效应管Q12的第二端连接电源(VDD),第十二场效应管Q12的第三端连接第十七电阻R17的第二端。
可选地,本公开实施例中第九场效应管Q9和第十一场效应管Q11为NMOS管,而第十场效应管Q10和第十二场效应管Q12均为PMOS管,则第九场效应管Q9的第一端为NMOS管的栅极(g),第九场效应管Q9的第二端为NMOS管的源极(s),第九场效应管Q9的第三端为NMOS管的漏极(d);第十场效应管Q10的第一端为PMOS管的栅极(g),第十场效应管Q10的第二端为PMOS管的源极(s),第十场效应管Q10的第三端为PMOS管的漏极(d);第十一场效应管Q11的第一端为NMOS管的栅极(g),第十一场效应管Q11的第二端为NMOS管的源极(s),第十一场效应管Q11的第三端为NMOS管的漏极(d);以及,第十二场效应管Q12的第一端为PMOS管的栅极(g),第十二场效应管Q12的第二端为PMOS管的源极(s),第十二场效应管Q12的第三端为PMOS管的漏极(d)。
下面结合图5,对本公开实施例提供的全双工发射接收电路1的工作过程进行说明。一方面,正向差分信号通过第五场效应管Q5、第九电阻R9、第十电阻R10、第六场效应管Q6、第七场效应管Q7、第十一电阻R11、第十二电阻R12和第八场效应管Q8输出到芯片端脚FCH_TX_OP和FCH_TX_ON上,同时该芯片端脚还会接收到从解串电路芯片端发送过来的反向差分信号;另一方面,正向差分信号也通过第二发射模块12进行发射,最终经过第一场效应管Q1、第二场效应管Q2、第三场效应管Q3和第四场效应管Q4实现了正向差分信号的相减,留下的信号只包含从解串电路芯片端发送过来的反向差分信号,并对该反向差分信号进行滤波和放大,即可实现全双工通信。测试结果表明,通过第二发射模块12之后的信号和原通路信号的相位差进一步缩小,提升了性能。
作为另一方面,本公开实施例还提供了一种串行电路芯片。如图6所示,该串行电路芯片2可以包括但不限于图2~图5对应实施例的全双工发射接收电路1。
作为再一方面,本公开实施例还提供了一种电子设备。如图7所示,该电子设备3可以包括解串电路芯片31、传输媒体32以及图6对应实施例中串行电路芯片2。其中,传输媒体32设置在解串电路芯片31与串行电路芯片2之间,比如该传输媒体32可以为屏蔽双绞线。
作为又一方面,本公开实施例还提供了一种车辆。如图8所示,该车辆4可以包括图7对应实施例的电子设备3。
本公开实施例提供的全双工发射接收电路、串行电路芯片、电子设备及车辆,通过增加一路可与第一发射模块发射相同正向差分信号的第二发射模块以及处理模块,进而该处理模块能够根据第二发射模块发射的正向差分信号,将混合信号中第一发射模块发射的正向差分信号去除,获得反向差分信号,由此实现了在同一信道上的全双工通信,无需额外增设信道,成本低,适用范围广泛。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。

Claims (10)

1.一种全双工发射接收电路,其特征在于,所述全双工发射接收电路包括第一发射模块、第二发射模块和处理模块,所述第一发射模块和所述第二发射模块均为源系列终端架构;
所述第一发射模块的第一端连接所述第二发射模块的第一端,所述第一发射模块的第二端连接所述第二发射模块的第二端,所述第一发射模块的第三端连接所述处理模块的第一端,所述第一发射模块的第四端连接所述处理模块的第二端,所述第二发射模块的第三端连接所述处理模块的第三端,所述第二发射模块的第四端连接所述处理模块的第四端;
所述第一发射模块被配置为发射混合信号至所述处理模块,所述混合信号包括正向差分信号和反向差分信号;所述第二发射模块被配置为发射所述正向差分信号至所述处理模块;
所述处理模块被配置为根据所述第二发射模块发射的正向差分信号,将所述混合信号中所述第一发射模块发射的正向差分信号去除,获得所述反向差分信号。
2.根据权利要求1所述的全双工发射接收电路,其特征在于,所述处理模块包括接收提取单元、参考信号单元和滤波放大单元;
所述接收提取单元的第一端连接所述第一发射模块的第三端,所述接收提取单元的第二端连接所述第一发射模块的第四端,所述接收提取单元的第三端分别连接所述参考信号单元的第一端和所述滤波放大单元的第一端,所述接收提取单元的第四端分别连接所述参考信号单元的第二端和所述滤波放大单元的第二端,所述参考信号单元的第三端连接所述第二发射模块的第三端,所述参考信号单元的第四端连接所述第二发射模块的第四端;
所述参考信号单元被配置为提供所述正向差分信号;所述接收提取单元被配置为从接收到的混合信号中减去所述正向差分信号,得到所述反向差分信号;所述滤波放大单元被配置为对所述反向差分信号进行滤波和放大。
3.根据权利要求2所述的全双工发射接收电路,其特征在于,所述接收提取单元包括第一电阻、第一场效应管、第二电阻、第三电阻、第二场效应管、第四电阻和第一电流源;
所述第一电阻的第一端连接所述第一发射模块的第三端,所述第一电阻的第二端连接所述第一场效应管的第一端,所述第一场效应管的第二端连接所述第一电流源的第一端,所述第一电流源的第二端接地,所述第一场效应管的第三端分别连接所述第二电阻的第一端和所述参考信号单元的第一端,所述第二电阻的第二端连接电源,所述第三电阻的第一端连接所述第一发射模块的第四端,所述第三电阻的第二端连接所述第二场效应管的第一端,所述第二场效应管的第二端连接所述第一电流源的第一端,所述第二场效应管的第三端分别连接所述第四电阻的第一端和所述参考信号单元的第二端,所述第四电阻的第二端连接电源。
4.根据权利要求2所述的全双工发射接收电路,其特征在于,所述参考信号单元包括第五电阻、第三场效应管、第六电阻、第四场效应管和第二电流源;
所述第五电阻的第一端连接所述第二发射模块的第三端,所述第五电阻的第二端连接所述第三场效应管的第一端,所述第三场效应管的第二端连接所述第二电流源的第一端,所述第二电流源的第二端接地,所述第三场效应管的第三端分别连接所述接收提取单元的第三端和所述滤波放大单元的第一端,所述第六电阻的第一端连接所述第二发射模块的第四端,所述第六电阻的第二端连接所述第四场效应管的第一端,所述第四场效应管的第二端连接所述第二电流源的第一端,所述第四场效应管的第三端分别连接所述接收提取单元的第四端和所述滤波放大单元的第二端。
5.根据权利要求2所述的全双工发射接收电路,其特征在于,所述滤波放大单元包括第七电阻、第一电容、第八电阻和第二电容;
所述第七电阻的第一端分别连接所述接收提取单元的第三端和所述参考信号单元的第一端,所述第七电阻的第二端连接所述第一电容的第一端,所述第一电容的第二端接地,所述第八电阻的第一端分别连接所述接收提取单元的第四端和所述参考信号单元的第二端,所述第八电阻的第二端连接所述第二电容的第一端,所述第二电容的第二端接地。
6.根据权利要求1至5中任意一项所述的全双工发射接收电路,其特征在于,所述第一发射模块包括第五场效应管、第九电阻、第十电阻、第六场效应管、第七场效应管、第十一电阻、第十二电阻和第八场效应管;
所述第五场效应管的第一端接入一路正向差分信号并分别连接所述第六场效应管的第一端和所述第二发射模块的第一端,所述第五场效应管的第二端接地,所述第五场效应管的第三端连接所述第九电阻的第一端,所述第九电阻的第二端分别连接所述第十电阻的第一端和所述处理模块的第一端,所述第六场效应管的第二端连接电源,所述第六场效应管的第三端连接所述第十电阻的第二端;
所述第七场效应管的第一端接入另一路正向差分信号并分别连接所述第八场效应管的第一端和所述第二发射模块的第二端,所述第七场效应管的第二端接地,所述第七场效应管的第三端连接所述第十一电阻的第一端,所述第十一电阻的第二端分别连接所述第十二电阻的第一端和所述处理模块的第二端,所述第八场效应管的第二端连接电源,所述第八场效应管的第三端连接所述第十二电阻的第二端。
7.根据权利要求6所述的全双工发射接收电路,其特征在于,所述第二发射模块包括第九场效应管、第十三电阻、第十四电阻、第十五电阻、第十场效应管、第十一场效应管、第十六电阻、第十七电阻和第十二场效应管;
所述第九场效应管的第一端和所述第十场效应管的第一端均连接所述第五场效应管的第一端,所述第九场效应管的第二端接地,所述第九场效应管的第三端连接所述第十三电阻的第一端,所述第十三电阻的第二端分别连接所述第十四电阻的第一端、第十五电阻的第一端和所述处理模块的第三端,所述第十场效应管的第二端连接电源,所述第十场效应管的第三端连接所述第十五电阻的第二端;
所述第十一场效应管的第一端和所述第十二场效应管的第一端均连接所述第七场效应管的第一端,所述第十一场效应管的第二端接地,所述第十一场效应管第三端连接所述第十六电阻的第一端,所述第十六电阻的第二端分别连接所述第十四电阻的第二端、所述第十七电阻的第一端和所述处理模块的第四端,所述第十二场效应管的第二端连接电源,所述第十二场效应管的第三端连接所述第十七电阻的第二端。
8.一种串行电路芯片,其特征在于,所述串行电路芯片包括权利要求1至7中任意一项所述的全双工发射接收电路。
9.一种电子设备,其特征在于,所述电子设备包括解串电路芯片、传输媒体以及权利要求8所述的串行电路芯片,其中所述传输媒体设置在所述解串电路芯片与所述串行电路芯片之间。
10.一种车辆,其特征在于,所述车辆包括权利要求9所述的电子设备。
CN202410076695.5A 2024-01-19 2024-01-19 全双工发射接收电路、串行电路芯片、电子设备及车辆 Pending CN117856815A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410076695.5A CN117856815A (zh) 2024-01-19 2024-01-19 全双工发射接收电路、串行电路芯片、电子设备及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410076695.5A CN117856815A (zh) 2024-01-19 2024-01-19 全双工发射接收电路、串行电路芯片、电子设备及车辆

Publications (1)

Publication Number Publication Date
CN117856815A true CN117856815A (zh) 2024-04-09

Family

ID=90532599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410076695.5A Pending CN117856815A (zh) 2024-01-19 2024-01-19 全双工发射接收电路、串行电路芯片、电子设备及车辆

Country Status (1)

Country Link
CN (1) CN117856815A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514546A (zh) * 2002-12-31 2004-07-21 三星电子株式会社 同时双向输入/输出电路和方法
CN115296687A (zh) * 2022-08-08 2022-11-04 慷智集成电路(上海)有限公司 全双工发射接收电路、串行电路芯片、电子设备及车辆
WO2023115698A1 (zh) * 2021-12-23 2023-06-29 深圳市中兴微电子技术有限公司 一种信号处理电路、芯片、电路板组件和射频收发器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514546A (zh) * 2002-12-31 2004-07-21 三星电子株式会社 同时双向输入/输出电路和方法
WO2023115698A1 (zh) * 2021-12-23 2023-06-29 深圳市中兴微电子技术有限公司 一种信号处理电路、芯片、电路板组件和射频收发器
CN115296687A (zh) * 2022-08-08 2022-11-04 慷智集成电路(上海)有限公司 全双工发射接收电路、串行电路芯片、电子设备及车辆

Similar Documents

Publication Publication Date Title
CN115296687B (zh) 全双工发射接收电路、串行电路芯片、电子设备及车辆
CN115296688B (zh) 全双工发射接收电路、串行电路芯片、电子设备及车辆
CN115296783B (zh) 全双工发射接收电路、解串电路芯片、电子设备及车辆
CN115296689B (zh) 全双工发射接收电路、串行电路芯片、电子设备及车辆
CN109861735B (zh) 一种射频前端电路及移动终端
CN115296690B (zh) 全双工发射接收电路、解串电路芯片、电子设备及车辆
CN117081620B (zh) 全双工发射接收电路、串行电路芯片、电子设备及车辆
CN115314069B (zh) 全双工发射接收电路、解串电路芯片、电子设备及车辆
CN205726442U (zh) 半导体集成电路、通信模块和智能仪表
CN109951192B (zh) 一种射频前端电路及移动终端
CN117040562B (zh) 全双工发射接收电路、串行器、解串器及车辆
US9614575B2 (en) Direct coupled radio frequency (RF) transceiver front end
US20100246454A1 (en) Novel transmit/receive balun structure
CN117856815A (zh) 全双工发射接收电路、串行电路芯片、电子设备及车辆
CN117938192A (zh) 全双工发射接收电路、解串电路芯片、电子设备及车辆
CN117856816A (zh) 全双工发射接收电路、串行电路芯片、电子设备及车辆
CN117914345A (zh) 全双工发射接收电路、解串电路芯片、电子设备及车辆
CN117914344A (zh) 全双工发射接收电路、解串电路芯片、电子设备及车辆
CN206658201U (zh) 一种多功能混传双工收发设备
CN112583401B (zh) 一种基于数字隔离器的隔离单线双向传输电路
JP2005057766A (ja) 通信モジュールとその製造方法
US5305465A (en) Interface chip for coupling modulated signals
CN101211329B (zh) 串行端口连接电路
CN106488152B (zh) 遥感ccd相机高速差分信号转换电路
CN117895940A (zh) 兼容单端输入和双端输入的接收电路及芯片、电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination