CN117844863B - 一种马铃薯线粒体靶向表达载体、构建方法及应用 - Google Patents

一种马铃薯线粒体靶向表达载体、构建方法及应用 Download PDF

Info

Publication number
CN117844863B
CN117844863B CN202410253398.3A CN202410253398A CN117844863B CN 117844863 B CN117844863 B CN 117844863B CN 202410253398 A CN202410253398 A CN 202410253398A CN 117844863 B CN117844863 B CN 117844863B
Authority
CN
China
Prior art keywords
potato
expression vector
gene
seq
mitochondrial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410253398.3A
Other languages
English (en)
Other versions
CN117844863A (zh
Inventor
祝光涛
张震
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN202410253398.3A priority Critical patent/CN117844863B/zh
Publication of CN117844863A publication Critical patent/CN117844863A/zh
Application granted granted Critical
Publication of CN117844863B publication Critical patent/CN117844863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8221Transit peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • C12N15/625DNA sequences coding for fusion proteins containing a sequence coding for a signal sequence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • C12N15/821Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
    • C12N15/8212Colour markers, e.g. beta-glucoronidase [GUS], green fluorescent protein [GFP], carotenoid

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明涉及生物技术领域,具体涉及一种马铃薯线粒体靶向表达载体、构建方法及应用。本发明公开的一种马铃薯线粒体靶向表达载体的构建方法,将目的基因与启动子和线粒体转运信号肽融合,构建基因表达盒;再将基因表达盒接入植物表达载体构建而成。与现有技术相比,本发明所提供的靶向线粒体载体,可以显著提高基因在马铃薯线粒体中的表达,对于马铃薯雄性不育研究具有重要的指导意义,具有广阔的应用前景。

Description

一种马铃薯线粒体靶向表达载体、构建方法及应用
技术领域
本发明涉及生物技术领域,具体涉及一种马铃薯线粒体靶向表达载体、构建方法及应用。
背景技术
马铃薯(Solanum turberosumL.)为茄科茄属一年生植物,是最重要的块茎类蔬菜之一,也是继水稻、小麦后世界上第三大主粮作物。我国是世界上第一大马铃薯生产国,马铃薯可在我国不同地区种植,在国家粮食安全中发挥着重要作用。
线粒体作为真核生物能量生产的场所,是非常重要的细胞器,同时线粒体DNA 编码合成小部分自身所需要蛋白,在发挥线粒体自身功能中起重要作用;线粒体基因组由于缺乏有效检查复制错误的机制,因此相较核基因组有较高的变异概率。当线粒体基因组发生重组或重排后容易导致线粒体基因的功能异常,例如细胞质雄性不育基因(CMS)大多是由线粒体基因组发生重组产生新开放阅读框(open reading frame, ORF)所导致。细胞质雄性不育在植物界中广泛存在,极大地促进了作物杂种优势育种的广泛应用。目前水稻和芸薹属中细胞质雄性不育研究较为深入,目前已克隆到多个细胞质雄性不育基因, 且对不育基因的作用机理也有相关解释。
马铃薯细胞质雄性不育的利用是马铃薯杂交育种中的重要一环。目前,马铃薯仅在S. stoloniferum和S. verrucosum中发现了细胞质雄性不育,关于其不育基因及详细机理还未能解释。由于线粒体基因难以直接进行遗传转化,大多CMS基因的验证与机理研究都是通过线粒体转运肽间接实现的。马铃薯中关于线粒体靶向高效表达载体尚未被构建,这严重的影响了马铃薯雄性不育研究。
发明内容
为了克服上述技术缺陷的不足,本发明提供一种马铃薯线粒体靶向表达载体、构建方法及应用。
为实现上述目的,本发明通过以下方案实现予以实现:
本发明通过研究首次发现,要想提高马铃薯线粒体基因表达,选用ATPγ、Rf1b作为马铃薯线粒体靶向表达载体构建的线粒体转运信号肽,同时选用StUBI10 、AtUBI10 和2×35S 共3 个启动子作为启动元件,所构建的靶向线粒体载体,可以提高马铃薯线粒体基因表达。
因此,第一方面本发明提供一种马铃薯线粒体靶向表达载体的构建方法,将目的基因与启动子和线粒体转运信号肽融合,构建基因表达盒;再将基因表达盒接入植物表达载体构建而成;
所述启动子选自StUBI10、AtUBI10 和2×35S,核苷酸序列如SEQ ID NO .1~3所示;
所述线粒体转运信号肽选自ATPγ和Rf1b,核苷酸序列如SEQ ID NO .4~5所示。
进一步地,构建基因表达盒时,目的基因还与调控序列融合;所述调控序列包括但不限于终止子、增强子、前导序列、内含子以及其它可操作地连接到所述目的基因的调节序列。
进一步地,所述植物表达载体为pCAMBIA2300质粒。
进一步地,所述目的基因为eGFP基因。
本领域技术人员充分了解的是,为了通过基因工程方法在胚乳中增加、强化合成特定的营养成分和功能性物质,目的基因还可以为其它基因。
在此研究的基础上,第二方面,本发明提供一种含有SEQ ID NO .1~3所示启动子和SEQ ID NO .4~5所示转运信号肽的马铃薯线粒体靶向表达载体。
进一步地,所述载体的核苷酸序列为(a)、(b)或(c);
(a)如SEQ ID NO. 6或SEQ ID NO. 9所示的核苷酸序列;
(b)与SEQ ID NO. 6或SEQ ID NO. 9所示的核苷酸序列杂交且编码的核苷酸序列;
(c)与SEQ ID NO. 6或SEQ ID NO. 9所示的核苷酸序列具有80%以上同源性且编码的核苷酸序列。
一些具体的实施例中,本发明提供了一种马铃薯线粒体靶向表达载体的核苷酸序列与SEQ ID NO. 6或SEQ ID NO. 9所示序列具有80%同一性;优选的具有85%同一性,更优选的具有90%同一性,更优选的具有95%同一性,最优选的,具有99%同一性。
第三方面,本发明提供一种如上述马铃薯线粒体靶向表达载体的构建方法所制得的马铃薯线粒体靶向表达载体。
进一步地,所述载体的核苷酸序列为(a)、(b)或(c);
(a)如SEQ ID NO. 6或SEQ ID NO. 9所示的核苷酸序列;
(b)与SEQ ID NO. 6或SEQ ID NO. 9所示的核苷酸序列杂交且编码的核苷酸序列;
(c)与SEQ ID NO. 6或SEQ ID NO. 9所示的核苷酸序列具有80%以上同源性且编码的核苷酸序列。
一些具体的实施例中,本发明提供了一种马铃薯线粒体靶向表达载体的核苷酸序列与SEQ ID NO. 6或SEQ ID NO.9所示序列具有80%同一性;优选的具有85%同一性,更优选的具有90%同一性,更优选的具有95%同一性,最优选的,具有99%同一性。
第四方面,本发明提供一种上述载体用于提高马铃薯线粒体基因表达的用途。
有益效果:与现有技术相比,本发明所提供的靶向线粒体载体,可以显著提高马铃薯线粒体基因表达,对于马铃薯雄性不育研究具有重要的指导意义,具有广阔的应用前景。
附图说明
图1为线粒体过表达载体的构建示意图;
图2为烟草瞬时侵染eGFP与线粒体共定位图;
图3为马铃薯原生质体转化eGFP与线粒体共定位图。
具体实施方式
为使本领域技术人员更好的理解本发明的技术方案,下面结合具体实施方式对本发明作详细说明。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。除非另外说明,否则百分比和份数按重量计算。除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明中。文中所述的较佳实施方法与材料仅作示范之用。
实施例1 启动子、终止子和基因的克隆
基于In-fusion 引物设计原理, 设计含有同源臂扩增引物P1-P12(如表1)所示,使用同源臂引物对StUBI10启动子(如SEQ ID NO:1所示)、AtUBI10启动子(如SEQ ID NO:2所示)、2×35S启动子(如SEQ ID NO:3所示)、终止子(如SEQ ID NO:12所示)、eGFP基因(如SEQ ID NO:13所示)、线粒体转运信号肽ATPγ(如SEQ ID NO:4所示)和Rf1b(如SEQ ID NO:5所示)进行PCR扩增。扩增体系及程序如下:
扩增体系为:扩增模板 1.5μL;上游引物 2μL;下游引物 2μL;PrimeSTAR®MaxDNA Polymerase 25μL;ddH2O19.5μL;
扩增反应程序为:98℃,5min;98℃,10s;58℃,15s;72℃,1min;34个循环;72℃,延伸5min。
引物P1-P12的具体序列如下表所示:
实施例2 构建表达载体
使用EcoRⅠ和HindⅢ对pCAMBIA2300质粒进行双酶切,酶切后载体进行纯化,获得线性化载体;对线性化质粒载体及实施例1扩增的各片段浓度进行测定,
将线性化载体与连接片段加入到In-fusion体系,进行连接,构建流程如图1所示;
In-fusion体系为:5X In-Fusion HD Enzyme Premix 2μL,连接片段 1μL,线性化载体 2μL,加水补加到10μL;
连接条件为:50℃,15min。
将连接完成的连接载体转入感受态大肠杆菌DH5α进行转化。转化步骤:事先将恒温水浴的温度调到42℃。从-70℃超低温冰柜中取出一管(100μl)感受态菌,立即用手指加温融化后插入冰上,冰浴5~10min,加入1μl连接好的质粒混合液,轻轻震荡后放置冰上25min,轻轻摇匀后插入42℃水浴中45s进行热休克,然后迅速放回冰中,静置3~5min。在超净工作台中向各管中分别加入700μlLB培养基(不含抗菌素)轻轻混匀,然后固定到摇床的弹簧架上,37℃培养1h,然后进行收菌,涂布,37℃培养24h,经卡那霉素筛选,挑取阳性克隆测序。
测序正确的6个阳性克隆所含质粒分别为AtUBI10::ATPγ-eGFP(如SEQ ID NO:6所示)、AtUBI10::Rf1b-eGFP(如SEQ ID NO:7所示)、StUBI10::ATPγ-eGFP(如SEQ ID NO:8所示)、StUBI10::Rf1b-eGFP(如SEQ ID NO:9所示)、2×35S::ATPγ-eGFP(如SEQ ID NO:10所示)、2×35S::Rf1b-eGFP(如SEQ ID NO:11所示)。
实施例3 利用烟草叶片瞬时表达系统进行靶向载体的表达验证
将构建好的6 个线粒体过表达载体质粒及植物线粒体定位Marker 质粒分别转入GV3101(pSoup-p19) 农杆菌感受态。
在卡那霉素和利福平双抗LB 板上培养48 h,挑取3~5 个单克隆至700μL的卡那和利福平双抗LB 液体培养基中, 28℃,220 rpm小摇12 h 后,进行菌落PCR 鉴定,确定阳性单克隆。所用引物为F: GTTAGCTCACTCATTAGGCAC;R:GCTGGCGTAATAGCGAAGAG。将阳性单克隆小摇菌大摇至5 mL,进行保菌,同时取20μL菌液进行涂板,在28℃培养箱静止养36h;
配置烟草注射Buffer:0.5M MES,800μL;1M MgCl2,400μL;0.1M AS,80μL;dd H2O,补充至40 mL。
将6个过表达载体和线粒体定位Marker的菌体分别刮至2 mL离心管,用烟草注射Buffer进行混匀,将6个载体菌液Buffer分别与线粒体定位Marker菌液Buffer等比混合并将OD值均调至0.5,混合后总体积调至2 mL,然后 28 °C静止孵育3 h;将混合菌液Buffer注射至烟草叶片下表皮,每个菌液至少注射两株烟草叶片且叶片数量大于5;暗培养一夜,正常培养2-3 d,撕取烟草叶片下表皮于载玻片上,在激光共聚焦显微镜(LSM880)拍照观察(见图2)。
图2为烟草瞬时侵染eGFP与线粒体共定位图,图中,A1为载体AtUBI10::ATPγ-eGFP,A2为载体AtUBI10::Rf1b-eGFP;B1为载体StUBI10::ATPγ-eGFP,B2为载体StUBI10::Rf1b-eGFP;C1为载体2×35S::ATPγ-eGFP,C2为载体2×35S::Rf1b-eGFP;mCherry为线粒体定位Marker。从图2中可以看到,载体AtUBI10::ATPγ-eGFP的荧光最强,并且与线粒体定位Marker融合的较好,载体StUBI10::ATPγ-eGFP和2×35S::ATPγ-eGFP的荧光强度次之,另外3个载体eGFP的表达荧光较弱。综合来看,6个载体在烟草的瞬时表达中,以ATPγ为线粒体转运肽的载体表达效果优于以Rf1b为转运肽的载体,其中以AtUBI10为启动子的ATPγ载体表达效果最佳。
实施例4 利用PEG介导马铃薯原生质体转化体系进行靶向载体的表达验证
使用QIAGEN Plasmid Maxi Kit 试剂盒对6个线粒体靶向表达载体质粒及线
粒体定位Marker质粒进行高浓度质粒提取,以满足马铃薯原生质体转化所需的质粒浓度。
根据拟南芥中原生质体的制备方法并加以改进来制备马铃薯原生质体。(Yoo SD,Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell systemfor transient gene expression analysis. Nat Protoc, 2007, 2(7): 1565- 1572.)
将6个线粒体靶向表达载体质粒分别与线粒体定位Marker质粒混合,质粒浓度根据质粒大小调整,质粒混合后加入制备的原生质体。
通过PEG-CaCl2溶液介导质粒转化至马铃薯原生质体,转化完成后离心去除PEG-CaCl2溶液,同时加入WI重悬原生质体,随后将原生质体转入经新生牛血清清洗过的12孔细胞板,暗培养36 h;培养后在激光共聚焦显微镜(LSM880)下拍照观察。
图3为马铃薯原生质体转化eGFP与线粒体共定位图,图中,A1为载体AtUBI10::ATPγ-eGFP,A2为载体AtUBI10::Rf1b-eGFP;B1为载体StUBI10::ATPγ-eGFP,B2为载体StUBI10::Rf1b-eGFP;C1为载体2×35S::ATPγ-eGFP,C2为载体2×35S::Rf1b-eGFP;mCherry为线粒体定位Marker。从图3中可以看到,在相同的条件下,载体AtUBI1::ATPγ-eGFP的表达效果最好,荧光最强,与线粒体定位Marker在相同的位置共表达。载体AtUBI10::Rf1b-eGFP能够在原生质体中正常的表达,但是荧光较弱;StUBI10::Rf1b-eGFP的荧光表达强度与AtUBI1::ATPγ-eGFP相近,但并没有在所有线粒体中表达,存在Marker正常表达但是eGFP未表达的现象。
最后需要说明,上述描述仅为本发明的优选实施例,本领域的技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。

Claims (8)

1.一种马铃薯线粒体靶向表达载体的构建方法,其特征在于:将目的基因与启动子和线粒体转运信号肽融合,构建基因表达盒;再将基因表达盒接入植物表达载体构建而成;
所述启动子选自AtUBI10,核苷酸序列如SEQ ID NO .2所示;
所述线粒体转运信号肽选自ATPγ,核苷酸序列如SEQ ID NO .4所示。
2.根据权利要求1所述的一种马铃薯线粒体靶向表达载体的构建方法,其特征在于:构建基因表达盒时,目的基因还与调控序列融合;所述调控序列包括终止子、增强子、前导序列、内含子以及其它可操作地连接到所述目的基因的调节序列。
3.根据权利要求1所述的一种马铃薯线粒体靶向表达载体的构建方法,其特征在于:所述植物表达载体为pCAMBIA2300质粒。
4.根据权利要求1所述的一种马铃薯线粒体靶向表达载体的构建方法,其特征在于:所述目的基因为eGFP基因。
5.含有SEQ ID NO .2所示启动子和SEQ ID NO .4所示线粒体转运信号肽的马铃薯线粒体靶向表达载体。
6.一种如权利要求1-4任一项所述的构建方法制得的马铃薯线粒体靶向表达载体。
7.根据权利要求5所述的载体,其特征在于:所述载体的核苷酸序列为SEQ ID NO. 6所示的核苷酸序列。
8.一种如权利要求5或7所述的载体用于提高马铃薯线粒体基因表达的用途。
CN202410253398.3A 2024-03-06 2024-03-06 一种马铃薯线粒体靶向表达载体、构建方法及应用 Active CN117844863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410253398.3A CN117844863B (zh) 2024-03-06 2024-03-06 一种马铃薯线粒体靶向表达载体、构建方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410253398.3A CN117844863B (zh) 2024-03-06 2024-03-06 一种马铃薯线粒体靶向表达载体、构建方法及应用

Publications (2)

Publication Number Publication Date
CN117844863A CN117844863A (zh) 2024-04-09
CN117844863B true CN117844863B (zh) 2024-05-17

Family

ID=90536515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410253398.3A Active CN117844863B (zh) 2024-03-06 2024-03-06 一种马铃薯线粒体靶向表达载体、构建方法及应用

Country Status (1)

Country Link
CN (1) CN117844863B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1847401A (zh) * 2005-03-30 2006-10-18 中国人民解放军军事医学科学院基础医学研究所 一种特异靶向线粒体的真核表达载体,其构建方法及用途
CN103429745A (zh) * 2011-01-20 2013-12-04 巴斯夫植物科学有限公司 具有增强的产量相关性状的植物和用于制备该植物的方法
CN104805117A (zh) * 2015-05-15 2015-07-29 南开大学 一种提高拟南芥抗虫能力的方法
CN108220311A (zh) * 2017-01-20 2018-06-29 江西省超级水稻研究发展中心 具有调控水稻育性的dna序列及其应用
CN108220299A (zh) * 2017-01-20 2018-06-29 江西省超级水稻研究发展中心 水稻线粒体不育基因及其应用
WO2018136783A1 (en) * 2017-01-20 2018-07-26 The Regents Of The University Of California Targeted gene activation in plants
CN110475861A (zh) * 2017-02-06 2019-11-19 联邦科学技术研究组织 固氮酶多肽在植物细胞中的表达
CN111269914A (zh) * 2020-02-18 2020-06-12 湖南杂交水稻研究中心 Dna分子及有效防止转基因植物花粉逃逸的方法
WO2021216512A1 (en) * 2020-04-20 2021-10-28 The Regents Of The University Of California Crispr systems in plants
CN113999850A (zh) * 2021-11-23 2022-02-01 云南农业大学 马铃薯u6 rna聚合酶iii型启动子及其克隆与应用
CN117683109A (zh) * 2024-02-04 2024-03-12 云南师范大学 ScF3'H基因在提高马铃薯抗寒性中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161261A1 (en) * 2019-02-06 2020-08-13 Vilmorin & Cie New gene responsible for cytoplasmic male sterility

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1847401A (zh) * 2005-03-30 2006-10-18 中国人民解放军军事医学科学院基础医学研究所 一种特异靶向线粒体的真核表达载体,其构建方法及用途
CN103429745A (zh) * 2011-01-20 2013-12-04 巴斯夫植物科学有限公司 具有增强的产量相关性状的植物和用于制备该植物的方法
CN104805117A (zh) * 2015-05-15 2015-07-29 南开大学 一种提高拟南芥抗虫能力的方法
CN108220311A (zh) * 2017-01-20 2018-06-29 江西省超级水稻研究发展中心 具有调控水稻育性的dna序列及其应用
CN108220299A (zh) * 2017-01-20 2018-06-29 江西省超级水稻研究发展中心 水稻线粒体不育基因及其应用
WO2018136783A1 (en) * 2017-01-20 2018-07-26 The Regents Of The University Of California Targeted gene activation in plants
CN110475861A (zh) * 2017-02-06 2019-11-19 联邦科学技术研究组织 固氮酶多肽在植物细胞中的表达
CN111269914A (zh) * 2020-02-18 2020-06-12 湖南杂交水稻研究中心 Dna分子及有效防止转基因植物花粉逃逸的方法
WO2021216512A1 (en) * 2020-04-20 2021-10-28 The Regents Of The University Of California Crispr systems in plants
CN113999850A (zh) * 2021-11-23 2022-02-01 云南农业大学 马铃薯u6 rna聚合酶iii型启动子及其克隆与应用
CN117683109A (zh) * 2024-02-04 2024-03-12 云南师范大学 ScF3'H基因在提高马铃薯抗寒性中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Intron RNA editing is essential for splicing in plant mitochondria;Castandet B等;《Nucleic Acids Research》;20101130;第38卷(第20期);第7112-7121页 *
ORFH 79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex III in H onglian cytoplasmic male sterile rice;Wang K等;《The New Phytologist》;20130430;第198卷(第2期);第408-418页 *
植物线粒体与细胞质雄性不育;郭宝健;中国优秀硕士学位论文全文数据库(电子期刊) 农业科技辑;20090215(第2009年第2期);第D045-2页 *
芥菜型油菜胞质不育Hau CMS不育相关基因的鉴定及其功能分析;景兵;中国博士学位论文全文数据库(电子期刊) 农业科技辑;20121115(第2012年第11期);第D047-45页 *

Also Published As

Publication number Publication date
CN117844863A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
AU2017203177B2 (en) Constructs for expressing transgenes using regulatory elements from Setaria ubiquitin genes
US20230337611A1 (en) Generation of hapoloid plants based on knl2
JP2003529353A (ja) ケストルムイエローリーフカーリングウイルスプロモーター
CN110819607A (zh) CsLYK基因及其编码蛋白在提高柑橘溃疡病抗性的应用
AU2004224913A1 (en) Seed-specific gene promoters and uses thereof
US10072271B2 (en) Methods for improving crop yield
CN103772495B (zh) 一个棉花长纤维高表达基因(GhLFHE1)及其应用
US20150106977A1 (en) Zea mays regulatory elements and uses thereof
CN117844863B (zh) 一种马铃薯线粒体靶向表达载体、构建方法及应用
CN109206494B (zh) ZmRPH1基因在调控植物株高及抗倒伏能力中的应用
CN114085854B (zh) 一种水稻抗旱、耐盐基因OsSKL2及其应用
US20150106978A1 (en) Zea mays regulatory elements and uses thereof
JP2013212105A (ja) 高い種子収量性を有する環境ストレス耐性植物及びその作製方法
JP6640148B2 (ja) RbcS融合タンパク質を利用して植物から目的タンパク質を高発現する方法及び目的タンパク質発現植物体を利用した医療用タンパク質の経口投与用組成物の製造方法
WO2012131939A1 (ja) 果実特異的プロモーター
JP3098353B2 (ja) 植物細胞における外来遺伝子及びその産物の生産
CN116622720A (zh) 一种陆地棉株高调控基因GhGA2ox3及其应用
CN117986334A (zh) 一种影响植物对黑斑病抗性的转录因子PpCBP60B及其编码基因和应用
CN105154451A (zh) 一种提早成花时间基因LcVRN2及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant