CN117815373A - 用于个性化瘤形成疫苗的组合物和方法 - Google Patents

用于个性化瘤形成疫苗的组合物和方法 Download PDF

Info

Publication number
CN117815373A
CN117815373A CN202311507937.3A CN202311507937A CN117815373A CN 117815373 A CN117815373 A CN 117815373A CN 202311507937 A CN202311507937 A CN 202311507937A CN 117815373 A CN117815373 A CN 117815373A
Authority
CN
China
Prior art keywords
peptides
cells
neoantigenic
tumor
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311507937.3A
Other languages
English (en)
Inventor
N·哈克亨
C·J·吴
E·F·弗里奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Dana Farber Cancer Institute Inc
Broad Institute Inc
Original Assignee
General Hospital Corp
Dana Farber Cancer Institute Inc
Broad Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Hospital Corp, Dana Farber Cancer Institute Inc, Broad Institute Inc filed Critical General Hospital Corp
Publication of CN117815373A publication Critical patent/CN117815373A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/48Blood cells, e.g. leukemia or lymphoma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4615Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464401Neoantigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/80Vaccine for a specifically defined cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hospice & Palliative Care (AREA)
  • Hematology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

本发明提供了一种针对被诊断患有瘤形成的受试者制备个性化瘤形成疫苗的方法,该方法包括在该瘤形成中鉴定多个突变;对该多个突变进行分析以鉴定具有至少五个新抗原突变的亚群,该至少五个新抗原突变被预测编码新抗原肽,这些新抗原突变选自下组,该组由以下各项组成:错义突变、新ORF突变及其任何组合;并且基于该鉴定的亚群,产生个性化瘤形成疫苗。

Description

用于个性化瘤形成疫苗的组合物和方法
在联邦政府资助的研究下完成的发明的权利声明
本工作得到了来自美国国立卫生研究院的以下拨款的支持,拨款号:NIH/NCI-1R01CA155010-02和NHLBI-5R01HL103532-03。美国政府享有本发明的某些权利。
相关申请
本申请本申请是申请号为201480032291.0、申请日为2014年4月7日、发明名称为“用于个性化瘤形成疫苗的组合物和方法”的中国发明专利申请的分案申请,原申请为PCT/US2014/033185的国家阶段申请,该国际申请根据35U.S.C.§119(e)要求2013年4月7日提交的美国临时专利申请号61/809,406和2013年8月25日提交的美国临时专利申请号61/869,721的权益和优先权,将其内容通过引用结合在此。
发明领域
本发明涉及用于治疗瘤形成的个性化策略。更具体地说,本发明涉及在用于治疗受试者的个性化肿瘤疫苗中的患者特异性的肿瘤特异性新抗原池的鉴定和使用。
背景
每年大约160万美国人被诊断为瘤形成,并且在2013年在美国预期大约580,000人死于该疾病。在过去的几十年里,在检测、诊断和治疗瘤形成方面已经有了显著改善,这已经显著提高了许多类型的瘤形成的存活率。然而,仅有约60%被诊断为瘤形成的人在治疗开始之后5年仍活着,这使得瘤形成在美国成为第二大致死原因。
当前,存在许多不同的现有癌症疗法,包括切除技术(例如,外科手术、低温/热处理、超声、射频及辐射)以及化学技术(例如,药剂、细胞毒剂/化疗剂、单克隆抗体及其不同组合)。不幸的是,此类疗法频繁地与严重的风险、毒副作用和极高的成本以及不确定的疗效相关。
对寻求用患者自己的免疫系统靶向癌性细胞的癌症疗法(例如,癌症疫苗)有越来越大的兴趣,因为此类疗法可以减轻/消除一些上述缺点。癌症疫苗典型地由肿瘤抗原和免疫刺激分子(例如,细胞因子或TLR配体)构成,它们一起工作以诱导靶向并破坏肿瘤细胞的抗原特异性细胞毒性T细胞。当前的癌症疫苗典型地包含共有的肿瘤抗原,它们是在许多个体中发现的肿瘤中被选择性表达或过表达的天然蛋白质(即-由个体体内的所有正常细胞的DNA编码的蛋白质)。虽然此类共有的肿瘤抗原在鉴定特定类型的肿瘤中是有用的,但是它们作为用于靶向针对特定肿瘤类型的T细胞应答的免疫原是不理想的,因为它们易受自身耐受的免疫抑制作用的影响。因此,需要对可以用于瘤形成疫苗的更有效的肿瘤抗原进行鉴定的方法。
发明概述
本发明涉及一种用于个性化治疗瘤形成的策略,并且更具体地说涉及鉴定和使用一种个性化癌症疫苗用于治疗受试者的肿瘤,该癌症疫苗基本上由肿瘤特异性的和患者特异性的新抗原池组成。如下所述,本发明至少部分地基于以下发现:全基因组/外显子组测序可以用于鉴定所有或几乎所有在个体患者的瘤形成/肿瘤中独特存在的突变新抗原,并且可以对这些突变新抗原集合进行分析,以鉴定用作用于治疗该患者的瘤形成/肿瘤的个性化瘤形成疫苗的特异性的优化新抗原亚群。
在一个方面中,本发明提供了一种针对被诊断患有瘤形成的受试者制备个性化瘤形成疫苗的方法,该方法包括在该瘤形成中鉴定多个突变;对该多个突变进行分析以鉴定一个被预测编码新抗原肽的至少五个新抗原突变的亚群,这些新抗原突变选自下组,该组由以下各项组成:错义突变、新ORF突变(neoORF)及其任何组合;并且基于该鉴定的亚群,产生个性化瘤形成疫苗。
在一个实施例中,本发明提供:该鉴定步骤进一步包括对该瘤形成的基因组、转录组或蛋白质组测序。
在另一个实施例中,该分析步骤可以进一步包括确定与被预测编码新抗原肽的至少五个新抗原突变的该亚群相关的一个或多个特征,这些特征选自下组,该组由以下各项组成:分子量、半胱氨酸含量、亲水性、疏水性、电荷以及结合亲和力;基于这些确定的特征,对在具有至少五个新抗原突变的该鉴定的亚群内的这些新抗原突变中的每者进行排名。在一个实施例中,排名前5-30的新抗原突变被包括在该个性化瘤形成疫苗中。在另一个实施例中,其中根据示于图8中的顺序对这些新抗原突变进行排名。
在一个实施例中,该个性化瘤形成疫苗包括至少约20种对应于这些新抗原突变的新抗原肽。
在另一个实施例中,该个性化瘤形成疫苗包含能够表达对应于这些新抗原突变的至少约20种新抗原肽的一种或多种DNA分子。在另一个实施例中,其中该个性化瘤形成疫苗包含能够表达对应于这些新抗原突变的至少20种新抗原肽的一种或多种RNA分子。
在实施例中,该个性化瘤形成疫苗包含新ORF突变,这些新ORF突变被预测编码具有≤500nM的Kd的新ORF多肽。
在另一个实施例中,该个性化瘤形成疫苗包含错义突变,这些错义突变被预测编码具有≤150nM的Kd的多肽,其中天然同源蛋白具有≥1000nM或≤150nM的Kd。
在另一个实施例中,该至少约20种新抗原肽的长度范围是从约5至约50个氨基酸。在另一个实施例中,该至少约20种新抗原肽的长度范围是从约15至约35个氨基酸。在另一个实施例中,该至少约20种新抗原肽的长度范围是从约18至约30个氨基酸。在另一个实施例中,该至少约20种新抗原肽的长度范围是从约6至约15个氨基酸。在又另一个实施例中,该至少约20种新抗原肽的长度是15、16、17、18、19、20、21、22、23、24或25个氨基酸。
在一个实施例中,该个性化瘤形成疫苗进一步包括一种佐剂。在其他实施例中,该佐剂选自下组,该组由以下各项组成:聚-ICLC、1018ISS、铝盐、Amplivax、AS15、BCG、CP-870,893、CpG7909、CyaA、dSLIM、GM-CSF、IC30、IC31、咪喹莫特、ImuFact IMP321、IS Patch、ISS、ISCOMATRIX、Juvlmmune、LipoVac、MF59、单磷酰脂质A、蒙塔尼德(Montanide)IMS1312、蒙塔尼德ISA 206、蒙塔尼德ISA 50V、蒙塔尼德ISA-51、OK-432、OM-174、OM-197-MP-EC、ONTAK、PepTel.RTM、载体系统、PLGA微颗粒、瑞喹莫德、SRL172、病毒微体和其他病毒样颗粒、YF-17D、VEGF陷阱、R848、β-葡聚糖、Pam3Cys、阿奎拉QS21刺激子(Aquila's QS21stimulon)、vadimezan和/或AsA404(DMXAA)。在一个优选实施例中,该佐剂是聚-ICLC。
在另一个方面中,本发明包括一种用个性化瘤形成疫苗治疗被诊断患有瘤形成的受试者的方法,该方法包括在该瘤形成中鉴定多个突变;对该多个突变进行分析以鉴定具有至少五个新抗原突变的亚群,该至少五个新抗原突变被预测对表达的新抗原肽进行编码,这些新抗原突变选自下组,该组由以下各项组成:错义突变、新ORF突变及其任何组合;基于该鉴定的亚群,产生个性化瘤形成疫苗;并且向该受试者给予该个性化瘤形成疫苗,从而治疗该瘤形成。
在另一个实施例中,该鉴定步骤可以进一步包括对该瘤形成的基因组、转录组或蛋白质组测序。
在又另一个实施例中,该分析步骤可以进一步包括确定与被预测编码表达的新抗原肽的至少五个新抗原突变的该亚群相关的一个或多个特征,这些特征选自下组,该组由以下各项组成:分子量、半胱氨酸含量、亲水性、疏水性、电荷以及结合亲和力;基于这些确定的特征,对在具有至少五个新抗原突变的该鉴定的亚群内的这些新抗原突变中的每者进行排名。
在一个实施例中,排名前5-30的新抗原突变被包括在该个性化瘤形成疫苗中。在另一个实施例中,其中根据示于图8中的顺序对这些新抗原突变进行排名。
在一个实施例中,该个性化瘤形成疫苗包括至少20种对应于这些新抗原突变的新抗原肽。
在另一个实施例中,该个性化瘤形成疫苗包含能够表达对应于这些新抗原突变的至少20种新抗原肽的一种或多种DNA分子。
在一个实施例中,其中该个性化瘤形成疫苗包含能够表达对应于这些新抗原突变的至少20种新抗原肽的一种或多种RNA分子。
在一个实施例中,该个性化瘤形成疫苗包含新ORF突变,这些新ORF突变被预测编码具有≤500nM的Kd的新ORF多肽。
在另一个实施例中,该个性化瘤形成疫苗包含错义突变,这些错义突变被预测编码具有≤150nM的Kd的多肽,其中天然同源蛋白具有≥1000nM或≤150nM的Kd。
在一个实施例中,该至少20种新抗原肽的长度范围是从约5至约50个氨基酸。在一个实施例中,该至少20种新抗原肽的长度范围是从约15至约35个氨基酸。在一个实施例中,该至少20种新抗原肽的长度范围是从约18至约30个氨基酸。在一个实施例中,该至少20种新抗原肽的长度范围是从约6至约15个氨基酸。在一个实施例中,该至少20种新抗原肽的长度是15、16、17、18、19、20、21、22、23、24或25个氨基酸。
在一个实施例中,给药进一步包括将该产生的疫苗分为两个或更多个亚池;将这些亚池各自注射进入该患者的不同部位。在一个实施例中,被注射进不同部位的这些亚池中的每个都包含新抗原肽,这样使得靶向任何单患者HLA的亚池中的单种肽的数目是一种或尽可能少地高于一种。
在一个实施例中,该给药步骤进一步包括将该产生的疫苗分为两个或更多个亚池,其中每个亚池都包括至少五种被选择以优化池内相互作用的新抗原肽。
在一个实施例中,优化包括减少同一个池中的这些新抗原肽之间的负相互作用。
在另一个方面中,本发明包括一种根据上述方法制备的个性化瘤形成疫苗。
定义
为了有助于理解本发明,下面定义了多个术语和短语:
除非明确规定或从上下文显而易见,否则如在此所使用的,术语“约(about)”被理解为在本领域的正常公差范围内,例如,在平均数的2个标准偏差之内。约可以被理解为在规定值的50%、45%、40%、35%、30%、25%、20%、15%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.1%、0.05%或0.01%之内。除非另外从上下文清楚可见,否则在此提供的所有数值均被术语约修饰。
所谓“试剂(agent)”意指任何小分子化学化合物、抗体、核酸分子或多肽或其片段。
所谓“改善(ameliorate)”意指减少、抑制、减弱、减小、阻滞或稳定疾病(例如,瘤形成、肿瘤等)的发展或进展。
所谓“改变”意指如通过标准技术已知的方法(例如在此描述的那些)检测的基因或多肽的表达水平或活性的变化(增加或减少)。如在此所使用的,改变包括表达水平的10%的变化,优选是表达水平的25%的变化,更优选是40%的变化,并且最优选是50%或更大的变化。
所谓“类似物”意指不是相同的但是具有类似的功能或结构特征的分子。例如,肿瘤特异性新抗原多肽类似物保留了对应的天然存在的肿瘤特异性新抗原多肽的生物活性,同时相对于天然存在的多肽具有某些增强该类似物的功能的生物化学修饰。此类生物化学修饰可以增加该类似物的蛋白酶抗性、膜通透性或半衰期,而不改变例如配体结合。类似物可以包括非天然氨基酸。
短语“联合疗法”包括给予瘤形成/肿瘤特异性新抗原的聚池化样品以及一种或多种另外的治疗剂作为特异性治疗方案的一部分,旨在从这些治疗剂的共同作用提供有益的(加性或协同)效应。该组合的有益作用包括但不限于由治疗剂的该组合引起的药代动力学和药效学共同作用。典型地在限定的时间段内(通常是数分钟、数小时、数天或数周,取决于选择的组合)以组合方式给予这些治疗剂。“联合疗法”旨在包括以顺序方式给予这些治疗剂,也就是说,其中在不同时间给予每种治疗剂,以及以基本上同时的方式给予这些治疗剂或这些治疗剂中的至少两种。可以例如通过向受试者给予具有固定比率的每种治疗剂的单一胶囊或以针对这些治疗剂中的每种的多个单一胶囊来完成基本上同时给予。例如,本发明的一种组合可以在同一时间或不同时间包括肿瘤特异性新抗原的聚池化样品和至少一种另外的治疗剂(例如,化疗剂、抗血管生成剂、免疫抑制剂、消炎剂等)或者它们可以被配制为包含这两种化合物的单一的共同配制的药物组合物。作为另一个实例,本发明的一种组合(例如,肿瘤特异性新抗原的聚池化样品和至少一种另外的治疗剂)可以被配制为可以在同一时间或不同时间给予的分开的药物组合物。可以通过任何适当的途径实现顺序或基本上同时给予各治疗剂,这样的途径包括但不限于口服途径、静脉内途径、皮下途径、肌内途径、通过粘膜组织直接吸收(例如,经鼻、口腔、阴道及直肠)以及经眼途径(例如,玻璃体内、眼内等)。可以通过相同途径或通过不同途径给予这些治疗剂。例如,可以通过静脉注射给予特定组合的一种组分,同时可以口服地给予该组合的其他一种或多种组分。可以按任何治疗有效的顺序给予这些组分。
短语“组合”包括作为联合疗法的一部分有用的化合物的或非药疗法的组。
在本披露中,“包括(comprise)”、“包括(comprising)”、“含有(containing)”以及“具有(having)”等可以具有在美国专利法中归于它们的含义并且可以意指“包括(include)”、“包括(including)”等;“基本上由...组成(consisting essentially of或consists essentially)”同样具有在美国专利法中指定的含义并且该术语是开放性的,允许超出所叙述的存在,只要所叙述的基本或新颖特征不被超过叙述的存在改变,但是排除现有技术实施例。
所谓“对照”意指标准或参考状况。
所谓“疾病”意指损害或妨碍细胞、组织或器官的正常功能的任何病症或障碍。
所谓“有效量”意指相对于未治疗的患者改善疾病(例如,瘤形成/肿瘤)的症状所需的量。用于实施本发明以治疗性地处理疾病的一种或多种活性化合物的有效量随给药方式,受试者的年龄、体重以及总体健康状况而变化。最终地,主治医生或兽医会决定适当的量以及给药方案。这样的量被称为“有效”量。
所谓“片段”意指多肽或核酸分子的一部分。此部分优选包含参考核酸分子或多肽的整个长度的至少5%、10%、20%、30%、40%、50%、60%、70%、80%或90%。片段可以包含5、10、20、30、40、50、60、70、80、90或100、200、300、400、500、600、700、800、900、1000或更多个核苷酸或氨基酸。
“杂交(hybridization)”意指互补核碱基之间的氢键合,该氢键合可以为沃森-克里克(Watson-Crick)、霍氏(Hoogsteen)或反霍氏(reversed Hoogsteen)氢键合。例如,腺嘌呤和胸腺嘧啶是通过氢键的形成进行配对的互补核碱基。
所谓“抑制性核酸”意指双链RNA、siRNA、shRNA或反义RNA或其部分或其模拟物,当将其向哺乳动物细胞给予时,导致靶基因表达下降(例如,下降10%、25%、50%、75%或甚至90%-100%)。典型地,核酸抑制剂包括靶核酸分子的至少一部分或其直向同源物,或者包括靶核酸分子的互补链的至少一部分。例如,抑制性核酸分子包括在此描绘的任何或所有核酸的至少一部分。
所谓“分离的多核苷酸”意指一种核酸(例如,DNA),其不含生物体的天然存在的基因组中—或衍生自生物体的瘤形成/肿瘤的基因组DNA中的基因—本发明的核酸分子是衍生的。因此,该术语包括例如掺入载体;掺入自主复制质粒或病毒;或掺入原核生物或真核生物的基因组DNA;或作为独立于其他序列的单独分子存在(例如,cDNA或由PCR或限制性内切核酸酶消化产生的基因组或cDNA片段)的重组DNA(例如,编码在患者的肿瘤中鉴定的新ORF、连读或InDel衍生的多肽的DNA)。此外,该术语包括从DNA分子转录的RNA分子以及作为编码另外的多肽序列的杂合基因的一部分的重组DNA。
所谓“分离的多肽”意指从天然伴随它的组分中分离的本发明的多肽。典型地,当该多肽以重量计为至少60%时,将它与它天然关联的蛋白质和天然存在的有机分子分离。优选地,该制剂是以重量计至少75%,更优选是至少90%,并且最优选是至少99%的本发明的多肽。本发明的分离的多肽可以例如通过从天然源提取、通过表达编码这样一种多肽的重组核酸或通过化学合成该蛋白而获得。可以通过任何适当的方法测量纯度,例如,柱色谱法、聚丙烯酰胺凝胶电泳或通过HPLC分析。
“配体”应被理解为意指具有补充受体的结构的结构并且能够与该受体形成复合物的分子。根据本发明,配体应被解为意指在其氨基酸序列中具有合适长度和合适结合基序的肽或肽片段,这样使得该肽或肽片段能够与MHC I类或MHC II类的蛋白质形成复合物。
出于本文件的目的,“突变”意指在患者的肿瘤DNA样品中发现但是未在同一患者的对应的正常DNA样品中发现的DNA序列。“突变”还可以指来自患者的RNA的序列模式,其基于单个基因的已知信息不能归因于预期变异并且被合理地认为是例如已经在患者的肿瘤细胞中特异性改变的一个或多个基因的剪接模式中的新颖变异。
“新抗原(neo-antigen)”或“新抗原的(neo-antigenic)”意指一类肿瘤抗原,其产生自改变基因组编码的蛋白质的氨基酸序列的一个或多个肿瘤特异性突变。
所谓“瘤形成(neoplasia)”意指不适当地高水平的细胞分裂、不适当地低水平的凋亡或两者引起的任何疾病。例如,癌症是瘤形成的一个实例。癌症的实例包括但不限于白血病(例如,急性白血病、急性淋巴细胞白血病、急性髓细胞白血病、急性成髓细胞白血病、急性早幼粒细胞白血病、急性骨髓单核细胞性白血病、急性单核细胞白血病、急性红白血病、慢性白血病、慢性髓细胞白血病、慢性淋巴细胞白血病)、真性红细胞增多症、淋巴瘤(例如,何杰金氏病、非何杰金氏病)、沃尔登斯特伦氏(Waldenstrom's)巨球蛋白血症、重链病和实体瘤例如肉瘤和癌(例如,纤维肉瘤、粘液肉瘤、脂肪肉瘤、软骨肉瘤、骨原性肉瘤、脊索瘤、血管肉瘤、内皮肉瘤、淋巴管肉瘤、淋巴管内皮肉瘤、滑膜瘤、间皮瘤、尤因氏瘤、平滑肌肉瘤、横纹肌肉瘤、结肠癌、胰腺癌、乳腺癌、卵巢癌、前列腺癌、鳞状细胞癌、基底细胞癌、腺癌、汗腺癌、皮脂腺癌、乳头状癌、乳头状腺癌、囊腺癌、髓样癌、支气管癌、肾细胞癌、肝癌、胆管癌、绒毛膜癌、精原细胞瘤、胚胎性癌、成肾细胞瘤、宫颈癌、子宫癌、睾丸癌、肺癌、小细胞肺癌、膀胱癌、上皮癌、神经胶质瘤、星形细胞瘤、成神经管细胞瘤、颅咽管瘤、室管膜细胞瘤、松果体瘤、成血管细胞瘤、听神经瘤、少突胶质细胞瘤、神经鞘瘤、脑膜瘤、黑素瘤、成神经细胞瘤及成视网膜细胞瘤)。淋巴增生性障碍也视为增生性疾病。
除非明确规定或从上下文显而易见,否则如在此所使用的,术语“或”被理解为包括在内。除非明确规定或从上下文显而易见,否则如在此所使用的,术语“一个、一种(a、an)”和“该(the)”被理解为单数的或复数的。
术语“患者”或“受试者”是指作为治疗、观察或实验对象的动物。仅通过举例的方式,受试者包括但不限于哺乳动物,包括但不限于人或非人哺乳动物,如非人类灵长类动物、牛、马、犬、绵羊或猫。
“药学上可接受的”是指由联邦或州政府的监管机构批准的或可批准的或者美国药典中或其他公认药典中列出的在动物(包括人类)中使用的。
“药学上可接受的赋形剂、载体或稀释剂”是指这样一种赋形剂、载体或稀释剂,它们可以与一种试剂一起给予受试者,并且它们不破坏该试剂的药理学活性并且当以有效递送治疗量的该试剂的剂量给予时是无毒的。
如在此所列举的,聚池化的肿瘤特异性新抗原的“药学上可接受的盐”可以是在本领域中通常认为适于与人类或动物的组织接触而没有过多毒性、刺激性、变应性反应或其他问题或并发症的酸盐或碱盐。此类盐包括碱性残基(如胺)的矿物盐和有机酸盐以及酸性残基(如羧酸)的碱盐或有机盐。具体的药用盐包括但不限于酸的盐,如盐酸、磷酸、氢溴酸、苹果酸、乙醇酸、富马酸、硫酸、氨基磺酸、磺胺酸、甲酸、甲苯磺酸、甲磺酸、苯磺酸、乙烷二磺酸、2-羟乙基磺酸、硝酸、苯甲酸、2-乙酰氧基苯甲酸、柠檬酸、酒石酸、乳酸、硬脂酸、水杨酸、谷氨酸、抗坏血酸、扑酸、琥珀酸、富马酸、马来酸、丙酸、羟基马来酸、氢碘酸、苯乙酸、链烷酸如乙酸、HOOC-(CH2)n-COOH(其中n是0-4)等。类似地,药学上可接受的阳离子包括但不限于钠、钾、钙、铝、锂以及铵。本领域的普通技术人员应认识到在此提供的聚池化的肿瘤特异性新抗原的另外的药学上可接受的盐包括由雷明顿的药物科学(Remington’sPharmaceutical Sciences),第17版,马克出版公司(Mack Publishing Company),伊斯顿,宾夕法尼亚州,第1418页(1985)所列出的那些。通常,药学上可接受的酸盐或碱盐可以通过任何常规化学方法由包含碱性或酸性部分的母体化合物合成。简言之,此类盐可以通过使这些化合物的游离酸或碱形式与化学计算量的适当的碱或酸在适当的溶剂中反应来制备。
如在此所使用的,术语“预防(prevent,preventing,prevention)”、“预防性治疗(prophylactic treatment)”等是指降低未患疾病或病症但是处于患上疾病或病症的风险之中或易于患上疾病或病症的受试者患上疾病或病症的可能性。
“引物组”意指一组可以用于例如PCR的寡核苷酸。引物组由至少2、4、6、8、10、12、14、16、18、20、30、40、50、60、80、100、200、250、300、400、500、600种或更多种引物组成。
“主要组织相容性复合物(MHC)的蛋白质或分子”、“MHC分子”、“MHC蛋白”或“HLA蛋白”应被理解为具体意指这样的蛋白质,它们能够结合起因于蛋白质抗原的蛋白水解切割并且代表潜在的T细胞表位的肽,将其转运至细胞表面并且将其在那里呈递给特异性细胞(特别是初始T细胞、细胞毒性T淋巴细胞或T辅助细胞)。基因组中的主要组织相容性复合物包括遗传区,其基因产物被表达在细胞表面上并且对于结合且呈递内源和/或外源抗原且从而对于调节免疫过程而言是重要的。主要组织相容性复合物被分类为编码不同蛋白质的两组基因:MHC I类分子和MHC II类分子。两个MHC类别的分子对于不同抗原来源是专门的。MHC I类分子典型地呈递但不限于内源合成的抗原,例如病毒蛋白和肿瘤抗原。MHC II类分子呈递源于外部来源的蛋白质抗原,例如细菌产物。两个MHC类别的细胞生物学和表达模式适合于这些不同作用。
I类MHC分子由重链和轻链组成,并且能够结合具有约8至11个氨基酸,但通常是9或10个氨基酸的肽(如果这种肽具有合适的结合基序的话)并且将其呈递给初始和细胞毒性T淋巴细胞。由I类MHC分子结合的肽典型地但不排他地源于内源蛋白质抗原。I类MHC分子的重链优选是HLA-A、HLA-B或HLA-C单体,并且轻链是β-2-微球蛋白。
II类MHC分子由α-链和β-链组成并且能够结合具有约15至24个氨基酸的肽(如果这种肽具有合适的结合基序的话)并且将其呈递给T辅助细胞。由II类MHC分子结合的肽通常源于细胞外或外源蛋白质抗原。α-链和β-链具体是HLA-DR、HLA-DQ和HLA-DP单体。
在此提供的范围被理解为对该范围内的所有值的简写。例如,1至50的范围被理解为包括来自下组的任何数、数的组合或亚范围,该组由以下各项组成:1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50,以及在以上提到的整数之间的所有中间的十进制值,例如像1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8以及1.9。关于亚范围,确切地考虑了从该范围的任一终点延伸的“嵌套式亚范围”。例如,1至50的示例性范围的嵌套式亚范围可以包括一个方向上的1至10、1至20、1至30以及1至40,或另一个方向上的50至40、50至30、50至20以及50至10。
“受体”应被理解为意指能够结合配体的生物分子或分子分组。受体可以用于传输细胞、细胞形成或生物体中的信息。受体包括至少一个受体单位并且经常包含两个或更多个受体单位,其中每个受体单位都可以由蛋白质分子特别是糖蛋白分子组成。受体具有互补于配体的结构的结构并且可以将该配体复合为结合配偶体。信号转导信息可以通过与细胞表面上的配体结合之后受体的构象变化来传输。根据本发明,受体可以指能够与配体形成受体/配体复合物的MHC类别I和II的具体蛋白质,特别是具有合适长度的肽或肽片段。
“受体/配体复合物”也应被理解为意指“受体/肽复合物”或“受体/肽片段复合物”,特别是呈递肽或肽片段的I类或II类MHC分子。
所谓“减少(reduce)”意指至少10%、25%、50%、75%或100%的负的改变。
所谓“参考”意指标准或对照状况。
“参考序列”是定义的用作序列比较的基础的序列。参考序列可以是指定序列的亚集或整体;例如,全长cDNA或基因组序列的区段,或完整的cDNA或基因组序列。对于多肽而言,参考多肽序列的长度通常是至少约10-2,000、10-1,500、10-1,000、10-500或10-100个氨基酸。优选地,参考多肽序列的长度可以是至少约10-50个氨基酸,更优选至少约10-40个氨基酸,并且甚至更优选约10-30个氨基酸、约10-20个氨基酸、约15-25个氨基酸或约20个氨基酸。对于核酸而言,参考核酸序列的长度通常是至少约50个核苷酸,优选至少约60个核苷酸,更优选至少约75个核苷酸,并且甚至更优选约100个核苷酸或约300个核苷酸或它们附近的或者它们之间的任一整数。
所谓“特异性结合”意指一种化合物或抗体识别并且结合本发明的多肽,但是基本上并不识别并且结合样品(例如,生物样品)中的其他分子。
在本发明的方法中有用的核酸分子包括编码本发明的多肽或其片段的任何核酸分子。此类核酸分子不需要与内源核酸序列100%一致,但是将典型地展示出基本一致性。与内源序列具有“基本一致性”的多核苷酸典型地能够与双链核酸分子的至少一条链杂交。.所谓“杂交”意指在不同的严格条件下进行配对以在互补的多核苷酸序列(例如,在此描述的基因)或其部分之间形成双链分子。(参见例如,瓦尔,G.M.(Wahl,G.M.)和S.L.伯杰(S.L.Berger)(1987)酶学方法(Methods Enzymol.)152:399;金梅尔,A.R.(Kimmel,A.R.)(1987)酶学方法152:507)。
例如,严格的盐浓度通常将是小于约750mM NaCl和75mM柠檬酸三钠,优选小于约500mM NaCl和50mM柠檬酸三钠,并且更优选小于约250mM NaCl和25mM柠檬酸三钠。在缺少有机溶剂(例如,甲酰胺)下可以获得低严格杂交,而在至少约35%甲酰胺,并且更优选至少约50%甲酰胺存在下可以获得高严格杂交。严格的温度条件将通常包括至少约30℃,更优选至少约37℃,并且最优选至少约42℃的温度。不同的另外的参数,如杂交时间、清洁剂(例如,十二烷基硫酸钠(SDS))的浓度以及载体DNA的包含或排除,对本领域的普通技术人员是熟知的。根据需要通过组合这些不同的条件实现不同的严格水平。在一个优选实施例中,杂交将会在30℃下,在750mM NaCl、75mM柠檬酸三钠和1% SDS中发生。在一个更优选的实施例中,杂交将会在37℃下,在500mM NaCl、50mM柠檬酸三钠、1% SDS、35%甲酰胺以及100μg/ml变性鲑鱼精子DNA(ssDNA)中发生。在一个最优选的实施例中,杂交将会在42℃下,在250mM NaCl、25mM柠檬酸三钠、1% SDS、50%甲酰胺以及200μg/ml ssDNA中发生。这些条件的有用变化对于本领域的普通技术人员应是容易地显而易见的。
对于大多数应用,杂交之后的洗涤步骤也将会在严格度方面不同。可以通过盐浓度和温度限定洗涤严格条件。如上所述,通过降低盐浓度或通过增加温度可以增加洗涤严格度。例如,用于洗涤步骤的严格的盐浓度将为优选地小于约30mM NaCl和3mM柠檬酸三钠,并且最优选地小于约15mM NaCl和1.5mM柠檬酸三钠。用于洗涤步骤的严格的温度条件将通常包括至少约25℃,更优选至少约42℃,并且甚至更优选至少约68℃的温度。在一个优选实施例中,洗涤步骤将会在25℃下,在30mM NaCl、3mM柠檬酸三钠和0.1% SDS中发生。在一个更优选的实施例中,洗涤步骤将会在42℃下,在15mM NaCl、1.5mM柠檬酸三钠和0.1% SDS中发生。在一个更优选的实施例中,洗涤步骤将会在68℃下,在15mM NaCl、1.5mM柠檬酸三钠和0.1% SDS中发生。这些条件的另外的变化对于本领域的普通技术人员应是容易地显而易见的。杂交技术对于本领域的普通技术人员是熟知的并且描述于例如班顿(Benton)和戴维斯(Davis)(科学(Science)196:180,1977);格伦斯坦(Grunstein)和霍格内斯(Hogness)(美国国家科学院院刊(Proc.Natl.Acad.Sci.,USA)72:3961,1975);奥苏贝尔(Ausubel)等人(分子生物学实验手册(Current Protocols in Molecular Biology),威利国际科学(Wiley Interscience),纽约,2001);伯杰(Berger)和金梅尔(Kimmel)(分子克隆技术指南(Guide to Molecular Cloning Techniques),1987,学术出版社(AcademicPress),纽约);以及萨姆布鲁克(Sambrook)等人,分子克隆实验指南(Molecular Cloning:A Laboratory Manual),冷泉港实验室出版社(Cold Spring Harbor Laboratory Press),纽约中。
所谓“基本上一致”意指相对于参考氨基酸序列(例如,在此描述的任一氨基酸序列)或核酸序列(例如,在此描述的任一核酸序列),一种多肽或核酸分子展示出至少50%一致性。优选地,这样的一个序列与用于比较的序列在氨基酸水平或核酸上至少60%,更优选80%或85%,并且更优选90%、95%或甚至99%一致。
典型地使用序列分析软件(例如,威斯康星大学生物技术中心(麦迪逊大学道1710,威斯康星州53705(1710University Avenue,Madison,Wis.53705))遗传计算组的序列分析软件包,BLAST、BESTFIT、GAP或PILEUP/PRETTYBOX程序)测量序列一致性。这种软件可以通过对不同取代、缺失和/或其他修饰的同源性程度进行赋值而将相同或相似的序列进行匹配。保守取代典型地包括在以下组内的取代:甘氨酸,丙氨酸;缬氨酸,异亮氨酸,亮氨酸;天冬氨酸,谷氨酸,天冬酰胺,谷氨酰胺;丝氨酸,苏氨酸;赖氨酸,精氨酸;以及苯丙氨酸,酪氨酸。在一种确定一致性程度的示例性方法中,可以使用BLAST程序,其中在e-3与e-100之间的概率得分指示紧密相关的序列。
“T细胞表位”应被理解为意指这样的肽序列,它可以由处于呈递肽的MHC分子或MHC复合物形式的I或II类MHC分子结合,并且随后以这种形式由初始T细胞、细胞毒性T淋巴细胞或T辅助细胞识别且结合。
如在此所使用的,术语“治疗(treat、treated、treating、treatment等)”是指减少或改善障碍(例如,瘤形成或肿瘤)和/或与其相关的症状。应理解的是,尽管不能排除,治疗障碍或病症并不要求完全地消除该障碍、病症或与其相关的症状。
术语“治疗效果”是指在一定程度上减轻障碍(例如,瘤形成或肿瘤)或其相关病变的一种或多种症状。如在此所使用的“治疗有效量”是指当以单剂量或多剂量给予细胞或受试者时,在延长患有这样的一种障碍的患者的生存力、减少该障碍的一种或多种体征或症状、预防或延迟以及超过没有这样的治疗下预期的情况等方面有效的试剂的量。“治疗有效量”意在限定达到治疗效果所需的量。具有本领域普通技术的医生或兽医可以容易地确定并且开出所需药物组合物的“治疗有效量”(例如,ED50)。例如,医生或兽医开始以低于达到希望的治疗效果所需的水平给予在药物组合物中所用的本发明的组合物,并且逐渐增加剂量直到达到希望的效果。
这些药物组合物典型地应该提供从约0.0001mg至约200mg的化合物/千克体重/天的剂量。例如,全身性给予人类患者的剂量的范围可以从0.01-10μg/kg、20-80μg/kg、5-50μg/kg、75-150μg/kg、100-500μg/kg、250-750μg/kg、500-1000μg/kg、1-10mg/kg、5-50mg/kg、25-75mg/kg、50-100mg/kg、100-250mg/kg、50-100mg/kg、250-500mg/kg、500-750mg/kg、750-1000mg/kg、1000-1500mg/kg、1500-2000mg/kg、5mg/kg、20mg/kg、50mg/kg、100mg/kg或200mg/kg。制备药用单位剂型以提供每单位剂型从约0.001mg至约5000mg(例如从约100mg至约2500mg)的化合物或必要成分的组合。
“疫苗”应被理解为意指用于产生用于预防和/或治疗疾病(例如,瘤形成/肿瘤)的免疫性的组合物。相应地,疫苗是包含抗原的药剂并且旨在通过疫苗接种而在人类或动物中用于产生特异性防御和保护物质。
在此的变量的任何定义中,化学基团列表的陈述包括该变量作为任何单一基团或所列基团的组合的定义。针对在此的变量或方面的实施例的陈述包括该实施例作为任何单一实施例或与任何其他实施例或其部分的组合。
在此提供的任何组合物或方法可以与在此提供的一个或多个任何其他组合物和方法进行组合。
附图简述
当连同以下附图一起阅读以下详细说明时,将更好地理解本披露的上述以及其他特征和优点,其中:
图1描绘了根据本发明的一个示例性实施例用于制备个性化癌症疫苗的流程。
图2示出了根据本发明的一个示例性实施例用于针对黑素瘤患者产生癌症疫苗的预处理步骤的流程。
图3是一个流程图,描绘了根据本发明的一个示例性实施例的一种用于解决初始患者群体研究的途径。在第一同期组群中的五个患者可以按预期的安全剂量水平进行治疗。如果这五个患者中少于两个在初级安全终点时或之前出现剂量限制性毒性,则可以在该剂量水平处再募集10个患者,以扩大对患者群体的分析(例如,来评估疗效、安全性等)。如果观察到两个或更多个剂量限制性毒性(DLT),则可以将聚-ICLC的剂量减少50%并且可以对另外五个患者进行治疗。如果这五个患者中少于两个出现剂量限制性毒性,则可以在该剂量水平处再募集10个患者,然而,如果在降低的聚-ICLC水平下两个或更多个患者出现DLT,则应停止该项研究。
图4A和4B分别示出了不同类型的离散突变和新ORF的实例。
图5展示了根据本发明的一个示例性实施例基于初免加强策略的免疫程序。多次免疫可以发生在约前3周内,以在免疫应答的初免阶段过程中维持早期较高的抗原暴露。然后患者可以休息八周,以允许记忆T细胞发育并且然后这些T细胞将被加强,以便维持强的持续应答。
图6示出了根据本发明的一个示例性方面的一个时间轴,其指示了初级免疫终点。
图7展示了根据本发明的一个示例性实施例针对给予用检查点阻断抗体进行的共同疗法的时间轴,以评估局部免疫抑制的解除与新免疫的刺激相结合的组合。如在该方案中所示,作为检查点阻断疗法(例如,如这里所示的抗-PDL1)的适当候选者进入的患者可以进入并且立即用抗体进行治疗,同时正在制备疫苗。然后,可以对患者接种。当疫苗接种的初免阶段出现时,可以继续或可能推迟检查点阻断抗体给药。
图8是一个表,它示出了根据本发明的一个示例性实施例的不同新抗原突变的排名分配。
图9示出了一个原理图,描绘了根据本发明的一个示例性实施例将单独的新抗原肽进行药品加工为4个亚组的池。
图10示出了根据本发明的一个示例性实施例的一种用于系统地发现肿瘤新抗原的策略的示意图。可以使用全外显子组测序(WES)或全基因组测序(WGS)检测癌症样品中的肿瘤特异性突变并且通过应用突变调用算法(例如,Mutect)进行鉴定。随后,可以使用充分验证的算法(例如,NetMHCpan)预测候选新表位并且通过肽-HLA结合的实验验证并且通过在RNA水平确认基因表达来细化其鉴定。随后可以测试这些候选新抗原刺激肿瘤特异性T细胞应答的能力。
图11A-C示出了具有在慢性淋巴细胞白血病(CLL)中产生新抗原的潜力的各类别点突变的频率。由91个CLL病例产生的WES和WGS数据分析揭示(A)错义突变是具有产生新表位潜力的体细胞改变中最常见的类别,而(B)移码插入和缺失和(C)剪接位点突变构成较少的常见事件。
图12A-D描绘了将NetMHCpan预测算法应用于功能上定义的新表位和CLL病例。图12A示出了在预测的结合亲和力的基础上分类的通过NetMHCpan测试的在文献中报告的33个功能上鉴定的癌症新表位与其已知限制性HLA等位基因的预测结合(IC50)。图12B示出了跨具有可获得的HLA分型信息的31个CLL患者,HLA结合亲和力<150nM(黑色)和150-500nM(灰色)的预测肽的数目的分布。图12C示出了一个图表,使用与合成肽进行的竞争性MHC I等位基因结合测定,针对HLA-A和HLA-B等位基因结合,比较来自4个患者的肽的预测结合(通过NetMHCpan,IC50<500nM)与实验确定的结合亲和力,指出了具有实验结合的证据(IC50<500nM)的预测肽的百分比。图12D显示来自HLA分型和昂飞(Affymetrix)U133 2.0+基因表达数据可获得的26个CLL患者,针对所有体细胞突变的基因(n=347)并且针对编码预测HLA结合分数IC50<500nM的新表位的基因突变的亚群(n=180)检查了基因表达的分布。无-低:最低四分位数表达内的基因;中:表达的2个中间四分位数内的基因;以及高:表达的最高四分位数内的基因。
图13A-B示出了与图12D中相同的数据,但是分别针对9-mer(图13A)和10-mer肽(图13B)。在每种情况下,指出了具有实验结合的证据的、预测IC50<150nM和150-500nM的肽的百分比。
图14A-C描绘:患者1的ALMS1和C6ORF89突变产生免疫原性肽。图14A显示在患者1CLL细胞中鉴定了25个错义突变,其中预测来自13个突变的30种肽结合患者1的MHC I类等位基因。通过实验将来自9个突变的总共14种肽确认为HLA-结合。在离体每周用5个池(每个池具有6种突变肽,这些突变肽具有相似的预测HLA结合)刺激来自患者1的移植后T细胞(7年),持续4周,并且随后通过IFN-γELISPOT测定进行测试。图14B显示针对池2肽检测到了T细胞增加分泌IFN-γ。阴性对照-无关Tax肽;阳性对照-PHA。图14C显示,在池2肽中,患者1T细胞对突变的ALMS1和C6ORF89肽具有反应性(右图;展示了来自一式双份孔的平均结果)。左图-突变的和野生型的ALMS1和C6ORF89肽的预测的和实验的IC50分数(nM)。
图15展示:FNDC3B、C6orf89和ALMS1中的突变位点周围的序列环境缺乏进化保守性。从这些基因中的每个产生的新表位是加框的。红色-在所有4个种类中保守的氨基酸(aa);蓝色-在4个种类中的至少2个中保守的aa;黑色–在种类之间缺少保存。
图16示出了在FNDC3B、C6orf89和ALMS1基因中报告的体细胞突变的定位。跨各癌症将在CLL患者1和2的FNDC3B、C6orf89和ALMS1中鉴定的错义突变与在这些基因中的先前报告的体细胞突变(COSMIC数据库)进行比较。
图17显示突变的FNDC3B在患者2体内产生天然免疫原性新表位。图17A显示在患者2CLL细胞中鉴定了26个错义突变,其中预测来自16个突变的37种肽结合患者2的MHC I类等位基因。通过实验将来自12个突变的总共18种肽确认为结合。在离体用自体DC或B细胞刺激来自患者2的移植后T细胞(约3年)持续2周,这些DC或B细胞已用3个池的实验验证的结合突变肽(总共18种肽)脉冲处理(参见表S6)。图17B显示在用池1肽刺激的T细胞中通过ELISPOT测定检测到了增加的IFN-γ分泌。图17C显示在池1肽中,针对mut-FNDC3B肽检测到了增加的IFN-γ分泌(底图;展示了来自一式双份孔的平均结果)。顶图-mut-(突变型)和wt-(野生型)FNDC3B肽的预测的和实验的IC50得分。图17D展示:对mut-FNDC3B具反应性的T细胞对突变表位展示出特异性,但是不对对应的野生型肽展示出特异性(浓度:0.1-10μg/ml),并且是多功能的,分泌IFN-γ、GM-CSF和IL-2(来自用于比较T细胞对mut(突变型)与wt(野生型)肽之间的反应性的两因素方差分析建模的图基(Tukey)事后检验)。图17E显示Mut-FNDC3B特异性T细胞以I类限制性方式具有反应性(左图),并且识别突变型FNDC3B的内源加工的和呈递的形式,因为它们识别被编码300bp的微基因(涵盖FNDC3B突变)的质粒转染的HLA-A2APC(右图)(双侧t检验)。右上图-蛋白质印迹分析-证实编码mut-和wt-FNDC3B的微基因的表达。图17F显示与来自正常供体的T细胞相比,如通过HLA-A2+/mut FNDC3B四聚体所检测的,在患者2的T细胞中更频繁地检测到识别mut-FNDC3B表位的T细胞。图17G示出了患者2(三角形)、CLL-B细胞(n=182)和来自健康成年志愿者的正常CD19+B细胞(n=24)中的FNDC3B的表达(基于昂飞U133Plus2阵列数据)。
图18展示了相对于移植过程而言mut-FNDC3B特异性T细胞应答的动力学。图18显示基于克隆型IgH序列,在HSCT之前和之后的连续时间点使用患者肿瘤特异性Taqman PCR测定来测量患者2的分子肿瘤负荷(顶图)。中图-在用经肽脉冲处理的自体B细胞进行刺激之后,在进行同种异体HSCT之前和之后,通过IFN-γELISPOT检测与wt-FNDC3B或来自外周血的无关肽相比的mut-FNDC3B反应性T细胞。一式三份地测量每个时间点每个细胞的分泌IFN-γ的印迹的数目(韦尔奇t检验;mut与wt)。插图–在暴露于用0.1-10μg/ml(对数标度)mut-FNDC3B肽脉冲处理的APC之后,与HSCT之后32个月(红色)相比,来自HSCT之后6个月(紫色)的T细胞的IFN-γ分泌。底图-在HSCT之前和之后,在患者2的外周血中通过巢式克隆特异性CDR3 PCR检测mut-FNDC3B特异性TCR Vβ11细胞(参见补充方法)。三角形–对样品进行测试的时间点;NA-无扩增;黑色:检测到扩增,其中‘+’指示高达2倍的可检测扩增并且‘++’指示比可检测地表达克隆特异性Vβ11序列的所有样品的中值水平高超过2倍的扩增。
图19A-D示出了患者2的mut-FNDC3B特异性TCR Vβ特异性引物的设计。图19A示出了在HSCT之后6个月,使用IFN-γ捕获测定来检测并分离来自患者2的mut-FNDC3B特异性T细胞。图19B示出了来自FNDC3B反应性T细胞表达的TCR Vβ11的RNA,产生长度为350bp的扩增子。图19C显示基于mut-FNDC3B克隆特异性CDR3重排的序列来设计Vβ11特异性实时引物,这样使得将定量PCR探针定位在连接多样性区域(橙色)中。图19D显示FNDC3B反应性T细胞对于Vβ11是单克隆的,如通过谱分型所检测的。
图20A-G展示了跨各癌症的新抗原发现渠道的应用。图20A示出了跨各癌症通过大规模平行测序比较总体体细胞突变率。红色-CLL;蓝色-透明细胞肾癌(RCC)和绿色-黑素瘤。LSCC:肺鳞状细胞癌,肺AdCa:肺腺癌,ESO AdCa:食道腺癌,DLBCL:弥漫性大B细胞淋巴瘤,GBM:成胶质细胞瘤,乳头状RCC:乳头状肾细胞癌,透明细胞RCC:透明细胞肾癌,CLL:慢性淋巴细胞白血病,AML:急性髓细胞白血病。图20B的分布示出了在黑素瘤、透明细胞RCC和CLL中每种情况的错义、移码和剪接位点突变的数目,图20C的分布示出了每个样品产生的平均新ORF长度并且图20D的分布示出了从错义和移码突变产生的、IC50<150nM(虚线)和<500nM(实线)的预测的新肽。图20E描绘了跨13种癌症的每种情况的错义、移码和剪接位点突变的数目的分布(由盒形图示出)。图20F示出了每个样品产生的总计新ORF长度。20G示出了从错义和移码突变产生的、IC50<150nM和<500nM的预测的新肽。对于所有盒形图而言,盒的左端和右端分别表示第25和第75百分位值,而中间区段是中值。条的左极端和右极端延伸至最小值和最大值。
发明详细说明
本发明涉及用于通过向受试者(例如,哺乳动物,如人)给予治疗有效量的药物组合物(例如,癌症疫苗)而治疗瘤形成的个性化策略,并且更具体是治疗肿瘤的个性化策略,该药物组合物包含多个瘤形成/肿瘤特异性新抗原。如下面更详细地描述,本发明至少部分地基于以下发现:全基因组/外显子组测序可以用于鉴定所有或几乎所有在个体患者的瘤形成/肿瘤中独特存在的突变新抗原,并且可以对这些突变新抗原的集合进行分析,以鉴定用作用于治疗该患者的瘤形成/肿瘤的个性化癌症疫苗的特异性的优化的新抗原亚群。例如,如图1所示,可以通过对每个患者的瘤形成/肿瘤和正常DNA测序以鉴定肿瘤特异性突变,并且确定该患者的HLA同种异型而鉴定瘤形成/肿瘤特异性新抗原群体。然后可以使用验证算法使瘤形成/肿瘤特异性新抗原的该群体及其同源天然抗原经受生物信息学分析,以预测哪些肿瘤特异性突变产生可以与患者的HLA同种异型结合的表位,并且特别是哪些肿瘤特异性突变产生可以比同源天然抗原更有效地与患者的HLA同种异型结合的表位。基于此分析,可以针对每个患者设计并合成多种对应于这些突变的亚群的肽,并且将其聚池化在一起在对该患者进行免疫中用作癌症疫苗。这些新抗原肽可以与佐剂(例如,聚-ICLC)或另一种抗肿瘤剂组合。不受理论束缚,预期这些新抗原绕开中枢胸腺耐受(从而允许较强的抗肿瘤T细胞应答),同时降低自体免疫性的可能(例如,通过避免靶向正常的自身抗原)。
免疫系统可以被分成两个功能子系统:先天性和获得性免疫系统。先天性免疫系统是针对感染的第一道防线,并且大多数潜在病原体在它们可以引起例如显著感染之前被此系统快速中和。获得性免疫系统与侵入生物体的称为抗原的分子结构反应。存在两类获得性免疫反应,包括体液免疫反应和细胞介导的免疫反应。在体液免疫反应中,由B细胞分泌到体液内的抗体结合病原体衍生的抗原,导致通过多种机制消除病原体,例如补体介导的裂解。在细胞介导的免疫反应中,能够破坏其他细胞的T细胞被激活。例如,如果与疾病相关的蛋白质存在于细胞中,则它们在该细胞内被蛋白水解地裂成肽。特异性细胞蛋白随后将其自身附着至以这种方式形成的抗原或肽,并且将其转运至细胞的表面,在这里它们被呈递给身体的分子防御机制,特别是T细胞。细胞毒性T细胞识别这些抗原并且杀死具有这些抗原的细胞。
转运并且在细胞表面上呈递肽的分子被称为主要组织相容性复合物(MHC)的蛋白质。MHC蛋白被分成两个类型,称为MHC I类和MHC II类。两个MHC类别的蛋白质结构非常相似;然而,它们具有非常不同的功能。MHC I类的蛋白质存在于身体的几乎所有细胞(包括大多数肿瘤细胞)的表面上。MHC I类蛋白装载有抗原,这些抗原通常源于内源蛋白质或源于细胞内存在的病原体,并且随后被呈递给初始或细胞毒性T淋巴细胞(CTL)。MHC II类蛋白存在于树突细胞、B淋巴细胞、巨噬细胞以及其他抗原呈递细胞上。它们主要将由体外抗原来源(即细胞外)加工的肽呈递给T辅助(Th)细胞。由MHC I类蛋白结合的大多数肽源于在生物体自身的健康宿主中产生的胞浆蛋白,并且通常不刺激免疫反应。相应地,识别此类呈递自身肽的I类MHC分子的细胞毒性T淋巴细胞在胸腺中缺失(中枢耐受),或在其从胸腺中释放后,被缺失或灭活,即耐受(外周耐受)。MHC分子在它们将肽呈递给非耐受T淋巴细胞时能够刺激免疫反应。细胞毒性T淋巴细胞在其表面上具有T细胞受体(TCR)和CD8分子两者。T细胞受体能够识别并且结合与MHC I类分子复合的肽。每个细胞毒性T淋巴细胞表达独特的T细胞受体,其能够结合特异性MHC/肽复合物。
在它们被呈递在细胞表面上之前,肽抗原通过在内质网内的竞争性亲和力结合将其自身附着至MHC I类分子上。此处,单个肽抗原的亲和力直接与其氨基酸序列和在该氨基酸序列内的限定位置中特异性结合基序的存在联系。如果这样一种肽的序列是已知的,则可以使用例如肽疫苗操纵免疫系统对抗患病细胞。
开发治愈性和肿瘤特异性免疫疗法的关键障碍之一是高度特异性且限制性的肿瘤抗原的鉴定和选择,以避免自身免疫。作为恶性细胞内的遗传变化(例如,倒位、易位、缺失、错义突变、剪接位点突变等)的结果而出现的肿瘤新抗原代表最具肿瘤特异性类别的抗原。新抗原很少被用于癌症疫苗中,因为在鉴定它们、选择优化的新抗原以及产生用于在疫苗中使用的新抗原方面存在技术难点。根据本发明,可以通过以下项解决这些问题:
·使用相比于来自每个患者的匹配的种系样品进行的肿瘤的全基因组、全外显子组(例如,仅捕获的外显子)或RNA测序而在DNA水平上在瘤形成/肿瘤中鉴定所有或几乎所有突变;
·用一种或多种肽-MHC结合预测算法分析这些鉴定的突变,以产生多个候选新抗原T细胞表位,这些表位被表达于该瘤形成/肿瘤内并且可以结合患者HLA等位基因;并且
·合成该多个候选新抗原肽,它们选自这些集合的所有新ORF肽和用于在癌症疫苗中使用的预测的结合肽。
例如,将测序信息转换成治疗性疫苗可以包括:
(1)预测可以与个体的HLA分子结合的个性化突变肽。对利用哪些具体突变作为免疫原进行有效地选择需要鉴定患者的HLA类型和预测哪些突变肽将有效地与该患者的HLA等位基因结合的能力。最近,使用验证的结合与非结合肽的基于神经网络的学习方法已经提升了针对主要HLA-A和-B等位基因的预测算法的准确度。
(2)将药物配制为长肽的多表位疫苗。实际地靶向尽可能多的突变表位利用了免疫系统的巨大能力,阻止了通过具体免疫靶向基因产物的下调而免疫逃逸的机会,并且补偿表位预测方法的已知不准确性。合成肽提供了一种用于有效制备多种免疫原并且将突变型表位的鉴定快速转换为有效疫苗的特别有用的手段。可以用化学方法容易地合成肽并且利用不含污染菌或动物物质的试剂容易地纯化。小尺寸允许明确侧重于蛋白质的突变区域并且还减少了来自其他组分(未突变蛋白或病毒载体抗原)的无关抗原竞争。
(3)与强疫苗佐剂组合。有效的疫苗需要强佐剂来启动免疫应答。如下所述,聚-ICLC已经显示出了疫苗佐剂的若干令人希望的特性,聚-ICLC是TLR3和RNA解旋酶-MDA5和RIG3的结构域的激动剂。这些特性包括在体内诱导免疫细胞的局部和全身性激活,产生刺激性趋化因子和细胞因子以及通过DC刺激抗原呈递。此外,聚-ICLC可以在人体内诱导持久的CD4+和CD8+应答。重要的是,在用聚-ICLC接种的受试者体内和在已经接受高效具复制能力的黄热病疫苗的志愿者体内,在转录和信号转导途径的上调中观察到惊人的相似性。此外,在最近的1期研究中,>90%用与NY-ESO-1肽疫苗(除蒙塔尼德之外)组合的聚-ICLC免疫的卵巢癌患者显示出CD4+和CD8+ T细胞的诱导,以及对该肽的抗体应答。同时,迄今已经在超过25个临床试验中广泛地测试了聚-ICLC并且展示出相对良性的毒性特征。
下面进一步详述本发明的上述优点。
肿瘤特异性新抗原突变的鉴定
本发明至少部分地基于在瘤形成/肿瘤内鉴定所有或几乎所有突变(例如,易位、倒位、大的和小的缺失和插入、错义突变、剪接位点突变等)的能力。具体而言,这些突变存在于受试者的瘤形成/肿瘤细胞的基因组中,但是不存在于来自该受试者的正常组织中。如果此类突变导致以下变化的话,它们是令人特别感兴趣的,这些变化产生具有对患者的瘤形成/肿瘤而言独特的改变的氨基酸序列的蛋白质(例如,新抗原)。例如,有用的突变可以包括:(1)在蛋白质中产生不同氨基酸的非同义突变;(2)终止密码子被修饰或缺失的连读突变,导致在C-末端具有新颖的肿瘤特异性序列的更长蛋白质的翻译;(3)剪接位点突变,导致成熟mRNA中包括内含子和因此独特的肿瘤特异性蛋白质序列;(4)染色体重排,引起在2个蛋白质的连接处具有肿瘤特异性序列的嵌合蛋白(即,基因融合);(5)移码突变或缺失,导致具有新颖的肿瘤特异性蛋白质序列的新开放阅读框;等等。可以通过在肿瘤与正常细胞中对DNA、RNA或蛋白质测序而鉴定起因于例如肿瘤细胞中的剪接位点、移码、连读或基因融合突变的具有突变的肽或突变多肽。
还在本发明的范围内的是衍生自常见肿瘤驱动基因的个性化新抗原肽并且可以进一步包括先前鉴定的肿瘤特异性突变。例如,可以在万维网的(www)sanger.ac.uk/cosmic发现已知的常见肿瘤驱动基因和常见肿瘤驱动基因中的肿瘤突变。
许多举措目前正在进行当中,以直接从数百万单个的DNA或RNA分子平行地获得序列信息。实时单分子边合成边测序技术依赖于荧光核苷酸的检测,因为它们被掺入与待测序的模板互补的DNA的新生链中。在一种方法中,长度为30-50个碱基的寡核苷酸在5'端共价锚定至玻璃盖玻片。这些锚定的链执行两种功能。首先,如果这些模板配置有与表面结合的寡核苷酸互补的捕获尾部,则它们充当靶模板链的捕获位点。它们还充当用于模板指导的引物延伸的引物,这形成了序列阅读的基础。捕获引物充当用于序列测定的固定位置位点,使用合成、检测和用以去除染料的染料-接头的化学切割的多个循环。每个循环由加入聚合酶/标记的核苷酸混合物、清洗、成像和染料切割组成。在一种可替代方法中,聚合酶用荧光供体分子进行修饰并且被固定在载玻片上,而每个核苷酸用附着至γ-磷酸盐的受体荧光部分进行颜色编码。当核苷酸变得掺入全新链内时,该系统检测在荧光标记的聚合酶与荧光修饰的核苷酸之间的相互作用。还存在其他边合成边测序技术。
优选地,任何合适的边合成边测序平台都可以用于鉴定突变。四个主要的边合成边测序平台在当前是可获得的:来自罗氏/454生命科学公司(Roche/454Life Sciences)的基因组测序仪,来自Illumina/Solexa公司的HiSeq分析仪,来自应用生物系统公司(Applied BioSystems)的SOLiD系统以及来自螺旋生物科学公司的(HelicosBiosciences)的Heliscope系统。太平洋生物科学公司(Pacific Biosciences)和VisiGen生物技术公司(VisiGen Biotechnologies)也对边合成边测序平台进行了描述。这些平台中的每个都可以用于本发明的方法中。在一些实施例中,待测序的多个核酸分子与支持体(例如,固相支持体)结合。为了将核酸固定在支持体上,可以在模板的3'端和/或5'端加入捕获序列/通用引发位点。可以通过使捕获序列与共价附着至支持体的互补序列杂交而使核酸与支持体结合。捕获序列(也称为通用捕获序列)是与附着至支持体的序列互补的核酸序列,它可以双重地充当通用引物。
作为捕获序列的一个替代方案,可以将偶合对(如例如,抗体/抗原、受体/配体或如描述于例如美国专利申请号2006/0252077中的亲和素-生物素对)的一个成员连接至有待被捕获在一个表面上的每个片段上,该表面被该偶合对的对应的第二成员所包衣。捕获之后,可以例如通过单分子检测/测序对序列进行分析,例如,如描述于实例和美国专利号7,283,337中,包括模板依赖性边合成边测序。在边合成边测序中,在聚合酶的存在下使表面结合的分子暴露于多个标记的三磷酸核苷酸。通过掺入成长链的3'端内的标记核苷酸的次序测定模板的序列。这可以实时完成或可以按分步重复方式完成。对于实时分析,可以掺入对于每个核苷酸的不同光学标记,并且多个激光器可以用于刺激掺入的核苷酸。
任何细胞类型或组织都可以用于获得用于在于此描述的测序方法中使用的核酸样品。在一个优选实施例中,DNA或RNA样品获得自瘤形成/肿瘤或通过已知技术(例如静脉穿刺)获得的体液(例如,血液)或唾液。可替代地,可以在干样品(例如毛发或皮肤)上进行核酸测试。
多种方法可用于检测个体的DNA或RNA中特定突变的存在或等位基因的存在。在此领域中的进展已提供准确、容易且价廉的大规模SNP基因分型。最近,例如,已经描述了若干新技术,包括动态等位基因特异杂交(DASH)、微板阵列对角线凝胶电泳(MADGE)、焦磷酸测序、寡核苷酸特异性连接、TaqMan系统以及多种DNA“芯片”技术(如昂飞SNP芯片)。这些方法要求典型地通过PCR扩增靶遗传区。基于通过侵袭切割随后为质谱法或固定挂锁探针和滚环扩增的小信号分子生成的另外其他新开发方法可能最终消除对PCR的需要。在下文概括了本领域已知的用于检测特异性单核苷酸多态性的若干方法。本发明的方法应被理解为包括所有可获得的方法。
基于PCR的检测手段可以包括同时多路扩增多个标记。例如,本领域众所周知的是选择PCR引物以生成PCR产物,这些产物在尺寸方面不重叠并且可以同时分析。
可替代地,可以用引物扩增不同标记,这些引物被差异地标记并且从而各自可以被差异地检测。当然,基于杂交的检测手段允许差异性检测样品中的多个PCR产物。其他技术是本领域已知的,以允许多个标记的多路分析。
若干方法已得到开发,以促进基因组DNA或细胞RNA中的单核苷酸多态性的分析。在一个实施例中,可以通过使用专门的外切核酸酶抗性核苷酸检测单碱基多态性,如披露于例如美国专利号4,656,127中。根据该方法,与多态位点3'紧邻的等位基因序列互补的引物允许与或获得自特定动物或人的靶分子杂交。如果在靶分子上的多态位点含有与存在的特定外切核酸酶抗性核苷酸衍生物互补的核苷酸,则那种衍生物将被掺入杂交引物的末端上。这样的掺入致使引物对外切核酸酶有抗性,并且从而允许其检测。因为样品的外切核酸酶抗性衍生物的身份是已知的,所以引物已变得对外切核酸酶有抗性的发现揭示存在于靶分子的多态位点中的核苷酸与反应中使用的核苷酸衍生物的核苷酸互补。此方法具有以下优点,即它不需要测定大量外部序列数据。
在本发明的另一个实施例中,基于溶液的方法用于测定多态位点的核苷酸的身份。科恩(Cohen)等人(法国专利号2,650,840;PCT申请号WO 1991/02087)。如在美国专利号4,656,127中的方法,可以利用与多态位点3'紧邻的等位基因序列互补的引物。该方法使用标记的双脱氧核苷酸衍生物测定该位点的核苷酸的身份,这些衍生物如果与多态位点的该核苷酸互补的话将被掺入该引物的末端上。
一种称为遗传位点分析(Genetic Bit Analysis)或的替代性方法描述于PCT申请号WO 1992/15712中。使用标记的终止子和与多态位点3'序列互补的引物的混合物。因此通过存在于评估的靶分子的多态位点中的核苷酸确定掺入的标记的终止子并且该终止子与该核苷酸互补。与科恩(Cohen)等人(法国专利号2,650,840;PCT申请号WO 1991/02087)的方法相对照,该方法优选是一种非均相测定,其中引物或靶分子被固定在固相上。
最近,已经描述了若干用于测定DNA中的多态位点的引物指导的核苷酸掺入程序(科姆埃尔,J.S.(Komher,J.S.)等人,核酸研究(Nucl.Acids.Res.)17:7779-7784(1989);索科洛夫,B.P.(Sokolov,B.P.),核酸研究18:3671(1990);西万恩,A.-C(Syvanen,A.-C)等人,基因组学(Genomics)8:684-692(1990);库普斯瓦米,M.N.(Kuppuswamy,M.N.)等人,国家科学院院刊(美国)(Proc.Natl.Acad.Sci.(U.S.A.))88:1143-1147(1991);普瑞桑,T.R.(Prezant,T.R.)等人,人类突变(Hum.Mutat.)1:159-164(1992);乌戈佐力,L.(Ugozzoli,L.)等人,GATA 9:107-112(1992);奈伦,P.(Nyren,P.)等人,分析生物化学(Anal.Biochem.)208:171-175(1993))。这些方法与的不同之处在于它们全部依赖于掺入标记的脱氧核苷酸来区分多态位点处的碱基。在这样的形式中,由于信号与掺入的脱氧核苷酸的数目成比例,出现在相同核苷酸的运行中的多态性可以产生与运行长度成比例的信号(西万恩,A.-C(Syvanen,A.-C)等人,美国人类遗传学杂志(Amer.J.Hum.Genet.)52:46-59(1993))。
一种用于鉴定肿瘤特异性新抗原的替代性方法是直接蛋白质测序。使用多维MS技术(MSn)(包括串联质谱(MS/MS))的酶消化物的蛋白质测序也可以用于鉴定本发明的新抗原。此类蛋白质组学方法允许快速、高度自动化的分析(参见例如,K.吉华(K.Gevaert)和J.范德克科霍弗(J.Vandekerckhove),电泳(Electrophoresis)21:1145-1154(2000))。在本发明的范围内进一步考虑到的是用于对未知蛋白质从新测序的高通量方法可以用于分析患者的肿瘤的蛋白质组,以鉴定表达的新抗原。例如,元鸟枪法蛋白质测序可以用于鉴定表达的新抗原(参见例如,谷塔尔斯(Guthals)等人(2012)使用元重叠群组件的鸟枪法蛋白质测序(Shotgun Protein Sequencing with Meta-contig Assembly),分子与细胞蛋白质组学(Molecular and Cellular Proteomics)11(10):1084-96)。
还可以使用MHC多聚体鉴定肿瘤特异性新抗原,以鉴定新抗原特异性T细胞应答。例如,可以使用基于MHC四聚体的筛选技术进行患者样品中的新抗原特异性T细胞应答的高通量分析(参见例如,霍姆布林克(Hombrink)等人(2011)通过基于MHC四聚体的筛选来高通量鉴定潜在的次要组织相容性抗原:可行性与局限性(High-Throughput Identificationof Potential Minor Histocompatibility Antigens by MHC Tetramer-BasedScreening:Feasibility and Limitations)6(8):1-11;哈德拉普(Hadrup)等人(2009)通过MHC多聚体的多维编码平行检测抗原特异性T细胞应答(Parallel detection ofantigen-specific T-cell responses by multidimensional encoding of MHCmultimers),自然方法(Nature Methods),6(7):520-26;范罗伊(van Rooij)等人(2013)肿瘤外显子组分析揭示了易普利姆玛反应性黑素瘤中的新抗原特异性T细胞反应性(Tumorexome analysis reveals neoantigen-specific T-cell reactivity in anIpilimumab-responsive melanoma),临床肿瘤学杂志(Journal of Clinical Oncology),31:1-4;以及亨斯科克(Heemskerk)等人(2013)癌症反基因组(The cancer antigenome),EMBO杂志,32(2):194-203)。在本发明的范围内考虑到的是此类基于四聚体的筛选技术可以用于初始鉴定肿瘤特异性新抗原,或可替代地作为二级筛选方案来评估患者可能已经向哪些新抗原暴露了,从而有助于为本发明的疫苗选择候选新抗原。
肿瘤特异性新抗原的设计
本发明进一步包括分离的肽(例如,包含通过本发明的方法鉴定的肿瘤特异性突变的新抗原肽、包括已知的肿瘤特异性突变的肽以及通过本发明的方法鉴定的突变型多肽或其片段)。这些肽和多肽在此被称为“新抗原肽”或“新抗原多肽”。在本说明书中,术语“肽”与“突变型肽”和“新抗原肽”和“野生型肽”可互换使用,以指定典型地通过相邻氨基酸的α-氨基和α-羧基之间的肽键彼此连接的一系列残基,典型地是L-氨基酸。这些多肽或肽可以具有多种长度并且将最低包括被预测与患者的HLA分子结合的小区域(“表位”)以及在N-末端和C-末端两个方向上延伸的另外的相邻氨基酸。这些多肽或肽可以处于其天然(不带电)形式或处于其为盐的形式,并且不含修饰(如糖基化、侧链氧化或磷酸化)或含有这些修饰,受制于以下条件,即该修饰不破坏如在此描述的多肽的生物学活性。
在某些实施例中,该至少一种新抗原肽分子的尺寸可以包括但不限于约8、约9、约10、约11、约12、约13、约14、约15、约16、约17、约18、约19、约20、约21、约22、约23、约24、约25、约26、约27、约28、约29、约30、约31、约32、约33、约34、约35、约36、约37、约38、约39、约40、约41、约42、约43、约44、约45、约46、约47、约48、约49、约50、约60、约70、约80、约90、约100、约110、约120个或更多个氨基分子残基,以及其中可衍生的任何范围。在具体实施例中,这些新抗原肽分子等于或小于50个氨基酸。在一个优选实施例中,这些新抗原肽分子等于约20至约30个氨基酸。
可以按若干方式设计更长的肽。例如,当预测到或已知HLA-结合区(例如,“表位”)时,更长的肽可以由以下组成:具有针对每个对应的基因产物的N-末端和C-末端的0-10个氨基酸的延伸的单个结合肽。更长的肽还可以由对于每种结合肽而言具有延伸序列的一些或所有结合肽的串联(concatenation)组成。在另一种情况下,当测序揭示在肿瘤中存在较长的(>10个残基)新表位序列时(例如由于移码、通读或包括内含子,从而产生新颖的肽序列),更长的肽可以由整段新颖的肿瘤特异性氨基酸组成。在两种情况下,使用更长的肽需要通过专职抗原呈递细胞(如树突细胞)进行内源加工并且可以导致更有效的抗原呈递和T细胞应答的诱导。在一些情况下,令人希望或优选的是改变延伸的序列以改善多肽的生物化学特性(特性是如溶解性或稳定性)或改善肽的高效蛋白酶体加工的可能性(张(Zhang)等人(2012)氨肽酶底物偏好在HIV感染个体中影响HIV表位呈递并预测免疫逃逸模式(Aminopeptidase substrate preference affects HIV epitope presentation andpredicts immune escape patterns in HIV-infected individuals).免疫学杂志(J.Immunol)188:5924-34;赫恩(Hearn)等人(2010)表征氨肽酶在MHC I类抗原呈递的过程中在细胞质和ER中的特异性与合作(Characterizing the specificity and co-operation of aminopeptidases in the cytosol and ER during MHC Class I antigenpresentation).免疫学杂志184(9):4725-32;维默尔豪斯(Wiemerhaus)等人(2012)修剪MHC I类配体的肽酶(Peptidases trimming MHC Class I ligands).免疫学当前观点(Curr Opin Immunol)25:1-7)。
这些新抗原肽和多肽可以结合HLA蛋白。在优选方面中,这些新抗原肽和多肽可以按比对应的天然/野生型肽更大的亲和力结合HLA蛋白。该新抗原肽或多肽的IC50可以为约小于1000nM、约小于500nM、约小于250nM、约小于200nM、约小于150nM、约小于100nM或约小于50nM。
在一个优选实施例中,当给予受试者时,本发明的新抗原肽和多肽不诱导自身免疫应答和/或引起免疫耐受。
本发明还提供了包含多种新抗原肽的组合物。在一些实施例中,这些组合物包括至少5种或更多种新抗原肽。在一些实施例中,该组合物包含至少约6、约8、约10、约12、约14、约16、约18或约20种不同的肽。在一些实施例中,该组合物包含至少20种不同的肽。根据本发明,这些不同的肽中的2种或更多种可以衍生自相同的多肽。例如,如果优选的新抗原突变编码新ORF多肽,则这些新抗原肽中的两种或更多种可以衍生自该新ORF多肽。在一个实施例中,衍生自该新ORF多肽的两种或更多种新抗原肽可以包括跨该多肽的平铺阵列(例如,这些新抗原肽可以包括一系列重叠的新抗原肽,它们跨新ORF多肽的一部分或全部)。不受理论束缚,认为每种肽都具有其自身表位;因此,跨一种新ORF多肽的铺瓦式阵列可以产生被靶向至不同HLA分子的多肽。新抗原肽可以衍生自任何蛋白质编码基因。可以衍生出新抗原肽的示例性多肽可以在例如COSMIC数据库(在万维网的(www)sanger.ac.uk/cosmic)发现。COSMIC包罗关于人类癌症的体细胞突变的综合信息。该肽可以包含肿瘤特异性突变。在一些方面中,该肿瘤特异性突变在常见驱动基因中或是特定癌症类型的常见驱动突变。例如,常见驱动突变肽可以包括但不限于以下各项:SF3B1多肽、MYD88多肽、TP53多肽、ATM多肽、Abl多肽、FBXW7多肽、DDX3X多肽、MAPK1多肽或GNB1多肽。
这些新抗原肽、多肽和类似物可以被进一步修饰为包含通常不是蛋白质的一部分的另外的化学部分。那些衍生的部分可以改善蛋白质的溶解性、生物半衰期、吸收,或结合亲和力。这些部分还可以减少或消除蛋白质的任何所希望的副作用等。对那些部分的综述可以发现雷明顿的药物科学(Remington’s Pharmaceutical Sciences),第20版,马克出版公司(Mack Publishing Co.),伊斯顿,宾夕法尼亚州(2000)中。
例如,必要时,可以将具有所需活性的的新抗原肽和多肽修饰为提供某些希望的属性(例如改善的药理学特征),同时增加或至少基本上保留未修饰的肽的所有生物活性,以结合希望的MHC分子并激活适当的T细胞。例如,这些新抗原肽和多肽可以经受各种变化,如保守的或非保守的取代,其中这样的变化可能在其使用中提供某些优点,如改善的MHC结合。此类保守取代可以涵盖用另一个在生物学和/或化学上相似的氨基酸残基替换一个氨基酸残基,例如,用另一个疏水残基替换一个疏水残基,或用另一个极性残基替换一个极性残基。还可以使用D-氨基酸探测单一氨基酸取代的影响。可以使用熟知的肽合成方法进行此类修饰,如描述于例如梅里菲尔德(Merrifield),科学(Science)232:341-347(1986);巴拉尼(Barany)&梅里菲尔德,肽(The Peptides),格罗斯(Gross)&美恩霍佛尔(Meienhofer)编辑(纽约,学术出版社),第1-284页(1979);和斯图尔特(Stewart)&扬(Young),固相肽合成(Solid Phase Peptide Synthesis),(罗克福德,III.,皮尔斯(Pierce)),第2版(1984)中。
还可以通过延伸或缩减化合物的氨基酸序列(例如通过添加或缺失氨基酸)而修饰这些新抗原肽和多肽。还可以通过改变某些残基的次序或组成而修饰这些新抗原肽、多肽或类似物。本领域技术人员应当理解的是,对生物活性而言必需的某些氨基酸残基(例如,在关键接触位点的那些或保守残基)在对生物活性没有副作用的情况下通常可以不被改变。非关键氨基酸不必限于在蛋白质中天然存在的那些,如L-a-氨基酸或其D-异构体,而是也可以包括非天然氨基酸(如β-γ-δ-氨基酸)以及L-a-氨基酸的许多衍生物。
典型地,可以使用一系列具有单一氨基酸取代的肽优化新抗原多肽或肽,以确定静电电荷、疏水性等对MHC结合的影响。例如,可以沿着肽的长度进行一系列带正电荷(例如,Lys或Arg)或带负电荷(例如,Glu)的氨基酸取代,从而揭示对各种MHC分子和T细胞受体的不同敏感性模式。另外,可以利用使用小的相对中性的部分(如Ala、Gly、Pro或类似残基)进行的多重取代。这些取代可以是同源寡聚体的或异源寡聚体。被取代或添加的残基的数目和类型取决于在必需接触点与寻求的某些功能属性之间所需的间隔(例如,疏水性与亲水性)。与亲本肽的亲和力相比,还可以通过此类取代实现对MHC分子或T细胞受体的结合亲和力增加。在任何情况下,此类取代都应该利用被选择避免例如可能破坏结合的空间和电荷干扰的氨基酸残基或其他分子片段。
氨基酸取代典型地是单一残基。可以组合取代、缺失、插入或其任何组合,以得到最终肽。取代性变体是肽的至少一个残基已被去除并且将一个不同残基插入到其位置的那些。
这些新抗原肽和多肽可以被修饰为提供希望的属性。例如,可以通过连接至一个序列而增强肽诱导CTL活性的能力,该序列包含至少一个能够诱导T辅助细胞应答的表位。通过间隔分子连接特别优选的免疫原性肽/T辅助细胞缀合物。间隔子典型地由相对较小的中性分子构成,如氨基酸或氨基酸模拟物,这些分子在生理条件下基本上不带电。间隔子典型地选自例如Ala、Gly或者非极性氨基酸或中性极性氨基酸的其他中性间隔子。应当理解的是,任选存在的间隔子无需由相同的残基构成并且因此可以是异源或同源寡聚体。当存在时,间隔子将通常是至少一或两个残基,更通常是三至六个残基。可替代地,该肽可以在没有间隔子的情况下被连接至T辅助细胞肽。
该新抗原肽可以被直接或经由间隔子而被连接至T辅助细胞肽,这种连接是在该肽的氨基或羧基末端。新抗原肽或T辅助细胞肽的氨基末端可以被酰化。示例性T辅助细胞肽包括破伤风类毒素830-843、流感307-319、疟疾环子孢子382-398和378-389。
肿瘤特异性新抗原的产生
本发明至少部分地基于为患者的免疫系统提供肿瘤特异性新抗原池的能力。本领域的普通技术人员应认识到存在多种用于产生此类肿瘤特异性新抗原的方式。通常,可以在体外或在体内产生此类肿瘤特异性新抗原。可以在体外将肿瘤特异性新抗原产生为肽或多肽,然后可以将这些肽或多肽配制成个性化瘤形成疫苗并给予受试者。如下面进一步详述的,这样的体外产生可以通过多种本领域的普通技术人员已知的方法发生,如例如合成肽或在多种细菌、真核或病毒重组表达系统中的任一种中由DNA或RNA分子表达肽/多肽,随后纯化表达的肽/多肽。可替代地,可以通过向受试者体内引入编码肿瘤特异性新抗原的分子(例如,DNA、RNA、病毒表达系统等),在该受试者体内表达编码的肿瘤特异性新抗原而在体内产生肿瘤特异性新抗原。
体外肽/多肽合成
可以通过本领域的普通技术人员已知的任何技术制备蛋白质或肽,包括通过标准分子生物技术表达蛋白质、多肽或肽,从天然来源中分离蛋白质或肽或化学合成蛋白质或肽。先前已经披露了对应于不同基因的核苷酸及蛋白质、多肽和肽的序列,并且可以发现于本领域的普通技术人员已知的计算机化数据库中。一个这样的数据库是设于美国国立卫生研究院的网站的国家生物技术信息中心的Genbank和GenPept数据库。可以使用在此披露的或对本领域的普通技术人员而言应是已知的技术扩增和/或表达已知基因的编码区。可替代地,蛋白质、多肽和肽的各种商业制剂是本领域的普通技术人员已知的。
可以利用不含污染菌或动物物质的试剂用化学方法容易地合成肽(梅里菲尔德RB(Merrifield RB):固相肽合成(Solid phase peptide synthesis).I.四肽的合成(Thesynthesis of a tetrapeptide).美国化学会志(J.Am.Chem.Soc.)85:2149-54,1963)。
本发明的一个另外的方面提供了一种编码本发明的新抗原肽的核酸(例如,多核苷酸),它可以用于在体外产生该新抗原肽。该多核苷酸可以是例如单链和/或双链的DNA、cDNA、PNA、CNA、RNA,或多核苷酸的天然或稳定形式(如例如具有硫代磷酸骨架的多核苷酸)或其组合并且它可以包含或可以不包含内含子,只要它编码该肽即可。本发明的仍另一个方面提供了一种能够表达根据本发明的多肽的表达载体。针对不同细胞类型的表达载体在本领域是熟知的并且可以在无需过度实验的情况下加以选择。通常,以恰当的方向以及在正确的用于表达的阅读框内将DNA插入表达载体(如质粒)中。必要时,可以将DNA连接至被希望的宿主(例如,细菌)识别的适当的转录和翻译调节控制核苷酸序列上,尽管此类控制通常在该表达载体中是可获得的。然后,将该载体引入宿主细菌中,用于使用标准技术进行克隆(参见例如,萨姆布鲁克(Sambrook)等人(1989)分子克隆实验指南(MolecularCloning,A Laboratory Manual),冷泉港实验室(Cold Spring Harbor Laboratory),冷泉港,纽约)。
本发明进一步包括基本上与在此描述的鉴定的肿瘤特异性新抗原同源的变体和等效物。这些可以包含例如保守取代突变,即通过类似的氨基酸取代一个或多个氨基酸。例如,保守取代是指用相同通用类别内的另一个氨基酸取代一个氨基酸,如例如,用另一个酸性氨基酸取代一个酸性氨基酸、用另一个碱性氨基酸取代一个碱性氨基酸或用另一个中性氨基酸取代一个中性氨基酸。保守氨基酸取代所指的内容在本领域是熟知的。
本发明还包括包含分离的多核苷酸的表达载体以及含有表达载体的宿主细胞。在本发明的范围内还考虑到的是,可以按编码希望的新抗原肽的RNA或cDNA分子的形式提供这些新抗原肽。本发明还提供:本发明的一种或多种新抗原肽可以由单一表达载体所编码。本发明还提供:本发明的一种或多种新抗原肽可以使用基于病毒的系统(例如,腺病毒系统)在体内编码和表达。
术语“编码多肽的多核苷酸”涵盖仅包括针对多肽的编码序列的多核苷酸以及包括另外的编码和/或非编码序列的多核苷酸。本发明的多核苷酸可以处于RNA形式或处于DNA形式。DNA包括cDNA、基因组DNA和合成DNA;并且可以是双链的或单链的,并且如果是单链的话,可以是编码链或非编码(反义)链。
在实施例中,这些多核苷酸可以包括针对肿瘤特异性新抗原肽的编码序列,该编码序列与一种多核苷酸融合在相同的阅读框中,该多核苷酸例如辅助由宿主细胞表达和/或分泌多肽(例如,充当用于控制从该细胞中转运多肽的分泌序列的前导子序列)。具有前导子序列的多肽是一种前蛋白质并且该前导子序列可以被宿主细胞切割,以形成该多肽的成熟形式。
在实施例中,这些多核苷酸可以包括针对肿瘤特异性新抗原肽的编码序列,该编码序列与一种标记物序列融合在相同的阅读框中,该标记物序列例如允许纯化编码的多肽,然后可以将该多肽掺入个性化瘤形成疫苗中。例如,在细菌宿主的情况下,该标记物序列可以是一种由pQE-9载体提供的六组氨酸标签,以为纯化融合至该标记物的成熟多肽做准备,或当使用哺乳动物宿主(例如,COS-7细胞)时,该标记物序列可以是一种衍生自流感血球凝集素蛋白的血球凝集素(HA)标签。另外的标签包括但不限于钙调蛋白标签、FLAG标签、Myc标签、S标签、SBP标签、Softag 1、Softag 3、V5标签、Xpress标签、Isopeptag、SpyTag生物素羧基载体蛋白(BCCP)标签、GST标签、荧光蛋白标签(例如,绿色荧光蛋白标签)、麦芽糖结合蛋白标签、Nus标签、Strep-标签、硫氧还蛋白标签、TC标签、Ty标签等。
在实施例中,这些多核苷酸可以包括针对这些肿瘤特异性新抗原肽中的一种或多种的编码序列,该编码序列合在相同阅读框中,以产生能够产生多种新抗原肽的单一多联体化(concatamerized)新抗原肽构建体。
在实施例中,本发明提供了分离的核酸分子,这些核酸分子具有以下核苷酸序列,该核苷酸序列与编码本发明的肿瘤特异性新抗原肽的多核苷酸至少60%一致、至少65%一致、至少70%一致、至少75%一致、至少80%一致、至少85%一致、至少90%一致、至少95%一致或至少96%、97%、98%或99%相一致。
所谓具有与参考核苷酸序列至少例如95%“一致(identical)”的核苷酸序列的多核苷酸意指该多核苷酸的核苷酸序列与该参考序列一致,只是在该参考核苷酸序列的每100个核苷酸中,该多核苷酸序列可以包括多达五个点突变。换言之,为了获得具有与参考核苷酸序列至少95%一致的核苷酸序列的多核苷酸,可以将该参考序列中多达5%的核苷酸缺失或用另一种核苷酸取代,或者可以在该参考序列中插入多达该参考序列中的总核苷酸的5%的多个核苷酸。参考序列的这些突变可以发生于参考核苷酸序列的氨基末端位置或羧基末端位置或者那些末端位置之间的任何位置,它们或是单独地散布于参考序列中的核苷酸之间,或是以一个或多个连续组散布于参考序列内。
作为实际问题,可以使用已知的计算机程序常规地确定任何具体核酸分子与参考序列是否至少80%一致、至少85%一致、至少90%一致,并且在一些实施例中,至少95%、96%、97%、98%或99%一致,这些计算机程序是如Bestfit程序(威斯康星序列分析包(Wisconsin Sequence Analysis Package),基于Unix的版本8,遗传学计算机组(GeneticsComputer Group),大学研究园(University Research Park),575Science Drive,麦迪逊,威斯康星州53711)。Bestfit使用局部同源性算法(史密斯(Smith)和沃特曼(Waterman),应用数学进展(Advances in Applied Mathematics)2:482-489(1981))来发现两个序列之间的最佳同源性区段。当使用Bestfit或任何其他序列比对程序确定具体序列例如是否与根据本发明的参考序列95%一致时,这样设定这些参数以使得在参考核苷酸序列的全长上计算一致性百分比并且允许多达参考序列中的核苷酸总数的5%的同源性空位。
可以通过本领域已知的任何适合的方法在体外(例如,在实验室中)产生在此描述的分离的肿瘤特异性新抗原肽。此类方法范围从直接蛋白合成方法到构建编码分离的多肽序列的DNA序列并且在适合的转化宿主中表达那些序列。在一些实施例中,使用重组技术通过分离或合成编码感兴趣的野生型蛋白质的DNA序列来构建DNA序列。任选地,可以通过位点特异性诱变来诱变处理该序列,以提供其功能类似物。参见例如,卓莱尔(Zoeller)等人,美国国家科学院院刊(Proc.Nat’l.Acad.Sci.USA)81:5662-5066(1984)和美国专利号4,588,585。
在实施例中,使用寡核苷酸合成仪通过化学合成来构建编码感兴趣的多肽的DNA序列。可以基于希望的多肽的氨基酸序列并选择那些在将产生感兴趣的重组多肽的宿主细胞中偏好的密码子来设计此类寡核苷酸。标准方法可以用于合成编码感兴趣的分离的多肽的分离的多核苷酸序列。例如,完整的氨基酸序列可以用来构建回译基因。此外,可以合成包含编码具体分离的多肽的核苷酸序列的DNA寡聚体。例如,可以合成若干小的编码希望的多肽的部分的寡核苷酸并且然后将其连接。单独的寡核苷酸典型地包含用于互补组件的5’或3’突出端。
一旦组装(例如,通过合成、定点诱变或另一种方法),编码感兴趣的具体分离的多肽的多核苷酸序列将被插入表达载体中并且任选地被可操作地连接至表达控制序列上,该表达控制序列适于在希望的宿主中表达该蛋白质。可以通过核苷酸测序、限制酶作图和生物活性多肽在适合的宿主体内的表达来确认适当的组装。如本领域所熟知的,为了在宿主中获得转染基因的高表达水平,可以将该基因可操作地连接至转录和翻译表达控制序列上,这些序列在所选的表达宿主中具有功能性。
重组表达载体可以用于扩增和表达编码肿瘤特异性新抗原肽的DNA。重组表达载体是可复制的DNA构建体,它们具有编码肿瘤特异性新抗原肽或生物等价类似物的合成或cDNA衍生的DNA片段,这些DNA片段被可操作地连接至适合的转录或翻译调节元件上,这些调节元件来源于哺乳动物、微生物、病毒或昆虫基因。转录单位通常包括以下项的集合:(1)在基因表达中具有调节作用的一种或多种遗传元件,例如转录启动子或增强子;(2)被转录成mRNA并被翻译成蛋白质的结构或编码序列;以及(3)适当的转录和翻译起始和终止序列,如下文所详述的。此类调节元件可以包括用于控制转录的操纵子序列。可以另外掺入通常赋予在宿主中进行复制的能力的复制起点以及有助于识别转化体的选择基因。当DNA区域在功能上彼此相关时,将它们可操作地连接。例如,将信号肽(分泌性前导子)的DNA可操作地连接多肽的DNA,如果它被表达为参与多肽的分泌的前体的话;将启动子可操作地连接至编码序列,如果它控制该序列的转录的话;或将核糖体结合位点可操作地连接至编码序列,如果它被定位地允许翻译的话。通常,可操作地连接意指连续的,并且在分泌性前导子的情况下,意指连续的并且在阅读框中。旨在用于在酵母表达系统中使用的结构元件包括前导子序列,它使得宿主细胞可以将翻译的蛋白质分泌到胞外。可替代地,在无需前导子或转运序列表达重组蛋白质的情况下,它可以包括N-末端甲硫氨酸残基。随后,此残基可以任选地被从表达的重组蛋白上切割下来,以提供终产物。
表达控制序列和表达载体的选择将取决于宿主的选择。可以利用多种多样的表达宿主/载体组合。用于真核宿主的有用的表达载体包括例如包含来自SV40、牛乳头瘤病毒、腺病毒和巨细胞病毒的表达控制序列的载体。用于细菌宿主的有用的表达载体包括已知的细菌质粒,如来自大肠杆菌的质粒(包括pCR 1、pBR322、pMB9及其衍生物),更宽的宿主范围质粒如M13和丝状单链DNA噬菌体。
用于表达多肽的合适的宿主细胞包括处于适当的启动子的控制下的原核生物、酵母、昆虫或高等真核细胞。原核生物包括革兰氏阴性或革兰氏阳性生物体,例如大肠杆菌或芽孢杆菌。高等真核细胞包括建立的哺乳动物来源的细胞系。还可以利用无细胞翻译系统。用于与细菌、真菌、酵母及哺乳动物细胞宿主一起使用的适当的克隆和表达载体在本领域是熟知的(参见布韦尔斯(Pouwels)等人,克隆载体:实验室手册(Cloning Vectors:ALaboratory Manual),爱思唯尔(Elsevier),纽约,1985)。
还有利地利用各种哺乳动物或昆虫细胞培养系统表达重组蛋白。可以在哺乳动物细胞中表达重组蛋白,因为此类蛋白质通常被正确折叠,适当修饰并且完全具有功能性。合适的哺乳动物宿主细胞的实例包括由古拉兹曼(Gluzman)(细胞(Cell)23:175,1981)描述的COS-7猴肾细胞系,以及能够表达适当的载体的其他细胞系,包括例如L细胞、C127、3T3、中国仓鼠卵巢(CHO)、HeLa以及BHK细胞系。哺乳动物表达载体可以包括非转录元件(如复制起点)、连接至待表达的基因上的合适的启动子和增强子以及其他5’或3’侧翼非转录序列和5’或3’非翻译序列,如必要的核糖体结合位点、聚腺苷酸化位点、剪接供体和受体位点以及转录终止序列。用于在昆虫细胞中产生异源蛋白质的杆状病毒系统由卢科(Luckow)和萨莫斯(Summers),生物/技术(Bio/Technology)6:47(1988)进行了概述。
可以根据任何合适的方法纯化由转化宿主产生的蛋白质。此类标准方法包括色谱法(例如,离子交换、亲和力和尺寸分级柱色谱法等)、离心、差别溶解度或通过用于蛋白质纯化的任何其他标准技术。亲和标签(如六组氨酸、麦芽糖结合结构域、流感包衣序列、谷胱甘肽-S-转移酶等)可以附着至蛋白质上,以允许通过穿过适当的亲和柱而容易地纯化。还可以使用如蛋白水解、核磁共振和X射线晶体学等技术用物理方法表征分离的蛋白质。
例如,可以使用可商购的蛋白质浓缩过滤器(例如,Amicon或Millipore Pellicon超滤装置)首先浓缩来自将重组蛋白分泌进培养基的系统的上清液。浓缩步骤之后,可以将浓缩物施加至适合的纯化基质上。可替代地,可以利用阴离子交换树脂,例如具有悬垂的二乙氨乙基(DEAE)基团的基质或底物。基质可以是丙烯酰胺、琼脂糖、葡聚糖、纤维素或在蛋白质纯化中常用的其他类型。可替代地,可以利用阳离子交换步骤。合适的阳离子交换剂包括包含磺丙基或羧甲基基团的各种不溶性基质。最后,利用疏水性RP-HPLC介质(例如,具有悬垂的甲基或其他脂肪族基团的硅胶)的一个或多个反相高效液相色谱(RP-HPLC)步骤可以用于进一步纯化癌症干细胞蛋白质-Fc组合物。一些或所有前述纯化步骤以不同组合还可以用于提供均质重组蛋白。
可以例如通过最初从细胞沉淀中提取,随后进行一个或多个浓缩、盐析、水性离子交换或尺寸排阻色谱步骤分离在细菌培养物中产生的重组蛋白。高效液相色谱法(HPLC)可以用于最终的纯化步骤。可以通过任何常规方法破坏在表达重组蛋白中利用的微生物细胞,包括冷冻-解冻循环、超声处理、机械破坏或使用细胞裂解剂。
体内肽/多肽合成
本发明还考虑了将核酸分子用作将新抗原肽/多肽以例如DNA/RNA疫苗的形式递送给受试者的运载体(参见例如,WO 2012/159643和WO 2012/159754,通过引用以其全文特此结合)。
在一个实施例中,该个性化瘤形成疫苗可以包括编码例如一种或多种如在根据本发明中鉴定的新抗原肽/多肽的单独的DNA质粒。如以上所讨论的,表达载体的确切选择将取决于待表达的肽/多肽,并且完全在普通技术人员的技术之内。预期DNA构建体的预期持久性(例如,在肌细胞中以附加型、非复制、非整合形式)提供增加的保护持续时间。
在另一个实施例中,该个性化瘤形成疫苗可以包括编码本发明的新抗原肽/多肽的单独的RNA或cDNA分子。
在另一个实施例中,该个性化瘤形成疫苗可以包括用于在人类患者中使用的基于病毒的载体,如例如腺病毒系统(参见例如,巴登(Baden)等人首次在人类中评估重组腺病毒血清型26HIV-1包膜疫苗(IPCAVD 001)的安全性和免疫原性(First-in-humanevaluation of the safety and immunogenicity of a recombinant adenovirusserotype 26HIV-1Env vaccine(IPCAVD 001)).传染病杂志(J Infect Dis.)2013年1月15日;207(2):240-7,通过引用以其全文特此结合)。
药物组合物/递送方法
本发明还针对以下药物组合物,这些药物组合物包含任选地与药学上可接受的的载体、赋形剂或添加剂组合的有效量的一种或多种根据本发明的化合物(包括其药学上可接受的盐)。
“药学上可接受的衍生物或前药”意指本发明的化合物的任何药学上可接受的盐、酯、酯盐或其他衍生物,当将它给予受者之后能够提供(直接或间接)本发明的化合物。特别有利的衍生物和前药是当将此类化合物给予哺乳动物(例如,通过允许口服或经眼给予化合物,以被更容易地吸收进入血液)时增加本发明的化合物的生物利用度或相对于母体种类增强母体化合物向生物区室(例如,视网膜)中的递送的那些。
虽然本发明的肿瘤特异性新抗原肽可以作为仅有的活性药剂被给予,但是它们也可以与一种或多种其他试剂和/或佐剂组合使用。当作为组合给予时,治疗剂可以被配制成分开的组合物,它们被同时或在不同时间给药,或者这些治疗剂可以作为单一组合物给药。
可以通过注射、口服、胃肠外、通过吸入喷雾、经直肠、经阴道或局部地在包含常规的药学上可接受的载体、佐剂和运载体的单位剂量配制品中给予本发明的肿瘤特异性新抗原肽。如在此所使用的术语胃肠外包括进入一个或多个淋巴结、皮下的、静脉内的、肌内的、胸骨内的、输注技术、腹膜内地、眼睛或经眼的、玻璃体内的、颊内的、经皮的、鼻内的、进入脑(包括颅内的和硬膜内的)、进入关节(包括脚踝、膝盖、臀部、肩、肘、腕)、直接进入肿瘤等,以及处于栓剂形式。
可以根据药剂学的常规方法加工本发明的药物活性化合物,以产生用于向患者(包括人类和其他哺乳动物)给予的药剂。
活性化合物的修饰可以影响活性种类的溶解性、生物利用度和代谢率,从而对这些活性种类的递送提供控制。可以根据完全位于本领域常规从业者的技术内的已知方法制备衍生物并测试其活性而对其容易地评估。
基于这些化学化合物的药物组合物包括任选地与药学上可接受的添加剂、载体和/或赋形剂组合的处于治疗已经在此描述的疾病和病症(例如,瘤形成/肿瘤)的治疗有效量的上述肿瘤特异性新抗原肽。本领域的普通技术人员应认识到,根据本发明的一种或多种化合物的治疗有效量将随待治疗的感染或病症、其严重性,待利用的治疗方案、所使用的试剂的药代动力学以及所治疗的患者(动物或人)而变化。
为了制备根据本发明的药物组合物,优选地根据常规药物配合技术将治疗有效量的一种或多种根据本发明的化合物与药学上可接受的载体密切混合以产生一种剂量。载体可以采取多种多样的形式,取决于希望给予(例如,经眼、口服、局部或胃肠外)的制剂形式,在众多其他形式之间包括凝胶、乳膏、软膏、洗剂以及延时释放可植入制剂。在以口服剂型制备药物组合物中,可以使用一般的药物介质中的任一种。因此,对于液体口服制剂(如悬浮液、酏剂和溶液),可以使用适合的载体和添加剂,包括水、甘油、油类、醇类、调味剂、防腐剂、着色剂等。对于固体口服制剂(如粉剂、片剂、胶囊剂)以及对于固体制剂(如栓剂),可以使用适合的载体和添加剂,包括淀粉、糖载体(如葡萄糖、甘露醇、乳糖)和相关载体、稀释剂、造粒剂、润滑剂、粘合剂、崩解剂等。希望的话,片剂或胶囊剂可以通过标准技术被肠溶包衣或缓释。
活性化合物以足以向患者递送用于希望的适应症的治疗有效量而不在所治疗的患者体内引起严重毒性作用的量被包括在药学上可接受的载体或稀释剂中。
口服组合物将通常包括惰性稀释剂或可食用载体。它们可以被封装在明胶胶囊中或被压成片剂。出于口服治疗性给予的目的,可以将活性化合物或其前药衍生物随赋形剂一起掺入并且以片剂、锭剂或胶囊剂的形式使用。可以包括药学上相容的粘合剂和/或佐剂材料作为组合物的一部分。
片剂、丸剂、胶囊剂、锭剂等可以包含以下成分或具有类似性质的化合物中的任一种:粘合剂,如微晶纤维素、黄芪胶或明胶;赋形剂,如淀粉或乳糖;分散剂,如海藻酸或玉米淀粉;润滑剂,如硬脂酸镁;助流剂,如胶体二氧化硅;甜味剂,如蔗糖或糖精;或调味剂,如薄荷、水杨酸甲酯或橙味调味品。当该单位剂型是胶囊剂时,除上述类型的材料之外,它还可以含有液体载体如脂肪油。另外,单位剂型可以包含修饰剂量单位的物理形式的多种其他材料,例如糖、虫胶或肠溶剂的包衣。
适于口服给予的本发明的配制品能以离散单位形式呈现,如各自含有预定量的活性成分的胶囊剂、扁囊剂或片剂;以粉剂或颗粒剂呈现;以水性液体或非水性液体中的溶液或悬浮液呈现;或以水包油液体乳剂或油包水液体乳剂呈现以及以大丸剂呈现等。
片剂可以通过任选地与一种或多种辅助成分压制或模制而制备。压制型片剂可以通过在合适的机器中压制自由流动形式(如粉末或颗粒)的活性成分来制备,任选地与粘合剂、润滑剂、惰性稀释剂、防腐剂、表面活性剂或分散剂混合。模制型片剂可以通过在适合的机器中模制用惰性液体稀释剂润湿的粉状化合物的混合物而制备。片剂任选地可以被包衣或刻痕,并且可以配制以便提供缓慢或控制释放其中的活性成分。
配制药物活性成分的此类缓慢或控制释放组合物的方法在本领域是已知的并且描述于若干公布的美国专利中,其中的一些包括但不限于美国专利号3,870,790;4,226,859;4,369,172;4,842,866以及5,705,190,将其披露以其全文通过引用结合在此。包衣可以用于将化合物递送至肠(参见例如,美国专利号6,638,534、5,541,171、5,217,720和6,569,457,以及其中引用的参考文献)。
活性化合物或其药学上可接受的盐也可以作为酏剂、悬浮液、糖浆剂、薄片(wafer)、口香糖等的组分给予。除活性化合物之外,糖浆剂还可以包含蔗糖或果糖作为甜味剂以及某些防腐剂、染料及着色剂和调味剂。
用于经眼、胃肠外、皮内、皮下或局部应用的溶液或悬浮液可以包括以下组分:无菌稀释剂,如注射用水、盐水溶液、非挥发油、聚乙二醇、甘油、丙二醇或其他合成溶剂;抗菌剂,如苯甲醇或对羟基苯甲酸甲酯;抗氧化剂,如抗坏血酸或亚硫酸氢钠;螯合剂,如乙二胺四乙酸;缓冲剂,如乙酸盐、柠檬酸盐或磷酸盐;以及用于调节张力的试剂,如氯化钠或葡萄糖。
在一个实施例中,将这些活性化合物与保护这些化合物免于从体内快速消除的载体一起制备,如控制释放配制品,包括植入物和微囊化的递送系统。可以使用可生物降解的生物相容的聚合物,如乙烯乙酸乙烯酯、聚酐类、聚乙醇酸、胶原、聚原酸酯类、聚乳酸以及聚乳酸-共-乙醇酸(PLGA)。用于制备此类配制品的方法对本领域的普通技术人员而言应是显而易见的。
本领域技术人员应认识到,除片剂之外,还可以配制其他剂型,以提供缓慢或控制释放的活性成分。此类剂型包括但不限于胶囊剂、颗粒剂和软胶囊(gel-cap)。
脂质体悬浮液也可以作为药学上可接受的载体。这些可以根据本领域的普通技术人员已知的方法制备。例如,可以通过将一种或多种适当的脂质溶解在无机溶剂中,然后蒸发该溶剂,从而在容器的表面上留下干燥脂质的薄膜而制备脂质体配制品。然后可以向容器中引入活性化合物的水溶液。然后用手旋动容器,以将脂质材料从容器的侧面释放并且以分散脂质聚集体,从而形成脂质体悬浮液。普通技术人员熟知的其他制备方法也可以在本发明的此方面中使用。
这些配制品可以便利地以单位剂型呈现并且可以通过常规制药技术制备。此类技术包括使活性成分与一种或多种药物载体或赋形剂结合的步骤。通常,通过使活性成分与液体载体或精细分散的固体载体或两者均匀且紧密地结合,并且然后,必要的话,使产品成形,以制备配制品。
适于在口中局部给予的配制品和组合物包括在调味基质(通常是蔗糖和阿拉伯胶或黄芪胶)中包含这些成分的糖锭剂;在惰性基质(如明胶和甘油,或蔗糖和阿拉伯胶)中包含活性成分的软锭剂;以及在适合的液体载体中包含待给予的成分的漱口剂。
适于局部给予至皮肤的配制品可以作为在药学上可接受的载体中包含待给予的成分的软膏、乳膏、凝胶和糊剂呈现。优选的局部递送系统是含有待给予的成分的经皮贴剂。
用于直肠给药的配制品可以作为具有适合的基质(包括例如,可可脂或水杨酸酯)的栓剂呈现。
适于鼻腔给药的配制品(其中载体是一种固体)包括具有例如处于20至500微米范围内的粒度的粗粉,该粗粉以给予嗅剂(即,通过快速吸入)的方式从保持靠近鼻子的粉末容器通过鼻通道而给药。适于例如作为喷鼻剂或作为滴鼻剂而给予的适合的配制品(其中载体是一种液体)包括活性成分的水性或油性溶液。
适于阴道给药的配制品可以作为阴道栓剂、卫生棉条、乳膏、凝胶、糊剂、泡沫或喷雾配制品呈现,其除了活性成分之外还含有例如本领域已知的适当的载体。
胃肠外制剂可以被封装在由玻璃或塑料制成的安瓿、一次性注射器或多剂量小瓶中。如果静脉内给予,优选的载体包括例如生理盐水或磷酸盐缓冲盐水(PBS)。
对于胃肠外配制品,载体通常将包括无菌水或氯化钠水溶液,但还可以包括其他成分,这些成分包括协助分散的那些。当然,当要使用无菌水并保持为无菌时,这些组合物和载体也将被灭菌。还可以制备可注射悬浮液,在此情况下,可以利用适当的液体载体、悬浮剂等。
适于胃肠外给药的配制品包括水性和非水性无菌注射液,它们可以包含抗氧化剂、缓冲剂、抑菌剂和使配制品与预期的受者的血液等渗的溶质;以及水性和非水性无菌悬浮液,它们可以包括悬浮剂和增稠剂。可以使配制品呈现于单位剂量或多剂量容器(例如密封安瓿和小瓶)中,并且可以在冷冻干燥(冻干)条件下储存,仅需要在使用之前即刻添加无菌液体载体(例如注射用水)。临时注射溶液和悬浮液可以由前述种类的无菌粉剂、颗粒剂和片剂制备。
活性化合物的给予范围可以从连续的(静脉滴注)至每天若干口服给药(例如,Q.I.D.),并且在其他给药途径之中可以包括口服、局部、眼睛或经眼、胃肠外、肌内、静脉内、皮下、经皮(它可以包括渗透增强剂)、经颊和栓剂给予,包括通过眼睛或经眼途径。
主题治疗剂的应用可以是局部的,以便在感兴趣的部位给药。各种技术可以用于在感兴趣的部位提供主题组合物,如注射、使用导管、套管针、抛射体(projectile)、普朗尼克(pluronic)凝胶、支架、缓释药物释放聚合物或提供用于内部进入的其他装置。当由于从患者体内切除而可以得到一个器官或组织时,可以将这样的器官或组织浸泡在包含主题组合物的培养基中,可以将主题组合物涂在该器官上,或可以按任何便利的方式来应用。
可以通过以下装置给予肿瘤特异性新抗原肽,该装置适于以有效获得希望的局部或全身性生理或药理作用的方式控制释放且持续释放组合物。该方法包括将缓释药物递送系统放置在希望释放药剂的区域并且允许该药剂穿过该装置到达希望的治疗区域。
可以将这些肿瘤特异性新抗原肽与至少一种已知的其他治疗剂或所述药剂的药学上可接受的盐组合利用。可以用于联合疗法的已知治疗剂的实例包括但不限于皮质甾类(例如,可的松、泼尼松、地塞米松),非甾体抗炎药(NSAIDS)(例如,布洛芬、塞来昔布、阿司匹林、吲哚美辛、萘普生),烷基化剂(如白消安、顺铂、丝裂霉素C及卡铂);抗有丝分裂剂,如秋水仙碱、长春碱、紫杉醇及多西他赛;拓扑异构酶I抑制剂,如喜树碱和托泊替康;拓扑异构酶II抑制剂,如多柔比星和依托泊苷;和/或RNA/DNA抗代谢物,如5-氮杂胞苷、5-氟尿嘧啶和甲氨蝶呤;DNA抗代谢物,如5-氟-2′-脱氧-尿苷、阿糖胞苷、羟基脲及硫鸟嘌呤;抗体,如
应当理解的是,关于正在讨论的配制品的类型,除上文具体提及的成分之外,本发明的配制品还可以包括在本领域中常规的其他试剂,例如,适于口服给药的那些还可以包括调味剂。
在某些药物剂型中,这些化合物的前药形式可以是优选的。本领域的普通技术人员应认识到怎样将本发明化合物容易地修饰成前药形式以促进活性化合物向宿主生物体或患者的目标位点递送。常规从业者还将在适合时在向宿主生物体或患者的目标位点递送本发明化合物中利用前药形式的有利药代动力学参数以将该化合物的预期效果最大化。
优选的前药包括衍生物,其中增强水溶性或穿过肠膜的主动转运的基团被附加到在此描述的化学式的结构上。参见例如,亚历山大,J.(Alexander,J.)等人药物化学杂志(Journal of Medicinal Chemistry)1988,31,318-322;本德戈德,H.(Bundgaard,H.)前药的设计(Design of Prodrugs);爱思唯尔:阿姆斯特丹,1985;第1-92页;本德戈德,H.;尼尔森,N.M.(Nielsen,N.M.)药物化学杂志1987,30,451-454;本德戈德,H.药物设计与开发教科书(A Textbook of Drug Design and Development);哈伍德学术出版社(HarwoodAcademic Publ.):瑞士,1991;第113-191页;迪加尼斯,G.A.(Digenis,G.A.)等人实验药理学手册(Handbook of Experimental Pharmacology)1975,28,86-112;弗里斯,G.J.(Friis,G.J.);本德戈德,H.药物设计与开发教科书;第2版;海外出版社(Overseas Publ.)阿姆斯特丹:阿姆斯特丹,1996;第351-385页;皮特曼,I.H.(Pitman,I.H.)药物研究述评(Medicinal Research Reviews)1981,1,189-214。前药形式可以自身具有活性,或可以是当给予之后被代谢时在体内提供活性治疗剂的那些。
药学上可接受的盐形式可以是用于包含在根据本发明的药物组合物中的根据本发明的化合物的优选化学形式。
本发明化合物或其衍生物(包括这些药剂的前药形式)可以按药学上可接受的盐形式提供。如在此所使用的,术语药学上可接受的盐或复合物是指保留本发明化合物的希望的生物活性并且对正常细胞展示出有限的毒理学作用的根据本发明的活性化合物的适当的盐或复合物。此类盐的非限制性实例是(a)与无机酸(例如,盐酸、氢溴酸、硫酸、磷酸、硝酸等)形成的酸加成盐,和与有机酸形成的盐,这些有机酸尤其是如乙酸、草酸、酒石酸、琥珀酸、苹果酸、抗坏血酸、苯甲酸、鞣酸、扑酸、海藻酸及聚谷氨酸;(b)与金属阳离子形成的碱加成盐,在众多其他阳离子之间这些金属阳离子是如锌、钙、钠、钾等。
在此的化合物是可商购的或可以合成。如本领域技术人员可理解的,对于本领域的普通技术人员而言合成具有在此的化学式的化合物的另外的方法将是明显的。另外,各种合成步骤可以按交替顺序或次序进行,以得到希望的化合物。在合成在此描述的化合物中有用的合成化学转化和保护基团方法论(保护和脱保护)在本领域是已知的并且包括例如如描述于以下文献中的那些:R.拉罗克(R.Larock),综合有机转化(ComprehensiveOrganic Transformations),第2版,威利-VCH出版商(Wiley-VCH Publishers)(1999);T.W.格林(T.W.Greene)和P.G.M.伍兹(P.G.M.Wuts),有机合成中的保护基团(ProtectiveGroups in Organic Synthesis),第3版,约翰·威利父子公司(John Wiley and Sons)(1999);L.菲泽(L.Fieser)和M.菲泽(M.Fieser),用于有机合成的双菲泽试剂(Fieser andFieser’sReagents for Organic Synthesis),约翰·威利父子公司(1999);以及L.帕克特(L.Paquette)编辑,有机合成试剂百科全书(Encyclopedia of Reagents for OrganicSynthesis),约翰·威利父子公司(1995),及其后续版本。
可以与本发明的肿瘤特异性新抗原肽一起被包括的另外的试剂可以包含一个或多个不对称中心并且因此作为外消旋体和外消旋混合物、单一对映异构体、单独非对映异构体及非对映异构体混合物而出现。这些化合物的所有这些异构体形式被明确包括在本发明中。本发明的化合物还可以被表示为多种互变异构形式,在此类情况下,本发明明确包括在此描述的化合物的所有互变异构形式(例如,环系统的烷基化可以导致多个位点的烷基化,本发明明确包括所有此类反应产物)。此类化合物的所有此类异构体形式被明确包括在本发明中。在此描述的化合物的所有晶形被明确包括在本发明中。
优选的单位剂量配制品是含有给予成分的如上文所述的每日剂量或单位、每日亚剂量、或其适当部分的那些。
用本发明的肿瘤特异性新抗原肽和/或本发明的组合物治疗障碍或疾病的给药方案基于多种因素,包括疾病的类型,患者的年龄、体重、性别、医学病症,病症的严重性,给药途径以及利用的具体化合物。因此,给药方案可以广泛地变化,但是可以使用标准方法常规地确定。
向受试者给予的量和给药方案将取决于多种因素,如给药方式、正在治疗的病症的性质、正在被治疗的受试者的体重以及开处方医生的判断。
包括在根据本发明的治疗活性配制品内的化合物的量是用于治疗疾病或病症的有效量。通常,对患者而言,剂型中的本发明优选化合物的治疗有效量的范围通常是从稍微小于约0.025mg/kg/天至约2.5g/kg/天,优选约0.1mg/kg/天至约100mg/kg/天或多得多,这取决于使用的化合物、治疗的病症或感染和给药途径,但是本发明也考虑到了此剂量范围的例外情况。以其最优选的形式,按范围从约1mg/kg/天至约100mg/kg/天的量给予根据本发明的化合物。化合物的剂量将取决于正在治疗的病症、具体化合物和其他临床因素,如患者的体重和状况和化合物的给药途径。应当理解的是,本发明可用于人用和兽用两者。
用于向人类口服给予,大约0.1至100mg/kg/天之间,优选大约1与100mg/kg/天之间的剂量通常是足够的。
在药物递送是全身性的而非局部的情况下,此剂量范围通常将在患者体内产生范围从小于约0.04至约400微克/cc血液或更多的活性化合物的有效血液水平浓度。
该化合物便利地以任何适合的单位剂型给予,包括但不限于每单位剂型包含0.001至3000mg,优选0.05至500mg活性成分的单位剂型。10-250mg的口服剂量通常是方便的。
活性化合物在药物组合物中的浓度将取决于该药物的吸收、分布、失活和排泄速率以及本领域的普通技术人员已知的其他因素。应当指出的是,剂量值还随待缓解病症的严重性而变化。应该进一步理解的是针对任何具体受试者,特定的给药方案应该根据个体需要和给予组合物的或监督组合物给药的人的专业判断而随时间进行调整,并且在此列出的浓度范围仅仅是示例性的,并不旨在限制所要求的组合物的范围或实践。活性成分可以一次给予,或可以分成有待以不同时间间隔给予的许多较小剂量。
在某些实施例中,该化合物每天给予一次;在其他实施例中,该化合物每天给予两次;在又其他实施例中,该化合物每两天给予一次、每三天给予一次、每四天给予一次、每五天给予一次、每六天给予一次、每七天给予一次、每两周给予一次、每三周给予一次、每四周给予一次、每两个月给予一次、每六个月给予一次或每年给予一次。可以根据个体患者的需要来调整给药间隔。对于较长间隔的给药,可以使用延长释放或长效配制品。
本发明的化合物可以用来治疗急性的疾病和疾病病症,并且也可以用于治疗慢性病症。在某些实施例中,给予本发明的化合物持续超过两周、三周、一个月、两个月、三个月、四个月、五个月、六个月、一年、两年、三年、四年、或五年、十年或十五年的时间段;或例如,以天、月或年计的任何时间段范围,其中该范围的下限是14天与15年之间的任何时间段并且该范围的上限在15天与20年之间(例如,4周与15年之间,6个月与20年之间)。在一些情况下,可以有利的是在患者的余生中给予本发明的化合物。在优选实施例中,监测该患者,以检查疾病或障碍的进展,并且据此调整剂量。在优选实施例中,根据本发明的治疗有效地持续至少两周、三周、一个月、两个月、三个月、四个月、五个月、六个月、一年、两年、三年、四年、或五年、十年、十五年、二十年或持续受试者的余生。
本发明提供了包含至少一种在此描述的肿瘤特异性新抗原的药物组合物。在实施例中,这些药物组合物包含一种药学上可接受的载体、赋形剂或稀释剂,该载体、赋形剂或稀释剂包括任何药剂,该药剂本身对接受该组合物的受试者不引起有害的免疫应答的产生,并且可以给予而无异常毒性。如在此所使用的,术语“药学上可接受的”意指由联邦或州政府的监管机构批准的或者美国药典、欧洲药典或其他公认药典中列出的在哺乳动物中,并且更具体是在人类中使用的。这些组合物可以用于治疗和/或预防病毒感染和/或自身免疫性疾病。
对药学上可接受的载体、稀释剂以及其他赋形剂的全面讨论呈现于雷明顿的药物科学(Remington’s Pharmaceutical Sciences)(第17版,马克出版公司)和雷明顿:药剂学科学与实践(Remington:The Science and Practice of Pharmacy)(第21版,利平科特·威廉斯&威尔金斯出版社(Lippincott Williams&Wilkins))中,将其通过引用而特此结合。该药物组合物的配制应该适合于给药方式。在实施例中,该药物组合物适于给予人类,并且可以是无菌的、非微粒的和/或无热源的。
药学上可接受的载体、赋形剂或稀释剂包括但不限于生理盐水、缓冲生理盐水、葡萄糖、水、甘油、乙醇、无菌等渗水性缓冲液及其组合。
这些组合物中还可以存在湿润剂、乳化剂和润滑剂(如月桂基硫酸钠与硬脂酸镁)以及着色剂、脱模剂、包衣剂、甜味剂、调味剂以及芳香剂、防腐剂和抗氧化剂。
药学上可接受的抗氧化剂的实例包括但不限于:(1)水溶性抗氧化剂,如抗坏血酸、盐酸半胱氨酸、硫酸氢钠、焦亚硫酸钠、亚硫酸钠等;(2)油溶性抗氧化剂,例如抗坏血酸棕榈酸酯、丁基羟基茴香醚(BHA)、丁基羟基甲苯(BHT)、卵磷脂、没食子酸丙酯、α-生育酚等;以及(3)金属螯合剂,如柠檬酸、乙二胺四乙酸(EDTA)、山梨醇、酒石酸、磷酸等。
在实施例中,该药物组合物是以固体形式(如适于复水的冻干粉)、液体溶液、悬浮液、乳剂、片剂、丸剂、胶囊剂、缓释配制品或粉剂提供。
在实施例中,该药物组合物是以液体形式提供,例如,在指示该药物组合物中的活性成分的量和浓度的密封容器内。在相关实施例中,该药物组合物的液体形式是在熔封容器中提供。
用于配制本发明的药物组合物的方法是常规的并且在本领域是熟知的(参见雷明顿和雷明顿氏)。本领域的普通技术人员可以容易地配制具有所希望特征(例如,给药途径、生物安全性和释放谱)的药物组合物。
用于制备这些药物组合物的方法包括将活性成分与药学上可接受的载体以及任选地一种或多种辅助成分结合的步骤。可以通过使活性成分与液体载体或精细分散的固体载体或两者均匀且紧密地结合,并且然后,必要的话,使产品成形,以制备药物组合物。用于制备药物组合物(包括制备多层剂)的另外的方法描述于安塞尔氏药物剂型和药物递送系统(Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems)(第9版,利平科特·威廉斯&威尔金斯出版社)中,将其通过引用而特此结合。
适于口服给予的药物组合物可以呈胶囊剂、扁囊剂、丸剂、片剂、糖锭剂(使用调味基质,通常是蔗糖和阿拉伯胶或黄芪胶)、粉剂、颗粒剂的形式,或作为水性或非水性液体中的溶液或悬浮液,或作为水包油或油包水液体乳剂,或作为酏剂或糖浆剂,或作为软锭剂(使用惰性基质,如明胶和甘油,或蔗糖和阿拉伯胶)和/或作为漱口剂等,各自包含预定量的在此描述的一种或多种化合物、其衍生物,其药学上可接受的盐或前药作为一种或多种活性成分。该活性成分还可以作为大丸剂、药糖剂或糊剂给予。
在用于口服给予的固体剂型(例如,胶囊剂、片剂、丸剂、糖衣丸、粉剂、颗粒剂等)中,该活性成分与一种或多种药学上可接受的载体、赋形剂或稀释剂(如柠檬酸钠或磷酸二钙)和/或任何以下项混合:(1)填充剂或增量剂,如淀粉、乳糖、蔗糖、葡萄糖、甘露醇和/或硅酸;(2)粘合剂,如例如羧甲基纤维素、海藻酸盐、明胶、聚乙烯吡咯烷酮、蔗糖和/或阿拉伯胶;(3)致湿剂,如甘油;(4)崩解剂,如琼脂、碳酸钙、马铃薯或木薯淀粉、海藻酸、某些硅酸盐和碳酸钠;(5)溶解阻滞剂,如石蜡;(6)吸收促进剂,如季铵化合物;(7)湿润剂,如例如乙酰醇和单硬脂酸甘油酯;(8)吸附剂,如高岭土和膨润土;(9)润滑剂,如滑石、硬脂酸钙、硬脂酸镁、固体聚乙二醇、月桂基硫酸钠及其混合物;以及(10)着色剂。在胶囊剂、片剂和丸剂的情况下,这些药物组合物还可以包括缓冲剂。类似类型的固体组合物还可以使用填充剂和赋形剂(如乳糖(lactose)或乳糖(milk sugar))以及高分子量聚乙二醇等在软填充和硬填充的明胶胶囊中制备。
片剂可以通过任选地与一种或多种辅助成分压制或模制而制备。压制型片剂可以使用粘合剂(例如,明胶或羟丙基甲基纤维素)、润滑剂、惰性稀释剂、防腐剂、崩解剂(例如,淀粉乙醇酸钠或交联的羧甲基纤维素钠)、表面活性剂和/或分散剂而制备。模制型片剂可以通过在适合的机器中模制用惰性液体稀释剂润湿的粉状活性成分的混合物而制备。
这些片剂以及其他固体剂型(如糖衣丸、胶囊剂、丸剂及颗粒剂)可以任选地被刻痕或用包衣和壳来制备,如肠溶包衣以及本领域熟知的其他包衣。
在一些实施例中,为了延长活性成分的效果,希望的是减缓皮下或肌内注射的化合物的吸收。这可以通过使用晶体的液体悬浮液或水溶性差的非晶体材料来达成。这样,活性成分的吸收速率取决于其溶解速率,而溶解速率又可以取决于晶体尺寸和晶型。可替代地,通过将胃肠外给予的活性成分溶解或悬浮于油载体中来实现该化合物的延迟吸收。另外,可以通过包含延迟吸收的试剂(如单硬脂酸铝和明胶)来实现可注射的药物形式的延长吸收。
控释的胃肠外组合物可以呈水性悬浮液、微球、微胶囊、磁性微球、油溶液、油悬浮液、乳液的形式,或者该活性成分可以被掺入一种或多种生物相容性载体、脂质体、纳米颗粒、植入物或灌输装置。
用于在制备微球和/或微胶囊中使用的材料包括可生物降解的/生物可蚀解的聚合物,如羟乙酸乳酸聚酯、聚-(氰基丙烯酸异丁酯)、聚(2-羟基乙基-L-谷氨酰胺)以及聚(乳酸)。
当配制控释的胃肠外配制品时,可以使用的生物相容载体包括碳水化合物(如葡聚糖)、蛋白质(如白蛋白)、脂蛋白或抗体。
用于在植入物中使用的材料可以是不可生物降解的(例如聚二甲基硅氧烷)或可生物降解的(例如聚(己内酯)、聚(乳酸)、聚(乙醇酸)或聚(原酸酯))。
在实施例中,这种或这些活性成分是通过气溶胶给予的。这是通过制备湿气溶胶、脂质体制剂或含有该化合物的固体颗粒来实现的。可以使用非水性(例如,氟碳推进剂)悬浮液。该药物组合物还可以使用声波喷雾器来给予,该声波喷雾器将使该试剂对剪切的暴露最小化,这种剪切可以导致该化合物的降解。
通常,湿气溶胶是通过将这种或这些活性成分与常规的药学上可接受的载体和稳定剂一起配制水性溶液或悬浮液来制备的。这些载体和稳定剂随具体化合物的要求而变化,但是典型地包括非离子表面活性剂(吐温类(Tweens)、普朗尼克类(Pluronics)或聚乙二醇)、无毒蛋白质(像血清白蛋白)、脱水山梨糖醇酯、油酸、卵磷脂、氨基酸(如甘氨酸)、缓冲液、盐类、糖类或糖醇类。气溶胶通常从等渗溶液制备。
用于局部或经皮给予一种或多种活性成分的剂型包括粉剂、喷雾剂、软膏、糊剂、乳膏、洗剂、凝胶、溶液、贴剂以及吸入剂。这种或这些活性成分可以在无菌条件下与药学上可接受的载体,以及与任何适当的防腐剂、缓冲剂或推进剂混合。
适于在本发明中使用的经皮贴剂披露于经皮药物递送:研发问题与研究倡议(Transdermal Drug Delivery:Developmental Issues and Research Initiatives)(马塞尔·德克尔公司(Marcel Dekker Inc.),1989)和美国专利号4,743,249、4,906,169、5,198,223、4,816,540、5,422,119、5,023,084中,将其通过引用而特此结合。该经皮贴剂还可以是本领域熟知的任何经皮贴剂,包括经阴囊贴剂。处于此类经皮贴剂形式的药物组合物可以包含本领域熟知的一种或多种吸收促进剂或皮肤渗透促进剂(参见例如,美国专利号4,379,454和4,973,468,将其通过引用而特此结合)。用于在本发明中使用的经皮治疗系统可以基于离子导入法、扩散或这两种作用的组合。
经皮贴剂具有另外的优点,即提供一种或多种活性成分至身体的受控递送。此类剂型可以通过将这种或这些活性成分溶解或分散于适当介质中来制备。吸收促进剂还可以用来增加该活性成分穿过皮肤的流量。此流量速率可以通过提供一种速率控制膜或将这种或这些活性成分分散在聚合物基质或凝胶中来进行控制。
此类药物组合物可以呈以下形式:乳膏、软膏、洗剂、搽剂、凝胶、水凝胶、溶液、悬浮液、粘贴剂、喷雾剂、糊剂、硬膏剂以及其他种类的经皮药物递送系统。这些组合物还可以包括药学上可接受的载体或赋形剂,如乳化剂、抗氧化剂、缓冲剂、防腐剂、致湿剂、渗透促进剂、螯合剂、胶凝剂、软膏基质、香料以及皮肤保护剂。
乳化剂的实例包括但不限于天然存在的树胶(例如阿拉伯树胶或黄芪树胶)、天然存在的磷脂(例如大豆卵磷脂)以及脱水山梨糖醇单油酸酯衍生物。
抗氧化剂的实例包括但不限于丁基羟基茴香醚(BHA)、抗坏血酸及其衍生物、生育酚及其衍生物以及半胱氨酸。
防腐剂的实例包括但不限于对羟基苯甲酸酯(如对羟基苯甲酸甲酯或对羟基苯甲酸丙酯)以及氯化苄烷铵。
致湿剂的实例包括但不限于甘油、丙二醇、山梨糖醇以及脲。
渗透促进剂的实例包括但不限于丙二醇、DMSO、三乙醇胺、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、2-吡咯烷酮及其衍生物、四氢糠醇、丙二醇、二甘醇单乙基醚或单甲基醚连同单月桂酸丙二醇酯或月桂酸甲酯、桉油精、卵磷脂、以及
螯合剂的实例包括但不限于EDTA钠、柠檬酸以及磷酸。
胶凝剂的实例包括但不限于卡波姆、纤维素衍生物、膨润土、海藻酸盐、明胶以及聚乙烯吡咯烷酮。
除这种或这些活性成分之外,本发明的这些软膏、糊剂、乳膏以及凝胶还可以包含赋形剂(如动物和植物脂肪)、油类、蜡类、石蜡、淀粉、黄芪胶、纤维素衍生物、聚乙二醇、硅酮、膨润土、硅酸、滑石以及氧化锌或其混合物。
粉剂和喷雾剂可以包含赋形剂,如乳糖、滑石、硅酸、氢氧化铝、硅酸钙以及聚酰胺粉末或这些物质的混合物。喷雾剂可以另外包含通常的推进剂,如氯氟烃,以及挥发性未经取代的烃类,如丁烷和丙烷。
可注射长效形式是通过在可生物降解聚合物(如聚丙交酯-聚乙交酯)中形成一种或多种化合物的微胶囊基质来制备的。根据化合物与聚合物的比率以及所利用的具体聚合物的性质,可以控制化合物的释放速率。其他可生物降解的聚合物的实例包括聚(原酸酯)和聚(酸酐)。还通过将药物包埋在与身体组织相容的脂质体或微乳液中来制备长效可注射配制品。
皮下植入物在本领域是熟知的并且适于在本发明中使用。皮下植入方法优选是非刺激性的并且是具机械弹性的。这些植入物可以是基质型(matrix type)、贮存型(reservoir type),或其杂合体。在基质型装置中,该载体材料可以是多孔的或无孔的、固体的或半固体的、以及对这种或这些活性化合物是可透过的或不可透过的。该载体材料可以是可生物降解的或可以在给予后缓慢腐蚀。在一些情况下,该基质是不可降解的,而是依赖于该活性化合物扩散通过该基质来使该载体材料降解。可替代的皮下植入方法利用贮存装置,其中这种或这些活性化合物被一种速率控制膜包围,例如一种独立于组分浓度的膜(具有零级动力学)。由被一种速率控制膜包围的基质组成的装置也适合使用。
贮存型和基质型两种装置都可以包含多种材料,如聚二甲基硅氧烷(如SilasticTM)或其他硅酮橡胶。基质材料可以是不溶性聚丙烯、聚乙烯、聚氯乙烯、乙酸乙基乙烯酯、聚苯乙烯与聚甲基丙烯酸酯,以及硬脂酸棕榈酸甘油酯、硬脂酸甘油酯和山萮酸甘油酯类型的甘油酯。材料可以是疏水性或亲水性聚合物并且任选地包含增溶剂。
皮下植入装置可以是用任何合适的聚合物制造的缓释胶囊,例如如描述于美国专利号5,035,891和4,210,644中,将其通过引用而特此结合。
通常,为了提供对药物化合物的释放以及经皮透过的速率控制,至少四种不同方法是适用的。这些方法是:缓调膜系统(membrane-moderated system)、受控粘合扩散系统(adhesive diffusion-controlled system)、基质分散类型系统(matrix dispersion-type system)以及微贮存室系统(microreservoir system)。应理解的是,通过使用这些方法的合适混合可以获得受控释放的经皮和/或局部组合物。
在缓调膜系统中,该活性成分存在于一种贮存室中,该贮存室完全囊化在一种浅隔间中,该浅隔间从一种药物不可透过的层压板(如金属塑料层压板)以及一种速率控制聚合膜(如微孔或无孔聚合膜,例如乙烯-乙酸乙烯酯共聚物)模制而来。该活性成分通过该速率控制聚合膜而得以释放。在该药物贮存室中,该活性成分可以被分散在固体聚合物基质中或悬浮于不可浸出的粘稠液体基质(如硅酮液)中。在该聚合膜的外表面上,施加一种粘合聚合物薄层以实现该经皮系统与皮肤表面紧密接触。该粘合聚合物优选是一种低变应原性的并且与该活性药物物质相容的聚合物。
在受控粘合扩散系统中,该活性成分的贮存室是通过以下来形成:直接将该活性成分分散在粘合聚合物中并且然后通过例如溶剂浇铸,将该含有该活性成分的粘合聚合物散布在药物基本上不可透过的金属塑料衬背平板上以形成一种薄的药物贮存室层。
基质分散类型系统的特征在于:该活性成分的贮存室是通过基本上均相地将该活性成分分散在亲水性或亲脂性聚合物基质中来形成。然后将该含药物聚合物模制成盘,该盘具有基本上良好界定的表面区域以及受控的厚度。该粘合聚合物沿圆周伸展以形成围绕该盘的一条粘性物。
微贮存室系统可以被认为是贮存室与基质分散类型系统的组合。在此情况下,该活性物质的贮存室是通过以下来形成:首先将药物固体悬浮在水溶性聚合物的水溶液中并且然后将该药物悬浮液分散在亲脂性聚合物中以形成大量不可浸出的药物贮存室微小球。
可以配制任何上述受控释放、延长释放以及持续释放组合物来在约30分钟至约1周内、在约30分钟至约72小时内、在约30分钟至24小时内、在约30分钟至12小时内、在约30分钟至6小时内、在约30分钟至4小时内以及在约3小时至10小时内释放该活性成分。在实施例中,这种或这些活性成分的有效浓度在将这些药物组合物给予受试者之后在该受试者体内持续4小时、6小时、8小时、10小时、12小时、16小时、24小时、48小时、72小时或更长时间。
剂量
当将在此描述的这些药剂作为药物给予人类或动物时,可以将它们以其本身给予或作为包含与药学上可接受的载体、赋形剂或稀释剂组合的活性成分的组合物给予。
本发明的药物组合物中的活性成分的给予的实际剂量水平和时程可以变化,以便获得以下量的活性成分,该量对于具体患者、组合物和给药方式而言可有效地达到希望的治疗应答,而对该患者没有毒性。通常,以足以减少或消除与病毒感染和/或自身免疫性疾病相关的症状的量给予本发明的药剂或药物组合物。
示例性剂量范围包括0.01mg至250mg/天、0.01mg至100mg/天、1mg至100mg/天、10mg至100mg/天、1mg至10mg/天以及0.01mg至10mg/天。药剂的优选剂量是患者可承受的并且不产生严重或不可接受的副作用的最大量。在实施例中,以约10微克至约100mg/千克体重/天、约0.1至约10mg/kg/天或约1.0mg至约10mg/kg体重/天的浓度给予该药剂。
在实施例中,该药物组合物包括量的范围在1与10mg之间(如1、2、3、4、5、6、7、8、9或10mg)的药剂。
在实施例中,治疗有效剂量产生从约0.1ng/ml至约50-100μg/ml的药剂血清浓度。这些药物组合物典型地应该提供从约0.001mg至约2000mg的化合物/千克体重/天的剂量。例如,用于全身性给予人类患者的剂量的范围可以是1-10μg/kg、20-80μg/kg、5-50μg/kg、75-150μg/kg、100-500μg/kg、250-750μg/kg、500-1000μg/kg、1-10mg/kg、5-50mg/kg、25-75mg/kg、50-100mg/kg、100-250mg/kg、50-100mg/kg、250-500mg/kg、500-750mg/kg、750-1000mg/kg、1000-1500mg/kg、1500-2000mg/kg、5mg/kg、20mg/kg、50mg/kg、100mg/kg、500mg/kg、1000mg/kg、1500mg/kg或2000mg/kg。制备药用单位剂型以提供每单位剂型从约1mg至约5000mg(例如从约100mg至约2500mg)的化合物或必要成分的组合。
在实施例中,向受试者给予约50nM至约1μM的药剂。在相关实施例中,向受试者给予约50-100nM、50-250nM、100-500nM、250-500nM、250-750nM、500-750nM、500nM至1μM或750nM至1μM的药剂。
有效量的确定是完全在本领域的普通技术人员的能力之内,尤其是根据于此提供的具体披露。通常,通过以下方式确定药剂的有功效量或有效量:首先给予低剂量的这种或这些药剂并且然后递增地增加给予的剂量或剂量值直到在具有最少的或可接受的有毒副作用的情况下在所治疗的受试者体内观察到希望的效果(例如,减少或消除与病毒感染或自身免疫性疾病相关的症状)。用于确定本发明的药物组合物的给予的适当剂量与给药方案的适用方法描述于例如古德曼和吉尔曼氏疗法药理基础(Goodman and Gilman’s ThePharmacological Basis of Therapeutics),古德曼(Goodman)等人编辑,第11版,麦格劳希尔(McGraw-Hill)2005,以及雷明顿:药剂学科学与实践(Remington:The Science andPractice of Pharmacy),第20和21版,热纳罗(Gennaro)与费城科技大学(University ofthe Sciences in Philadelphia)编辑,利平科特·威廉斯&威尔金斯出版社(2003与2005),将其各自通过引用而特此结合。
联合疗法
还可以将在此描述的肿瘤特异性新抗原肽和药物组合物与另一种治疗性分子组合给予。该治疗性分子可以是用于缓解瘤形成或其症状的任何化合物。此类化合物的实例包括但不限于化疗剂、抗血管生成剂、检查点阻断抗体或降低免疫抑制的其他分子等。
可以在给予另外的治疗剂之前、过程中或之后给予这些肿瘤特异性新抗原肽。在实施例中,可以在首次给予另外的治疗剂之前给予这些肿瘤特异性新抗原肽。在实施例中,在首次给予另外的治疗剂之后(例如,1、2、3、4、5、6、7、8、9、10、11、12、13、14天或更久)给予这些肿瘤特异性新抗原肽。在实施例中,可以与首次给予另外的治疗剂同时给予这些肿瘤特异性新抗原肽。
疫苗
在一个示例性实施例中,本发明针对一种免疫原性组合物,例如一种能够引起特异性T细胞应答的疫苗组合物。该疫苗组合物包括对应于通过在此描述的方法鉴定的肿瘤特异性新抗原的突变型新抗原肽和突变型新抗原多肽。
适合的疫苗将优选地包含多种肿瘤特异性新抗原肽。在一个实施例中,该疫苗将包括1与100组之间的肽,更优选1与50种这样的肽,甚至更优选10与30组之间的肽,甚至更优选15与25种之间的肽。根据另一个优选实施例,该疫苗将包括大约20种肽,更优选5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30种不同肽,进一步优选6、7、8、9、10 11、12、13、14、15、16、17、18、19、20、21、22、23、24或25种不同肽,并且最优选18、19、20、21、22、23、24或25种不同肽。
在本发明的一个实施例中,这些不同的肿瘤特异性新抗原肽和/或多肽选择用于在瘤形成疫苗中使用,以便将产生对抗患者的瘤形成/肿瘤的免疫攻击的可能性最大化。不受理论束缚,据信包含多种多样的肿瘤特异性新抗原肽将产生对抗瘤形成/肿瘤的大规模免疫攻击。在一个实施例中,这些选择的肿瘤特异性新抗原肽/多肽由错义突变编码。在第二实施例中,这些选择的肿瘤特异性新抗原肽/多肽由错义突变和新ORF突变的组合编码。在第三实施例中,这些选择的肿瘤特异性新抗原肽/多肽由新ORF突变编码。
在这些选择的肿瘤特异性新抗原肽/多肽由错义突变编码的一个实施例中,基于其与患者的特定MHC分子缔合的能力选择这些肽和/或多肽。衍生自新ORF突变的肽/多肽也可以在其与患者的特定MHC分子缔合的能力的基础上进行选择,但是即使未预测到与患者的特定MHC分子缔合也可以被选择。
该疫苗组合物能够引起特异性细胞毒性T-细胞应答和/或特异性辅助T细胞应答。
该疫苗组合物可以进一步包括佐剂和/或载体。在下文给出了有用的佐剂和载体的实例。该组合物中的肽和/或多肽可以与载体(如例如,蛋白质)或抗原呈递细胞(如例如能够将肽呈递给T细胞的树突细胞(DC))缔合。
佐剂是任何物质,它们掺合进该疫苗组合物中增加或以其他方式改变针对突变型肽的免疫应答。载体是这些新抗原肽能够向其缔合的支架结构,例如多肽或多糖。任选地,佐剂被共价地或非共价地轭合至本发明的肽或多肽。
佐剂增加针对抗原的免疫应答的能力典型地通过免疫介导的反应的显著增加或疾病症状的减少来表现。例如,体液免疫的增加典型地通过针对抗原产生的抗体的效价的显著升高来表现,并且T细胞活性的增加典型地在细胞增殖或细胞毒性或细胞因子分泌方面的增加中来表现。佐剂还可以例如通过将初次体液或Th2应答变为初次细胞或Th1应答而改变免疫应答。
适合的佐剂包括但不限于1018ISS、铝盐、Amplivax、AS15、BCG、CP-870,893、CpG7909、CyaA、dSLIM、GM-CSF、IC30、IC31、咪喹莫特、ImuFact IMP321、IS Patch、ISS、ISCOMATRIX、Juvlmmune、LipoVac、MF59、单磷酰脂质A、蒙塔尼德IMS1312、蒙塔尼德ISA206、蒙塔尼德ISA 50V、蒙塔尼德ISA-51、OK-432、OM-174、OM-197-MP-EC、ONTAK、PepTel.RTM.载体系统、PLG微颗粒、瑞喹莫德、SRL172、病毒微体和其他病毒样颗粒、YF-17D、VEGF陷阱、R848、β-葡聚糖、Pam3Cys、来源于皂苷的阿奎拉QS21刺激子(阿奎拉生物技术公司(Aquila Biotech),伍斯特市,马萨诸塞州,美国)、分枝杆菌提取物和合成细菌细胞壁模拟物以及其他专利佐剂,如Ribi的Detox.Quil或Superfos。先前已经描述了若干特异性针对树突细胞的免疫佐剂(例如,MF59)及其制备(杜普伊斯M(Dupuis M)等人,细胞免疫学(Cell Immunol.)1998;186(1):18-27;阿利森A C(Allison A C);生物标准化进展(DevBiol Stand.)1998;92:3-11)。还可以使用细胞因子。已经将若干细胞因子直接与影响树突细胞迁移至淋巴组织(例如,TNF-α)、加速树突细胞成熟为T淋巴细胞的有效的抗原呈递细胞(例如,GM-CSF、IL-1和IL-4)(美国专利号5,849,589,通过引用以其全文具体地结合在此)以及充当免疫佐剂(例如,IL-12)(加布里洛维奇D I(Gabrilovich D I)等人,侧重于肿瘤免疫学的免疫疗法杂志(J Immunother Emphasis Tumor Immunol.)1996(6):414-418)相联系。
Toll样受体(TLR)也可以用作佐剂,并且是模式识别受体(PRR)家族的重要成员,模式识别受体识别由许多微生物共享的保守基序,称为“病原体相关分子模式(PAMPS)”。识别这些“危险信号”激活先天性和适应性免疫系统的多个元件。TLR由先天性和适应性免疫系统的细胞表达,如树突细胞(DC)、巨噬细胞、T细胞和B细胞、肥大细胞以及粒细胞,并且位于不同的细胞区室中,如质膜、溶酶体、内涵体以及内吞溶酶体。不同TLR识别不同PAMPS。例如,TLR4被包含在细菌细胞壁中的LPS激活,TLR9被未甲基化的细菌或病毒CpG DNA激活,并且TLR3被双链RNA激活。TLR配体结合导致激活一种或多种细胞内信号转导途径,从而最终导致产生许多与炎症和免疫相关的关键分子(特别是转录因子NF-κB和I型干扰素)。TLR介导的DC激活导致DC激活增强,吞噬作用,激活和共刺激标记物(如CD80、CD83和CD86)上调,表达CCR7,从而允许DC迁移至引流淋巴结并且有助于将抗原呈递给T细胞,以及细胞因子(如I型干扰素、IL-12和IL-6)的分泌增加。所有这些下游事件对于诱导适应性免疫应答而言是关键的。
当前在临床研发中最具前景的癌症疫苗佐剂是TLR9激动剂CpG和合成双链RNA(dsRNA)TLR3配体聚-ICLC。在临床前研究中,当与LPS和CpG相比时,聚-ICLC似乎是最有效力的TLR佐剂,因为它诱导促炎细胞因子并且没有IL-10刺激并且在DC中维持高水平的共刺激分子。此外,作为一种蛋白质疫苗的佐剂,最近在非人类灵长类动物(恒河猴)体内将聚-ICLC与CpG进行了直接比较,该蛋白质疫苗由人乳头瘤病毒(HPV)16衣壳体组成(斯塔尔-亨尼格C(Stahl-Hennig C),艾森布拉特尔M(Eisenblatter M),翟斯尼E(Jasny E)等人在恒河猴体内合成双链RNA是用于诱导针对人乳头瘤病毒的T辅助细胞1和体液免疫应答的佐剂(Synthetic double-stranded RNAs are adjuvants for the induction of T helper1and humoral immune responses to human papillomavirus in rhesus macaques).PLoS病原体(PLoS pathogens).2009年4月;5(4))。
还已经报道,CpG免疫刺激寡核苷酸可以增强佐剂在疫苗环境中的作用。不受理论束缚,CpG寡核苷酸经由Toll样受体(TLR)(主要是TLR9)通过激活先天性(非适应性)免疫系统而起作用。CpG触发的TLR9激活增强针对多种多样的抗原的抗原特异性体液和细胞应答,包括预防性和治疗性疫苗两者中的肽或蛋白质抗原、活病毒或死病毒、树突细胞疫苗、自体细胞疫苗以及多糖轭合物。更重要的是,它增强树突细胞成熟和分化,从而导致Thl细胞的激活增强和较强的细胞毒性T淋巴细胞(CTL)产生,即使在不存在CD4 T细胞帮助下。由TLR9刺激诱导的Thl偏向性(bias)即使在疫苗佐剂(如明矾或不完全弗氏佐剂(IFA))的存在下也得以维持,这些疫苗佐剂通常促进Th2偏向性。当与其他佐剂一起配制或共给药或在如微颗粒、纳米颗粒、脂质乳剂或类似配制品的配制品中时,CpG寡核苷酸显示出甚至更大的佐剂活性,当抗原相对较弱时,这些对于诱导较强应答而言是尤其必要的。它们还促进免疫应答并且使得抗原剂量可以降低大约两个数量级,同时在一些实验中在没有CpG的情况下对全剂量疫苗产生可比的抗体应答(亚瑟M.克里格(Arthur M.Krieg),自然评论(NatureReviews),药物发现(Drug Discovery),5,2006年6月,471-484)。美国专利号6,406,705Bl描述了组合使用CpG寡核苷酸、非核酸佐剂和抗原来诱导抗原特异性免疫应答。一种可商购的CpG TLR9拮抗剂是Mologen公司(柏林,德国)的dSLIM(双茎环免疫调节剂),它是本发明的药物组合物的优选组分。也可以使用其他TLR结合分子,如结合RNA的TLR 7、TLR 8和/或TLR 9。
咕吨酮衍生物(如例如,Vadimezan或AsA404(亦称5,6-二甲基咕吨酮-4-乙酸(DMXAA)))也可以用作根据本发明的实施例的佐剂。可替代地,此类衍生物还可以例如经由全身性或瘤内递送与本发明的疫苗平行给予,以刺激肿瘤部位处的免疫。不受理论束缚,据信此类咕吨酮衍生物经由IFN基因刺激因子(ISTING)受体通过刺激干扰素(IFN)而起作用(参见例如,康伦(Conlon)等人(2013)小鼠而非人类STING响应于血管阻断剂5,6-二甲基咕吨酮-4-乙酸而结合并进行信号转导(Mouse,but not Human STING,Binds and Signalsin Response to the Vascular Disrupting Agent5,6-Dimethylxanthenone-4-AceticAcid),免疫学杂志(Journal of Immunology),190:5216-25以及金姆(Kim)等人(2013)抗癌黄酮类化合物是小鼠选择性STING激动剂(Anticancer Flavonoids are Mouse-Selective STING Agonists),8:1396-1401)。
有用佐剂的其他实例包括但不限于化学改性的CpG(例如CpR,Idera)、聚(I:C)(例如聚i:CI2U)、非CpG细菌DNA或RNA和免疫活性小分子以及可以在治疗上起作用和/或作为佐剂起作用的抗体,如环磷酰胺、舒尼替尼、贝伐单抗、西乐葆、NCX-4016、西地那非、他达拉非、伐地那非、索拉非尼、XL-999、CP-547632、帕唑帕尼、ZD2171、AZD2171、伊匹单抗、曲美木单抗(tremelimumab)及SC58175。本领域技术人员可以在无需过度实验的情况下容易地确定在本发明的背景下有用的佐剂和添加剂的量和浓度。另外的佐剂包括集落刺激因子,如粒细胞巨噬细胞集落刺激因子(GM-CSF,沙格司亭)。
聚-ICLC是一种合成地制备的双链RNA,它由平均长度约5000个核苷酸的聚I和聚C链组成,已经通过加入聚赖氨酸和羧甲基纤维素而使得它对热变性和血清核酸酶的水解稳定。该化合物激活TLR3和MDA5的RNA解旋酶-结构域(PAMP家族的两个成员),从而导致激活DC和自然杀伤细胞(NK)并产生I型干扰素、细胞因子和趋化因子的“天然混合物(naturalmix)”。此外,聚-ICLC发挥由两种IFN诱导型核酶系统介导的更直接的靶向广泛宿主的抗感染以及可能抗肿瘤作用,这两种系统是2’5’-OAS和P1/eIF2a激酶(亦称PKR(4-6))以及RIG-I解旋酶和MDA5。
在啮齿类动物和非人类灵长类动物中,显示聚-ICLC可增强针对病毒抗原的T细胞应答、交叉致敏以及肿瘤-、病毒-和自身抗原-特异性CD8+ T细胞的诱导。在非人类灵长类动物的一项最近研究中,发现聚-ICLC为产生针对DC靶向或非靶向的HIV Gag p24蛋白的抗体应答和T细胞免疫所必需,从而强调了它作为疫苗佐剂的有效性。
在人类受试者中,系列全血样品的转录分析揭示了接受一个单次s.c.给予聚-ICLC的8个健康人类志愿者之间的类似的基因表达谱和在这8个受试者与4个接受安慰剂的受试者之间多达212个基因的差异表达。值得注意的是,聚-ICLC基因表达数据与来自用高效黄热病疫苗YF17D免疫的志愿者的先前数据的比较显示,在峰值时间点大量的转录和信号转导经典途径(包括先天性免疫系统的那些)被类似地上调。
最近,报告了关于处于二期或三期完全临床缓解的患有卵巢癌、输卵管癌和原发性腹膜癌的患者的免疫分析,这些患者在一期皮下疫苗接种研究中用来自睾丸癌抗原NY-ESO-1的合成重叠长肽(OLP)单独地或与蒙塔尼德-ISA-51一起或与1.4mg聚-ICLC和蒙塔尼德一起进行治疗。与单独的OLP或OLP和蒙塔尼德相比,在加入聚-ICLC和蒙塔尼德情况下的NY-ESO-1特异性CD4+和CD8+ T细胞和抗体应答的产生明显增强。
根据本发明的疫苗组合物可以包括多于一种不同佐剂。此外,本发明涵盖一种治疗性组合物,它包括任何佐剂物质,包括以上的任何佐剂或其组合。还考虑的是该肽或多肽和该佐剂可以按任何适当的顺序进行给予。
载体可以独立于佐剂而存在。载体的功能可以例如是赋予稳定性、增加生物活性或增加血清半衰期。此外,载体可以辅助将肽呈递给T细胞。该载体可以是本领域的普通技术人员已知的任何适合的载体,例如蛋白质或抗原呈递细胞。载体蛋白可以是但不限于钥孔虫戚血蓝蛋白、血清蛋白(如转铁蛋白、牛血清白蛋白、人血清白蛋白、甲状腺球蛋白或卵清蛋白)、免疫球蛋白或激素(如胰岛素或棕榈酸)。用于对人类免疫,该载体可以是为人类的生理上可接受的并且安全的。然而,破伤风类毒素和/或白喉类毒素在本发明的一个实施例中是适合的载体。可替代地,该载体可以是葡聚糖,例如琼脂糖。
细胞毒性T细胞(CTL)识别处于结合至MHC分子上的肽的形式的抗原而非完整的外源抗原本身。该MHC分子本身位于抗原递呈细胞的细胞表面。因此,只有当存在肽抗原、MHC分子和APC的三聚复合物时才可能激活CTL。相应地,不仅如果该肽用于CTL激活,并且如果另外加入具有对应的MHC分子的APC的话,这可以增强免疫应答。因此,在一些实施例中,根据本发明的疫苗组合物另外包含至少一种抗原递呈细胞。
该抗原呈递细胞(或刺激细胞)在其表面上典型地具有MHC I类或II类分子,并且在一个实施例中自身基本上不能装载具有选择的抗原的MHC I类或II类分子。如在下面更详细地描述的,该MHC I类或II类分子可以在体外容易地装载有选择的抗原。
优选地,这些抗原呈递细胞是树突细胞。适当地,这些树突细胞是用该新抗原肽脉冲处理的自体树突细胞。该肽可以是引起适当的T细胞应答的任何适合的肽。使用用来自肿瘤相关抗原的肽脉冲处理的自体树突细胞进行T细胞疗法披露于墨菲(Murphy)等人(1996)前列腺(The Prostate)29,371-380以及特朱瓦(Tjua)等人(1997)前列腺32,272-278中。
因此,在本发明的一个实施例中,用本发明的一种或多种肽脉冲处理或装载包含至少一种抗原呈递细胞的疫苗组合物。可替代地,分离自患者的外周血单核细胞(PBMC)可以离体装载有肽并且将其注射回该患者体内。作为一个替代方案,该抗原呈递细胞包括编码本发明的肽的表达构建体。该多核苷酸可以是任何适合的多核苷酸并且优选的是它能够转导树突细胞,从而呈递肽并诱导免疫性。
治疗方法
本发明进一步提供了一种在受试者体内诱导瘤形成/肿瘤特异性免疫应答、针对瘤形成/肿瘤进行免疫接种、治疗受试者的癌症和或缓解受试者的癌症症状的方法,该方法是通过给予该受试者本发明的新抗原肽或疫苗组合物。
根据本发明,上述癌症疫苗可以用于已经被诊断患有癌症或处于患上癌症的风险之中的患者。在一个实施例中,该患者可以患有实体瘤,如乳腺癌、卵巢癌、前列腺癌、肺癌、肾癌、胃癌、结肠癌、睾丸癌、头颈癌、胰腺癌、脑癌、黑素瘤以及组织器官的其他肿瘤和血液肿瘤,如淋巴瘤和白血病,包括急性骨髓性白血病、慢性骨髓性白血病、慢性淋巴细胞白血病、T细胞淋巴细胞白血病以及B细胞淋巴瘤。
按足以诱导CTL应答的量给予本发明的肽或组合物。
可以单独地或与其他治疗剂组合地给予本发明的新抗原肽、多肽或疫苗组合物。该治疗剂是例如化疗剂或生物治疗剂、辐射或免疫疗法。可以针对具体癌症给予任何适合的治疗性处理。化疗剂和生物治疗剂的实例包括但不限于阿地白介素、六甲蜜胺、氨磷汀、天冬酰胺酶、博来霉素、卡培他滨、卡铂、卡莫司汀、克拉屈滨、西沙必利、顺铂、环磷酰胺、阿糖胞苷、达卡巴嗪(DTIC)、更生霉素、多西他赛、多柔比星、屈大麻酚、依泊汀α、依托泊苷、非格司亭、氟达拉滨、氟尿嘧啶、吉西他滨、格拉司琼、羟基脲、伊达比星、异环磷酰胺、干扰素α、伊立替康、兰索拉唑、左旋咪唑、甲酰四氢叶酸、甲地孕酮、美司钠、甲氨蝶呤、甲氧氯普胺、丝裂霉素、米托坦、米托蒽醌、奥美拉唑、昂丹司琼、紫杉醇匹鲁卡品、丙氯拉嗪(prochloroperazine)、利妥昔单抗、它莫西芬、紫杉酚、盐酸拓扑替康、曲妥珠单抗、长春碱、长春新碱和酒石酸长春瑞滨。用于前列腺癌治疗,可以与抗CTLA-4组合的优选化疗剂是紫杉醇
另外,该受试者可以被进一步给予抗免疫抑制或免疫刺激剂。例如,该受试者被进一步给予抗CTLA抗体或抗PD-1或抗PD-Ll。通过抗体阻断CTLA-4或PD-1/PD-L1可以在患者体内增强对癌性细胞的免疫应答。具体而言,当在疫苗接种方案之后时,CTLA-4阻断已经显示出是有效的(霍迪(Hodi)等人2005)。
本领域技术人员可以在无需过度实验的情况下确定有待包括在疫苗组合物中的每种肽的最佳量和最佳给药方案。例如,该肽或其变体可以制备用于静脉内(i.v.)注射、皮下(s.c.)注射、皮内(i.d.)注射、腹膜内(i.p.)注射、肌内(i.m.)注射。注射肽的优选方法包括s.c、i.d.、i.p.、i.m.以及i.v.。注射DNA的优选方法包括i.d.、i.m.、s.c、i.p.以及i.v.。例如,可以给予1与500mg之间、50μg与1.5mg之间,优选10μg至500μg的肽或DNA的剂量并且将取决于相应的肽或DNA。此范围剂量已在先前试验中成功使用(布伦斯威格P F(Brunsvig P F)等人,肿瘤免疫与免疫治疗(Cancer Immunol Immunother.)2006;55(12):1553-1564;M.斯塔何勒(M.Staehler)等人,ASCO会议(ASCO meeting)2007;摘要号3017)。给予疫苗组合物的其他方法是本领域普通技术人员已知的。
可以编制本发明的药物组合物,这样使得存在于该组合物中的肽的选择、数目和/或量是组织、癌症和/或患者特异性的。例如,可以通过母体蛋白在给定组织中的表达谱指导肽的精确选择,以避免副作用。选择可以依赖于癌症的具体类型、疾病的状态、早先的治疗方案、患者的免疫状态以及当然患者的HLA-单体型。此外,根据具体患者的个人需求,根据本发明的疫苗可以包含个性化组分。实例包括根据相关新抗原在具体患者体内的表达、由于个人变态反应或其他治疗引起的不想要的副作用来改变肽的量,以及在第一轮治疗或治疗的第一方案之后调整二次治疗。
可以向已罹患癌症的个体给予包含本发明的肽的药物组合物。在治疗性应用中,以足引起针对肿瘤抗原的有效CTL应答和足以治愈或至少部分阻止症状和/或并发症的量向患者给予组合物。足以实现该目的的量被定义为“治疗有效剂量”。对于此用途有效的量将取决于例如肽组合物、给药方式、正在治疗的疾病的阶段和严重性、患者的体重和一般健康状况以及开处方医生的判断,但是通常用于70kg患者的首次免疫范围(这是用于治疗性或预防性给予)是从约1.0μg至约50,000μg的肽,随后提高剂量,或依照加强方案从约1.0μg至约10,000μg的肽持续数周至数月,这取决于患者的反应和情况并且可能通过测量患者血液中的特异性CTL活性。应当记住的是,本发明的肽和组合物通常可以用于严重疾病状态,即危及生命或可能危及生命的情况,尤其是当癌症已经转移时。对于治疗性用途,应该在检测或手术切除肿瘤之后尽早开始给药。这之后提高剂量,直到至少症状被基本上减轻并且之后持续一段时间。
用于治疗性处理的药物组合物(例如,疫苗组合物)旨在用于胃肠外、局部(topical)、鼻腔、口服或局部(local)给药。优选地,胃肠外(例如,静脉内、皮下、皮内或肌内)给予这些药物组合物。可以在手术切除部位给予这些组合物,以诱导针对肿瘤的局部免疫应答。本发明提供了用于胃肠外给药的组合物,它们包括溶解或悬浮于可接受的载体(优选水性载体)中的肽和疫苗组合物溶液。可以使用多种水性载体,例如,水、缓冲水、0.9%盐水、0.3%甘氨酸、透明质酸等。这些组合物可以通过常规的熟知灭菌技术灭菌,或者可以是无菌过滤的。所得水溶液可以被包装以按原样使用,或者被冻干,在给药前将该冻干制剂与无菌溶液组合。这些组合物可以包含如接近生理条件所需的药学上可接受的辅助物质,如pH调节剂和缓冲剂、张力调节剂、湿润剂等,例如乙酸钠、乳酸钠、氯化钠、氯化钾、氯化钙、脱水山梨糖醇单月桂酸酯、油酸三乙醇胺等。
本发明的肽在药物配制品中的浓度可以广泛变化,即按重量计从通常小于约0.1%到至少约2%到多达20%至50%或更多,并且根据选择的具体给药方式主要通过流体体积、粘性等进行选择。
可以按以下剂量静脉内、局部(locally,topically)等给予包含肽的脂质体悬浮液,该剂量尤其根据给药方式、正在递送的肽和正在治疗的疾病的阶段变化。用于靶向免疫细胞,可以将配体(如例如,特异性针对希望的免疫系统细胞的细胞表面决定簇的抗体或其片段)掺入脂质体中。.
对于固体组合物,可以使用常规或纳米颗粒无毒固体载体,包括例如药物级甘露醇、乳糖、淀粉、硬脂酸镁、糖精钠、滑石、纤维素、葡萄糖、蔗糖、碳酸镁等。用于口服给药,通过掺入任何通常使用的赋形剂(如先前列出的那些载体)和通常10%-95%的活性成分(即,本发明的一种或多种肽)并且更优选地处于25%-75%的浓度而形成药学上可接受的无毒组合物。
用于气溶胶给药,优选以精细分散形式连同表面活性剂和推进剂提供免疫原性肽。肽的典型百分比是按重量计0.01%-20%,优选1%-10%。当然,该表面活性剂应是无毒的,并且优选可溶于该推进剂。此类试剂的代表是含有从6至22个碳原子的脂肪酸与脂肪族多元醇或其环酐的酯或偏酯,这些脂肪酸是如己酸、辛酸、月桂酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、油硬脂酸以及油酸。可以使用混合酯,例如混合的或天然的甘油酯。按该组合物的重量计,该表面活性剂可以占0.1%-20%,优选0.25%-5%。组合物的余量通常是推进剂。如所希望的,也可以包括载体,正如例如用卵磷脂用于鼻内递送。
可以利用不含污染菌或动物物质的试剂用化学方法容易地合成本发明的肽和多肽(梅里菲尔德RB(Merrifield RB):固相肽合成(Solid phase peptide synthesis).I.四肽的合成(The synthesis of a tetrapeptide).美国化学会志(J.Am.Chem.Soc.)85:2149-54,1963)。
用于治疗或免疫接种目的,还可以向患者给予编码本发明的肽以及任选地在此描述的一种或多种肽的核酸。许多方法方便地用来将这些核酸递送至患者。例如,核酸可以作为“裸DNA”而直接递送。此途径描述于例如沃尔夫(Wolff)等人,科学(Science)247:1465-1468(1990)以及美国专利号5,580,859和5,589,466中。还可以使用弹道递送给予核酸,如描述于例如美国专利号5,204,253中。可以给予仅仅由DNA构成的颗粒。可替代地,可以将DNA粘附到颗粒(如金颗粒)上。
还可以通过与阳离子化合物(如阳离子脂质)复合来递送核酸。脂质介导的基因递送方法描述于例如WO 1996/18372;WO 1993/24640;曼尼诺(Mannino)&古尔德-弗格里特(Gould-Fogerite),生物技术(BioTechniques)6(7):682-691(1988);美国专利号5,279,833;WO 1991/06309;以及法伊格尼尔(Feigner)等人,美国国家科学院院刊(Proc.Natl.Acad.Sci.USA)84:7413-7414(1987)中。
编码感兴趣的肽的RNA也可以用于递送(参见例如,葵轩(Kiken)等人,2011;苏(Su)等人,2011)。
还可以由减毒病毒宿主(如牛痘或禽痘)表达本发明的肽和多肽。此方法涉及使用牛痘病毒作为载体来表达编码本发明的肽的核苷酸序列。在引入急性或慢性感染宿主或引入未感染宿主中之后,该重组牛痘病毒表达免疫原性肽,并且从而引起宿主CTL应答。在免疫接种方案中有用的牛痘载体和方法描述于例如美国专利号4,722,848中。另一种载体是BCG(卡介苗)。BCG载体描述于斯托韦(Stover)等人(自然(Nature)351:456-460(1991))中。有用于本发明的肽的治疗性给予或免疫的多种多样的其他载体(例如,伤寒沙门菌载体等)通过本文的描述对本领域的普通技术人员而言将是显而易见的。
给予编码本发明的肽的核酸的一种优选手段使用编码多个表位的微基因构建体。为了产生编码用于在人类细胞中表达的选择的CTL表位(微基因)的DNA序列,反向翻译这些表位的氨基酸序列。将人类密码子选择表用来指导每种氨基酸的密码子选择。这些编码表位的DNA序列被直接邻接,从而产连续的多肽序列。为了优化表达和/或免疫原性,可以将另外的元件掺入微基因设计中。可以被反向翻译并包括在微基因序列中的氨基酸序列的实例包括:辅助T淋巴细胞、表位、前导子(信号)序列以及内质网滞留信号。另外,可以通过包括与CTL表位相邻的合成(例如聚丙氨酸)的或天然存在的侧翼序列来改善MHC对这些CTL表位的呈递。
通过组装编码微基因的正链和负链的寡核苷酸而将微基因序列转化成DNA。使用熟知的技术在适当条件下合成重叠寡核苷酸(30-100个碱基长),将其磷酸化、纯化并退火。使用T4 DNA连接酶连接这些寡核苷酸的末端。然后可以将编码CTL表位多肽的该合成微基因克隆进希望的表达载体中。
在该载体中包括本领域的普通技术人员熟知的标准调节序列,以保证在靶细胞中进行表达。需要若干载体元件:具有用于插入微基因的下游克隆位点的启动子;用于有效终止转录的聚腺苷酸化信号;大肠杆菌复制起点;以及大肠杆菌选择性标记(例如氨苄西林或卡那霉素耐受性)。众多启动子可以用于此目的,例如人疱疹病毒(hCMV)启动子。对于其他适合的启动子序列,参见美国专利号5,580,859和5,589,466。
可能需要另外的载体修饰来优化微基因表达和免疫原性。在一些情况下,需要内含子用于有效的基因表达,并且可以将一个或多个合成的或天然存在的内含子掺入微基因的转录区域中。包含mRNA稳定序列也可以被考虑用于增加微基因表达。最近已经提出,免疫刺激序列(ISS或CpG)在DNA疫苗的免疫原性中发挥一定作用。如果发现可增强免疫原性,可以将这些序列包括在该载体中,位于微基因编码序列之外。
在一些实施例中,可以使用双顺反子表达载体,以允许产生微基因编码的表位和第二蛋白,该第二蛋白被包括以增强或降低免疫原性。如果被共表达,可以有益地增强免疫应答的蛋白质或多肽的实例包括细胞因子(例如,IL2、IL12、GM-CSF)、细胞因子诱导分子(例如LeIF)或共刺激分子。辅助(HTL)表位可以被连接至细胞内靶向信号上并且独立于CTL表位进行表达。这允许将HTL表位指向不同于CTL表位的细胞区室。如果需要,这可以促进HTL表位更有效地进入MHC II类途径中,从而改善CTL诱导。与CTL诱导相反,通过共表达免疫抑制分子(例如TGF-β)而特异性降低免疫应答在某些疾病中可能是有益的。
选择表达载体之后,便将微基因克隆进启动子下游的多接头区中。将此质粒转化进适当的大肠杆菌菌株中,并且使用标准技术制备DNA。使用限制酶作图和DNA序列分析确认微基因的取向和DNA序列以及被包括在该载体中的所有其他元件。可以将携带正确质粒的细菌细胞作为主细胞库和工作细胞库存储。
可以使用多种配制品制备注射用纯化的质粒DNA。这些中最简单的是在无菌磷酸盐缓冲盐水(PBS)中使冻干的DNA复水。已经描述了多种方法,并且新技术可以变得可用。如以上所指出,便利地用阳离子脂质配制核酸。另外,糖脂、促融合脂质体、肽以及统称为保护性、相互作用、非缩合(PINC)的化合物还可以与纯化的质粒DNA复合,以影响如稳定性、肌内分散度或到特定器官或细胞类型的输送等变量。
靶细胞致敏可以用作微基因编码的CTL表位的表达和MHC I类呈递的功能测定。将该质粒DNA引入哺乳动物细胞系中,该细胞系适于作为标准CTL铬释放测定的靶标。使用的转染方法将取决于最终配制品。电穿孔可以用于“裸”DNA,而阳离子脂质允许直接体外转染。可以共转染表达绿色荧光蛋白(GFP)的质粒,以允许使用荧光激活细胞分选术(FACS)富集转染的细胞。然后将这些细胞用铬-51标记并且用作表位特异性CTL系的靶细胞。通过51Cr释放而检测到细胞溶解指示产生MHC对微基因编码的CTL表位的呈递。
体内免疫原性是用于功能性测试微基因DNA配制品的第二途径。用DNA产物对表达适当人类MHC分子的转基因小鼠进行免疫。给药剂量和途径是配制品依赖性的(例如,对于PBS中的DNA而言是IM,对于脂质复合的DNA而言是IP)。免疫之后二十一天,收获脾细胞并且在编码待测试的各种表位的肽的存在下再刺激1周。使用标准技术,针对装载肽的铬-51标记的靶细胞的细胞溶解,对这些效应细胞(CTL)进行测定。通过对应于微基因编码的表位的肽的MHC装载而致敏的靶细胞溶解证明DNA疫苗的功能是在体内诱导CTL。
肽也可以用来在离体引起CTL。所得CTL可以用来治疗患者的慢性肿瘤,这些患者不响应于其他常规形式的疗法,或应不响应于肽疫苗疗法途径。通过在组织培养中孵育患者的CTL前体细胞(CTLp)连同抗原呈递细胞(APC)源和适当的肽而诱导针对具体肿瘤抗原的离体CTL应答。适当的孵育时间(典型地是1-4周)之后,期间CTLp被激活并且成熟和发展成效应CTL,将这些细胞回注到患者体内,在这里它们将破坏它们的特异性靶细胞(即,肿瘤细胞)。为了优化用于产生特异性细胞毒性T细胞的体外条件,将刺激细胞的培养物维持在适当的无血清培养基中。
在将这些刺激细胞与待激活细胞(例如,前体CD8+细胞)一起孵育之前,向刺激细胞培养物中加入一定量的抗原肽,其数量足以被装载到有待在这些刺激细胞的表面上表达的人类I类分子上。在本发明中,肽的足够量是将允许约200,并且优选200或更多个装载有肽的人类I类MHC分子在每个刺激细胞的表面上表达的量。优选地,用>2μg/ml肽孵育这些刺激细胞。例如,用>3、4、5、10、15或更多μg/ml肽孵育这些刺激细胞。
然后将静止或前体CD8+细胞在培养物中与适当的刺激细胞一起孵育一段足以激活这些CD8+细胞的时间。优选地,以抗原特异性方式激活这些CD8+细胞。静止或前体CD8+(效应)细胞与刺激细胞的比率可能因人而异并且可以进一步取决于如个体的淋巴细胞对培养条件的顺应性以及疾病病症或使用描述中的治疗方式的其他病症的性质和严重性等变量。然而,优选地,淋巴细胞:刺激细胞比率在约30:1至300:1的范围内。可以将效应/刺激培养物维持尽可能长的时间,以刺激治疗上可用的或有效的数目的CD8+细胞。
在体外诱导CTL需要特异性识别与在APC上的等位基因特异性MHC I类分子相结合的肽。每个APC的特异性MHC/肽复合物的数目对于刺激CTL,特别是在初次免疫应答中是关键的。虽然每个细胞少量的肽/MHC复合物足以使得细胞易于被CTL溶解或足以刺激再次CTL应答,但是在初次应答过程中成功激活CTL前体(pCTL)需要显著更高数目的MHC/肽复合物。细胞上的空载主要组织相容性复合物分子的肽装载允许诱导初次细胞毒性T淋巴细胞应答。
由于不是每个人类MHC等位基因都存在突变型细胞系,所以有利的是使用一种技术将内源MHC相关肽从APC的表面去除,随后用感兴趣的免疫原性肽装载所得空载MHC分子。将患者的未转化(非致瘤性)、未感染细胞,并且优选自体细胞用作APC对于设计针对离体CTL疗法的开发的CTL诱导方案而言是令人希望的。本申请披露了用于从APC的表面剥离内源MHC相关肽,随后装载希望的肽的方法。
一种稳定的MHC I类分子是由以下元件形成的三聚复合物:1)通常具有8-10个残基的肽,2)在其al和a2结构域中带有肽结合位点的跨膜多态蛋白质重链和3)非共价缔合的非多态轻链p2微球蛋白。从该复合物中去除结合的肽和/或分离出p2微球蛋白使得MHC I类分子丧失功能并且不稳定,从而导致快速降解。所有分离自PBMC的MHC I类分子都具有与其结合的内源肽。因此,在可以向它们加入外源肽之前,第一步是去除APC上结合至MHC I类分子的所有内源肽而不引起它们降解。
使MHC I类分子从结合肽中挪出的两种可能方式包括将培养温度从37℃降至26℃过夜以使p2微球蛋白不稳定,以及使用温和酸处理而从细胞上剥离内源肽。这些方法将先前结合的肽释放进细胞外环境中,从而允许新的外源肽结合至空载I类分子。该冷温孵育方法使得外源肽可以有效地结合至MHC复合物,但需要在26℃下孵育过夜,这可以减缓细胞的代谢率。还有可能的是,不主动合成MHC分子的细胞(例如,静止PBMC)通过该冷温程序将不产生大量的空载表面MHC分子。
生硬的酸剥离涉及用三氟乙酸(pH 2)提取肽,或者使免疫亲和纯化的I类-肽复合物酸变性。这些方法对CTL诱导是不可行的,因为重要的是去除内源肽,同时保持APC活力和最佳代谢状态,这对于抗原呈递是关键的。pH 3的温和酸溶液(如甘氨酸或柠檬酸盐-磷酸盐缓沖液)已被用来鉴定内源肽并被用来鉴定肿瘤相关T细胞表位。该处理是特别有效的,因为仅仅使MHC I类分子不稳定(并释放缔合的肽),而其他表面抗原(包括MHC II类分子)仍保持完整。最重要的是,用温和酸溶液处理细胞不影响细胞的活力或代谢状态。温和酸处理是快速的,因为在4℃下两分钟内便发生了内源肽的剥离,并且在装载适当的肽之后,APC可立即执行其功能。在此利用该技术来制备用于产生一级抗原特异性CTL的肽特异性APC。所得APC在诱导肽特异性CD8+CTL中是有效的。
可以使用多种已知方法之一将激活的CD8+细胞有效地与这些刺激细胞分离。例如,特异性针对刺激细胞、针对装载到刺激细胞上的肽或针对CD8+细胞(或其区段)的单克隆抗体可以用来结合适当的互补配体。然后可以经由适当的手段(例如,经由熟知的免疫沉淀或免疫测定方法)从刺激-效应细胞掺合物中提取出抗体标记的分子。
激活的CD8+细胞的有效、细胞毒性量可以在体外与体内使用之间变化,并且随作为这些杀伤细胞的最终靶标的细胞的量和类型变化。该量还将取决于患者的病症而变化并且应该由从业者通过考虑所有适当因素加以确定。然而,优选地,与在小鼠中使用的约5X106-5X 107和细胞相比,约1X 106至约1X 1012,更优选约1X 108至约1X 1011,并且甚至更优选约1X 109至约1X 1010个激活的CD8+细胞用于成年人。
优选地,如以上所讨论的,在将CD8+细胞向正在治疗的个体给予之前,从细胞培养物中收获激活的CD8+细胞。然而,重要的是要注意不像其他存在和提出的治疗形式,本方法使用非致瘤性的细胞培养系统。因此,如果未实现完全分离刺激细胞与激活的CD8+细胞,不存在已知与给予少量的刺激细胞相关的固有危险,而给予哺乳动物肿瘤促进细胞可能是极其危险的。
重新引入细胞组分的方法在本领域是已知的并且包括如示例于洪希克(Honsik)等人的美国专利号4,844,893和罗森伯格(Rosenberg)的美国专利号4,690,915中的那些程序。例如,经由静脉输注给予激活的CD8+细胞是适当的。
可以通过使用CD4+细胞增加CD8+细胞活性。针对肿瘤抗原鉴定CD4 T+细胞表位已经吸引了兴趣,因为如果CD8+和CD4+ T淋巴细胞两者均被用来靶向患者的肿瘤,许多基于免疫的抗癌疗法可以更有效。CD4+细胞能够增强CD8 T细胞应答。许多动物模型研究已经清楚地证明当CD4+和CD8+ T细胞两者均参与抗肿瘤应答时的结果更好(参见例如,西村(Nishimura)等人(1999)抗原特异性T辅助类型1(TH1)和Th2细胞在体内肿瘤根除中的不同作用(Distinct role of antigen-specific T helper type 1(TH1)and Th2 cells intumor eradication in vivo).实验医学杂志(J Ex Med)190:617-27)。已经鉴定了可适用于开发对抗不同类型的癌症的疗法的通用CD4+ T细胞表位(参见例如,小林(Kobayashi)等人(2008)免疫学当前观点(Current Opinion in Immunology)20:221-27)。例如,将来自破伤风类毒素的HLA-DR限制性辅助肽在黑素瘤疫苗中用于非特异性地激活CD4+ T细胞(参见例如,思林格拉芙(Slingluff)等人(2007)两种针对黑素瘤的多肽疫苗在辅助情况下的随机II期试验的免疫与临床结果(Immunologic and Clinical Outcomes of a RandomizedPhase II Trial of Two Multipeptide Vaccines for Melanoma in the AdjuvantSetting),临床癌症研究(Clinical Cancer Research)13(21):6386-95)。在本发明的范围内考虑到的是此类CD4+细胞可以在随其肿瘤特异性而变的三个水平上可适用:1)广泛水平,其中通用CD4+表位(例如,破伤风类毒素)可以用来增加CD8+细胞;2)中间水平,其中天然的肿瘤相关CD4+表位可以用来增加CD8+细胞;以及3)患者特异性水平,其中新抗原CD4+表位可以按患者特异性方式用来增加CD8+细胞。
还可以用新抗原装载的树突细胞(DC)疫苗产生CD8+细胞免疫。DC是启动T细胞免疫的有效力的抗原呈递细胞并且当例如通过直接肽注射而装载有一种或多种感兴趣的肽时可以用作癌症疫苗。例如,显示新近被诊断为转移性黑素瘤的患者可经由产生IL-12p70的患者DC疫苗针对3种HLA-A*0201限制性gp100黑素瘤抗原衍生的肽用自体肽脉冲处理的CD40L/IFN-g-激活的成熟DC进行免疫(参见例如,卡雷尼奥(Carreno)等人(2013)产生L-12p70的患者DC疫苗引起Tc1-极化的免疫性(L-12p70-producing patient DC vaccineelicits Tc1-polarized immunity),临床研究杂志(Journal of ClinicalInvestigation),123(8):3383-94以及阿里(Ali)等人(2009)DC亚群和T细胞的原位调节在小鼠体内介导肿瘤消退(In situ regulation of DC subsets and T cells mediatestumor regression in mice),癌症免疫疗法(Cancer Immunotherapy),1(8):1-10)。在本发明的范围内考虑到的是可以使用刺激DC的合成TLR 3激动剂聚肌苷酸-聚胞苷酸-聚-L-赖氨酸羧甲基纤维素(聚-ICLC)制备新抗原装载的DC。聚-ICLC对于人类DC而言是一种有效力的个体成熟刺激物,如通过上调CD83和CD86,诱导白介素-12(IL-12)、肿瘤坏死因子(TNF)、干扰素γ诱导蛋白10(IP-10)、白介素1(IL-1)及I型干扰素(IFN)并且产生最少白介素10(IL-10)所评估的。DC可以分化自通过白细胞分离术获得的冷冻外周血单核细胞(PBMC),而PBMC可以通过聚蔗糖梯度离心分离并以等分部分冷冻。
说明性地,可以使用以下7天激活方案。第1天—将PBMC解冻并铺在组织培养烧瓶上,以在组织培养孵育器中在37℃下孵育1-2hr之后选择粘附至塑料表面的单核细胞。孵育之后,将淋巴细胞洗掉并且将粘附单核细胞在白介素-4(IL-4)和粒细胞巨噬细胞集落刺激因子(GM-CSF)的存在下培养5天,以分化成未成熟的DC。在第6天,用钥孔虫戚血蓝蛋白(KLH)脉冲处理未成熟的DC,该蛋白作为疫苗质量的对照并且可以增强疫苗的免疫原性。将这些DC刺激至成熟,用肽抗原装载,并孵育过夜。在第7天,将细胞洗涤,并且使用控速冷冻机以包含4-20x10(6)个细胞的1ml等分部分冷冻。可以针对这些批次的DC进行批释放测试,以在将这些DC注射进患者体内之前满足最低规格(参见例如,萨巴多(Sabado)等人(2013)用于免疫疗法的肿瘤抗原装载的成熟树突细胞的制备(Preparation of tumor antigen-loaded mature dendritic cells for immunotherapy),可视化实验杂志(J.Vis Exp.)8月1日;(78).doi:10.3791/50085)。
可以将DC疫苗掺入支架系统中,以有助于递送至患者。用DC疫苗治疗性处理患者的瘤形成可以利用以下生物材料系统,该系统释放将宿主树突细胞募集进该装置中的因子,通过局部呈递佐剂(例如危险信号)同时释放抗原而使驻留型未成熟的DC分化,并且促进使激活的抗原装载的DC释放至淋巴结(或希望的作用点),在这里这些DC可以与T细胞相互作用,以产生针对癌症新抗原的有效力的细胞毒性T淋巴细胞应答。可植入生物材料可以用于以患者特异性方式产生对抗瘤形成的有效力的细胞毒性T淋巴细胞应答。然后,可以通过将这些生物材料驻留型树突细胞暴露于危险信号模拟感染而将它们激活,与从该生物材料中释放抗原一致。然后,这些激活的树突细胞从生物材料迁移至淋巴结,以诱导细胞毒性T效应应答。此方法先前已经被证明在使用制备自肿瘤活检的溶解产物的临床前研究中可导致已形成的黑素瘤消退(参见例如,阿里(Ali)等人(2209)DC亚群和T细胞的原位调节在小鼠体内介导肿瘤消退(In situ regulation of DC subsets and T cells mediatestumor regression in mice),癌症免疫疗法(Cancer Immunotherapy)1(8):1-10;阿里等人(2009)用于原位编程树突细胞的感染模拟材料(Infection-mimicking materials toprogram dendritic cells in situ).自然材料(Nat Mater)8:151-8),并且这样一种疫苗当前正在达纳法博癌症研究所(Dana-Farber Cancer Institute)在最近启动的I期临床试验中进行测试。还已经显示,使用当前提案中的C6大鼠神经胶质瘤模型24,此方法可导致成胶质细胞瘤消退,并且诱导有效力的记忆应答以防止复发。这样一种可植入生物基质疫苗递送支架放大并维持肿瘤特异性树突细胞激活的能力可以产生比通过传统皮下或结内疫苗给予可以达到的更鲁棒性的抗肿瘤免疫致敏。
除非另外指明,本发明的实施采用完全处于本领域技术人员的见识范围之内的分子生物学(包含重组技术)、微生物学、细胞生物学、生物化学和免疫学的常规技术。此类技术在以下文献中加以充分解释,如“分子克隆实验手册(Molecular Cloning:A LaboratoryManual)”,第二版(萨姆布鲁克(Sambrook),1989);“寡核苷酸合成(OligonucleotideSynthesis)”(盖特(Gait),1984);“动物细胞培养(Animal Cell Culture)”(福莱施尼(Freshney),1987);“酶学方法(Methods in Enzymology)”“实验免疫学手册(Handbook ofExperimental Immunology)”(韦(Wei),1996);“哺乳动物细胞用基因转移载体(GeneTransfer Vectors for Mammalian Cells)”(米勒(Miller)和卡洛兹(Calos),1987);“分子生物学实验指南(Current Protocols in Molecular Biology)”(奥苏贝尔(Ausubel),1987);“PCR:聚合酶链式反应(PCR:The Polymerase Chain Reaction)”,(穆利斯(Mullis),1994);“免疫学实验指南(Current Protocols in Immunology)”(Coligan,1991)。这些技术适用于本发明的多核苷酸和多肽的产生,并且按照这样,可以被考虑用于制备和实施本发明。对具体实施例特别有用的技术将在下面的部分进行讨论。
其他实施方式:
实施方式1.一种针对被诊断患有瘤形成的受试者制备个性化瘤形成疫苗的方法,该方法包括:
在该瘤形成中鉴定多个突变;
对该多个突变进行分析以鉴定被预测编码新抗原肽的至少五个新抗原突变的亚群,这些新抗原突变选自下组,该组由以下各项组成:错义突变、新ORF突变及其任何组合;并且
基于该鉴定的亚群,产生个性化瘤形成疫苗。
实施方式2.如实施方式1所述的方法,其中鉴定进一步包括:
对该瘤形成的基因组、转录组或蛋白质组进行测序。
实施方式3.如实施方式1所述的方法,其中分析进一步包括:
确定与被预测编码新抗原肽的至少五个新抗原突变的该亚群相关的一个或多个特征,这些特征选自下组,该组由以下各项组成:分子量、半胱氨酸含量、亲水性、疏水性、电荷以及结合亲和力;并且
基于这些确定的特征,对在具有至少五个新抗原突变的该鉴定的亚群内的这些新抗原突变中的每者进行排名。
实施方式4.如实施方式3所述的方法,其中排名前5-30的新抗原突变被包含在该个性化瘤形成疫苗中。
实施方式5.如实施方式3所述的方法,其中根据示于图8中的顺序对这些新抗原突变进行排名。
实施方式6.如实施方式4所述的方法,其中该个性化瘤形成疫苗包含对应于这些新抗原突变的至少约20种新抗原肽。
实施方式7.如实施方式4所述的方法,其中该个性化瘤形成疫苗包含能够表达对应于这些新抗原突变的至少约20种新抗原肽的一种或多种DNA分子。
实施方式8.如实施方式4所述的方法,其中该个性化瘤形成疫苗包含能够表达对应于这些新抗原突变的至少20种新抗原肽的一种或多种RNA分子。
实施方式9.如实施方式1所述的方法,其中该个性化瘤形成疫苗包含新ORF突变,这些新ORF突变被预测编码具有≤500nM的Kd的新ORF多肽。
实施方式10.如实施方式1所述的方法,其中该个性化瘤形成疫苗包含错义突变,这些错义突变被预测编码具有≤150nM的Kd的多肽,其中天然同源蛋白具有≥1000nM或≤150nM的Kd。
实施方式11.如实施方式6所述的方法,其中该至少约20种新抗原肽的长度范围是从约5至约50个氨基酸。
实施方式12.如实施方式6所述的方法,其中该至少约20种新抗原肽的长度范围是从约15至约35个氨基酸。
实施方式13.如实施方式6所述的方法,其中该至少约20种新抗原肽的长度范围是从约18至约30个氨基酸。
实施方式14.如实施方式6所述的方法,其中该至少约20种新抗原肽的长度范围是从约6至约15个氨基酸。
实施方式15.如实施方式6所述的方法,其中该至少约20种新抗原肽的长度是15、16、17、18、19、20、21、22、23、24或25个氨基酸。
实施方式16.如实施方式1所述的方法,其中该个性化瘤形成疫苗进一步包括一种佐剂。
实施方式17.如实施方式1所述的方法,其中该佐剂选自下组,该组由以下各项组成:聚-ICLC,1018ISS,铝盐,Amplivax,AS15,BCG,CP-870、893,CpG7909,CyaA,dSLIM,GM-CSF,IC30,IC31,咪喹莫特,ImuFact IMP321,IS Patch,ISS,ISCOMATRIX,Juvlmmune,LipoVac,MF59,单磷酰脂质A,蒙塔尼德IMS1312,蒙塔尼德ISA 206,蒙塔尼德ISA 50V,蒙塔尼德ISA-51,OK-432,OM-174,OM-197-MP-EC,ONTAK,PepTel.RTM,载体系统,PLGA微颗粒,瑞喹莫德,SRL172,病毒微体和其他病毒样颗粒,YF-17D,VEGF陷阱,R848,β-葡聚糖,Pam3Cys,阿奎拉QS21刺激子,vadimezan以及AsA404(DMXAA)。
实施方式18.如实施方式17所述的方法,其中该佐剂是聚-ICLC。
实施方式19.一种用个性化瘤形成疫苗治疗被诊断患有瘤形成的受试者的方法,该方法包括:
在该瘤形成中鉴定多个突变;
对该多个突变进行分析以鉴定具有至少五个新抗原突变的亚群,该至少五个新抗原突变被预测对表达的新抗原肽进行编码,这些新抗原突变选自下组,该组由以下各项组成:错义突变、新ORF突变及其任何组合;
基于该鉴定的亚群,产生个性化瘤形成疫苗;并且
向该受试者给予该个性化瘤形成疫苗,从而治疗该瘤形成。
实施方式20.如实施方式19所述的方法,其中鉴定进一步包括:
对该瘤形成的基因组、转录组或蛋白质组进行测序。
实施方式21.如实施方式19所述的方法,其中分析进一步包括:
确定与具有至少五个新抗原突变的该亚群相关的一个或多个特征,该至少五个新抗原突变被预测对表达的新抗原肽进行编码,这些特征选自下组,该组由以下各项组成:分子量、半胱氨酸含量、亲水性、疏水性、电荷以及结合亲和力;并且
基于这些确定的特征,对在具有至少五个新抗原突变的该鉴定的亚群内的这些新抗原突变中的每者进行排名。
实施方式22.如实施方式21所述的方法,其中排名前5-30的新抗原突变被包含在该个性化瘤形成疫苗中。
实施方式23.如实施方式21所述的方法,其中根据示于图8中的顺序对这些新抗原突变进行排名。
实施方式24.如实施方式22所述的方法,其中该个性化瘤形成疫苗包含对应于这些新抗原突变的至少20种新抗原肽。
实施方式25.如实施方式22所述的方法,其中该个性化瘤形成疫苗包含能够表达对应于这些新抗原突变的至少20种新抗原肽的一种或多种DNA分子。
实施方式26.如实施方式22所述的方法,其中该个性化瘤形成疫苗包含能够表达对应于这些新抗原突变的至少20种新抗原肽的一种或多种RNA分子。
实施方式27.如实施方式19所述的方法,其中该个性化瘤形成疫苗包含新ORF突变,这些新ORF突变被预测编码具有≤500nM的Kd的新ORF多肽。
实施方式28.如实施方式19所述的方法,其中该个性化瘤形成疫苗包含错义突变,这些错义突变被预测编码具有≤150nM的Kd的多肽,其中天然同源蛋白具有≥1000nM或≤150nM的Kd。
实施方式29.如实施方式24所述的方法,其中该至少20种新抗原肽的长度范围是从约5至约50个氨基酸。
实施方式30.如实施方式24所述的方法,其中该至少20种新抗原肽的长度范围是从约15至约35个氨基酸。
实施方式31.如实施方式24所述的方法,其中该至少20种新抗原肽的长度范围是从约18至约30个氨基酸。
实施方式32.如实施方式24所述的方法,其中该至少20种新抗原肽的长度范围是从约6至约15个氨基酸。
实施方式33.如实施方式24所述的方法,其中该至少20种新抗原肽的长度是15、16、17、18、19、20、21、22、23、24或25个氨基酸。
实施方式34.如实施方式16所述的方法,其中给药进一步包括:
将该产生的疫苗分为两个或更多个亚池;并且
将这些亚池各自注射进入该患者的不同部位。
实施方式35.如实施方式34所述的方法,其中被注射进不同部位的这些亚池中的每个都包含新抗原肽,这样使得靶向任何单患者HLA的亚池中的单种肽的数目是一种或尽可能少地高于一种。
实施方式36.如实施方式31所述的方法,其中给药进一步包括将该产生的疫苗分为两个或更多个亚池,其中每个亚池都包含被选择以优化池内相互作用的至少五种新抗原肽;。
实施方式37.如实施方式36所述的方法,其中优化包括减少同一个池中的这些新抗原肽之间的负相互作用。
实施方式38.如实施方式19所述的方法,其中给药进一步包括递送一种树突细胞(DC)疫苗,其中该DC装载有该至少五个新抗原突变中的一个或多个,该至少五个新抗原突变被预测对表达的新抗原肽进行编码。
实施方式39.一种根据如实施方式1所述的方法制备的个性化瘤形成疫苗。
实例
给出以下实例是为了给本领域普通技术人员提供如何进行和使用本发明的测定、筛选和治疗方法的完整披露和描述,而不是旨在限制诸位发明人认为是自己的发明的范围。
实例1:癌症疫苗测试方案
根据示于图2中的通用流水作业,在15个具有高危黑素瘤(完全切除阶段IIIB、IIIC和IVM1a,b)的患者身上测试上述组合物和方法。患者在4周时间内可以接受一系列用个性化肿瘤特异性肽和聚-ICLC的混合物进行的初免疫苗接种,随后在维持阶段接受两次加强。将皮下递送所有疫苗接种。将评价该疫苗在患者体内的安全性、耐受性、免疫应答和临床效果以及产生疫苗和在适当的时间框内成功地启动疫苗接种的可行性。第一同期组群将由5个患者组成,并且在充分证明安全性之后,可以募集具有10个患者的另外的同期组群(参见例如,描绘了用于初始群体研究的方法的图3)。将广泛地监测外周血的肽特异性T-细胞应答并且将对患者随访长达两年,以评估疾病复发。
如上所述,在动物和人类两者中存在大量证据证明突变表位在诱导免疫应答中是有效的并且自发性肿瘤消退或长期存活的病例与针对突变表位的CD8+ T细胞应答相关(巴克沃尔特(Buckwalter)和斯里瓦斯塔瓦PK(Srivastava PK)。来自十多年的人类癌症疫苗疗法的“它(们)是抗原,笨蛋”和其他课程("It is the antigen(s),stupid"and otherlessons from over a decade of vaccitherapy of human cancer).免疫学研讨文辑(Seminars in immunology)20:296-300(2008);卡拉尼卡斯(Karanikas)等人,长期存活的肺癌患者的血液中的高频率的针对可用HLA四聚体检测到的肿瘤特异性突变抗原的细胞溶解T淋巴细胞(High frequency of cytolytic T lymphocytes directed againstatumor-specific mutated antigen detectable with HLA tetramers in the blood ofa lung carcinoma patient with long survival).癌症研究(Cancer Res.)61:3718-3724(2001);伦内尔兹(Lennerz)等人自体T细胞对人黑素瘤的应答受突变新抗原左右(Theresponse of autologous Tcells to a human melanoma is dominated by mutatedneo-antigens).美国国家科学院院刊(Proc Natl Acad Sci U S A.)102:16013(2005))并且“免疫编辑(immunoediting)”可以追溯到显性突变抗原在小鼠和人体内的表达的改变(Matsushita(Matsushita)等人癌症外显子组分析揭示了癌症免疫编辑的T细胞依赖性机制(Cancer exome analysis reveals a T-cell-dependent mechanism of cancerimmunoediting)自然(Nature)482:400(2012);杜佩奇(DuPage)等人肿瘤特异性抗原的表达是癌症免疫编辑的基础(Expression of tumor-specific antigens underlies cancerimmunoediting)自然482:405(2012);和桑普森(Sampson)等人在新近诊断成胶质细胞瘤的患者中在长时间无进展存活之后表皮生长因子受体变体III多肽疫苗接种的免疫逃逸(Immunologic escape after prolonged progression-free survival with epidermalgrowth factor receptor variant III peptide vaccination in patients with newlydiagnosed glioblastoma)临床肿瘤学杂志(J Clin Oncol.)28:4722-4729(2010))。
下一代测序现在可以快速揭示离散突变的存在,如单个肿瘤中的编码突变,最常见的是单氨基酸改变(例如,错义突变;图4A)和由终止密码子中的移码插入/缺失/基因融合、连读突变和不当剪接内含子的翻译产生的不经常的新颖的氨基酸段(例如,新ORF;图4B)。新ORF作为免疫原是特别有价值的,因为它们的序列整体对于免疫系统而言完全是新颖的并且所以类似于病毒或细菌外源抗原。因此,新ORF:(1)对肿瘤是高度特异性的(即在任何正常细胞中没有表达);(2)可以绕开中枢耐受,从而增加新抗原特异性CTL的前体频率。例如,最近已用衍生自人乳头瘤病毒(HPV)的肽证明了在治疗性抗癌疫苗中利用类似外源序列的功效。19个患有瘤形成前的病毒诱导的疾病、接受3-4次衍生自病毒癌基因E6和E7的HPV肽的混合物的疫苗接种的患者中的约50%维持了≥24个月的完全应答(肯特尔(Kenter)等人,用于外阴上皮内瘤形成的针对HPV-16癌蛋白的疫苗接种(Vaccinationagainst HPV-16Oncoproteins for Vulvar Intraepithelial Neoplasia)NEJM 361:1838(2009))。
测序技术已经揭示到,每个肿瘤都包含多个改变基因的蛋白质编码内容的患者特异性突变。此类突变产生改变的蛋白质,范围从单氨基酸改变(由错义突变引起)到归因于终止密码子的移码、连读或内含子区的翻译的添加长区域的新颖氨基酸序列(新颖开放阅读框突变;新ORF)。这些突变蛋白质对于宿主对肿瘤的免疫应答而言是有价值的靶标,因为不像天然蛋白质,它们不受自身耐受的免疫抑制作用的影响。因此,突变蛋白质更可能具有免疫原性并且与患者的正常细胞相比对肿瘤细胞还更具特异性。
利用最近改进的用于预测哪些错义突变产生至患者的同源MHC分子的强结合肽的算法,将鉴定并优先化一组代表每个患者的最佳突变表位(新ORF和错译两者)的肽并且将制备多达20或更多种肽供免疫用(张(Zhang)等人免疫学中的机器学习竞争-HLA I类结合肽的预测(Machine learning competition in immunology-Prediction of HLA class Ibinding peptides)免疫学方法杂志(J Immunol Methods)374:1(2011);伦德戈德(Lundegaard)等人使用基于神经网络的方法预测表位(Prediction of epitopes usingneural network based methods)免疫学方法杂志374:26(2011))。将合成长度约20-35个氨基酸的肽,因为此类“长”肽在专职抗原呈递细胞(如树突细胞)中经历有效的内化、加工和交叉呈递,并且已经显示可在人类体内诱导CTL(梅利夫(Melief)和范德伯格(van derBurg),通过合成的长肽疫苗进行的已形成的(前)恶性疾病的免疫疗法(Immunotherapy ofestablished(pre)malignant disease by synthetic long peptide vaccines)癌症自然评论(Nature Rev Cancer)8:351(2008))。
除强大且特异性的免疫原之外,有效的免疫应答还需要强佐剂来激活免疫系统(斯派泽(Speiser)和罗梅罗(Romero),用于癌症免疫疗法的分子水平上定义的疫苗,以及保护性T细胞免疫(Molecularly defined vaccines for cancer immunotherapy,andprotective T cell immunity)免疫学研讨文辑(Seminars in Immunol)22:144(2010))。例如,Toll样受体(TLR)已经作为微生物和病毒病原体“危险信号”的强大传感物,有效地诱导先天免疫系统,并且进而有效地诱导适应性免疫系统(巴德瓦杰(Bhardwaj)和戈恩加特克(Gnjatic),TLR激动剂:它们是好的佐剂吗?(TLR AGONISTS:Are They GoodAdjuvants?)癌症杂志(Cancer J.)16:382-391(2010))。在TLR激动剂之中,聚-ICLC(一种合成双链RNA模拟物)是骨髓衍生的树突细胞的最有效激活剂之一。在一项人类志愿者研究中,已经显示聚-ICLC是安全的并且可在外周血细胞中诱导与通过最有效的减毒活病毒疫苗之一黄热病疫苗YF-17D诱导的基因表达谱可比的基因表达谱(卡斯基(Caskey)等人合成双链RNA在人体内诱导与活病毒疫苗类似的先天性免疫应答(Synthetic double-strandedRNA induces innate immune responses similar to a live viral vaccine inhumans)实验医学杂志(J Exp Med)208:2357(2011))。(一种由Oncovir公司制备的聚-ICLC的GMP制剂)将被用作佐剂。
实例2:目标患者群体
即使在完全手术切除疾病的情况下,患有IIIB、IIIC和IVM1a,b期黑素瘤的患者仍有显著的疾病复发和死亡风险(巴尔奇(Balch)等人最终版本的2009AJCC黑素瘤分期与分类(Final Version of 2009AJCC Melanoma Staging and Classification)临床肿瘤学杂志(J Clin Oncol)27:6199-6206(2009))。用于此患者群体的一种可用的全身性佐剂疗法是干扰素-α(IFNα),它提供可测量的但是边际的益处并且与显著的频繁的剂量限制性毒性相关(柯克伍德(Kirkwood)等人高风险切除皮肤黑素瘤的干扰素α-2b辅助疗法:东部肿瘤协作组试验EST 1684(Interferon alfa-2b Adjuvant Therapy ofHigh-Risk ResectedCutaneous Melanoma:The Eastern Cooperative Oncology Group Trial EST 1684)临床肿瘤学杂志(J Clin Oncol)14:7-17(1996);柯克伍德等人,高风险的黑素瘤中的高剂量和低剂量干扰素α-2b:组间试验E1690/S9111/C9190的首次分析(High-and Low-doseInterferon Alpha-2b in High-Risk Melanoma:First Analysis of Intergroup TrialE1690/S9111/C9190)临床肿瘤学杂志18:2444-2458(2000))。这些患者的免疫未被先前的癌症定向疗法或被活动性癌症(active cancer)损及并且因此代表用于评估疫苗的安全性和免疫影响的极佳的患者群体。最后,这些患者的当前护理标准在手术之后不要求任何治疗,因此允许8-10周的窗口期来制备疫苗。
该目标群体将是具有可临床检测的、组织学上确认的淋巴结(局部或远处)转移或过渡态转移,已经完全切除且摆脱疾病的皮肤黑素瘤患者(IIIB期的大部分(由于需要充足肿瘤组织用于测序和细胞系发育,患有溃疡型原发性肿瘤但具有微转移淋巴结(T1-4b、N1a或N2a)的患者将被排除,IIIC期和IVM1a,b期的全部)。这些可以是初次诊断或在先前诊断出前期黑素瘤之后处于疾病复发的患者。
肿瘤收获:患者将经历完全切除他们的原发性黑素瘤(如果尚未去除的话)以及所有区域转移性疾病,其意图是使他们摆脱黑素瘤。在已经收集用于病理评估的足够肿瘤之后,将剩余的肿瘤组织放置在无菌容器的无菌培养基中并准备进行解聚。将部分肿瘤组织用于全外显子组和转录组测序和细胞系建立并且将剩余肿瘤冷冻。
正常组织收获:将对正常组织样品(血液或痰液样品)进行全外显子组测序。
将鉴定具有临床上明显的局部区域转移性疾病或完全可切除的远处淋巴结、皮肤或肺转移性疾病(但不存在不可切除的远处或内脏转移性疾病)的患者并将其募集在该项研究中。患者在手术之前进入是必需的,以便获取供黑素瘤细胞系发育用的新鲜的肿瘤组织(以产生用于作为免疫监测计划的一部分的体外细胞毒性测定的靶细胞)。
实例3:剂量与方案
对于已经满足所有预处理标准的患者,将在研究药物已经到达且已经满足进入规格之后,尽快开始疫苗给予。对于每个患者,将存在四种单独的研究药物,每种包含20种患者特异性肽中的5种。可以大致根据示于图5中的方案进行免疫。
将在门诊部对患者进行处理。每个处理日的免疫将由四个1ml皮下注射剂组成,每个注射进单独的一肢,以便靶向淋巴系统的不同区域,以减少抗原竞争。如果患者已经经历了完整的腋窝或腹股沟淋巴结清除术,则将疫苗给予进右膈或左膈作为一个替代方案。每个注射剂将由用于该患者的4种研究药物中的1种组成并且对于每个循环,将相同的研究药物注入同一肢。每个1ml注射剂的组成是:
0.75ml包含5种患者特异性肽中的300μg的每种的研究药物
0.25ml(0.5mg)的2mg/ml聚-ICLC
在诱导/初免阶段过程中,将在第1、4、8、15及22天对患者免疫。在维持阶段中,患者将在第12和24周接受加强剂量。
可以在多个时间点获得血液样品:初免疫苗接种之前(基线;在不同日期获得两个样品);初免疫苗接种过程中第15天;诱导/初免疫苗接种之后四周(第8周);第一次加强之前(第2周)和之后)(第16周);第二次加强之前(第24周)和之后(第28周),每个样品将收集50-150ml血液(第16周除外)。初级免疫终点将在第16周,并且因而患者将经历白细胞分离术(除非另外指明,基于患者和医生评估)。
实例4:免疫监测
该免疫策略是一种“初免-加强(prime-boost)”方法,涉及初始一系列紧密间隔的免疫来诱导免疫应答,随后休息一段时间以允许产生记忆T细胞。这之后将是加强免疫,并且预期此次加强之后4周T细胞应答将产生最强应答并且将是初级免疫终点。在18hr离外ELISPOT测定中,最初使用来自此时间点的外周血单核细胞监测整体免疫应答,用包含所有免疫表位的重叠15mer肽(11个aa重叠)池进行刺激。将评估疫苗接种之前的样品,以建立对此肽池的基线应答。如保证那样,将评估另外的PBMC样品,以检查对总肽混合物的免疫应答的动力学。对于展现出显著高于基线的应答的患者,将所有15mer肽的池解卷积,以确定哪种或哪些具体免疫肽是具免疫原性的。另外,将视情况而定针对适当的样品进行多个另外的测定:
·将整个15mer池或亚池用作细胞内细胞因子染色测定的刺激肽,以鉴定并定量抗原特异性CD4+、CD8+、中枢记忆和效应记忆群体
·类似地,这些池将被用来评估由这些细胞分泌的细胞因子的模式,以确定TH1与TH2表型
·未刺激细胞的细胞外细胞因子染色和流式细胞术将被用来定量Treg和髓源性抑制细胞(MDSC)。
·如果从应答患者成功地建立了黑素瘤细胞系并且可以鉴定激活表位,则将使用突变型和对应的野生型肽进行T细胞细胞毒性测定
·将通过使用已知的黑素瘤肿瘤相关抗原作为刺激剂并且通过使用若干另外的不是在免疫原之间选择的经鉴定的突变表位评估来自初级免疫终点的PBMC的“表位扩展”,如图6所示。
将进行该肿瘤样品的免疫组织化学,以定量CD4+、CD8+、MDSC及Treg浸润性群体。
实例5:患有转移性疾病的患者的临床疗效
患有转移性疾病的患者的疫苗治疗被他们对活动性癌症的有效疗法的需求和随之发生的缺乏用于疫苗制备的停止治疗(off treatment)时间窗而复杂化。此外,这些癌症治疗可能损及患者的免疫系统,从而可能妨碍免疫应答的诱导。牢记这些考虑事项,可以对以下情形进行选择:其中疫苗制备的时机暂时符合特定患者群体的其他标准护理方法和/或其中这样的标准护理明确地与免疫治疗方法可兼容。存在两种类型的可以寻求的情形:
1.与检查点阻断组合:检查点阻断抗体已经作为转移性黑素瘤的有效免疫疗法(霍迪(Hodi)等人用伊匹单抗改善患有转移性黑素瘤的患者的存活(Improved Survivalwith Ipilimumab in Patients with Metastatic Melanoma)NEJM 363:711-723(2010))并且正在被积极寻求用于其他疾病情形,包括非小细胞肺癌(NSCLC)和肾细胞癌(托帕利安(Topalian)等人抗-PD-1抗体在癌症中的安全性、活性与免疫相关因素(Safety,Activity,and Immune Correlates of Anti-PD-1Antibody in Cancer)NEJM 366:2443-2454(2012);布拉汉姆(Brahmer)等人抗-PD-L1抗体在患有晚期癌症的患者体内的安全性与活性(Safety and Activity of Anti-PD-L1 Antibody in Patients with AdvancedCancer)NEJM 366:2455-2465(2012))。尽管未证实作用机制,但是局部免疫抑制解除的逆转和免疫应答的增强两者是可能的解释。整合强大的疫苗以用检查点阻断抗体启动免疫应答可以提供协同作用,如在多项动物研究中所观察到的(范埃尔莎(van Elsas)等人使用抗细胞毒性T淋巴细胞相关抗原4(CTLA-4)和粒细胞/巨噬细胞集落刺激因子(GM-CSF)产生疫苗联合免疫治疗B16黑素瘤诱导伴随自身免疫性色素脱失的皮下和转移性肿瘤的排异反应(Combination immunotherapy of B16 melanoma using anti-cytotoxic Tlymphocyte-associated antigen 4(CTLA-4)and granulocyte/macrophage colony-stimulatingfactor(GM-CSF)-producing vaccines induces rejection of subcutaneous andmetastatic tumors accompanied by autoimmune depigmentation)实验医学杂志(J ExpMed)190:35-366(1999);李(Li)等人抗程序性死亡1与粒细胞巨噬细胞集落刺激因子-分泌肿瘤细胞免疫疗法协同为患有已确立的肿瘤的小鼠提供治疗益处(Anti-programmeddeath-1synergizes with granulocyte macrophage colony-stimulating factor-secreting tumor cell immunotherapy providing therapeutic benefit to mice withestablished tumors)临床癌症研究(Clin Cancer Res)15:1623-1634(2009);帕多尔,D.M.(Pardoll,D.M.)癌症免疫疗法中的免疫检查点阻断(The blockade of immunecheckpoints in cancer immunotherapy)癌症自然评论(Nature Reviews Cancer)12:252-264(2012);库兰(Curran)等人PD-1和CTLA-4组合阻断在B16黑素瘤肿瘤内扩增浸润性T细胞并减少调节性T和骨髓细胞(PD-1and CTLA-4combination blockade expandsinfiltrating T cells and reduces regulatory T and myeloid cells within B16melanoma tumors).美国国家科学院院刊(Proc Natl Acad Sci U S A.)2010年3月2日;107(9):4275-80;库兰等人表达flt3配体的肿瘤疫苗与ctla-4阻断协同以排斥着床前肿瘤(Tumor vaccines expressing flt3 ligand synergize with ctla-4blockade toreject preimplanted tumors).癌症研究(Cancer Res.)2009年10月1日;69(19):7747-55)。患者可以立即开始检查点阻断疗法同时疫苗正在制备之中并且制备之后,可以将疫苗给药与抗体疗法整合,如图7所示;以及
2.与展示出有益的免疫特性的标准治疗方案组合。
a)呈现有转移性疾病的肾细胞癌(RCC)患者典型地经历手术减瘤,随后是全身性治疗,它通常是与批准的酪氨酸激酶抑制剂(TKI)之一一起,如舒尼替尼、帕唑帕尼和索拉非尼。在批准的TKI之中,已经显示舒尼替尼可增加TH1反应性并减少Treg和髓源性抑制细胞(芬克(Finke)等人舒尼替尼在肾细胞癌患者中逆转1型免疫抑制并减少T调节细胞(Sunitinib reverses Type-1immune suppression and decreases T-regulatory cellsin renal cell carcinoma patients)临床癌症研究(Clin Can Res)14:6674-6682(2008);泰尔梅(Terme)等人VEGFA-VEGFR途径阻断在结肠直肠癌中抑制肿瘤诱导的调节T细胞增殖(VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory Tcell proliferation in colorectal cancer)(在线公开的癌症研究作者手稿(CancerResearch Author Manuscript))(2102))。用不损及免疫系统的批准的疗法立即治疗患者的能力提供了所需的时间窗来制备疫苗并可以与疫苗疗法提供协同作用。另外,环磷酰胺(CTX)已经牵涉于多项动物和人类研究中对Treg细胞具有抑制作用,并且最近已经显示在疫苗之前的单剂量CTX可改善响应于该疫苗的RCC患者的存活(沃尔特(Walter)等人在单次剂量环磷酰胺之后对癌症疫苗IMA901的多肽免疫应答与更长的患者存活相关(Multipeptide immune response to a cancer vaccine IMA901 after single-dosecyclophosphamide associates with longer patient survival)自然医学(NatureMedicine)18:1254-1260(2012))。这些免疫协同方法两者都已经被用于RCC中的天然肽疫苗的最近完成的3期研究中(ClinicalTrials.gov,在接受用于晚期/移性肾细胞癌的舒尼替尼的患者(Patients Receiving Sunitinib for Advanced/Metastatic Renal CellCarcinoma)中的NCT01265901 IMA901);
b)可替代地,成胶质细胞瘤(GBM)的标准治疗涉及手术、康复和后续辐射以及低剂量替莫唑胺(TMZ),随后是开始标准剂量TMZ之前的四周休息期。此标准治疗提供了时间窗用于疫苗制备,随后在开始标准剂量TMZ之前启动疫苗接种。有趣的是,在一项转移性黑素瘤研究中,在标准剂量TMZ治疗过程中进行肽疫苗接种与单独的疫苗接种相比而言增加测量的免疫反应性,从而表明了另外的协同益处(凯特(Kyte)等人与替莫唑胺组合的端粒酶肽疫苗接种:一项IV期黑素瘤患者临床试验(Telomerase peptide vaccination combinedwith temozolomide:a clinical trial in stage IV melanoma patients)临床癌症研究(Clin Cancer Res)17:4568(2011))。
实例6:疫苗制备
将通过手术切除患者肿瘤组织,并且将肿瘤组织解聚并且将分离的部分用于DNA和RNA提取以及用于患者特异性黑素瘤细胞系发育。提取自肿瘤组织的DNA和/或RNA将被用于全外显子组测序(例如,通过使用亿明达(Illumina)HiSeq平台)并且用来确定HLA分型信息。在本发明的范围内考虑到的是可以通过基于蛋白质的技术(例如,质谱法)直接鉴定错义或新ORF新抗原肽。
将如下进行生物信息学分析。外显子组和RNA-SEQ fast Q文件的序列分析将利用已经在大规模项目中得到广泛使用和验证的现有生物信息渠道,如针对许多患者样品的TCGA(例如,查普曼(Chapman)等人2011,斯特兰斯基(Stransky)等人2011,伯杰(Berger)等人2012)。存在两种顺序分析类别:数据处理与癌症基因组分析。
数据处理渠道:由测序平台公司(Sequencing Platform)开发的皮卡德(Picard)数据处理渠道(picard.sourceforge.net/)。使用皮卡德渠道中的不同模块,使提取自(例如,亿明达)序列仪的每个肿瘤和正常样品的原始数据经受以下过程:
(i).质量重新校准:将基于读取循环、泳道、流动池瓦(flow cell tile)、所讨论的碱基以及前述碱基来重新校准由亿明达渠道报告的原始碱基质量得分。
(ii).比对:使用BWA(李(Li)和德宾(Durbin),2009)将阅读对(read pair)与人类基因组(hg19)进行比对。
(iii).标记重复(Mark duplicate):将基于阅读对图位来鉴定PCR和光学重复并标记在最终bam文件中。
皮卡德的输出是一份bam文件(李(Li)等人2009)(samtools.sourceforge.net/SAM1.pdf),该文件存储了给定样品的所有读数的碱基序列、质量得分和比对细节。
癌症突变检测渠道:将如下所述对来自皮卡德渠道的肿瘤和匹配的正常bam文件进行分析:
1.质量控制
(i).将通过比较在样品的几十个位点处完成的初始SNP指纹识别与那些位点处的外显子组测序堆积来完成测序过程中的样品混合物。
(ii).通过首先比较对应于肿瘤和正常样品两者的相同文库的泳道的插入片段尺寸分布并且丢弃那些具有不同分布的泳道而检查样品内肿瘤/正常混合物。生物信息学分析将应用于肿瘤和匹配的正常外显子组样品,以得到DNA拷贝数曲线。肿瘤样品还应该具有比对应的正常品更多的拷贝数变化。对应于不具有平坦谱的正常样品的泳道将被丢弃,不具有与来自同一肿瘤样品的其他泳道一致的谱的肿瘤泳道也将被丢弃。
(iii).将基于生物信息学产生的拷贝数谱来估计肿瘤纯度和倍性。
(iv).ContEst(斯布尔斯基(Cibulskis)等人2011)将被用来确定样品中交叉样品污染的水平。
2.推定indel周围的局部重新比对
相对于参考基因组的真实体细胞和生殖细胞小indel经常导致错义突变和indel不对准和误调(miscall)。将通过以下方式对其进行校正:使用GATK IndelRealigner模块(在万维网的(www)broadinstitute.org/gatk)(麦克纳(McKenna)等人2010,德普里斯托(Depristo)等人2011)对标绘在推定indel附近的所有读数进行局部重新比对并且综合评估它们以保证indel调用的一致性和正确性。
3.体细胞单核苷酸变异(SSNV)的鉴定
将通过使用称为muTect的贝叶斯统计框架(斯布尔斯基(Cibulskis)等人2013)分析来自患者的肿瘤和匹配的正常样品而鉴定体细胞碱基对取代。在该预处理步骤中,滤掉具有占优势的低质量碱基的读数或与基因组的错配。然后,Mutect计算两个log优势(log-odds)(LOD)得分,这两个得分分别概括了在肿瘤和正常样品中存在和不存在变体情况下的置信度。在处理后阶段中,根据各种标准凭经验过滤候选突变,将捕获、测序和比对的假象考虑在内。例如,一种这样的过滤器测试具有突变的读数的取向分布与映射至该基因座的读数的总体取向分布之间的一致性,以保证没有链偏向性。然后,将最终一组突变用Oncotator工具由若干字段进行注释,包括基因组区、密码子、cDNA以及蛋白质变化。
4.体细胞小插入和缺失的鉴定
来自第2.2节的局部重新比对输出将被用来基于支持变体排外地存在于肿瘤或存在于肿瘤和正常bam两者中的读数的评估来分别预测候选体细胞和生殖细胞indel。将基于错配的数目和分布以及碱基质量得分进行进一步过滤(麦克纳(McKenna)等人2010,德普里斯托(DePristo)等人2011)。将使用整合基因组学查看器(Integrated Genomics Viewer)(罗宾逊(Robinson)等人2011)(在万维网的(www)broadinstitute.org/igv)手动检查所有indel,以保证高保真调用。
5.基因融合检测
基因融合检测渠道中的第一步是将肿瘤RNA-Seq读数与已知基因序列的文库比对,随后将此比对标绘至基因组坐标上。基因组作图有助于压缩映射至不同转录物变体的多个阅读对,这些变体与常见基因组位置共享外显子。将针对阅读对来查询DNA比对bam文件,其中这两个配偶体映射至两个不同编码区,这两个不同编码区在不同染色体上或如果在同一染色体上相隔至少1MB。还要求在其相应基因中比对的对末端处在与(推定)融合mRNA转录物的编码-->编码5'->3'方向一致的方向上。基因对(其中存在至少两个这样的‘嵌合’阅读对)的列表将被枚举为经受进一步细化的初始推定事件列表。接下来,将从原始bam文件中提取所有未比对读数,其中附加约束是其配偶体起初已经被比对并标绘进如上所述获得的基因对的基因之一中。然后,将尝试将所有此类起初未比对的读数与发现的基因对之间的所有可能外显子-外显子连接(全长,边界到边界,处于编码5'->3'方向)的定制“参考”构建进行比对。如果一个这样起初未比对的读数(唯一地)映射在基因X的外显子与基因Y的外显子之间的连接上,并且其配偶体的确被映射至基因X或Y之一,则这样的一个读数将被标记为“融合”读数。以下情况将被称为基因融合事件:在与其配偶体正确的相对取向上存在至少一个融合读数,在显子:外显子连接周围没有数量过多的错配并且覆盖任一基因的至少10bp。高度同源基因(例如,HLA家族)之间的基因融合有可能是假的并且将被滤掉。
6.克隆性的估计
生物信息学分析可以被用来估计突变的克隆性。例如,ABSOLUTE算法(卡特(Carter)等人2012,兰道(Landau)等人2013)可以被用来估计肿瘤纯度、倍性、绝对拷贝数以及突变的克隆性。将生成每个突变的等位基因分数的概率密度分布,随后将其转化为这些突变的癌症细胞分数(CCF)。将基于其CCF超过0.95的后验概率是大于还是小于0.5而将突变分别分类为克隆的或亚克隆的。
7.表达的定量
TopHat套件(兰米德(Langmead)等人2009)将被用来对肿瘤和匹配的正常bam的RNA-Seq读数与hg19基因组进行比对。将通过RNA-SeQC(德卢卡(DeLuca)等人2012)包评估RNA-Seq数据的质量。然后,RSEM工具(李(Li)等人2011)将被用来估计基因和同种型表达水平。产生的读数/千碱基/百万和τ估计值将被用来对如别处所述的每个患者体内鉴定的新抗原进行排列次序。
8.RNA-Seq中的突变验证
针对在患者的对应RNA-Seq肿瘤bam文件中的存在,对将通过分析全外显子组数据而鉴定的突变进行评估(第2.3节)。对于每个变体基因座,将进行基于β-二项分布的概率计算,以保证存在至少80%概率在RNA-Seq数据中检测到它。如果对于具充足概率的位点存在至少2个具有捕获的鉴定的突变的读数,则将认为该突变是经过验证的。
包含肿瘤特异性突变的表位的选择:将使用基于神经网络的算法MHC分析所有错义突变和新ORF中包含突变的表位的存在,上述算法是由荷兰的丹麦技术大学(TechnicalUniversity ofDenmark)的生物序列分析中心(Center for Biological SequenceAnalysis)提供并维护的。基于最近完成的一系列相关方法之间的竞争(ref),此算法家族被评为顶级表位预测算法。使用基于人工神经网络的方法在多个不同人类HLA A和B等位基因上利用超过100,000次测量的结合与非结合相互作用训练这些算法。
通过对来自HLA同种异型已知的CLL患者体内发现的突变进行预测而评估这些算法的准确度。被包括的同种异型是A0101、A0201、A0310、A1101、A2402、A6801、B0702、B0801、B1501。在2011年中期使用netMHCpan跨每个突变对所有9mer和10mer肽进行了预测。基于这些预测,合成了七十四种(74)9mer肽和六十三种(63)10mer肽,大多数的预测亲和力低于500nM,并且使用竞争性结合测定(塞特(Sette))测量结合亲和力。
使用netMHCC服务器的最新版本中的每种(netMHCpan、netMHC和netMHCcons)在2013年3月对这些肽进行重复预测。这三种算法是在2012年在竞争中使用的一组20种算法之中最受好评的算法(张(Zhang)等人)。然后,相对于这些新预测中的每者评估观察到的结合亲和力。对于每组预测值和观察值而言,给出每个范围的正确预测%以及样品的数目。每个范围的定义如下:
0-150:预测亲和力等于或低于150nM并且测量亲和力等于或低于150nM。
0-150*:预测亲和力等于或低于150nM并且测量亲和力等于或低于500nM。
151-500nM:预测亲和力大于150nM但是等于或低于500nM并且测量亲和力等于或低于500nM。
FN(>500nM):假阴性-预测亲和力大于500nM但是测量亲和力等于或低于500nM。
对于9mer肽(表1)而言,在这些算法之间几乎没有差异,其中netMHC cons的151-500nM范围的略高值未被判断为显著,因为样品的数目少。
表1
对于10mer肽(表2)而言,在这些算法之间再次几乎没有差异,除netMHC产生了比netMHCpan或netMMHCcons显著更多的假阳性之外。然而,与9mer相比,10mer预测的精度在0-150nM和0-150*nM范围内稍微更低并且在151-500nM范围内显著更低。
表2.
对于10mer而言,仅有0-150nM范围内的预测被利用,因为在151-500nM范围内对结合物而言的精度低于50%。
针对任何单独HLA等位基因,样品数目太少,以至于不能得出任何关于预测算法针对不同等位基因的准确度的结论。来自最大可用亚群(0-150*nM;9mer)的数据示于表3中作为一个实例。
表3
等位基因 正确的分数
A0101 2/2
A0201 9/11
A0301 5/5
A1101 4/4
A2402 0/0
A6801 3/4
B0702 4/4
B0801 1/2
B1501 2/2
将仅仅利用HLA A和B等位基因的预测,因为几乎没有可用于判断对于HLA C等位基因的预测的准确度的数据(张(Zhang)等人)。
使用来自TCGA数据库的信息对黑素瘤序列信息和肽结合预测进行评估。来自不同患者的220个黑素瘤的信息揭示:平均起来,每个患者具有大约450个错义和5个新ORF。随机选择20个患者并且使用netMHC针对所有错义突变计算预测的结合结合亲和力(伦德戈德(Lundegaard)等人使用基于神经网络的方法预测表位(Prediction of epitopes usingneural network based methods)免疫学方法杂志(JImmunol Methods)374:26(2011))。因为这些患者的HLA同种异型是未知的,所以基于该同种异型的频率调整每个同种异型的预测的结合肽的数目(针对在地理区域预期影响的主导群体的骨髓登记(Bone MarrowRegistry)数据集[白种人的黑素瘤]),以产生每个患者的随时备用的突变型表位的预测数目。对于这些突变型表位(MUT)中的每者而言,还预测了对应的天然(WT)表位结合。利用Kd≤500nM且WT/MUT Kd比率>5X的针对预测的错义结合物的单肽和跨每个新ORF的全长的重叠肽,预测80%(20个中的16个)的患者具有至少20种适于疫苗接种的肽。对于四分之一的患者而言,新ORF肽可以构成几乎所有20种肽的一半。因此,在黑素瘤中存在足够的突变负荷,从而预期高比例的患者可产生足够数目的免疫原性肽。
实例7:免疫肽的优先次序
可以基于多项标准将免疫用肽进行优先性排序:新ORF与错义,突变肽的预测Kd,与突变肽相比对天然肽的预测亲和力的可比性,无论该突变是发生在致癌驱动基因还是相关途径中,以及RNA-Seq读数的#(参见例如,图8)。
如图8所示,基于对这些完全新颖的序列不存在耐受性及其近乎完美的肿瘤特异性,衍生自被预测结合(Kd<500nM)的新ORF突变的区段的肽可以被给予最高优先级。
类似类别的错义突变(其中天然肽未被预测结合(Kd>1000nM)并且突变肽被预测以强/中亲和力(Kd<150nM)结合)可以被给予下一个最高的优先级。此类别(上文所讨论的组I)代表大约20%天然观察到的T细胞应答。
第三最高优先级可以被给予上文所讨论的组II类别的更紧密结合(<150nM)的亚群。此类别负责大约几乎2/3的天然观察到的T细胞应答。
衍生自新ORF突变的所有剩余肽可以被给予第四优先级。尽管未被预测结合,但是基于已知的假阴性率、与HLA-C的潜在结合、存在II类表位的可能以及利用完全外源抗原的高值,这些仍被包括在内。
第五优先级可以被给予具有较低预测的结合亲和力(150-500nM)的组II的亚群。此类别负责大约10%的天然观察到的T细胞应答。
随着预测亲和力降低,可以将更高严格性应用于表达水平。在每个分组内,可以基于结合亲和力对肽进行排序(例如,最低的Kd可以具有最高的优先级)。在错义突变的给定分组内,致癌驱动突变可以被给予更高优先级。已经建立了具有包罗自所有已知人类蛋白质序列(HG19)的约1260万独特9mer和10mer的正常人类多肽组文库。在最终选择之前,可以针对此文库筛选衍生自错义突变和所有新ORF区域的任何潜在的预测表位,并且可以包括完美匹配。如下文所讨论,可以淘汰或修饰被预测具有有害生物化学特性的特定肽。
根据在此的技术,可以分析RNA水平,以评估新抗原表达。例如,RNA-Seq读数可以被用作估计新抗原表达的代用物。然而,当前没有可用来评估启动细胞溶解所需的在肿瘤细胞中需要的最低RNA表达水平的信息。实际上,来自注定用于无义介导的衰变的信使的“先锋(pioneer)”翻译的表达水平可以足以用于靶标产生。因此,在此的技术最初针对RNA水平设定广的接受界限,其可以随优先级组相反地变化。随着预测亲和力降低,可以将更高严格性应用于表达水平。本领域的普通技术人员应认识到,随着另外的信息变得可用,可以调整此类界限。
归因于其新颖性和近乎完美的肿瘤特异性,由于新ORF作为靶标的高价值,具有预测的结合表位的新ORF(Kd≤500nM)可以被利用,即使通过RNA-Seq检测不到mRNA分子(排名1)。只有检测到一些水平的RNA表达时,没有预测的结合表位的新ORF的区域(>500nM)通常才可以被利用(排名4)。除非不存在RNA-Seq读数,具有强到中等的预测的MHC结合亲和力(≤150nM)的所有错义突变通常可以被利用(排名2和3)。对于具有更低的预测的结合亲和力(150-≤500nM)的错义突变而言,只有检测到稍微更高水平的RNA表达时,这些才可能被利用(排名5)。
致癌驱动子可以代表高优先级组。例如,在错义突变的给定分组内,致癌驱动突变可以具有更高优先级。此方法是基于观察到的被免疫压力(例如,免疫编辑)靶向的基因的下调。与下调对癌症细胞生长可能不具有有害作用的其他免疫靶标相对比,致癌驱动基因的持续表达对于癌症细胞存活可以是关键的,从而切断了一条免疫逃逸途径。示例性致癌驱动子列于表3-1中(参见例如,沃格尔斯坦(Vogelstein)等人;在万维网的(www)geneontology.org上的GOTERM_BP基因本体术语-生物学功能的基因定位(Assignment ofgenes to Gene Ontology Term-Biological Function);在万维网的(www)biocarta.com上的BIOCARTA信号转导途径的基因定位(Assignment of genes to signalingpathways);在万维网的(www)genome.jp/krgg/pathway.html上的KEGG根据KEGG途径数据库的途径的基因定位(Assignment of genes to pathways according to KEGG pathwaydatabase);在万维网的(www)reactome.org上的REACTOME根据REACTOME途径和基因相互作用的途径的基因定位(Assignment of genes to pathways according to REACTOMEpathways and gene interactions))。
表3-1示例性致癌驱动基因
实例8:肽产生与配制
将根据FDA法规通过化学合成(梅里菲尔德RB(Merrifield RB):固相肽合成(Solid phase peptide synthesis).I.四肽的合成(The synthesis of atetrapeptide).美国化学会志(J.Am.Chem.Soc.)85:2149-54,1963)制备免疫用GMP新抗原肽。已经进行三轮开发,各轮20种约20-30mer肽。每轮都在相同设施中进行并且利用将用于GMP运行相同的设备,利用草拟GMP批次记录。每轮都成功地产生>50mg的每种肽,通过所有当前计划的释放测试(例如,通过MS鉴定外观,通过RP-HPLC鉴定纯度,通过元素氮鉴定含量以及通过RP-HPLC鉴定TFA含量)来测试这些肽并且适当时满足针对性规范。在针对该过程的此部分预期的时间段内(大约4周)也产生了这些产物。将冻干的整批肽放置在长期稳定性研究中并且将在不同时间点对其进行评估长达12个月。
来自这些运行的材料已经被用来测试计划的溶解与混合方法。简言之,将把每种肽以高浓度(50mg/ml)溶解于100% DMSO中并在水性溶剂中稀释至2mg/ml。最初,预期的是PBS将被用作稀释剂,然而,小数目的肽的盐析产生了可见混浊。显示D5W(5%葡萄糖水溶液)有效得多;40种肽中的37种被成功稀释为澄清溶液。仅成问题的肽是非常疏水的肽。将评估计划的免疫肽的预测生物化学特性并且相应地改变合成计划(使用较短的肽,在预测表位周围的N-末端或C-末端方向上改变待合成区域,或可以潜在地利用替代肽)。使DMSO/D5W中的十种分开的肽经受两个冻/融循环并显示完全回收。将两种单独的肽溶解于DMSO/D5W中并在两个温度(-20℃和-80℃)下评定稳定性。这些肽将被评估(RP-HPLC,MS和pH)持续长达6个月。迄今为止,在第12周时间点时两种肽都是稳定的,其中第24周的另外的时间点待评估。
如图9所示,剂型过程的设计是制备4个患者特异性肽池,每个由5种肽组成。已经准备且准予了RP-HPL测定来评估这些肽混合物。此测定实现了单一混合物内的多种肽的良好分辨并且还可以被用来定量单独的肽。
膜过滤(0.2μm孔径)将被用来减少生物负载并进行最终的过滤灭菌。最初评估了四种不同的具适当尺寸的过滤器类型并且选择了帕尔(Pall)的PES过滤器(#4612)。迄今为止,已经制备了4种不同的混合物(各自具有5种不同的肽)并且顺序地通过两个PES过滤器单独过滤。利用RP-HPLC测定评估每种单独的肽的回收。对于这20种肽中的18种而言,两次过滤后的回收>90%。对于两种高度疏水肽而言,当小规模评估时回收低于60%,但是当大规模评估时几乎被完全回收(87%和97%)。如上所述,方法将试图限制选择的序列的疏水性。
将根据FDA法规通过化学合成(梅里菲尔德RB(Merrifield RB):固相肽合成(Solid phase peptide synthesis).I.四肽的合成(The synthesis of atetrapeptide).美国化学会志(J.Am.Chem.Soc.)85:2149-54,1963)制备免疫用GMP新抗原肽。
实例9:终点评估
此项研究的初级免疫终点将是通过离体IFN-γELISPOT评估测量的T细胞应答。IFN-γ分泌作为CD4+和/或CD8+ T细胞识别同源肽或促有丝分裂刺激物的结果而出现。众多的不同CD4+和CD8+决定簇将可能被在体内呈递给T细胞,因为用于疫苗接种的20-30mer肽应该经历被抗原呈递细胞加工成更小的肽。不受理论束缚,据信个性化新抗原肽和强大的免疫佐剂聚-ICLC的组合将诱导强CD4+和/或CD8+应答,这些新抗原肽对于免疫系统而言是新颖的并且因此不受自身耐受的免疫抑制作用的影响。因此期望的是,T细胞应答在离体是可检测的,即无需通过短期培养在体外扩增表位特异性T细胞。最初将在ELISPOT测定中使用肽免疫原的总池作为刺激剂评估患者。对于展现出鲁棒阳性应答的患者而言,将在随访分析中确定这种或这些精确的免疫原性肽。IFN-γELISPOT通常被接受为是用于离体测定T细胞活性和确定特异性的鲁棒性的且可再现的测定。除分析T细胞应答在外周血单核细胞中的幅值和决定簇作图之外,由疫苗诱导的免疫应答的其他方面也是关键的并且将被评估。将在筛选测定中在展现出离体IFN-γELISPOT应答的患者中进行这些评估。它们包括评估T细胞亚群(Th1与Th2,T效应与记忆细胞),分析调节细胞(如T调节细胞或髓源性抑制细胞)的存在与丰度以及细胞毒性测定(如果成功建立患者特异性黑素瘤细胞系的话)。
实例10:肽合成
将通过标准固相合成肽化学合成GMP肽并通过RP-HPLC纯化。将通过多种被准予的测定来分析每种单独的肽,以评估外观(可视的)、纯度(RP-HPLC)、身份(通过质谱法)、数量(元素氮)以及三氟乙酸盐抗衡离子(RP-HPLC),并且释放。
这些个性化新抗原肽可以由多达20种对每个患者而言独特的不同肽构成。每种肽都可以是由标准肽键连接的约20-约30个L-氨基酸的线性聚合物。氨基末端可以是伯胺(NH2-)并且羧基末端是羰基(-COOH)。利用在哺乳动物细胞中常见的20种标准氨基酸(丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酰胺、谷氨酸、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸、缬氨酸)。每种肽的分子量基于其长度和序列而变化并且计算每种肽的分子量。
个性化新抗原肽可以被提供为包含2ml带有颜色编码帽的Nunc Cry小瓶的盒,每个小瓶包含大约1.5ml的冷冻DMSO/D5W溶液,该溶液包含浓度为400ug/ml的多达5种肽。四个肽组中的每者可以有10-15个小瓶。这些小瓶将被存储在-80℃下直到使用。持续稳定性研究支持存储温度和时间。
存储与稳定性:将这些个性化新抗原肽冷冻储存在-80℃下。个性化新抗原肽和聚-ICLC的解冻、无菌过滤、过程中中间物和最终混合物可以保持在室温下但是应该在4小时内使用。
相容性:将恰好在使用之前将这些个性化新抗原肽与1/3体积的聚-ICLC混合。
实例11:给药
与个性化新抗原肽/多肽混合之后,可以皮下给予疫苗(例如,肽+聚-ICLC)。
个性化新抗原肽/多肽池的制备:将肽在4个池中混合在一起,每个池有多达5种肽。每个池的选择标准将基于被预测肽与之结合的具体MHC等位基因。
池组成:将在被预测每种肽与之结合的具体HLA等位基因的基础上选择这些池的组成。这四个池将被注入引流至分开的淋巴结盆的解剖部位中。选择此方法,以便潜在地尽可能减少与相同HLA等位基因结合的肽之间的抗原竞争并且在形成免疫应答中涉及宽的患者免疫系统亚群。对于每个患者,将鉴定被预测结合多达四个不同HLAA和B等位基因的肽。一些新ORF衍生肽与任何具体等位基因都无关。用于将肽分配给不同池的方法是将每组与具体HLA等位基因相关的肽尽可能多地覆盖在这四个池。很有可能的是,将有对于给定等位基因存在超过4种预测肽的情形,并且在这些情况下,有必要为同一池配给超过一种与具体等位基因相关的肽。那些与任何具体等位基因都无关的新ORF肽将被随机指定给剩余的槽。下面示出了一个实例:
只要可能,便把被预测与同一MHC等位基因结合的肽放置于分开的池中。一些新ORF肽可能被预测不与患者的任何MHC等位基因结合。然而,这些肽仍被利用,主要是因为它们是完全新颖的并且因此不受中枢耐受的免疫抑制作用的影响并且因此具有免疫原性的概率较高。新ORF肽还携带显著降低的自体免疫潜力,因为在任何正常细胞中不存在等效分子。另外,可能存在由预测算法产生的假阴性并且可能的是该肽将包含HLA II类表位(基于当前算法,HLA II类表位未被可靠地预测)。未被具体HLA等位基因鉴定到的所有肽将被随机指定给单独的池。每种肽的量以每个注射剂每种肽的最终剂量为300μg为基础。
对于每个患者,制造商已经制备了各自具有5种合成肽的四个不同池(标记为“A”、“B”、“C”和“D”)并存储在-80℃下。在免疫当天,将在科研药房的层流生物安全柜中制备由这种或这些肽组分和聚-ICLC组成的完整疫苗。一个小瓶各自(A、B、C和D)将被在室温下解冻并移入生物安全柜中用于剩余的步骤。0.75ml的每个肽池将被从小瓶抽进分开的注射器中。分开地,聚-ICLC的四个0.25ml(0.5mg)等分部分将被抽入分开的注射器中。然后,包含每个肽池的注射器的内容物将通过注射器到注射器转移与0.25ml等分部分的聚-ICLC轻轻混合。将整个1ml的混合物用于注射。这4种制剂将被标记为“研究药物A”、“研究药物B”、“研究药物C”以及“研究药物D”。
注射:在每次免疫时,4种研究药物中的每种将被皮下注入一个肢中。在每次免疫时,每种单独的研究药物将被给予同一肢持续治疗的整个持续时间(即研究药物A将在第1、4、8天等注入左臂,研究药物B将在第1、4、8天等注入右臂)。处于完整的腋窝或腹股沟淋巴结清除术的病后状态的患者的替代性解剖位置分别是左膈和右膈。
将遵循初免/加强方案给予疫苗。如上所示,将在第1、4、8、15和22天给予疫苗的初免剂量。在加强阶段中,将在第85天(第13周)和第169天(第25周)给予疫苗。
将针对毒性对所有接受至少一个剂量的疫苗的患者进行评估。如果患者在诱导阶段过程中接受了所有疫苗接种并且在维持阶段过程中接受了第一次疫苗接种(加强),则可针对免疫活性对他们进行评估。
实例12:药效学研究
该免疫策略是一种“初免-加强”方法,涉及初始一系列紧密间隔的免疫来诱导免疫应答,随后休息一段时间以允许产生记忆T细胞。这之后将是加强免疫,并且预期此次加强之后4周(第一次免疫之后16周)T细胞应答将产生最强应答并且将是初级免疫终点。将以如下概述的逐步方式进行免疫监测,以表征引起的免疫应答的强度和质量。将收集外周血并且如在方案B中所示的,将PBMC在第一次疫苗接种(基线)之前两个分开的时间点和之后的不同时间点冷冻,并且在研究日历中指明。在已经分别从诱导阶段和维持阶段收集整组样品之后在给定患者体内进行免疫监测。如果可获得足够的肿瘤组织,则肿瘤的一部分将被用来发育用于在细胞毒性T细胞测定中使用的自体黑素瘤细胞系。
实例13:筛选离体IFN-γELISPOT
对于每个患者,将合成一组筛选肽。筛选肽的长度将是15个氨基酸(偶尔将使用16mer或17mer),11个氨基酸重叠并且覆盖每种肽的整个长度或对于新ORF衍生肽而言覆盖新ORF的整个长度。将以大致相等的浓度将整组患者特异性筛选肽聚池化在一起并且每种肽的一部分也将被单独存储。将通过在离体IFN-γELISPOT中用已建立的低背景测试来自5位健康供体的PBMC而确定肽池的纯度。最初,将在基线处和在第16周(初级免疫终点)获得的PBMC用完整池的重叠15-mer肽(11个氨基酸重叠)刺激18小时,以检查肽疫苗的整体应答。后续测定可以利用如指示的在其他时间点收集的PBMC。如果使用离体IFN-γELISPOT测定在初级免疫终点处未鉴定到应答,则将PBMC用该肽池刺激更长的时间段(长达10天)并且重新分析。
实例14:在后续离体IFN-γELISPOT测定中表位的解卷积。
一旦观察到由重叠肽池引起的离体IFN-γELISPOT应答(被定义为至少55个斑点形成单位/106个PBMC或与基线相比增加至少3倍),则将通过基于免疫肽解卷积肽池为亚池并重复离体IFN-γELISPOT测定而鉴定引起此应答的具体免疫原性肽。对于一些应答,将尝试通过利用衍生自在IFN-γELISPOT测定中确认的刺激肽的重叠8-10mer肽来精确表征刺激表位。可以将视情况而定针对适当的样品进行另外的测定。例如,
·将整个15mer池或亚池用作细胞内细胞因子染色测定的刺激肽,以鉴定并定量抗原特异性CD4+、CD8+、中枢记忆和效应记忆群体
·类似地,这些池将被用来评估由这些细胞分泌的细胞因子的模式,以确定TH1与TH2表型
·未刺激细胞的细胞外细胞因子染色和流式细胞术将被用来定量Treg和髓源性抑制细胞(MDSC)。
·如果从应答患者成功地建立了黑素瘤细胞系并且可以鉴定激活表位,则将使用突变型和对应的野生型肽进行T细胞细胞毒性测定
·将通过使用已知的黑素瘤肿瘤相关抗原作为刺激剂并且通过使用若干另外的不是在免疫原之间选择的经鉴定的突变表位评估来自初级免疫终点的PBMC的“表位扩展”。
将进行肿瘤样品的免疫组织化学,以定量CD4+、CD8+、MDSC及Treg浸润性群体。
实例15:用于系统地鉴定肿瘤新抗原的渠道
测序技术和肽表位预测方面的最新进展将被用来产生用于系统地发现候选肿瘤特异性HLA-结合新抗原的两步渠道。如图10所示,此方法以对肿瘤与匹配的正常DNA平行地进行DNA测序(例如,通过全外显子组测序(WES)或全基因组测序(WGS))开始,以全面地鉴定非同义体细胞突变(参见例如,劳伦斯(Lawrence)等人2013;齐布尔斯基(Cibulski)等人2012)。接下来,可以使用预测算法预测由具有与个性化I类HLA蛋白结合的潜力的肿瘤突变产生并且因而可以被呈递给CD8+ T细胞的候选肿瘤特异性突变肽,这些预测算法是如例如NetMHCpan(参见例如,林(Lin)2008;张(Zhang)2011)。基于它们与HLA的结合和在自体白血病细胞中表达同源mRNA的实验验证进一步评估候选肽抗原。
此条渠道被应用于被序列CLL样品的大数据集(参见例如,王(Wang)等人2011)。来自通过WES或WGS测序的91个病例,在蛋白质编码区中发现了总共1838个非同义突变,对应于每兆碱基(范围,0.08至2.70)0.72(±0.36s.d.)的平均体细胞突变率和每个患者(范围,2至76)平均20个非同义突变(参见例如,王(Wang)等人2011)。鉴定了三个通用类别的突变,这些突变被预期产生氨基酸变化区域并且因而可能通过免疫学方法被识别。最丰富的类别包括代表90%体细胞突变/CLL的导致单氨基酸(aa)变化的错义突变。在91个样品之中,99%具有错义突变并且69%具有10-25个之间的错义突变(参见例如,图2A)。另外两个类别的突变,移码和剪接位点突变(外显子-内含子连接处的突变),具有产生对于肿瘤而言完全特异性的较长段的氨基酸序列(neo-开放阅读框,或新ORF)的潜力,其中(与错义突变相比)具有更高数目的新抗原肽/给定改变。然而,与来自其他癌症类型的数据一致,在CLL中产生新ORF的突变的丰度比错义突变低大约10倍(参见例如,图2B-C)。考虑到错义突变的普遍性,随后的实验研究聚焦于分析由错义突变产生的新表位。
实例16:体细胞错义突变产生被预测与个性化HLA I类等位基因结合的新肽
T细胞通过T细胞受体(TCR)识别肽表位需要将在HLA分子的结合沟内结合的肽显示在抗原递呈细胞的表面上。最近跨>30种可用I类预测算法的比较研究已经显示跨HLA等位基因以高灵敏度和特异性一致地进行NetMHCpan(参见例如,张(Zhang)等人2011)。
在一组33个已知突变表位中测试了NetMHCpan算法以确定该算法是否将正确预测这33个已知突变表位的结合(参见例如,表4和5),这些表位起初在其功能活性(即,刺激抗肿瘤细胞溶解T细胞应答的能力)的基础上在文献中进行了鉴定或被表征为免疫原性次要组织相容性抗原。表4和5使用NetMHCpan跨人类癌症示出了已知的功能上衍生的免疫原性突变表位的HLA-肽结合亲和力。表4示出了来自错义突变的表位(NSCLC:非小细胞肺癌;MEL:黑素瘤;CLL:慢性淋巴细胞白血病;RCC:透明细胞肾癌;BLD:膀胱癌;NR:未报告)。黄色:IC50<150n,绿色:IC50 150-500nM并且灰色:IC50>500nM。
在所有的平铺9-me和10-mer可能性中,NetMHCpan鉴定所有33个功能上验证的突变表位为针对给定突变的可能选择中的最佳结合肽。33个突变表位中的每个的已知报告的HLA限制性元件的中值预测结合亲和力(IC50)为32nM(范围,3-11,192nM)。通过将预测IC50截留值设定为150nM和500nM,分别捕获了82%和91%的功能上验证的肽(参见例如,表4和5及图12A)。
在其高度的灵敏度和特异性的基础上,然后将NetMHCpan应用于HLA分型信息可得的91个CLL病例中的31个。按照惯例,IC50<150nM、IC50 150-500nM和IC50>500nM的肽分别被认为是强到中等结合物、弱结合物和非结合物(参见例如,蔡(Cai)等人2012)。对于所有91个CLL病例而言,发现了平均10种强结合肽(范围,2-40)和12种中等到弱结合肽(范围,2-41)。总计,预测每个病例平均22种(范围,6-81)肽的IC50<500nM(参见例如,图12B和表6)。具体而言,表6示出了从具有可得HLA分型的31个CLL病例中预测的肽的数目和亲和力分布。表达在白种人群体中最常见的8个HLA-A、-B等位基因的患者被标记为灰色。
表6.
实例17:超过一半预测的HLA-结合新肽显示在体外直接与HLA蛋白结合
如表7所示,使用竞争性MHC I等位基因结合测定验证通过HLA-肽结合预测产生的IC50 nM得分并聚焦于I类-A和-B等位基因。为此,合成了从4个CLL病例(患者1-4)鉴定来的112种突变肽(9或10-mer突变肽),其预测IC50得分小于500nM。实验结果与结合预测相关。分别在IC50<150nM或150-500nM的预测肽中的76.5%和36%中确认了实验结合(被定义为IC 50<500NM)(参见例如,图12C)。总计,约54.5%(61/112)的预测肽通过实验被验证为个性化HLA等位基因的结合物。总的说来,对9-mer肽的预测比对10-mer肽要更加灵敏,因为60%与44.5%的预测肽(IC50<500nM)可以分别被实验验证,如(图13)所示。
实例18:在CLL肿瘤中表达新抗原
只有当编码表位的基因在靶细胞中表达时,针对该表位的CTL应答才有用。在针对HLA测序并分型的31个患者样品之中,使26个经由全基因组表达谱分析(参见例如,布朗(Brown)等人2012)。将347个具有突变的基因在CLL样品中的表达水平分类为具有低/不存在(最低四分位数)、中(中间两个四分位数)或高(最高四分位数)表达。如图12D所示,347个突变基因中的80%(或具有预测的HLA-结合的180个突变中的79%)以中或高表达水平被表达。在具有预测的I类结合表位的221个突变基因(88.6%)亚群中观察到类似的高频表达。
可以基于每个基因产物的读数的数目确定RNA水平,并通过四分位数排序。“H”-最高四分位数;“M”-中间两个四分位数;“L”-最低四分位数(排除没有读数的基因);“-”-没有检测到读数。随着预测亲和力降低,可以将更高严格性应用于表达水平。即使通过RNA-Seq未检测到mRNA分子,仍利用具有预测的结合物的新ORF。当前没有数据可用于评估在肿瘤细胞中需要什么样(如果有的话)的最低表达水平来使新ORF可用作用于激活T细胞的靶标。实际上,注定用于无义介导的衰变的信使的“先锋”翻译的表达水平可以足以用于靶标产生(常YF(Chang YF)、伊玛目JS(Imam JS)、威尔金森MF(Wilkinson MF):无义介导的衰变RNA监督途径(The nonsense-mediated decay RNA surveillance pathway).生物化学年评(Annu Rev Biochem)76:51-74,2007)。因此,归因于其新颖性和近乎完美的肿瘤特异性,由于新ORF作为靶标的高价值,新ORF可以被用作免疫原,即使在RNA水平上的表达较低或不可检测到。
实例19:HSCT后在CLL患者1中检测到靶向候选新表位的T细胞
分析CLL中的异基因造血干细胞移植(HSCT)后环境,以确定是否可以在患者体内建立针对预测的突变肽的免疫应答。在HSCT之后从健康供体重建T细胞可以克服宿主的内源免疫缺陷,并且还允许在宿主体内针对白血病细胞进行初免。分析聚焦于两个患者,他们都已经经历了用于晚期CLL的不相关的强度降低的调节性同种异体-HSCT并且在HSCT之后实现了连续缓解持续超过4年(参见例如,表8)。从移植时收集移植后T细胞7年(患者1)和4年(患者2)。
表8示出了CLL患者1和2的临床特征。两个患者都实现了在HSCT之后超过7年(患者1)和4年(患者2)的持续性连续缓解。M:男性;HSCT:造血干细胞移植;RIC:强度降低的调节;Flu/Bu:氟达拉滨/白消安;GvHD:移植物抗宿主疾病;URD:无关供体;Mis:错义;FS:移码。
对于患者(患者1)而言,通过WES鉴定到25个错义突变。总计,来自13个突变的30种肽被预测与个性化HLA结合(13种肽的IC50<150;17种肽的IC50是150-500nM)。如图14A所示,肽预测的实验验证确认了衍生自9个突变的14种肽的HLA结合。所有30种预测的HLA结合肽被选择用于T细胞初免研究,并且被组织成5个池,每池6种肽(参见例如,表9)。将具有类似预测结合得分的肽放在一起放入同一池内。
表9提供了来自被包含在用于T细胞刺激研究的肽池中的患者1错义突变的肽的概述。在患者1中,使用以IC50<500nM与HLA-A和-B等位基因结合的所有预测肽。将5个突变肽池(每池6种肽)以与MHC I类等位基因的预测结合亲和力递减的顺序列出。对应的实验HLA-肽结合亲和力、野生型肽及其预测IC50得分被包括在最右栏中。
表9.
通过使用用候选新抗原肽池脉冲处理的一种或多种自体抗原呈递细胞(APC)扩增T细胞而测试它们的新抗原反应性(每周一次X4周)。如图14B所示,针对池2检测在IFN-γELISPOT测定中的反应性,但是未针对无关肽(Tax肽)进行检测。池的解卷积揭示到,池2内的突变(mut)ALMS1和C6orf89肽具免疫原性。ALMS1在纤毛功能、细胞休眠和胞内转运中发挥一定作用,并且此基因中的突变已经被牵涉于II型糖尿病中。C6orf89编码一种与铃蟾肽受体亚型-3相互作用的蛋白质,在细胞周期进程和支气管上皮细胞的伤口修复中涉及该蛋白质。两个突变位点都不在该基因的保守区中,并且没有在先前被报道在癌症中突变的基因内。两种靶标肽都在14种预测肽亚群之中,这些肽可以通过实验证实结合患者1的HLA等位基因。mut和野生型(wt)ALMS1的实验结合得分分别为91nM和666nM;并且mut-和wt-C6ORF89的实验结合得分分别为131nM和1.7nM(参加例如,图14C和表9)。两个突变基因都定位于保守性差的区并且未定位于先前报道的癌症中的突变位点(参加例如,图15-16)。
实例20:CLL患者2针对天然加工的突变FNDC3B肽展示出免疫性
在患者2中,测试了个性化新抗原在长期缓解环境中促进记忆T应答的能力。从此个体鉴定了26个非同义错义突变。总计,来自16个突变的37种肽被预测与个性化HLA等位基因结合,其中来自12个突变的18种肽可以被实验验证(15种IC50<150;3种IC50是150-500nM)(参见例如,图17A)。在患者2中,研究了所有18种经实验验证的HLA-结合肽。使用3个池(每池6种肽)进行T细胞刺激(参见例如,表10)。表10示出了来自被包含在用于T细胞刺激研究的肽池中的患者2错义突变的肽的概述。在患者2中,使用通过实验确认与HLA-A和-B等位基因结合的所有肽。将3个肽池(每池6种肽)以突变肽的实验结合亲和力递减的顺序列出。对应的野生型肽及其预测的IC50得分被包括在最右栏中。
表10.
具有类似实验结合得分的肽被合并在同一池内。在2轮每周刺激之后,评估T细胞针对突变肽池脉冲处理的自体APC的应答,并且发现T细胞对池1具反应性,如图17B所示。池的解卷积尤其揭示了此池内的作为显性免疫原性肽的mut-FNDC3B(mut-和wt-FNDC3B的实验的IC50分别为6.2nM和2.7nM;参见例如,图17C)。FNDC3B在血液恶性肿瘤中的功能是不清楚的,尽管已知FNDC3B表达的下调可上调miR-143表达,已经显示这可分化前列腺癌干细胞并促进前列腺癌转移。类似于ALMS1和C6orf89,FNDC3B中的突变既未定位于进化保守区,它也不是在其他癌症中先前报道的(参见例如,图15和16)。
针对mut-FNDC3B的T细胞反应性是多功能的(分泌GM-CSF、IFN-γ和IL-2,并且对于mut-FNDC3B肽而言是特异性的,但是对其野生型对等物并非如此。测试T细胞针对不同浓度的mut-和wt-FNDC3B肽的反应性揭示了mut-FNDC3B反应性T细胞的高亲合力和特异性。T细胞反应性被I类阻断抗体(W6/32)的存在消除,从而指示T细胞反应性是受I类限制(参见例如,图17D-E)。此外,mut-FNDC3B肽似乎是一种被天然加工且呈递的肽,因为检测到T细胞针对表达HLA-A2的APC的反应性,这些APC被以下300碱基对微基因而非野生型微基因转染,该微基因涵盖基因突变区域,如图17E,右图所示。
使用mut-FNDC3B/A2+特异性四聚体,与来自健康成人HLA-A2+志愿者的对照PBMC(0.38%)相比,在池1刺激的T细胞内检测到离散群体的mut-FNDC3B反应性CD8+ T细胞(群体的2.42%),如图17F所示。FNDC3B在182个CLL病例(包括患者2)的大数据集和24个从正常志愿者收集来的CD19+B细胞中的基因表达分析揭示了与其他CLL和正常B细胞相比,此基因在患者2体内被相对过表达,如图17G所示。因此,清楚的是可以在CLL患者2体内追踪到长寿命新抗原特异性T细胞。
为了定义mut-FNDC3B特异性T细胞关于HSCT后过程的动力学,将分离自HSCT之前和之后的不同时间点的患者2T细胞刺激2周并且然后在ELISPOT上测试其IFN-γ反应性。mut-FNDC3B特异性T细胞的出现与分子缓解一致并且在连续缓解的情况下得以随时间持续。如图18所示(顶图和中图),在HSCT之前或HSCT之后长达3个月未检测到mut-FNDC3B T细胞应答。在HSCT之后4个月首次实现了分子缓解,并且然后在HSCT之后6个月首次检测到mut-FNDC3B特异性T细胞。抗原特异性反应性随后减弱(在HSCT后12个月与20个月之间),但是在HSCT后第32个月被再次强烈检测到。基于mut-FNDC3B特异性T细胞的TCR的分子分析,将Vβ11鉴定为被反应性T细胞所使用的优势CDR3 Vβ亚家族,如图19和表11所示。表11示出了用于扩增TCR Vβ亚家族的引物。
表11.
此分子信息被用来开发克隆特异性巢式PCR测定。应用此测定观察到,在正常健康志愿者的PBMC(n=3)和CD8+ T细胞中未检测到对mut-FNDC3B具有相同特异性的T细胞(参见例如,表12),但是可以检测到与如在HSCT之后在患者体内检测到IFN-γ分泌的类似的动力学,如图18,底图所示。尽管克隆特异性T细胞的相对数目随时间下降,但是与HSCT之后6个月相比,较低浓度的肽抗原可以在32个月刺激T细胞反应性,指示了随时间出现了潜在地更多的抗原敏感记忆T细胞(参见例如,图18,插图)。
表12示出了使用T细胞受体特异性引物在患者2体内检测到mut-FNDC3B特异性TCRVβ11。设计实时PCR测定来检测mut-FNDC3B特异性TCR Vβ11克隆。此克隆在健康供体PBMC(n=3)或CD8 T细胞中是检测不到的,但是可以清楚地在来自患者2的mut-FNDC3B反应性T细胞的cDNA中检测到(在HSCT之后6个月)。将PCR产物针对针对18S核糖体RNA进行标准化。-,阴性:无扩增;+,阳性:检测到扩增;++,双阳性:检测到扩增并且扩增水平大于所有阳性样品的中值水平。
表12.
实例21:跨不同癌症预测到大量候选新抗原
CLL的总体体细胞突变率类似于其他血液恶性肿瘤,但是与实体瘤恶性肿瘤相比较低(参见例如,图20A)。为了检查肿瘤类型和突变率如何影响候选新抗原的丰度和质量,将该渠道应用于来自13种恶性肿瘤的公开可用的WES数据-包括高(黑素瘤(MEL)、肺鳞癌(LUSC)和腺癌(LUAD)、头颈癌(HNC)、膀胱癌、结肠和直肠腺癌),中(成胶质细胞瘤(GBM)、卵巢癌、透明细胞肾癌(透明细胞RCC)及乳腺癌)以及低(CLL和急性髓细胞白血病(AML))癌症。为了进行此项分析,还实施了一种最近描述的允许从WES数据推理HLA分型的算法(刘(Liu)等人2013)。
这些实体恶性肿瘤的总体突变率高于CLL一个数量级并且与增加的错义突变中值数目相关。例如,对应地,黑素瘤显示出每个病例平均300个(范围,34-4276)错义突变,而RCC具有41个(范围,10-101)。当与CLL相比时,移码和剪接位点突变在RCC和黑素瘤中就频率而言仅增加了2-3倍,并且每个样品的总计新ORF长度仅适度增加(增加了5-13倍)。总的说来,从每个样品的错义和移码事件产生的IC50<500nM的预测新肽的中值数目与突变率成比例;与CLL(24;范围2-124)相比,对于黑素瘤(488;范围,18-5811)和RCC(80;范围,6-407)而言,这分别高大约20倍和4倍。使用阈值更加严格的IC50<150nM,黑素瘤、RCC和CLL的对应的预测新肽数目分别为212、35和10,如图20B和表13所示。
表13示出了跨13种癌症的突变类别分布、总计的新ORF尺寸和预测的结合肽数目。MEL:黑素瘤,LUSC:肺鳞状细胞癌,LUAD:肺腺癌,BLCA:膀胱癌,HNSC:头颈癌,COAD:结肠腺癌,READ:肾腺癌,GBM:成胶质细胞瘤,OV:卵巢癌,RCC:透明细胞肾癌,BRCA:乳腺癌,CLL:慢性淋巴细胞白血病,AML:急性髓细胞白血病。*-基于错义和移码突变的肽的预测数目。
实例22:用于解决克隆突变的临床策略
“克隆”突变是在肿瘤内的所有癌症细胞中发现的那些,而“亚克隆”突变是统计学上不在所有癌症细胞中并且因此衍生自肿瘤内的亚群的那些。
根据在此的技术,可以使用生物信息学分析来估计突变的克隆性。例如,ABSOLUTE算法(卡特(Carter)等人2012,兰道(Landau)等人2013)可以被用来估计肿瘤纯度、倍性、绝对拷贝数以及突变的克隆性。可以生成每个突变的等位基因分数的概率密度分布,随后将其转化为这些突变的癌症细胞分数(CCF)。可以基于其CCF超过0.95的后验概率是大于还是小于0.5而将突变分别分类为克隆的或亚克隆的。
在本披露的范围内考虑到的是,新抗原疫苗可以包括克隆突变、亚克隆突变或两种类型的突变的肽。该决定可以取决于患者的疾病阶段和被测序的这个或这些肿瘤样品。对于在辅助情况下的初始临床研究而言,在肽选择过程中可以无需区分这两种突变类型,然而,本领域的普通技术人员应认识到,出于许多原因,此类信息在指导未来的研究中可以是有用的。
首先,主题肿瘤细胞可以是遗传异质的。已经公开了多项研究,在其中已经评估了代表不同阶段疾病进展的肿瘤的异质性。这些包括检查从癌前疾病(骨髓增生异常综合征)演化成白血病(继发性急性髓细胞白血病[AML])(沃尔特(Walter)等人2012),疗法诱导的AML缓解之后复发(丁(Ding)等人2012),从原发性演化成转移性乳腺癌和成神经管细胞瘤(丁等人2012;吴(Wu)等人自然(Nature)2012)以及由原发性演化成高度转移性胰腺癌和肾癌(谷地田(Yachida)等人2012;格林格(Gerlinger)等人2012)。大多数研究利用基因组或外显子组测序,但是一项研究还评估了拷贝数变化和CpG甲基化模式变化。这些研究已经显示,在癌症细胞生长过程中获得改变突变谱的遗传事件。许多并且通常是大多数(40%-90%)的最早可检测的突变(“奠基者(founder)突变”)持续在所有进化变体中,但是进化克隆独有的新的突变确实出现了并且这些突变在不同进化克隆之间可以是不同的。这些变化可以由宿主/癌症细胞“环境”压力和/或治疗性干预驱动并且因此更高度转移性疾病或现有治疗性干预通常导致更显著的异质性。
其次,考虑到可以最初对每个患者的单一肿瘤测序,这可以为那一具体时间点的遗传变异谱提供快照。测序肿瘤可以来源于处于过渡/卫星转移或可切除内脏转移的临床上明显的淋巴结。最初测试的患者都未患有临床上已经发展到多个部位的疾病;然而,考虑到在此描述的技术将可广泛适用于患有已经发展到多个部位的癌症的患者。在此肿瘤细胞群体内,“克隆突变”可以由奠基者突变和存在于细胞中的任何新颖突变两者构成,该细胞是切除的肿瘤的种子细胞,并且亚克隆突变代表在切除肿瘤生长过程中进化的那些。
第三,对于针对靶标的疫苗诱导的T细胞而言临床上重要的肿瘤细胞通常不是被切除的肿瘤细胞,而是在给定患者体内当前不可检测到的其他肿瘤细胞。这些细胞可能已经从原发性肿瘤或从切除肿瘤直接扩散,可能衍生自种肿瘤内的显性或亚显性群体,并且可能已经在手术切除部位得到了进一步遗传进化。这些事件当前是不可预测的。
因此,对于手术切除的辅助情况而言,不存在先验方式来决定在切除肿瘤中发现的克隆的或亚克隆的突变是否代表用于靶向其他未切除癌症细胞的最佳选择。例如,在切除肿瘤内是亚克隆的突变在其他部位可能是克隆的,如果那些其他部位接种自包含切除肿瘤内的亚克隆突变的细胞亚群。
然而,在其他疾病情形(如患者携带多个且转移性病灶的情形)中,对多于一个病灶(或病灶的部分)或来自不同时间点的病灶测序可以相对于有效肽选择提供更多信息。在用于疫苗的新抗原表位设计中,克隆突变可以典型地被优先化。在一些情况下,尤其是当肿瘤进化并且评估个体患者的来自转移性病灶的测序细节时,某些亚克隆突变可以被优先考虑为肽选择的一部分。
实例23:个性化癌症疫苗刺激针对肿瘤新抗原的免疫性
全面生物信息学与CLL和其他癌症中的功能数据的上述详细整合提供了若干新颖生物见解。首先,尽管CLL是一种相对较低突变率癌症,但是仍然有可能鉴定由引起长期T细胞应答的体细胞突变产生的表位。来自31个CLL样品的全外显子组测序数据揭示:每个病例,平均22种肽(范围,6-81)被预测以IC50<500nM与个性化HLA-A和-B等位基因结合,这些肽源自平均16个(范围,2-75)错义突变。通过实验验证大约75%和一半(54.5%)分别具有IC50<150nM和500nM的预测肽与患者的HLA等位基因结合。RNA表达分析显示,几乎90%的对应于预测突变肽的同源基因被确认可在CLL细胞中表达并且在测试的三个(数据未显示)实例的每个中都检测到来自突变等位基因的转录物的表达。尽管在移植之后数年仍可以检测到此应答,但是仅有一部分新表位产生了自发性T-细胞应答;约6%(3/48)的所有经预测且经测试的突变肽或9%(3/32)的经实验验证且经测试的突变肽刺激来自患者T细胞的IFN-γ分泌应答。CLL(一种低突变率肿瘤)中的此新表位发现率非常类似于最近在黑素瘤(一种高突变率癌症)中报道的发现率(4.5%,或11/247肽;罗宾斯PF(Robbins PF)、鲁YC(LuYC)、埃尔-贾米勒M(El-Gamil M)等人:挖掘用于鉴定由过继性转移的肿瘤反应性T细胞识别的突变抗原的外显子组测序数据(Mining exomic sequencing data to identifymutated antigens recognized by adoptively transferred tumor-reactive Tcells).自然医学(Nat Med),2013)。因此,可以跨宽范围的癌症(包括低突变率肿瘤)系统地发现功能性新表位。
第二个重要发现是针对CLL新表位的T细胞应答是长寿命的(大约若干年),与连续疾病缓解相关并且在与记忆T细胞应答一致的时间框中在体外刺激过程中产生。这些研究增补了针对肿瘤新抗原回应的越来越多的文献,这些肿瘤新抗原促进有效的免疫应答。因此,尽管从错义突变产生的大约5%的预测肽产生可检测的T细胞应答,但是此应答的动力学表明了在持续的抗白血病监督功能中的可能作用。新抗原定向的T细胞应答的功能影响得到了来自卡斯尔(Castle)等人的一项最近研究的支持(卡斯尔JC(Castle JC)、克赖特S(Kreiter S)、狄克曼J(Diekmann J)等人:开拓用于肿瘤疫苗接种的变异组(Exploitingthe mutanome for tumor vaccination).癌症研究(Cancer Res)72:1081-1091,2012),他们通过对B16鼠类黑素瘤进行WES并预测肽-HLA等位基因结合物而鉴定了候选新表位。这些预测表位亚群不仅引起对于突变肽而非野生型对等物具特异性的免疫应答,而且还可以在治疗和预防两者上控制疾病。虽然难于直接比较肿瘤新抗原与其他类型的CLL抗原(如过表达的或共享的天然抗原)(与黑素瘤相反,CLL肿瘤抗原没有得到很好表征)或与GvL应答的相对贡献,来自存活延长的黑素瘤患者的抗原特异性T细胞应答的现有表征表明,抗新抗原免疫性与针对共享的过表达肿瘤抗原的免疫性相比随时间更长期和持久。
第三,这些结果强调以下概念,即靶向肿瘤特异性“主体(trunk)”突变从免疫学角度看可能是影响深远的。这两个患者体内的所有三种免疫原性新抗原(突变的FND3CB、ALMS1、C6orf89)似乎都是不直接促成致癌过程的乘客(passenger)突变,并且是克隆的,影响大部分癌症质量。这些免疫原性突变的若干特征表明它们是乘客突变:在突变周围缺乏序列保守性并且在观察位点处缺乏先前在其他癌症中报道的突变。因为克隆进化是癌症的一个基本特征,已经假定免疫靶向癌症驱动子将具有最小化抗原性漂移的优点,考虑到这些驱动子在肿瘤功能中的必要性,即在面对选择压力时需要维持它们。尽管这样一种优点可以是可能的,但是它明显不是必要条件。另外,驱动子突变可以不一定产生免疫原性肽。例如,患者2体内的TP53-S83R突变未针对其I类HLA-A或-B等位基因中任一者产生<500nM的预测表位。
最后,来自本文献的新抗原数据的结合特征(表4)的分析以及来自CLL中的数据的候选新表位的分析揭示了以下概念性见解,即点突变类型最有可能有效地产生T细胞应答。发现免疫原性新表位的一致特征是预测的结合亲和力<500nM(3种免疫原性CLL肽中的3种以及33种过去的功能性新表位中的30种[91%])并且这些中的大部分(92%)显示出<150nM的预测亲和力。然而,出乎意料地,在大多数情况下(3种免疫原性CLL肽中的3种以及33种过去的功能性表位中的27种[82%]),对应的野生型表位也被预测以可比的强/中(<150nM,表4中的组1)或弱(150-500nM,表4中的组2)亲和力结合。这些数据支持以下想法,即在针对新抗原的天然存在的T细胞应答中通常观察到两种类型的突变:(1)导致与MHC等位基因实质上结合更好的位置处的突变(突变的ALMS1以及33种过去的功能上鉴定的新表位中的6种(18%)[‘组3’,表4]),推测是由于与MHC的相互作用得到改善,或(2)不显著与MHC相互作用而是推测地改变T细胞受体结合的位置处的突变(3种CLL表位中的2种[FNDC3B和C6orf89]以及33种天然免疫原性新表位中的24种(73%)[‘组1’和‘组2’,表4])。这两种类型的突变之间的差别与以下概念相符,即可以将肽认为是“钥匙(key)”,它必须适合MHC和TCR两把“锁(lock)”,以便刺激细胞溶解,从而允突变独立地改变MHC或TCR结合。次要组织相容性抗原对移植物抗宿主疾病的贡献除外,在这些患者中,即使在发生了针对突变肽的反应并且同源天然肽被预测为紧密结合物的那些患者中,没有关于与新抗原联系的自身免疫后遗症的报道。此结果与以下想法一致,即结合MHC的天然肽通常被涉及于阴性选择过程中,其中带有对这些天然肽具反应性的TCR的T细胞被通过胸腺(thymically)缺失或变得无免疫性,可是由于突变肽至T细胞受体的呈递被改变,T细胞组库仍可以适应产生针对新表位肽的特异性免疫应答。很显然,患者体内的每个单独肿瘤都具有广谱的共有和个性化遗传改变两者,这些遗传改变可以继续响应于环境而进化,并且此进展通常可以导致对疗法的抗性。考虑到肿瘤的独特性和可塑性,可能需要基于存在于每个肿瘤中的精确突变定制最佳疗法,并且可能需要靶向多个淋巴结以避免抗性。人类CTL的庞大组库具有产生这样一种疗法的潜力,该疗法靶向多个、个性化肿瘤抗原。如以上所讨论的,本披露显示可以通过使用大规模平行测序与有效地预测HLA-结合肽的算法组合来系统地鉴定具有肿瘤特异性突变的CTL靶抗原。有利的是,本披露允许预测到多种低和高突变率癌症中的肿瘤新抗原,并且通过实验鉴定了靶向CLL患者体内的白血病新抗原的长寿命CTL。本披露支持靶向肿瘤新抗原的保护性免疫的存在,并且提供了一种用于为个性化肿瘤疫苗选择新抗原的方法。
如上文所详细讨论的,将在此描述的技术应用于独特的CLL患者组,这些患者在异基因-HSCT之后产生了与抗肿瘤免疫应答相关的临床上明显的持续缓解。这些移植物抗白血病应答被典型地归因于靶向造血细胞的同种异体反应性免疫应答。然而,上述结果指示,GvL应答还与识别个性化白血病新抗原的CTL相关。这些结果与以下数据一致,该数据指示存在对肿瘤而非同种异体抗原具有特异性的GvL相关CTL。已经假设,新抗原反应性CTL在癌症监督中是重要的,因为长期黑素瘤存活者的研究发现,与针对非突变过的表达的肿瘤抗原的那些相比,靶向新抗原的CTL显著更丰富且持久(伦内尔兹V(Lennerz V)、法涛M(FathoM)、真蒂利尼C(Gentilini C)等人:自体T细胞对人类黑素瘤的应答受突变新抗原左右(Theresponse of autologous T cells to a human melanoma is dominated by mutatedneoantigens).美国国家科学院院刊(Proc Natl Acad Sci U S A)102:16013-8,2005)。以上呈现的数据与此项黑素瘤研究一致,因为发现CLL患者体内的新抗原特异性T细胞应答是长寿命的(大约若干年)记忆T细胞(基于其在体外的快速刺激动力学)并且与连续疾病缓解相关。因此,新抗原反应性CTL可能在移植CLL患者体内在控制白血病方面发挥积极作用。
更一般地说,估计并且发现新抗原跨许多肿瘤的丰度是具有IC50<500nM的约1.5个HLA-结合肽/点突变和约4个结合肽/移码突变。正如所料,预测的HLA结合肽的比率反映每种肿瘤类型的体细胞突变率(参见例如,图20)。两种方法被用来研究预测的结合亲和力与诱导CTL的免疫原性新抗原之间的关系。将上述技术应用于公开的疫原性肿瘤新抗原(即,其中在患者体内观察到反应性CTL),证明绝大多数(91%)的功能性新抗原被预测以IC50<500nM结合HLA(其中约70%的野生型对等物表位被预测以类似的亲和力结合)(参见例如,表4)。此测试使用了一组金标新抗原,确认到在此描述的技术正确分类了真阳性。预期预测新表位,随后进行功能验证,显示6%(3/48)的预测表位与患者体内的新抗原特异性T细胞应答相关--与最近针对黑素瘤发现的4.8%的比率可比。低比例不一定意味着算法的预测准确度低。相反,真实新抗原的数目被大大低估,因为:(i)同种异体-HSCT是一种可能仅诱导小数目的新抗原特异性T细胞记忆克隆的通用细胞疗法;并且(ii)标准T细胞扩增方法对于检测初始T细胞而言不足够敏感,这些初始T细胞代表该组库的大得多的部分但是前体频率低得多。尽管尚未测量到靶向新ORF的CTL的频率,在本发明的范围内明确考虑到的是,此类别的新抗原可以作为优异的候选新表位,因为它们可能更具特异性(因为缺乏野生型对等物)和免疫原性(作为绕开胸腺耐受的结果)。
随着不断开发十分强大的疫苗接种试剂,本披露提供了使得产生有效地刺激针对肿瘤新抗原的免疫的个性化癌症疫苗可行的技术。
材料与方法
患者样品:肝素化血液获得自在达纳法博癌症研究所(DFCI)募集在临床研究方案中的患者。所有临床方案都得到了DFCI人类受试者保护委员会(Human SubjectsProtection Committee)的批准。通过聚蔗糖/泛影钠密度梯度离心分离来自患者样品的外周血单核细胞(PBMC),用10% DMSO深冷保存,并存储在蒸汽相液氮中直到分析时。对于患者亚群,通过分子或血清学分型进行HLA分型(组织分型实验室(Tissue TypingLaboratory),布莱根妇女医院(Brigham and Women's Hospital),波士顿(Boston),马萨诸塞州)。
CLL和其他癌症的全外显子组捕获测序:黑素瘤列表获得自dbGaP数据库(phs000452.v1.p1)并且对于其他11种癌症而言,是通过TCGA(可通过萨热生物网络的突触资源(Sage Bionetworks'Synapse resource)获得(在万维网的(www)synapse.org/#!Synapse:syn1729383))。使用基于两级似然度的方法对跨这13种肿瘤类型的2488个样品中的HLA-A、HLA-B和HLA-C基因座测序,并且将此数据总结于表14中。简言之,基于IMGT数据库,构建由所有已知HLA等位基因(6597个独特条目)组成的专用的序列文库。从此资源产生38-mer的次级文库,并且基于针对其的完美匹配,从所有序列读数中提取源自HLA基因座的推定读数。然后使用Novoalign软件(在万维网的(www)novocraft.com)将提取的读数与基于IMGT的HLA序列文库进行比对,并且通过两级似然度计算来推断HLA等位基因。在第一级中,将基于群体的频率用作每个等位基因的先验值(prior)并且基于比对的读数的质量和插入片段尺寸分布计算后验似然度。对HLA-A、B和C基因中的每者具有最高似然度的等位基因被鉴定为第一组等位基因。然后,将计算的似然度的启发式加权策略与第一组获胜者结合用来鉴定第二组等位基因。
表14跨癌症针对新抗原负荷估计值示出了TCGA患者ID。LUSC(肺鳞癌),LUAD(肺腺癌),BLCA(膀胱癌),HNSC(头颈癌),COAD(结肠癌)和READ(直肠癌),GBM(成胶质细胞瘤),OV(卵巢癌),RCC(透明细胞肾癌),AML(急性髓细胞白血病)以及BRCA(乳腺癌)。
表14
用于通过与个性化HLA等位基因结合而预测衍生自基因突变的肽的渠道:使用NetMHCpan(版本2.4)跨由每个体细胞突变产生的所有可能9-mer和10-mer肽以及对应的野生型肽来预测MHC-结合亲和力。在患者的HLA谱中分析这些平铺肽对每个I类等位基因的结合亲和力(IC50 nM)。小于150nM的IC50值被认为是预测的强到中结合物,150-500nM的IC50被认为是预测的弱结合物,而IC50>500nM被认为是非结合物。使用竞争性MHC I类等位基因-结合测定实验确认预测的肽与HLA分子的结合(IC50<500nM)并已经被详细描述在别处(蔡(Cai)等人28以及茜德尼(Sidney)等人2001)。
抗原的来源:由新英格兰肽(New England Peptide)(加德纳,马萨诸塞州)或RS合成(RS Synthesis)(路易斯维尔,肯塔基州)来合成纯度>95%的肽(通过高效液相层析证实)。将肽在DMSO(10mg/ml)中复水并存储在-80℃下直到使用。使用以下引物将由涵盖mut或wt FNDC3B的300bp序列构成的微基因从患者2的肿瘤中PCR克隆进表达载体pcDNA3.1中:5’引物:GACGTCGGATCCCACCATGGGTCCCGGAATTAAGAAAACAGAG;3’引物:CCCGGGGCGGCCGCCTAATGGTGATGGTGATGGTGACATTCTAA TTCTTCTCCACTGTAAA。经由Amaxa核转染(溶液V,程序T16,龙沙公司(Lonza Inc);沃克斯维尔,马里兰州)通过向200万个被HLA-A2稳定转染的K562细胞(ATCC)中引入20μg的质粒而在抗原呈递靶细胞中表达微基因。将细胞在RPMI培养基(Cellgro;马纳萨斯,弗吉尼亚州)中孵育,该培养基补充有10%胎牛血清(Cellgro)、1%HEPES缓冲液(Cellgro)和1%L-谷氨酰胺(Cellgro)。在核转染之后2天收获细胞用于免疫测定。
CLL病例中的基因表达分析:重新分析先前报告的微阵列数(NCI基因表达汇编(Gene Expression Omnibus)登录GSE37168)。使用R中的affy包(affy package in R)处理Affymetrix CEL文件。将鲁棒的多芯片分析(Robust Multichip Analysis)(RMA)算法用于背景校正,它将观察到的强度模拟为指数分布的信号和正态分布的噪声的混合物。这之后是跨阵列的分位数标准化,以有助于在不同条件下比较基因表达。最后,使用中值平滑方法总结单个的探针水平,以得到鲁棒的探针组水平值。通过选择具有每个基因的最大平均表达的探针而获得基因水平值。通过使用Combat程序删除数据中的批次效应。
从患者PBMC产生抗原特异性T细胞并对其进行检测:从免疫磁性分离的CD14+细胞(美天旎(Miltenyi),奥本(Auburn),加尼福尼亚州)产生自体树突细胞(DC),上述CD14+细胞在120ng/ml GM-CSF和70ng/ml IL-4(R&D系统(R&D Systems),明尼阿波利斯,明尼苏达州)的存在下,在补充有3%胎牛血清、1%青霉素-链霉素(Cellgro)、1% L-谷氨酰胺和1%HEPES缓冲液的RPMI(Cellgro)中进行培养。在第三天和第五天,添加另外的GM-CSF和IL-4。在第六天,除添加IL-4和GM-CSF之外,将细胞暴露于30μg/ml聚I:C(西格玛-奥德里奇公司(Sigma-Aldrich),圣路易斯,密苏里州),以经历成熟(持续48小时)。通过免疫磁性选择从患者PBMC分离CD19+B细胞(CD19+微珠粒;美天旎,奥本,加尼福尼亚州),并以1x106个细胞/孔接种在24孔板中。将B细胞在B细胞培养基(伊斯科夫改良的达尔伯克培养基(Iscovesmodified Dulbecco medium)(IMDM;生命科技公司(Life Technologies),沃本,马萨诸塞州))中进行培养,该培养基补充有10%人类AB血清(GemCell,萨克拉门托,加利福尼亚)、5μg/mL胰岛素(西格玛化学有限公司(Sigma Chemical),圣路易斯,密苏里州)、15μg/mL庆大霉素、IL-4(2ng/ml,R&D系统,明尼阿波利斯,明尼苏达州以及CD40L-Tri(1μg/ml)。每3-4天补充一次CD40L-Tri。对于一些实验,将CD40L-Tri激活且扩增的CD19+B细胞用作APC。
从患者PBMC产生抗原特异性T细胞:为了从CLL患者产生肽反应性T细胞,在补充有10% FBS和5-10ng/mL IL-7、IL-12和IL-15的完全培养基中将来自移植前和移植后的PBMC的免疫磁性选择的CD8+ T细胞(5x106/孔)(CD8+微珠粒,美天旎,奥本,加尼福尼亚州)分别与自体肽池脉冲处理过的DC(比率为40:1)或CD40L-Tri-激活的辐射B细胞(比率为4:1)一起培养。APC将用肽池(10μM/肽/池)脉冲处理3小时。每周用APC重新刺激CD8+ T细胞(持续1-3周,从第7天开始)。
抗原特异性T细胞的检测:在第2次和第4次刺激之后10天,通过IFN-γELISPOT测定测试T细胞针对肽池的特异性。使用测试肽和对照肽脉冲处理的、CD40L-激活的B细胞(50,000个细胞/孔)检测IFN-γ释放,所述B细胞与50,000个CD8+ T细胞/孔(密理博公司(Millipore),比勒利卡,马萨诸塞州)在ELISPOT板上共同孵育24小时。按照指示(MabtechAB,马里蒙特(Mariemont),俄亥俄州),使用捕获抗体和检测抗体检测IFN-γ,并成像(免疫斑点系列分析仪(ImmunoSpot Series Analyzer);细胞科技公司(Cellular Technology),克利夫兰,俄亥俄州)。为了测试T细胞反应性对MHC I类的依赖性,在将T细胞引入孔中之前,首先将ELISPOT板用APC包衣,所述APC与I类阻断抗体(W6/32)在37℃下共同孵育2小时。遵照指示(埃默里大学(Emory University),亚特兰大,佐治亚州),MHC I类四聚体被用来测试T细胞的特异性。用于四聚体染色,将5x105个细胞与1μg/mL PE标记的四聚体在4℃下一起孵育60分钟,并且然后在添加抗CD3-FITC和抗CD8-APC抗体(BD生物科学(BDBiosciences),圣迭戈,加利福尼亚州)的情况下在4℃下再孵育30分钟。每个样品最少获得100,000个事件。根据制造商的建议(EMD密理博公司,比勒利卡,马萨诸塞州),通过使用基于Luminex多重珠粒的技术分析培养上清液来检测来自培养的CD8+ T细胞的GM-CSF和IL-2分泌。简言之,将荧光标记的微球用特异性细胞因子捕获抗体包衣。在与培养上清液样品一起孵育之后,通过生物素化检测抗体,随后是链霉亲和素-PE轭合物检测捕获的细胞因子,并且测量中值荧光强度(MFI)(Luminex 200珠粒阵列仪;Luminex集团,奥斯汀,德克萨斯州)。基于标准曲线,在Bead View软件程序(Upstate,EMD密理博公司,比勒利卡,马萨诸塞州)中计算细胞因子水平。用于检测和定量TCR Vβ克隆型,根据制造商的说明书和如先前描述,使用IFN-γ分泌测定(美天旎,奥本,加尼福尼亚州)从患者2的T细胞系中富集mut-FNDC3B特异性T细胞。
统计考虑事项:针对T细胞对处于IFN-γ、GM-CSF和IL-2释放形式的mut与wt肽的反应性构建双向ANOVA模型,并且包括作为固定效应的浓度和突变状态连同相互作用项(适当时)。使用图基(Tukey)方法针对多次事后比较调整这些模型的P值。用于IFN-γ的标准化比较,进行t-检验,以测试以下假设,即标准化比率等于一。对于组间的连续测量的其他比较,使用韦尔奇(Welch)t-检验。报告的所有P值都是双侧的并且在针对多次比较进行适当调整的情况下被认为在0.05水平上是显著的。在SAS v9.2中进行分析。
检测和定量TCR Vβ克隆型:为了检测mut-FNDC3B特异性TCR Vβ,从肽特异性IFN-γ富集的T细胞群体进行两步巢式PCR。简言之,在24个已知Vβ亚家族之间鉴定显性Vβ亚家族。首先,产生5个Vβ正向引物池(池1:Vβ1-5.1;池2:Vβ5.2-9;池3:Vβ10-13.2;池4:Vβ14-19;以及池5:Vβ20,22-25)。使用随机六聚体将提取自T细胞克隆(QIAamp RNA血液迷你试剂盒(QIAamp RNA Blood Mini-kit);凯杰公司(Qiagen),瓦伦西亚,加利福尼亚州)的RNA逆转录成cDNA(Superscript,GIBCO BRL,盖瑟斯堡,马里兰州),并且在五个分开的20μl体积反应中进行PCR扩增。其次,再次扩增T细胞克隆衍生的cDNA,使用5个被包含在阳性池内的单独引物中的每者连同FAM轭合的Cβ反向(内部)引物。随后,在20μl的总体积中,用1μl的克隆CDR3区域特异性引物和探针以及10μl的Taqman快速通用PCR预混合剂(Taqman FastUniversal PCR Master Mix)(应用生物系统公司(Applied Biosystems),福斯特城,加利福尼亚州)扩增4μl的此PCR产物。PCR扩增条件是:95℃持续20分钟×1个循环;和40个循环,95℃持续3秒,随后60℃持续30秒(7500快速实时PCR循环仪(Fast Real-time PCRcycler);应用生物系统公司,福斯特城,加利福尼亚州)。如先前所描述的,通过计算2^(S18rRNA CT-靶标CT),相对于S18核糖体RNA转录物对测试转录物进行定量。
检测分子肿瘤负荷:如先前所描述的,使用一组VH-特异性PCR引物鉴定患者2的克隆型IgH序列。基于此序列,设计定量Taqman PCR测定,这样使得序列特异性探针可以被定位在连接多样性区域中(应用生物系统公司,福斯特城,加利福尼亚州)。将此Taqman测定应用于来自肿瘤的cDNA。所有PCR反应由以下项组成:50℃持续1分钟x1个循环;95℃持续10分钟x1个循环;以及40个循环,95℃持续15秒,随后60℃持续1分钟。使用7500快速实时PCR循环仪(应用生物系统公司,福斯特城,加利福尼亚州)进行所有反应。相对于GAPDH的测试转录物进行定量。
参考文献
张GL(Zhang GL)、安萨里HR(Ansari HR),布拉德利P(Bradley P)等人免疫学中的机器学习竞争-HLA I类结合肽的预测(Machine learning competition in immunology-Prediction of HLA class I binding peptides).免疫学方法杂志(J ImmunolMethods).2011年11月30日;374(1-2):1-4。
川井T(Kawai T)、章S(Akira S).TLR信号转导(TLR signaling).免疫学研讨文辑(Seminars in immunology).2007年2月;19(1):24-32。
阿当斯S(Adams S).癌症疗法中的Toll样受体激动剂(Toll-like receptoragonists in cancer therapy).免疫疗法(Immunotherapy).2009年11月;1(6):949-964。
奇弗MA(Cheever MA).十二种可能治愈癌症的免疫疗法药物(Twelveimmunotherapy drugs that could cure cancers).免疫学综述(Immunologicalreviews).2008年4月;222:357-368。
博古诺维科D(Bogunovic D)、曼彻斯O(Manches O)、戈德弗鲁瓦E(Godefroy E)等人在TLR3诱导的促炎信号转导过程中树突细胞中的TLR4接合促进IL-10介导的抗肿瘤免疫的抑制(TLR4engagement during TLR3-induced proinflammatory signaling indendritic cells promotes IL-10-mediated suppression of antitumor immunity).癌症研究(Cancer Res.)2011年8月15日;71(16):5467-5476。
斯塔尔-亨尼格C(Stahl-Hennig C)、艾森布拉特尔M(Eisenblatter M)、翟斯尼E(Jasny E)等人在恒河猴体内合成双链RNA是用于诱导针对人乳头瘤病毒的T辅助细胞1和体液免疫应答的佐剂(Synthetic double-stranded RNAs are adjuvants for theinduction of Thelper 1and humoral immune responses to human papillomavirus inrhesus macaques).PLoS病原体(PLoS pathogens).2009年4月;5(4):e1000373。
博斯卡丁SB(Boscardin SB)、哈法拉JC(Hafalla JC),玛西拉玛尼RF(MasilamaniRF)等人靶向树突细胞的抗原引起长寿命T细胞辅助抗体应答(Antigen targeting todendritic cells elicits long-lived T cell help for antibody responses).实验医学杂志(The Journal of experimental medicine).2006年3月20日;203(3):599-606。
苏亚雷斯H(Soares H)、韦希特尔H(Waechter H)、格莱辰豪斯N(Glaichenhaus N)等人树突细胞亚群在体内通过IL-12-依赖性而非CD70-依赖性机制诱导CD4+ T细胞以产生IFN-γ(A subset of dendritic cells induces CD4+ T cells to produce IFN-gammaby an IL-12-independent but CD70-dependent mechanismin vivo).实验医学杂志(TheJournal of experimental medicine).2007年5月14日;204(5):1095-1106。
特伦普夫埃莱尔C(Trumpfheller C)、卡斯基M(Caskey M)、尼金达G(Nchinda G)等人微生物模拟聚IC与树突细胞靶向疫苗一起诱导持久性且保护性CD4+ T细胞免疫(Themicrobial mimic poly IC induces durable and protective CD4+ T cell immunitytogether with a dendritic cell targeted vaccine).美国国家科学院院刊(Proc NatlAcad Sci U S A.)2008年2月19日;105(7):2574-2579。
特伦普夫埃莱尔C(Trumpfheller C)、芬克JS(Finke JS)、洛佩兹CB(Lopez CB)等人在小鼠体内通过抗树突细胞HIV gag融合抗体疫苗而强化和保护CD4+ T细胞免疫(Intensified and protective CD4+ T cell immunity in mice with anti-dendriticcell HIV gag fusion antibody vaccine).实验医学杂志(The Journal ofexperimental medicine).2006年3月20日;203(3):607-617。
塞勒姆ML(Salem ML)、加地曼AN(Kadima AN)、科尔DJ(Cole DJ),吉兰德斯WE(Gillanders WE).定义对疫苗接种和聚(I:C)/TLR3信号转导的抗原特异性T细胞应答:增强的初次和记忆CD8 T细胞应答和抗肿瘤免疫的证据(Defining the antigen-specificT-cell response to vaccination and poly(I:C)/TLR3 signaling:evidence ofenhanced primary and memory CD8 T-cell responses and antitumor immunity).免疫疗法杂志(J Immunother).2005年5月-6月;28(3):220-228。
图赫DF(Tough DF)、博罗P(Borrow P)、斯普伦特J(Sprent J).在体内通过病毒和I型干扰素诱导旁观者T细胞增殖(Induction of bystander T cell proliferation byviruses and type I interferon in vivo).科学(Science).1996年6月28日;272(5270):1947-1950。
朱X(Zhu X)、西村F(Nishimura F)、佐佐木K(Sasaki K)等人在鼠类CNS肿瘤模型中Toll样受体3配体聚-ICLC促进用肿瘤抗原衍生的肽表位进行的外周疫苗接种的功效(Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheralvaccinations with tumor antigen-derived peptide epitopes in murine CNS tumormodels).转化医学杂志(Journal of translational medicine).2007;5:10。
弗林BJ(Flynn BJ)、卡斯滕米勒K(Kastenmuller K)、维勒-里斯U(Wille-ReeceU)等人在非人类灵长类动物中用靶向至树突细胞的HIV Gag随后用重组纽约痘苗病毒进行免疫诱导鲁棒的T细胞免疫(Immunization with HIV Gag targeted to dendritic cellsfollowed by recombinant New York vaccinia virus induces robust T-cellimmunity in nonhuman primates).美国国家科学院院刊(Proc Natl Acad Sci U S A.)2011年4月26日;108(17):7131-7136。
戈谢D(Gaucher D)、泰尔伦R(Therrien R)、凯塔夫N(Kettaf N)等人黄热病疫苗诱导整合多向和多功能免疫应答(Yellow fever vaccine induces integratedmultilineage and polyfunctional immune responses).实验医学杂志(The Journal ofexperimental medicine).2008年12月22日;205(13):3119-3131。
卡斯基M(Caskey M),列斐伏尔F(Lefebvre F)、菲拉利-姆欣A(Filali-Mouhim A)等人合成双链RNA在人体内诱导类似于活病毒疫苗的先天性免疫应答(Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccinein humans).实验医学杂志(The Journal of experimental medicine).2011年11月21日;208(12):2357-2366。
萨巴蒂尼P(Sabbatini P)、辻T(Tsuji T)、费兰L(Ferran L)等人来自肿瘤自身抗原和聚-ICLC的重叠长肽的I期试验显示在卵巢癌患者体内快速诱导整合的免疫应答(Phase I trial of overlapping long peptides from a tumor self-antigen andpoly-ICLC shows rapid induction of integrated immune response in ovariancancer patients).临床癌症研究:美国癌症研究协会官方杂志(Clinical cancerresearch:an official journal of the American Association for CancerResearch).2012年12月1日;18(23):6497-6508。
罗宾逊RA(Robinson RA)、德维塔VT(DeVita VT)、利维HB(Levy HB)、拜伦S(BaronS)、哈伯德SP(Hubbard SP)、莱文AS(Levine AS).多剂量聚肌苷酸-聚核糖胞苷酸在患有白血病或实体瘤的患者中的I-II期试验(A phase I-II trial of multiple-dosepolyriboinosic-polyribocytidylic acid in patients with leukemia or solidtumors).国家癌症研究所杂志(Journal of the National Cancer Institute).1976年9月;57(3):599-602。
西格尔R(Siegel R)、奈沙德哈姆D(Naishadham D)、杰马尔A(Jemal A).癌症统计学(Cancer statistics),2013.CA:临床医生癌症杂志(CA:a cancer journal forclinicians).2013年1月;63(1):11-30。
鲍尔奇CM(Balch CM)、格森沃尔德JE(Gershenwald JE)、宋SJ(Soong SJ)等人最终版本的2009AJCC黑素瘤分期与分类(Final version of 2009AJCC melanoma stagingand classification).临床肿瘤学杂志:美国临床肿瘤学会官方杂志(Journal ofclinical oncology:official journal of the American Society of ClinicalOncology).2009年12月20日;27(36):6199-6206。
埃格蒙特AM(Eggermont AM)、苏丘S(Suciu S)、泰斯托里A(Testori A)等人溃疡和阶段预测干扰素在黑素瘤中的疗效:III期辅助试验EORTC 18952和EORTC 18991的结果(Ulceration and stage are predictive of interferon efficacy in melanoma:results of the phase III adjuvant trials EORTC 18952and EORTC 18991).欧洲癌症杂志(Eur JCancer).2012年2月;48(1):218-225。
索丝曼JA(Sosman JA)、穆恩J(Moon J)、塔特希尔RJ(Tuthill RJ)等人完全切除IV期黑素瘤的2期试验:西南肿瘤协作组临床试验S9430的结果(A phase 2trial ofcomplete resection for stage IV melanoma:results of Southwest Oncology GroupClinical Trial S9430).癌症(Cancer).2011年10月15日;117(20):4740-4706。
弗莱厄蒂KT(Flaherty KT)、霍迪FS(Hodi FS)、费舍尔DE(Fisher DE).从基因到药物:用于黑素瘤的靶向策略(From genes to drugs:targeted strategies formelanoma).癌症自然评论(Nat Rev Cancer).2012年5月;12(5):349-361。
莫赛林S(Mocellin S)、帕斯夸S(Pasquali S)、罗西CR(Rossi CR)、尼蒂D(NittiD).患有高风险黑素瘤的患者的干扰素α辅助疗法:系统综述与荟萃分析(Interferonalpha adjuvant therapy in patients with high-risk melanoma:a systematicreview and meta-analysis).国家癌症研究所杂志(Journal of the National CancerInstitute).2010年4月7日;102(7):493-501。
皮拉德D(Pirard D)、赫恩M(Heenen M)、梅洛特C(Melot C)、福雷黑肯P(Vereecken P).干扰素α作为手术后治疗黑素瘤的佐剂:荟萃分析(Interferon alpha asadjuvant postsurgical treatment of melanoma:a meta-analysis).皮肤学(Dermatology).2004;208(1):43-48。
惠特利K(Wheatley K)、艾夫斯N(Ives N)、汉考克B(Hancock B)、戈尔M(Gore M)、埃格蒙特A(Eggermont A)、苏丘S(Suciu S).用于高风险黑素瘤的佐剂干扰素-α提供有价值的益处吗?(Does adjuvant interferon-alpha for high-risk melanoma provide aworthwhile benefit?)随机试验的荟萃分析(A meta-analysis of the randomisedtrials).癌症治疗综述(Cancer treatment reviews).2003年8月;29(4):241-252。
巴克沃尔MR(Buckwalter MR)、斯里瓦斯塔瓦PK(Srivastava PK).来自十多年的人类癌症疫苗疗法的“它(们)是抗原,笨蛋”和其他课程("It is the antigen(s),stupid"and other lessons from over adecade of vaccitherapy of human cancer).免疫学研讨文辑(Seminars in immunology).2008年10月;20(5):296-300。
鲍瑞恩JF(Baurain JF)、克劳D(Colau D)、范巴伦N(van Baren N)等人针对由新解旋酶基因中的点突变产生的抗原的高频自体抗黑素瘤CTL(High frequency ofautologous anti-melanoma CTL directed against an antigen generated by a pointmutation in a new helicase gene).免疫学杂志(J Immunol).2000年6月1日;164(11):6057-6066。
布加R(Chiari R)、富里F(Foury F)、德普拉恩E(De Plaen E)、鲍瑞恩JF(BaurainJF)、索恩纳德J(Thonnard J)、考利PG(Coulie PG).由必要管家基因中的单个点突变产生的被黑素瘤上的自体细胞溶解T淋巴细胞识别的两个抗原(Two antigens recognized byautologous cytolytic T lymphocytes on a melanoma result from a single pointmutation in an essential housekeeping gene).癌症研究(Cancer Res.)1999年11月15日;59(22):5785-5792。
黄J(Huang J)、埃尔-贾米勒M(El-Gamil M)、达德利ME(Dudley ME)、李YF(LiYF)、罗森伯格SA(Rosenberg SA)、罗宾斯PF(Robbins PF).与肿瘤消退相关的T细胞识别CDKN2A肿瘤抑制基因基因座的移码产物和突变的HLA I类基因产物(T cells associatedwith tumor regression recognize frameshifted products of the CDKN2Atumorsuppressor gene locus and a mutated HLA class I gene product).免疫学杂志(JImmunol).2004年10月15日;172(5):6057-6064。
卡拉尼卡斯V(Karanikas V)、克劳D(Colau D)、鲍瑞恩JF(Baurain JF)等人,长期存活的肺癌患者的血液中的高频率的针对可用HLA四聚体检测到的肿瘤特异性突变抗原的细胞溶解T淋巴细胞(High frequency of cytolytic T lymphocytes directed againsta tumor-specific mutated antigen detectable with HLA tetramers in the bloodof a lung carcinoma patient with long survival).癌症研究(Cancer Res.)2001年9月1日;61(5):3718-3724。
伦内尔兹V(Lennerz V)、法涛M(Fatho M)、真蒂利尼C(Gentilini C)等人自体T细胞对人黑素瘤的应答受突变新抗原左右(The response of autologous T cells to ahuman melanoma is dominated by mutated neoantigens).美国国家科学院院刊(ProcNatl Acad Sci U S A.)2005年11月1日;102(44):16013-16018。
佐恩E(Zorn E)、埃尔桑T(Hercend T).自发消退人类黑素瘤中的天然细胞毒性T细胞应答靶向由体细胞点突变产生的新抗原(A natural cytotoxic T cell response ina spontaneously regressing human melanoma targets a neoantigen resulting froma somatic point mutation).欧洲免疫学杂志(Eur J Immunol).1999年2月;29(2):592-601。
卡纳安S(Kannan S)、奈拉普SS(Neelapu SS).滤泡淋巴瘤中的疫苗接种策略(Vaccination strategies in follicular lymphoma).当代恶性血液病报告(Currenthematologic malignancy reports).2009年10月;4(4):189-195。
肯特GG(Kenter GG)、威尔特斯MJ(Welters MJ)、瓦伦坦泰因AR(Valentijn AR)等人在终末期宫颈癌患者中用跨越高风险人类乳头瘤病毒16的E6和E7序列的长肽进行I期免疫试验显示出低毒性和鲁棒的免疫原性(Phase I immunotherapeutic trial with longpeptides spanning the E6 and E7 sequences of high-risk human papillomavirus16in end-stage cervical cancer patients shows low toxicity and robustimmunogenicity).临床癌症研究:美国癌症研究协会官方杂志(Clinical cancerresearch:an official journal of the American Association for CancerResearch).2008年1月1日;14(1):169-177。
肯特GG(Kenter GG)、威尔特斯MJ(Welters MJ)、瓦伦坦泰因AR(Valentijn AR)等人用于外阴上皮内瘤形成的针对HPV-16癌蛋白的疫苗接种(Vaccination against HPV-16oncoproteins for vulvar intraepithelial neoplasia).新英格兰医学杂志(The NewEngland journal of medicine).2009年11月5日;361(19):1838-1847。
威尔特斯MJ(Welters MJ)、肯特GG(Kenter GG)、皮尔斯玛SJ(Piersma SJ)等人通过人乳头瘤病毒类型16E6和E7长肽疫苗在宫颈癌患者体内诱导肿瘤特异性CD4+和CD8+ T细胞免疫(Induction of tumor-specific CD4+and CD8+ T-cell immunity in cervicalcancer patients by a human papillomavirus type 16 E6 and E7 long peptidesvaccine).临床癌症研究:美国癌症研究协会官方杂志(Clinical cancer research:anofficial journal of the American Association for Cancer Research).2008年1月1日;14(1):178-187。
伦德戈德C(Lundegaard C)、隆德O(Lund O)、尼尔森M(Nielsen M).使用基于神经网络的方法预测表位(Prediction of epitopes using neural network basedmethods).免疫学方法杂志(J Immunol Methods).2011年11月30日;374(1-2):26-34。
施赖伯RD(Schreiber RD)、奥尔德LJ(Old LJ)、史密斯MJ(Smyth MJ).癌症免疫编辑:在肿瘤抑制和促进中整合免疫作用(Cancer immunoediting:integrating immunity'sroles in cancer suppression and promotion).科学(Science).2011年6024月25日;331(3):1565-1570。
伯杰,M.(Berger,M.)等人黑素瘤基因组测序揭示频繁的PREX2突变(Melanomagenome sequencing reveals frequent PREX2 mutations).自然(Nature)485,502-6(2012)。
卡特,SL.(Carter,SL.)等人体细胞DNA改变在人类癌症中的绝对定量(Absolutequantification of somatic DNA alterations in human cancer).自然生物技术(NatBiotechnol)30,413-21(2012)。
查普曼,M.A.(Chapman,M.A.)等人多发性骨髓瘤的初始基因组测序与分析(Initial genome sequencing and analysis of multiple myeloma).自然(Nature)471,467-72(2011)。
斯布尔斯基,K.(Cibulskis,K.)等人ContEst:在下一代测序数据中估计人类样品的交叉污染(ContEst:estimating cross-contamination of human samples in next-generation sequencing data).生物信息学(Bioinformatics)27,2601-2(2011)。
斯布尔斯基,K.(Cibulskis,K.)等人灵敏检测不纯和异质癌症样品中的体细胞点突变(Sensitive detection of somatic point mutations in impure andheterogeneous cancer samples).自然生物技术(Nature Biotech)(2013)2月10日.doi:10.1038/nbt.2514.[电子版先于印刷版]。
德卢卡,DS.(DeLuca,DS.)等人RNA-SeQC:用于质量控制和过程优化的RNA-seq度量(RNA-SeQC:RNA-seq metrics for quality control and process optimization).生物信息学(Bioinformatics)28,1530-2(2012)。
德普里斯托,M.(DePristo,M.)等人用于使用下一代DNA序列测定数据发现变化和基因分型的构架(A framework for variation discovery and genotyping using next-generation DNA sequencing data).自然遗传学(Nature Genetics)43,491-498(2011)。
兰道,DA.(Landau,DA.)等人亚克隆突变在慢性淋巴细胞白血病中的进化与影响(Evolution and impact of subclonal mutations in chronic lymphocyticleukemia).细胞(Cell)152,714-26(2013)。
兰米德,B.(Langmead,B.)等人短DNA序列与人类基因组的超快且记忆有效比对(Ultrafast and memory-efficient alignment of short DNA sequences to the humangenome).基因组生物学(Genome Biology)10,R25(2009)。
李,B.(Li,B.)等人RSEM:在有或没有参考基因组的情况下来自RNA-Seq数据的准确转录物定量(RSEM:accurate transcript quantification from RNA-Seq data withor without a reference genome).BMC生物信息学(BMC Bioinformatics)12,323(2011)。
李,H.(Li,H.)等人序列比对/作图格式和SAM工具(The Sequence Alignment/Mapformat and SAMtools).生物信息学(Bioinformatics)25,2078-9(2009)。
李,H.(Li H.)和德宾R.(Durbin R.)用伯罗斯-惠勒变换快速且准确比对短读数(Fast and accurate short read alignment with Burrows-Wheeler Transform).生物信息学(Bioinformatics)25,1754-60(2009)。
麦克纳,A.(McKenna,A.)等人基因组分析工具箱:用于分析下一代DNA序列测定数据的MapReduce构架(The Genome Analysis Toolkit:a MapReduce framework foranalyzing next-generation DNA sequencing data).基因组研究(Genome Res)20,1297-303(2010)。
罗宾逊,JT.(Robinson,JT.)等人综合型基因组浏览器(Integrative genomicsviewer).自然生物技术(Nature Biotech)29,24-26(2011)。
斯特兰斯基,N.(Stransky,N.)等人头颈部鳞状细胞癌的突变景观(Themutational landscape of head and neck squamous cell carcinoma).科学(Science)333,1157-60(2011)。
加拉威,L.A.(Garraway,L.A.)和兰德,E.S(Lander,E.S),来自癌症基因组的教训(Lessons from the cancer genome).细胞(Cell).153,17-37(2013)。
伦德戈德,C(Lundegaard,C.)等人.使用基于神经网络的方法预测表位(Prediction of epitopes using neural network based methods).免疫学方法杂志(JImmunol Methods).374,26-34(2011)。
塞特,A.(Sette,A.)等人,潜在的细胞毒性T细胞表位的I类结合亲和力与免疫原性之间的关系(The relationship between class Ibinding affinity andimmunogenicity of potential cytotoxic T cell epitopes).免疫学杂志(J Immunol).153,5586-5592(1994)。
鲁,Y.C.(Lu,Y.C.)等人,核磷蛋白1PPP1R3B的突变区域被用于治疗经历持久肿瘤完全消退的患者的T细胞所识别(Mutated regions of nucleophosmin 1PPP1R3B IsRecognized by T Cells Used To Treat a Melanoma Patient Who Experienced aDurable Complete Tumor Regression).免疫学杂志(J Immunol).190,6034-6042(2013)。
赛库莱乌,Y.(Sykulev,Y.)等人,靶细胞上的单肽-MHC复合物可以引起细胞溶解T细胞应答的证据(Evidence that a single peptide-MHC complex on a target cellcan elicit a cytolytic T cell response).免疫性(Immunity).4,565-571(1996)。
卡特,S.L.(Carter,S.L.)等人体细胞DNA改变在人类癌症中的绝对定量(Absolute quantification of somatic DNA alterations in human cancer).自然生物技术(Nat.Biotechnology)30:413-21(2012)。
茜德尼,J.(Sidney,J.)等人,HLA I类超类型:修订和更新分类(HLA class Isupertypes:a revised and updated classification).BMC免疫学(BMC Immunol).9,1(2008)。
肺鳞癌的综合基因组表征(Comprehensive genomic characterization ofsquamous cell lung cancers).自然(Nature).489,519-525(2012)。
丁,L.(Ding,L.)等人,体细胞突变影响肺腺癌中的关键途径(Somatic mutationsaffect key pathways in lung adenocarcinoma).自然(Nature).455,1069-1075(2008)。
斯特兰斯基,N.(Stransky,N.)等人头颈部鳞状细胞癌的突变景观(Themutational landscape of head and neck squamous cell carcinoma).科学(Science)333,1157-1160(2011)。
人类结肠和直肠癌的综合分子表征(Comprehensive molecularcharacterization of human colon and rectal cancer).自然(Nature).487,330-337(2012)。
综合基因组表征定义了人类恶性胶质瘤基因和核心途径(Comprehensivegenomic characterization defines human glioblastoma genes and core pathways).自然(Nature).455,1061-1068(2008)。
卵巢癌的整合基因组分析(Integrated genomic analyses of ovariancarcinoma).自然(Nature).474,609-615(2011年6月30日)。
透明细胞肾细胞癌的综合分子表征(Comprehensive molecularcharacterization of clear cell renal cell carcinoma).自然(Nature).499,43-49(2013)。
成人新发急性髓细胞白血病的基因组与表观基因组景观(Genomic andepigenomic landscapes of adult de novo acute myeloid leukemia).新英格兰医学杂志(N Engl J Med).368,2059-2074(2013)。
人类乳腺肿瘤的综合分子画像(Comprehensive molecular portraits of humanbreast tumours).自然(Nature).490,61-70(2012)。
其他实施例
从前述描述中,应显而易见的是,可以对在此描述的发明作出变更和修改以使其适应于各种用途和状况。此类实施例也在下述权利要求书的范围内。
在变量的任何定义中对要素清单的陈述在此包括将所述变量定义为任何单个要素或所列要素的组合(或亚组合)。对在此的实施例的陈述包括作为任何单个实施例或与任何其他实施例或其部分组合的实施例。
通过引用结合
通过引用将在本说明书中提及的所有专利和出版物结合在此,其程度如同将每个独立的专利和出版物具体并且个别地指明通过引用结合在此。

Claims (21)

1.一种组合物,所述组合物包含来自有瘤形成的受试者的T细胞群,其中所述T细胞对(a)所述受试者表达的HLA等位基因编码的蛋白和(b)特异于所述受试者和所述瘤形成的至少五种新抗原肽的亚群的一个或多个新抗原表位的复合物具有特异性;其中所述T细胞在体外被抗原递呈细胞刺激,所述抗原递呈细胞包含至少五种新抗原肽的亚群,或包含编码所述至少五种新抗原肽的亚群的一种或多种多核苷酸,其中所述至少五种新抗原肽的亚群选自从受试者中鉴定的新抗原肽,所述鉴定的新抗原肽根据排名顺序进行排名,并且其中所述排名顺序按降低的优先级包括:
(i)来自新ORF多肽的新抗原肽,所述新抗原肽以≤500nM的IC50结合所述受试者的HLA,所述新ORF多肽由包含新ORF突变的序列编码;
(ii)由包含错义突变的序列编码的新抗原肽,所述新抗原肽以≤150nM的IC50结合所述受试者的HLA,其中天然同源蛋白中的对应表位以≥1000nM的IC50结合所述HLA;
(iii)由包含错义突变的序列编码的新抗原肽,所述新抗原肽以≤150nM的IC50结合所述受试者的HLA,其中天然同源蛋白中的对应表位以≤150nM的IC50结合所述HLA;
(iv)来自新ORF多肽的新抗原肽,所述新抗原肽以>500nM的IC50结合所述受试者的HLA,所述新ORF多肽由包含新ORF突变的序列编码;和
(v)由包含错义突变的序列编码的新抗原肽,所述新抗原肽以150至≤500nM的IC50结合所述受试者的HLA,其中天然同源蛋白中的对应表位以150nM至≤500nM的IC50结合所述HLA;
其中所述至少五种新抗原肽的亚群包含(1)根据(i)-(v)中所述排名前30的新抗原肽中的至少两个并且由根据所述排名得到的包含错义突变和新ORF突变的多个序列所编码,或(2)编码如(1)所述的新抗原肽的多核苷酸。
2.如权利要求1所述的组合物,所述T细胞群为与至少五种新抗原肽的亚群和表达由所述受试者表达的HLA等位基因编码的蛋白的抗原递呈细胞在体外敷育后的细胞。
3.如权利要求1所述的组合物,其中所述至少五种新抗原肽的亚群和其他新抗原肽被鉴定为一组包含瘤形成中的突变的多条序列,所述突变通过瘤形成的基因组测序、转录组测序或蛋白质组测序得到。
4.如权利要求1所述的组合物,其中所述排名顺序进一步基于所述新抗原序列的表达水平。
5.如权利要求1所述的组合物,(a)所述至少五种新抗原肽的亚群包含至少10种新抗原肽;(b)编码所述至少五种新抗原肽的亚群的一种或多种多核苷酸是表达所述至少10种新抗原肽的一种或多种DNA分子;或(c)编码所述至少五种新抗原肽的亚群的一种或多种多核苷酸是能够表达所述至少10种新抗原肽的一种或多种RNA分子。
6.如权利要求5所述的组合物,(a)所述至少五种新抗原肽的亚群包含至少20种新抗原肽;(b)编码所述至少五种新抗原肽的亚群的一种或多种多核苷酸是表达所述至少20种新抗原肽的一种或多种DNA分子;或(c)编码所述至少五种新抗原肽的亚群的一种或多种多核苷酸是能表达所述至少20种新抗原肽的一种或多种RNA分子。
7.如权利要求6所述的组合物,其中至少五种新抗原肽的亚群包含至少20种新抗原肽,其中所述至少20种新抗原肽(a)长度范围为5至50个氨基酸;(b)长度范围为15至35个氨基酸;(c)长度范围为18至30个氨基酸;(d)长度范围为6至15个氨基酸;(e)长度为15、16、17、18、19、20、21、22、23、24或25个氨基酸。
8.如权利要求1所述的组合物,其中所述一个或多个多核苷酸包含微基因。
9.如权利要求8所述的组合物,其中所述微基因编码至少一个诱导辅助T细胞应答的肽表位。
10.如权利要求1所述的组合物,其中所述一个或多个多核苷酸包含病毒载体。
11.如权利要求1所述的组合物,其中所述受试者接受过造血干细胞移植。
12.如权利要求1所述的组合物,其中所述组合物诱导了受试者中的免疫应答。
13.如权利要求12所述的组合物,其中所述免疫应答包含对抗肿瘤毒性T细胞应答的诱导。
14.如权利要求12所述的组合物,其中所述免疫应答包含对辅助T细胞应答的诱导。
15.如权利要求1所述的组合物,其中所述组合物包含来自所述受试者外周血单核细胞样品中的T细胞。
16.如权利要求1所述的组合物,其中所述组合物进一步包含载体。
17.如权利要求1所述的组合物,进一步包含一种或多种额外的肿瘤治疗剂、抗免疫抑制剂或免疫刺激剂。
18.如权利要求17所述的组合物,其中所述一种或多种额外的肿瘤治疗剂包含化疗剂、放疗剂或免疫治疗剂。
19.如权利要求17所述的组合物,其中所述抗免疫抑制剂或免疫刺激剂提供了对CTLA4、PD-1或PD-L1的阻断。
20.如权利要求17所述的组合物,其中所述抗免疫抑制剂或免疫刺激剂包含抗CTLA4抗体、抗PD-1抗体,或抗PD-L1抗体。
21.如权利要求1所述的组合物,其中所述瘤形成包含选自由以下组成的组的肿瘤:乳腺癌、卵巢癌、前列腺癌、肺癌、肾癌、胃癌、结肠癌、睾丸癌、头颈部癌、急性髓性白血病、慢性髓性白血病、慢性淋巴细胞白血病、T细胞淋巴细胞白血病、另一种白血病、B细胞淋巴瘤、另一种淋巴瘤、胰腺癌、脑癌和黑色素瘤。
CN202311507937.3A 2013-04-07 2014-04-07 用于个性化瘤形成疫苗的组合物和方法 Pending CN117815373A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361809406P 2013-04-07 2013-04-07
US61/809,406 2013-04-07
US201361869721P 2013-08-25 2013-08-25
US61/869,721 2013-08-25
PCT/US2014/033185 WO2014168874A2 (en) 2013-04-07 2014-04-07 Compositions and methods for personalized neoplasia vaccines
CN201480032291.0A CN105377292A (zh) 2013-04-07 2014-04-07 用于个性化瘤形成疫苗的组合物和方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480032291.0A Division CN105377292A (zh) 2013-04-07 2014-04-07 用于个性化瘤形成疫苗的组合物和方法

Publications (1)

Publication Number Publication Date
CN117815373A true CN117815373A (zh) 2024-04-05

Family

ID=50842334

Family Applications (4)

Application Number Title Priority Date Filing Date
CN202311507937.3A Pending CN117815373A (zh) 2013-04-07 2014-04-07 用于个性化瘤形成疫苗的组合物和方法
CN201480032291.0A Pending CN105377292A (zh) 2013-04-07 2014-04-07 用于个性化瘤形成疫苗的组合物和方法
CN202410556757.2A Pending CN118750591A (zh) 2013-04-07 2014-04-07 用于个性化瘤形成疫苗的组合物和方法
CN202410556851.8A Pending CN118557711A (zh) 2013-04-07 2014-04-07 用于个性化瘤形成疫苗的组合物和方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN201480032291.0A Pending CN105377292A (zh) 2013-04-07 2014-04-07 用于个性化瘤形成疫苗的组合物和方法
CN202410556757.2A Pending CN118750591A (zh) 2013-04-07 2014-04-07 用于个性化瘤形成疫苗的组合物和方法
CN202410556851.8A Pending CN118557711A (zh) 2013-04-07 2014-04-07 用于个性化瘤形成疫苗的组合物和方法

Country Status (10)

Country Link
US (2) US20160101170A1 (zh)
EP (1) EP2983702A2 (zh)
JP (3) JP6702855B2 (zh)
KR (3) KR20210156320A (zh)
CN (4) CN117815373A (zh)
AU (4) AU2014251207B2 (zh)
BR (1) BR112015025460B1 (zh)
CA (2) CA3137846A1 (zh)
IL (2) IL241858B (zh)
WO (1) WO2014168874A2 (zh)

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10347710B4 (de) 2003-10-14 2006-03-30 Johannes-Gutenberg-Universität Mainz Rekombinante Impfstoffe und deren Verwendung
DE102005046490A1 (de) 2005-09-28 2007-03-29 Johannes-Gutenberg-Universität Mainz Modifikationen von RNA, die zu einer erhöhten Transkriptstabilität und Translationseffizienz führen
DK2714071T3 (da) 2011-05-24 2019-09-16 Biontech Rna Pharmaceuticals Gmbh Individualiserede vacciner mod cancer
WO2013143555A1 (en) 2012-03-26 2013-10-03 Biontech Ag Rna formulation for immunotherapy
AU2013351542B2 (en) 2012-11-28 2018-08-09 BioNTech SE Individualized vaccines for cancer
KR20210156320A (ko) * 2013-04-07 2021-12-24 더 브로드 인스티튜트, 인코퍼레이티드 개인맞춤화 신생물 백신을 위한 조성물 및 방법
WO2014180490A1 (en) 2013-05-10 2014-11-13 Biontech Ag Predicting immunogenicity of t cell epitopes
WO2015077717A1 (en) 2013-11-25 2015-05-28 The Broad Institute Inc. Compositions and methods for diagnosing, evaluating and treating cancer by means of the dna methylation status
US11725237B2 (en) 2013-12-05 2023-08-15 The Broad Institute Inc. Polymorphic gene typing and somatic change detection using sequencing data
EP3076992B1 (en) * 2013-12-06 2022-04-06 The Broad Institute, Inc. Formulations for neoplasia vaccines
AU2014368898B2 (en) * 2013-12-20 2020-06-11 Dana-Farber Cancer Institute, Inc. Combination therapy with neoantigen vaccine
EP3998481A1 (en) 2014-09-10 2022-05-18 F. Hoffmann-La Roche AG Immunogenic mutant peptide screening platform
WO2016045732A1 (en) 2014-09-25 2016-03-31 Biontech Rna Pharmaceuticals Gmbh Stable formulations of lipids and liposomes
WO2016100975A1 (en) 2014-12-19 2016-06-23 Massachsetts Institute Ot Technology Molecular biomarkers for cancer immunotherapy
US10993997B2 (en) 2014-12-19 2021-05-04 The Broad Institute, Inc. Methods for profiling the t cell repertoire
WO2016123365A1 (en) 2015-01-30 2016-08-04 The Regents Of The University Of Michigan Liposomal particles comprising biological molecules and uses thereof
WO2016128060A1 (en) * 2015-02-12 2016-08-18 Biontech Ag Predicting t cell epitopes useful for vaccination
CA2979388A1 (en) * 2015-03-12 2016-09-15 Health Research, Inc. Enrichment of cd16+ monocytes to improve dendritic cell vaccine quality
BR112017020491A2 (pt) * 2015-03-25 2018-07-17 The Regents Of The University Of Michigan composições e métodos para distribuição de agentes de biomacromolécula.
EP3075389A1 (en) * 2015-03-31 2016-10-05 Technische Universität München T cell receptors and peptides derived by mutations for the treatment of cancer
US20190099475A1 (en) 2015-04-08 2019-04-04 Nantomics, Llc Cancer neoepitopes
CA3172682A1 (en) 2015-04-23 2016-10-27 Nantomics, Llc Cancer neoepitopes
WO2016174085A1 (en) * 2015-04-27 2016-11-03 Cancer Research Technology Limited Method for treating cancer
WO2016179006A1 (en) * 2015-05-01 2016-11-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of isolating t cells and t cell receptors having antigenic specificity for a cancer-specific mutation from peripheral blood
KR20180006945A (ko) 2015-05-13 2018-01-19 아게누스 인코포레이티드 암 치료 및 예방용 백신
EP3297660A2 (en) 2015-05-20 2018-03-28 The Broad Institute Inc. Shared neoantigens
TWI750122B (zh) * 2015-06-09 2021-12-21 美商博德研究所有限公司 用於贅瘤疫苗之調配物及其製備方法
GB201516047D0 (en) 2015-09-10 2015-10-28 Cancer Rec Tech Ltd Method
WO2017059902A1 (en) 2015-10-07 2017-04-13 Biontech Rna Pharmaceuticals Gmbh 3' utr sequences for stabilization of rna
EP3362103A4 (en) * 2015-10-12 2020-02-05 Nantomics, LLC COMPOSITIONS AND METHODS USING VIRAL CANCER NEOEPITOPES
CN108604257B (zh) * 2015-10-12 2022-12-13 南托米克斯有限责任公司 产生特异性免疫治疗组合物及其相关核酸构建体的方法
AU2016339022B2 (en) * 2015-10-12 2020-09-10 Nantomics, Llc Iterative discovery of neoepitopes and adaptive immunotherapy and methods therefor
JP2018532736A (ja) 2015-10-12 2018-11-08 ナントミクス,エルエルシー チェックポイント阻害物質への感受性を予測するmsiおよびネオエピトープの探索のための系、組成物、および方法
TWI733719B (zh) 2015-12-07 2021-07-21 美商河谷控股Ip有限責任公司 改善的組合物及用於新表位之病毒遞送的方法及其應用
CN108601731A (zh) * 2015-12-16 2018-09-28 磨石肿瘤生物技术公司 新抗原的鉴别、制造及使用
CN108495649A (zh) 2016-01-08 2018-09-04 瓦西博迪公司 治疗性抗癌新表位疫苗
US20170224796A1 (en) 2016-02-05 2017-08-10 Xeme Biopharma Inc. Therapeutic Cancer Vaccine Containing Tumor-Associated Neoantigens and Immunostimulants in a Delivery System
EP3413909A4 (en) * 2016-02-11 2019-10-30 Nant Holdings IP, LLC SUBCUTANEOUS ADVERTISING OF ADENOVIRUS WITH DOUBLE TARGETING
TW201739919A (zh) * 2016-02-12 2017-11-16 南坦生物組學有限責任公司 患者特異性新抗原決定基之高通量識別以作為用於癌症免疫療法之治療劑
AU2017281126A1 (en) 2016-03-24 2018-10-04 Nant Holdings Ip, Llc Sequence arrangements and sequences for neoepitope presentation
WO2017184590A1 (en) * 2016-04-18 2017-10-26 The Broad Institute Inc. Improved hla epitope prediction
JP7033549B2 (ja) 2016-05-04 2022-03-10 フレッド ハッチンソン キャンサー リサーチ センター 細胞に基づくネオ抗原ワクチンおよびその使用
SG11201811442UA (en) 2016-06-20 2019-01-30 Isa Pharmaceuticals B V Formulation of a peptide vaccine
EP3471778A4 (en) * 2016-06-20 2020-02-19 The Regents of The University of Michigan COMPOSITIONS AND METHOD FOR DELIVERING BIOMACROMOLECOLIC ACTIVE SUBSTANCES
PT3488443T (pt) * 2016-07-20 2021-09-24 BioNTech SE Seleção de neoepítopos como alvos específicos da doença para terapia com eficácia melhorada
US10350280B2 (en) 2016-08-31 2019-07-16 Medgenome Inc. Methods to analyze genetic alterations in cancer to identify therapeutic peptide vaccines and kits therefore
EP4001437A1 (en) * 2016-11-07 2022-05-25 The United States of America, as represented by The Secretary, Department of Health and Human Services Methods for selecting therapy for a cancer patient
US20200010849A1 (en) * 2016-11-23 2020-01-09 Gritstone Oncology, Inc. Viral delivery of neoantigens
WO2018102613A2 (en) * 2016-12-01 2018-06-07 Nantomics, Llc Tumor antigenicity processing and presentation
US11549149B2 (en) 2017-01-24 2023-01-10 The Broad Institute, Inc. Compositions and methods for detecting a mutant variant of a polynucleotide
US11485784B2 (en) 2017-03-31 2022-11-01 Act Genomics (Ip) Co., Ltd. Ranking system for immunogenic cancer-specific epitopes
WO2018183544A1 (en) * 2017-03-31 2018-10-04 Dana-Farber Cancer Institute, Inc. Method for identification of retained intron tumor neoantigens from patient transcriptome
MX2019012433A (es) * 2017-04-19 2019-12-11 Gritstone Oncology Inc Identificacion, fabricacion y uso de neoantigenos.
IL270132B1 (en) 2017-04-24 2024-08-01 Nantcell Inc Vectors of putative neoepitopes, and methods therefor
JP2020518648A (ja) 2017-05-08 2020-06-25 グリットストーン オンコロジー インコーポレイテッド アルファウイルス新生抗原ベクター
EP3630130B1 (en) 2017-06-02 2022-08-31 Arizona Board of Regents on behalf of Arizona State University A method to create personalized cancer vaccines
AU2018279627B2 (en) * 2017-06-09 2023-08-10 Gritstone Bio, Inc. Neoantigen identification, manufacture, and use
EP3638215A4 (en) 2017-06-15 2021-03-24 Modernatx, Inc. RNA FORMULATIONS
SG11201912429RA (en) * 2017-06-21 2020-01-30 Transgene Sa Personalized vaccine
FI3642331T3 (fi) * 2017-06-22 2023-07-24 Neogap Therapeutics Ab T-solujen monistusmenetelmä ja käyttöjä
WO2019014581A1 (en) 2017-07-14 2019-01-17 The Broad Institute, Inc. METHODS AND COMPOSITIONS FOR MODULATING THE ACTIVITY OF A CYTOTOXIC LYMPHOCYTE
AU2018326799A1 (en) 2017-08-31 2020-02-27 Modernatx, Inc. Methods of making lipid nanoparticles
US20200363414A1 (en) * 2017-09-05 2020-11-19 Gritstone Oncology, Inc. Neoantigen Identification for T-Cell Therapy
US12025615B2 (en) 2017-09-15 2024-07-02 Arizona Board Of Regents On Behalf Of Arizona State University Methods of classifying response to immunotherapy for cancer
WO2019060835A2 (en) * 2017-09-25 2019-03-28 Nant Holdings Ip, Llc VALIDATION OF PRESENTATION OF NEO-EPITOPE
CA3078744A1 (en) * 2017-10-10 2019-04-18 Gritstone Oncology, Inc. Neoantigen identification using hotspots
EP3706765A4 (en) 2017-11-07 2021-07-14 Coimmune, Inc. METHODS AND USES FOR DENDRITIC CELL THERAPY
CA3083097A1 (en) 2017-11-22 2019-05-31 Gritstone Oncology, Inc. Reducing junction epitope presentation for neoantigens
CN109865133B (zh) * 2017-12-01 2021-07-09 上海桀蒙生物技术有限公司 个性化癌症疫苗的制备方法
WO2019122050A1 (en) 2017-12-22 2019-06-27 Isa Pharmaceuticals B.V. Methods of immunization
CN108491689B (zh) * 2018-02-01 2019-07-09 杭州纽安津生物科技有限公司 基于转录组的肿瘤新抗原鉴定方法
JP2021522239A (ja) 2018-04-26 2021-08-30 アジェナス インコーポレイテッド 熱ショックタンパク質結合ペプチド組成物およびその使用方法
WO2019227106A1 (en) * 2018-05-25 2019-11-28 The Wistar Institute Tumor-specific neoantigens and methods of using the same
US20220403001A1 (en) 2018-06-12 2022-12-22 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
CN113365639A (zh) * 2018-06-27 2021-09-07 摩登纳特斯有限公司 个性化癌症疫苗表位选择
WO2020020444A1 (en) * 2018-07-24 2020-01-30 Biontech Rna Pharmaceuticals Gmbh Individualized vaccines for cancer
AU2019334131A1 (en) * 2018-09-05 2021-03-04 NEC Oncolmmunity AS Neoantigen targeting DNA vaccine for combination therapy
CN113271926A (zh) 2018-09-20 2021-08-17 摩登纳特斯有限公司 脂质纳米颗粒的制备及其施用方法
CN109337873A (zh) * 2018-09-30 2019-02-15 北京鼎成肽源生物技术有限公司 一种lrff细胞
WO2020097291A1 (en) * 2018-11-07 2020-05-14 Modernatx, Inc. Rna cancer vaccines
WO2020131586A2 (en) 2018-12-17 2020-06-25 The Broad Institute, Inc. Methods for identifying neoantigens
AU2020232971A1 (en) * 2019-03-01 2021-09-23 Scott R. BURKHOLZ Design, manufacture, and use of personalized cancer vaccines
US20220108768A1 (en) * 2019-03-08 2022-04-07 Nantomics, Llc System and method for variant calling
CN110059625B (zh) * 2019-04-18 2023-04-07 重庆大学 一种基于mixup的人脸训练与识别方法
SG11202113187WA (en) 2019-05-30 2021-12-30 Gritstone Bio Inc Modified adenoviruses
US20200390873A1 (en) * 2019-06-11 2020-12-17 Iogenetics, Llc Neoantigen immunotherapies
CN110514845B (zh) * 2019-08-22 2022-09-27 深圳新合睿恩生物医疗科技有限公司 一种肿瘤新生抗原免疫原性检测方法及检测平台
CN110464840A (zh) * 2019-09-06 2019-11-19 北京微九九科技有限公司 一种肿瘤疫苗的制备方法及使用该方法制备的肿瘤疫苗
EP4038222A4 (en) 2019-10-02 2023-10-18 Arizona Board of Regents on behalf of Arizona State University METHODS AND COMPOSITIONS FOR IDENTIFYING NEOANTIGENS FOR USE IN THE TREATMENT AND PREVENTION OF CANCER
EP4055182A4 (en) * 2019-11-08 2024-07-03 Univ California IDENTIFICATION OF SPLICE-DRIVEN ANTIGENS FOR CANCER TREATMENT
JP7496111B2 (ja) * 2019-12-24 2024-06-06 国立大学法人東京工業大学 サブキャリア変調方式テラヘルツレーダー
US11011253B1 (en) * 2020-07-09 2021-05-18 Brian Hie Escape profiling for therapeutic and vaccine development
WO2022032196A2 (en) 2020-08-06 2022-02-10 Gritstone Bio, Inc. Multiepitope vaccine cassettes
US11421015B2 (en) 2020-12-07 2022-08-23 Think Therapeutics, Inc. Method of compact peptide vaccines using residue optimization
US20240229143A1 (en) * 2020-12-07 2024-07-11 Iogenetics, Llc Formulation of peptide immunotherapies
GB202104715D0 (en) 2021-04-01 2021-05-19 Achilles Therapeutics Uk Ltd Identification of clonal neoantigens and uses thereof
US11464842B1 (en) 2021-04-28 2022-10-11 Think Therapeutics, Inc. Compositions and method for optimized peptide vaccines using residue optimization
CN113069537A (zh) * 2021-04-29 2021-07-06 江苏欣生元生物科技有限公司 一种基于ras变异新生抗原表位的融合蛋白纳米疫苗及其制备方法
WO2022229464A1 (en) 2021-04-30 2022-11-03 Tigen Pharma Sa Single vessel expansion of lymphocytes
CN112972666B (zh) * 2021-05-12 2021-08-31 山东兴瑞生物科技有限公司 个性化基因修饰肿瘤dc疫苗的制备方法
WO2023218399A1 (en) * 2022-05-11 2023-11-16 Fundação D. Anna De Sommer Champalimaud E Dr. Carlos Montez Champalimaud - Centro De Investigação Da Fundação Champalimaud Method of preparing and expanding a population of immune cells for cancer therapy, potency assay for tumor recognition, biological vaccine preparation and epitope target for antibodies
WO2024077256A1 (en) 2022-10-07 2024-04-11 The General Hospital Corporation Methods and compositions for high-throughput discovery ofpeptide-mhc targeting binding proteins
WO2024097864A1 (en) 2022-11-02 2024-05-10 Tigen Pharma Sa Expansion of lymphocytes

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870790A (en) 1970-01-22 1975-03-11 Forest Laboratories Solid pharmaceutical formulations containing hydroxypropyl methyl cellulose
US4210644A (en) 1978-02-23 1980-07-01 The Johns Hopkins University Male contraception
US4226859A (en) 1979-06-07 1980-10-07 Velsicol Chemical Corporation Pyridyl esters of N-alkylidene-substituted phosphor- and phosphonamidic acids
US4379454A (en) 1981-02-17 1983-04-12 Alza Corporation Dosage for coadministering drug and percutaneous absorption enhancer
ZA825384B (en) 1981-07-31 1983-05-25 Tillott J B Ltd Orally administrable pharmaceutical compositions
US4369172A (en) 1981-12-18 1983-01-18 Forest Laboratories Inc. Prolonged release therapeutic compositions based on hydroxypropylmethylcellulose
US4722848A (en) 1982-12-08 1988-02-02 Health Research, Incorporated Method for immunizing animals with synthetically modified vaccinia virus
US4588585A (en) 1982-10-19 1986-05-13 Cetus Corporation Human recombinant cysteine depleted interferon-β muteins
GB8311018D0 (en) 1983-04-22 1983-05-25 Amersham Int Plc Detecting mutations in dna
EP0188040B1 (en) 1985-01-11 1991-08-14 Abbott Laboratories Limited Slow release solid preparation
US4690915A (en) 1985-08-08 1987-09-01 The United States Of America As Represented By The Department Of Health And Human Services Adoptive immunotherapy as a treatment modality in humans
US4743249A (en) 1986-02-14 1988-05-10 Ciba-Geigy Corp. Dermal and transdermal patches having a discontinuous pattern adhesive layer
US4844893A (en) 1986-10-07 1989-07-04 Scripps Clinic And Research Foundation EX vivo effector cell activation for target cell killing
US5023084A (en) 1986-12-29 1991-06-11 Rutgers, The State University Of New Jersey Transdermal estrogen/progestin dosage unit, system and process
US4906169A (en) 1986-12-29 1990-03-06 Rutgers, The State University Of New Jersey Transdermal estrogen/progestin dosage unit, system and process
US4816540A (en) 1987-06-12 1989-03-28 Yasuhiko Onishi Cationic graft-copolymer
US5422119A (en) 1987-09-24 1995-06-06 Jencap Research Ltd. Transdermal hormone replacement therapy
US5035891A (en) 1987-10-05 1991-07-30 Syntex (U.S.A.) Inc. Controlled release subcutaneous implant
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
US4973468A (en) 1989-03-22 1990-11-27 Cygnus Research Corporation Skin permeation enhancer compositions
FR2650840B1 (fr) 1989-08-11 1991-11-29 Bertin & Cie Procede rapide de detection et/ou d'identification d'une seule base sur une sequence d'acide nucleique, et ses applications
EP0800830A3 (en) 1989-11-03 1999-03-17 Vanderbilt University Method of in vivo delivery of functioning foreign genes
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5204253A (en) 1990-05-29 1993-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for introducing biological substances into living cells
JP2773959B2 (ja) 1990-07-10 1998-07-09 信越化学工業株式会社 大腸内放出性固形製剤
US5198223A (en) 1990-10-29 1993-03-30 Alza Corporation Transdermal formulations, methods and devices
US6004744A (en) 1991-03-05 1999-12-21 Molecular Tool, Inc. Method for determining nucleotide identity through extension of immobilized primer
EP0646178A1 (en) 1992-06-04 1995-04-05 The Regents Of The University Of California expression cassette with regularoty regions functional in the mammmlian host
US6071890A (en) 1994-12-09 2000-06-06 Genzyme Corporation Organ-specific targeting of cationic amphiphile/DNA complexes for gene therapy
US5705190A (en) 1995-12-19 1998-01-06 Abbott Laboratories Controlled release formulation for poorly soluble basic drugs
US5849589A (en) 1996-03-11 1998-12-15 Duke University Culturing monocytes with IL-4, TNF-α and GM-CSF TO induce differentiation to dendric cells
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
UA73092C2 (uk) 1998-07-17 2005-06-15 Брістол-Майерс Сквібб Компані Таблетка з ентеросолюбільним покриттям і спосіб її приготування
DE69924735T2 (de) 1998-07-28 2006-01-19 Tanabe Seiyaku Co., Ltd. Zur wirkstoffabgabe an zielorten im darm fähige zubereitung
US7220549B2 (en) 2004-12-30 2007-05-22 Helicos Biosciences Corporation Stabilizing a nucleic acid for nucleic acid sequencing
US7283337B2 (en) 2005-03-04 2007-10-16 Headway Technologies, Inc. Abutted exchange bias design for sensor stabilization
EP1994181A4 (en) * 2006-02-27 2010-05-19 Univ Arizona IDENTIFICATION AND USE OF NOVOPEPTIDES FOR THE TREATMENT OF CANCER
WO2008096831A1 (ja) * 2007-02-07 2008-08-14 The Research Foundation For Microbial Diseases Of Osaka University 癌の治療剤
EP2337795A2 (en) * 2008-10-01 2011-06-29 Dako Denmark A/S Mhc multimers in cancer vaccines and immune monitoring
BRPI0924827A2 (pt) * 2009-04-02 2019-01-08 Vaxon Biotech identificação, otimização e uso de epítopos hla-a24 crípticos para imunoterapia
EP2569633B1 (en) * 2010-05-14 2016-02-10 The General Hospital Corporation Compositions and methods of identifying tumor specific neoantigens
DK2714071T3 (da) * 2011-05-24 2019-09-16 Biontech Rna Pharmaceuticals Gmbh Individualiserede vacciner mod cancer
WO2012159643A1 (en) 2011-05-24 2012-11-29 Biontech Ag Individualized vaccines for cancer
WO2014012051A1 (en) * 2012-07-12 2014-01-16 Persimmune, Inc. Personalized cancer vaccines and adoptive immune cell therapies
KR20210156320A (ko) * 2013-04-07 2021-12-24 더 브로드 인스티튜트, 인코퍼레이티드 개인맞춤화 신생물 백신을 위한 조성물 및 방법

Also Published As

Publication number Publication date
IL282202A (en) 2021-05-31
JP2016518355A (ja) 2016-06-23
IL241858B (en) 2021-04-29
KR20150143597A (ko) 2015-12-23
KR20210156320A (ko) 2021-12-24
US20210220455A1 (en) 2021-07-22
EP2983702A2 (en) 2016-02-17
AU2019203665A1 (en) 2019-06-13
KR20230145545A (ko) 2023-10-17
CN118750591A (zh) 2024-10-11
BR112015025460B1 (pt) 2024-01-02
CA2908434C (en) 2021-12-28
AU2019203664B2 (en) 2021-08-12
AU2021266338A1 (en) 2021-12-09
WO2014168874A3 (en) 2014-12-18
AU2014251207A1 (en) 2015-11-05
JP7489193B2 (ja) 2024-05-23
CN105377292A (zh) 2016-03-02
JP6702855B2 (ja) 2020-06-03
AU2019203664A1 (en) 2019-06-13
BR112015025460A2 (pt) 2017-10-10
CN118557711A (zh) 2024-08-30
KR102341899B1 (ko) 2021-12-21
NZ712933A (en) 2021-08-27
WO2014168874A2 (en) 2014-10-16
JP2020073553A (ja) 2020-05-14
CA2908434A1 (en) 2014-10-16
AU2014251207B2 (en) 2019-06-13
US20160101170A1 (en) 2016-04-14
JP2022105069A (ja) 2022-07-12
CA3137846A1 (en) 2014-10-16
AU2019203665B2 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP7489193B2 (ja) 個別化された新生物ワクチンの組成物及び方法
AU2020230277B2 (en) Combination therapy with neoantigen vaccine
EP3234193B1 (en) Molecular biomarkers for cancer immunotherapy
TWI750122B (zh) 用於贅瘤疫苗之調配物及其製備方法
MX2014011136A (es) Peptidos cancerigenos universales derivados de telomerasa.
CN112261947A (zh) 肿瘤特异性新抗原和其使用方法
EP3793571A1 (en) Vaccination with cancer neoantigens
NZ712933B2 (en) Compositions and methods for personalized neoplasia vaccines
WO2023220661A1 (en) Vaccines and methods of using the same to treat wnt-related cancer
WO2024020472A1 (en) Combination therapy with neoantigen vaccine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination