CN117813275A - 无铅压电陶瓷组合物和压电元件 - Google Patents

无铅压电陶瓷组合物和压电元件 Download PDF

Info

Publication number
CN117813275A
CN117813275A CN202280055766.2A CN202280055766A CN117813275A CN 117813275 A CN117813275 A CN 117813275A CN 202280055766 A CN202280055766 A CN 202280055766A CN 117813275 A CN117813275 A CN 117813275A
Authority
CN
China
Prior art keywords
lead
piezoelectric ceramic
ceramic composition
piezoelectric
free piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280055766.2A
Other languages
English (en)
Inventor
广瀬吉进
小林亮介
笠岛崇
山崎正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of CN117813275A publication Critical patent/CN117813275A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

无铅压电陶瓷组合物包含:由组成式(A1aM1b)c(Nbd1,Mnd2,M2d3)O3+e(其中,元素A1为碱金属中的至少1种,元素M1为Ba、Ca、Sr中的至少1种,元素M2为Ti、Zr中的至少1种,为0<a<1、0<b<1、a+b=1,c满足0.80<c<1.10,为0<d1<1、0<d2<1、0<d3<1、d1+d2+d3=1,e为表示氧缺陷或者过剩的值)所示的碱类铌酸盐钙钛矿型氧化物形成的主相,且满足b/(d2+d3)>1.0。

Description

无铅压电陶瓷组合物和压电元件
技术领域
由本说明书公开的技术涉及无铅压电陶瓷组合物和压电元件。
背景技术
以往,作为示出压电性的陶瓷,逐渐广泛利用了PZT(锆钛酸铅)。然而,PZT的成分中包含铅,因此,环境负荷被视为问题,近年来,推进了无铅压电陶瓷原材料的开发。作为无铅压电陶瓷原材料的有力候补之一,有以碱类铌酸盐钙钛矿型氧化物为主相的无铅压电陶瓷组合物。
为了将这种无铅压电陶瓷组合物用于压电滤波器、压电振子、压电变压器、压电超声波马达、压电陀螺传感器、爆震传感器等,要求机械品质因数Qm高。已知,通过在碱类铌酸盐钙钛矿型氧化物中添加锰(Mn),从而得到机械品质因数Qm高的无铅压电陶瓷组合物(参照专利文献1)。
现有技术文献
专利文献
专利文献1:日本专利第4929522号公报
发明内容
发明要解决的问题
有将上述无铅压电陶瓷组合物想要用于例如螺栓紧固朗之万型超声波振子那样的、要求高机械品质因数Qm的压电元件的愿望,要求进一步改善无铅压电陶瓷组合物的特性。
用于解决问题的方案
由本说明书公开的无铅压电陶瓷组合物包含:由组成式(A1aM1b)c(Nbd1,Mnd2,M2d3)O3+e(其中,元素A1为碱金属中的至少1种,元素M1为Ba、Ca、Sr中的至少1种,元素M2为Ti、Zr中的至少1种,为0<a<1、0<b<1、a+b=1,c满足0.80<c<1.10,为0<d1<1、0<d2<1、0<d3<1、d1+d2+d3=1,e为表示氧缺陷或者过剩的值)所示的碱类铌酸盐钙钛矿型氧化物形成的主相,且满足b/(d2+d3)>1.0。
另外,由本说明书公开的压电元件具备:由上述无铅压电陶瓷组合物形成的压电体、和与前述压电体接触的电极。
发明的效果
根据由本说明书公开的无铅压电陶瓷组合和压电元件,可以实现高的机械品质因数Qm。
附图说明
图1为实施方式的压电元件的立体图。
具体实施方式
[实施方式的概要]
(1)由本说明书公开的无铅压电陶瓷组合物包含:由组成式(A1aM1b)c(Nbd1,Mnd2,M2d3)O3+e(其中,元素A1为碱金属中的至少1种,元素M1为Ba、Ca、Sr中的至少1种,元素M2为Ti、Zr中的至少1种,为0<a<1、0<b<1、a+b=1,c满足0.80<c<1.10,为0<d1<1、0<d2<1、0<d3<1、d1+d2+d3=1,e为表示氧缺陷或者过剩的值)所示的碱类铌酸盐钙钛矿型氧化物形成的主相,且满足b/(d2+d3)>1.0。
另外,由本说明书公开的压电元件具备:由上述无铅压电陶瓷组合物形成的压电体、和与前述压电体接触的电极。
认为,碱类铌酸盐钙钛矿型氧化物中,Mn作为受体固溶于Nb的位点,从而机械品质因数Qm改善。然而,Mn与碱类铌酸盐钙钛矿型氧化物相比不易固溶,容易作为异相在无铅压电陶瓷组合物中偏析。另一方面,推测:与碱金属相价数接近于Mn的2价元素即Ba、Ca、Sr固溶于碱位点时,Mn有助于固溶于Nb的位点。认为,通过调整Mn与Ba、Ca、Sr的组成比使其成为b/(d2+d3)>1.0,从而适量的Mn固溶于Nb的位点,机械品质因数Qm改善。
(2)上述(1)的无铅压电陶瓷组合物可以包含由组成式A21-xTi1-xNb1+xO5(其中,元素A2为碱金属中的至少1种,满足0≤x≤0.15)所示的氧化物、和组成式A3Ti3NbO9(其中,元素A3为碱金属中的至少1种)所示的氧化物中的一者氧化物形成的副相。
根据这种构成,与无铅压电陶瓷组合物不具有副相的情况相比,可以改善压电特性。
(3)上述(1)的无铅压电陶瓷组合物中,前述主相中所含的前述碱类铌酸盐钙钛矿型氧化物的晶体颗粒的平均粒径可以为0.3μm以上且3.5μm以下。
或者,上述(1)的无铅压电陶瓷组合物中,前述主相中所含的前述碱类铌酸盐钙钛矿型氧化物的晶体颗粒的平均粒径可以为0.3μm以上且1.1μm以下。
根据这种构成,机械品质因数Qm进一步改善。
[实施方式的详细]
以下参照附图的同时对由本说明书公开的技术的具体例进行说明。需要说明的是,本发明不限定于这些示例,意图包含由权利要求书表示、与权利要求书等同的含义和范围内的全部变更。
<实施方式>
[无铅压电陶瓷组合物的构成]
本实施方式的无铅压电陶瓷组合物包含由具有压电特性的碱类铌酸盐钙钛矿型氧化物形成的主相。本实施方式的碱类铌酸盐钙钛矿型氧化物用以下的组成式(1)表示。
(A1aM1b)c(Nbd1,Mnd2,M2d3)O3+e…(1)
元素A1为碱金属中的至少1种。元素M1为属于碱土金属的Ca(钙)、Sr(锶)、Ba(钡)中的至少1种。元素M2为Ti(钛)、Zr(锆)中的至少1种。
上述组成式(1)中,元素A1与元素M1配置于钙钛矿结构的A位点(碱位点),Nb(铌)、Mn(锰)与元素M2配置于B位点。
作为上述组成式(1)中的系数a~e的值,在钙钛矿结构成立的值的组合中的、无铅压电陶瓷组合物的电特性或压电特性(特别是压电常数d33)的观点上选择优选的值。
具体而言,系数a、b满足0<a<1、0<b<1、a+b=1,排除a=0(即,均不含碱金属的组合物)、b=0(即,均不含Ca、Sr、Ba的组合物)。
相对于A位点整体的系数c满足0.80<c<1.10、优选0.84≤c≤1.08、进一步优选0.88≤c≤1.07。
系数d1、d2、d3满足0<d1<1、0<d2<1、0<d3<1、d1+d2+d3=1。排除d1=0(不含Nb的组合物)、d2=0(不含Mn的组合物)、d3=0(均不含Ti、Zr的组合物)。
氧的系数3+e中、系数e是通常为3的氧的系数,是表示氧缺陷或者过剩的正或负的值。氧的系数(3+e)能取主相构成钙钛矿氧化物的值。系数e的典型的值为e=0,优选0≤e≤0.1。需要说明的是,系数e的值可以由主相的组成的电中性条件算出。其中,作为主相的组成,也可以允许稍偏离电中性条件的组成。
系数b、d2、d3满足b/(d2+d3)>1.0。系数b、d2、d3如果取该范围的值,则得到机械品质因数Qm高的无铅压电陶瓷组合物。推测其理由如以下。
认为,Mn作为受体固溶于Nb的位点,从而机械品质因数Qm改善。然而,Mn对于碱类铌酸盐钙钛矿型氧化物不易固溶,容易作为异相在无铅压电陶瓷组合物中偏析。认为,固溶的容易性依赖于固溶的金属原子的离子半径、价数,认为,3价Mn不易固溶于主要配位有5价Nb的B位点。另一方面,作为2价元素的Ba、Ca、Sr容易固溶于配位有1价碱金属的A位点。而且,推测:价数接近于Mn的Ba、Ca、Sr适量固溶于A位点时,有助于Mn固溶于B位点。认为,通过调整Mn与Ba、Ca、Sr的组成比使其成为b/(d2+d3)>1.0,从而适量的Mn固溶于B位点,机械品质因数Qm改善。
对于b/(d2+d3)的上限值,没有特别限定,优选b/(d2+d3)≤2.0。
上述组成式(1)所示的碱类铌酸盐钙钛矿型氧化物优选包含K(钾)、Na(钠)、Li(锂)中的至少1种作为元素A1。上述氧化物包含K、Na、Li中的至少1种作为元素A1、包含Ca、Sr、Ba中的至少1种作为元素M1、包含Ti、Zr中的至少1种作为元素M2时,组成式(1)可以如下述组成式(1a)那样进行替换。
(Ka1Naa2Lia3Cab1、Srb2、Bab3)c(Nbd1,Mnd2,Tid31、Zrd32)O3+e…(1a)
上述组成式(1)与(1a)等价,为a1+a2+a3=a,为b1+b2+b3=b,为d31+d32=d。K与Na的系数a1、a2典型为0<a1≤0.6,0<a2≤0.6。Li的系数a3也可以为零,但优选0<c≤0.2、进一步优选0<c≤0.1。
上述组成式(1a)所示的碱类铌酸盐钙钛矿型氧化物中、将K、Na、和Nb作为主要金属成分的氧化物被称为“KNN”或“KNN材”。通过使用该氧化物,从而可以得到压电特性、电特性、绝缘性和高温耐久性优异、另外在-50℃~+150℃之间无特性的急剧变动的无铅压电陶瓷组合物。主相的典型的组成为(K,Na,Li,Ca,Ba)c(Nb,Mn,Ti,Zr)O3+e
本实施方式的无铅压电陶瓷组合物可以包含由以下的组成式(2)所示的氧化物、或以下的组成式(3)所示的氧化物中的一者氧化物形成的副相。
A21-xTi1-xNb1+xO5…(2)
A3Ti3NbO9…(3)
组成式(2)中,元素A2为碱金属中的至少1种,优选K、Rb(铷)、Cs(铯)中的至少1种。系数x满足0≤x≤0.15。系数x如果取该范围的值,则副相的结构稳定,可以得到均匀的晶相。从副相的结构稳定性的观点出发,对于系数x,元素A2为K或Rb的情况下,优选满足0≤x≤0.15,元素A2为Cs的情况下,优选满足0≤x≤0.10。
组成式(3)中,元素A3为碱金属中的至少1种,优选为K、Rb、Cs中的至少1种。
副相不具有压电特性,但通过与主相混合存在,从而改善烧结性,此外还改善绝缘性。另外,认为还有助于使得在-50℃~+150℃之间不产生相变点的作用。副相为层状结构化合物(或层状化合物),推定为层状结构化合物时改善压电陶瓷组合物的绝缘性、和有助于不产生相变点的作用。
副相的含有比率可以超过0摩尔%且低于20摩尔%,但优选2摩尔%以上且15摩尔%以下、进一步优选2摩尔%以上且10摩尔%以下。
组成式(2)或(3)所示的氧化物中、以Nb、Ti和K为主要金属成分的氧化物被称为“NTN材”。通过使用该氧化物,从而可以得到廉价且压电特性优异的无铅压电陶瓷组合物。
[压电元件10]
本实施方式的压电元件10具备:压电体11、和压电体11接触的电极12、13。压电体11由上述无铅压电陶瓷组合物构成,呈圆板状。电极12、13中的一者配置于压电体11的一面,另一者配置于压电体11的另一面,成为压电体11被夹持于电极12、13之间的状态。
以下示出上述压电元件10的制造方法的一例。
首先,从主相的原料粉末中选择所需者,以成为目标组成的方式进行称量。原料粉末可以为主相中所含的各元素的氧化物、碳酸盐、氢氧化物。在这些原料粉末中加入乙醇,在球磨机中、优选进行15小时以上的湿式混合,得到浆料。使得到的浆料干燥而得到混合粉末,将得到的混合粉末例如在大气气氛下、以600~1000℃预煅烧1~10小时,得到主相预煅烧物。
另外,从副相的原料粉末中选择所需者,以成为目标组成的方式进行称量。原料粉末可以为副相中所含的各元素的氧化物、碳酸盐、氢氧化物。然后,在这些原料粉末中加入乙醇,在球磨机中、优选进行15小时以上的湿式混合,得到浆料。使得到的浆料干燥而得到混合粉末,将得到的混合粉末例如在大气气氛下、以600~1000℃预煅烧1~10小时,得到副相预煅烧物。
接着,分别称量主相预煅烧物和副相预煅烧物,在球磨机中,加入分散剂、粘结剂和乙醇并粉碎/混合,形成浆料。另外,根据需要,可以称量主相或副相的原料粉末中、得到上述主相预煅烧物和副相预煅烧物的工序中未选择的原料粉末,添加至浆料。需要说明的是,可以将该浆料另一次进行预煅烧并粉碎、混合。使得到的浆料干燥,造粒,例如在压力20MPa下进行单轴压制,从而成型为期望的形状。对于得到的成型体,例如在压力150MPa下进行CIP处理(冷等静压成型处理)。将得到的CIP压制体例如在大气气氛下、以900~1300℃保持1~10小时并烧成,从而得到压电体。该烧成可以在氧气氛下进行。
例如通过溅射法在得到的压电体的表面形成电极,进行极化处理,得到压电元件。
需要说明的是,上述制造方法为一例,可以利用用于制造压电元件的其他各种工序、处理条件。例如,可以以符合最终的无铅压电陶瓷组合物的组成的量比将原料混合并烧成,来代替预先单独生成主相与副相的预煅烧物后将两者的粉末混合并烧成。其中,根据预先单独生成主相与副相的预煅烧物后进行混合的方法,容易更严格地管理主相与副相的组成,因此,可以提高无铅压电陶瓷组合物的成品率。
本实施方式的无铅压电陶瓷组合物和压电元件可以广泛用于振动检测用途、压力检测用途、振荡用途和压电器件用途等。例如可以用于检测各种振动的传感器类(爆震传感器和燃烧压传感器等)、振子、驱动器、滤波器等压电器件、高电压发生装置、微电源、各种驱动装置、位置控制装置、振动抑制装置、流体排出装置(涂料排出和燃料排出等)等。另外,本实施方式的无铅压电陶瓷组合物和压电元件特别适合于要求优异的热耐久性的用途(例如爆震传感器和燃烧压传感器等)。
<试验例>
1.试样的制成
(1)第1预煅烧工序
以下述组成式(4)的系数f、g、h成为表1所示的比率的方式分别称量K2CO3粉末、Na2CO3粉末、Li2CO3粉末、Nb2O5粉末。
(KfNagLih)NbO3…(4)
[表1]
试样No. f g h
1 0.47 0.51 0.02
2 0.47 0.51 0.02
3 0.47 0.51 0.02
4 0.47 0.51 0.02
5 0.48 0.52 0.00
6 0.47 0.51 0.02
7 0.47 0.51 0.02
8 0.47 0.51 0.02
9 0.47 0.51 0.02
10 0.47 0.51 0.02
11 0.47 0.51 0.02
12 0.47 0.51 0.02
13 0.47 0.51 0.02
14 0.10 0.88 0.02
在这些原料粉末中加入乙醇,在球磨机中进行15小时以上的湿式混合,得到浆料。使得到的浆料干燥而得到混合粉末,将得到的混合粉末在大气气氛下、以600-1000℃预煅烧1-10小时,得到第1预煅烧粉。
(2)第2预煅烧工序
从CaCO3粉末、SrCO3粉末、BaCO3粉末、MnO2粉末、TiO2粉末、ZrO2粉末中选择所需者,以相对于第1预煅烧粉(上述组成式(4)所示的氧化物)的各粉末中的金属原子的摩尔百分率成为表2所示的值的方式进行称量,添加至第1预煅烧粉。
[表2]
在这些原料粉末与第1预煅烧粉的混合物中加入乙醇,在球磨机中进行15小时以上的湿式混合,得到浆料。使得到的浆料干燥而得到混合粉末,将得到的混合粉末在大气气氛下、以600-1000℃预煅烧1-10小时,得到第2预煅烧粉。
(3)成型工序
在得到的第2预煅烧粉中加入分散剂、粘结剂和乙醇并粉碎/混合,形成浆料。使得到的浆料干燥,造粒,在压力20MPa下进行单轴压制,成型为圆板状后,在压力150MPa下进行CIP处理(冷等静压成型处理),得到成型体。
(4)正式烧成工序
将得到的成型体在大气气氛下、以1000-1300℃保持1-10小时并烧成,从而得到压电体。该压电体由上述组成式(1a)所示的碱类铌酸盐钙钛矿型氧化物形成的无铅压电陶瓷组合物所构成。
(5)电极形成工序
通过溅射法在得到的压电体的表里两面形成包含Au的电极。对电极形成后的压电体,在50℃的硅油中施加5kv/mm的电解,进行极化处理,得到试样No.1-14。
2.试验方法
对于得到的试样,用阻抗分析仪(Keysight Technologies公司制、E4990A)进行测定,由室温、1kHz下的静电容量的值算出相对介电常数ε33 T0。另外,根据共振-反共振法求出机械品质因数Qm。将机械品质因数Qm的值为500以上者判断为良品。
3.结果
对于各试样,将上述1.(2)中相对于第1预煅烧粉添加的原料粉末中的Ba原子、Ca原子、Sr原子的摩尔百分率的总计设为PM1、将Ti原子、Zr原子的摩尔百分率的总计设为PM2、将Mn原子的摩尔百分率设为PMn,求出PM1/(PM2+PMn)的值。将求出的值与相对介电常数ε33 T0和机械品质因数Qm的值一起示于表3。
[表3]
此处,理论上,原料粉末中的Ba原子、Ca原子和Sr原子全部进入得到的碱类铌酸盐钙钛矿型氧化物的A位点。另外,Mn原子、Ti原子和Zr原子全部进入得到的碱类铌酸盐钙钛矿型氧化物的B位点。由此可以认为,Ba原子、Ca原子、Sr原子、Mn原子、Ti原子和Zr原子的摩尔百分率分别对应于上述组成式(1a)中的Ba、Ca、Sr、Ti、Zr的系数b1、b2、b3、d2、d31、d32。而且,可以认为,Ba原子、Ca原子、Sr原子的摩尔百分率的总计PM1对应于上述组成式(1a)中的Ba、Ca、Sr的系数b1、b2、b3的总计值(组成式(1)中的系数b的值),可以认为,Ti原子、Zr原子的摩尔百分率的总计PM2对应于上述组成式(1a)中的Ti、Zr的系数d31、d32的总计值(组成式(1)中的系数d3的值)。由以上,可以认为,摩尔百分率的关系式PM1/(PM2+PMn)与组成式(1)中的系数b、d2、和d3的关系式b/(d2+d3)等价。
PM1(PM2+PMn)的值(即、b/(d2+d3)的值)为1.0以下的试样No.1-3的机械品质因数Qm低于500。与此相对,PM1(PM2+PMn)的值(即、b/(d2+d3)的值)超过1.0的试样No.4-14的机械品质因数Qm为500以上,压电特性优异。
<考察晶体颗粒的平均粒径与机械品质因数Qm的关系的追加试验例>
1.试样的制作和试验方法
第1预煅烧工序中,以上述组成式(4)的系数f、g、h、成为表4所示的比率的方式称量各原料粉末,第2预煅烧工序中,以第1预煅烧粉中添加的原料粉末中的金属原子的摩尔百分率成为表4所示的比率的方式进行称量,除此之外,与上述试验例同样地制成试样,得到试样Nο.15-22。
[表4]
对于得到的试样Nο.15-22和上述试验例的试样Nο.1、4,用SEM以10000倍进行拍摄。对于得到的图像,用图像处理软件imageJ进行图像处理,将图像(10μm×10μm)中所含的晶体颗粒的粒径的平均值作为平均粒径。另外,以与上述试验例同样的方法,求出相对介电常数ε33 T0和机械品质因数Qm。将机械品质因数Qm的值为500以上者判断为良品。
2.结果
对于各试样,将平均粒径、相对介电常数、和机械品质因数Qm的值示于表5
[表5]
PM1(PM2+PMn)的值(即、b/(d2+d3)的值)为1.0以下的试样No.1、21、22的机械品质因数Qm大幅低于500。另外,PM1(PM2+PMn)的值(即、b/(d2+d3)的值)超过1.0、碱类铌酸盐钙钛矿型氧化物的晶体颗粒的平均粒径为3.8μm的试样Nο.20的机械品质因数Qm稍低于500。于此相对,PM1(PM2+PMn)的值(即、b/(d2+d3)的值)超过1.0、碱类铌酸盐钙钛矿型氧化物的晶体颗粒的平均粒径为0.3-3.5μm的试样Nο.4、15-19的机械品质因数Qm为500以上,压电特性优异。特别是碱类铌酸盐钙钛矿型氧化物的晶体颗粒的平均粒径为0.3-1.1μm的试样Nο.15-17的机械品质因数Qm为560以上,压电特性特别优异。
附图标记说明
10:压电元件
11:压电体
12、13:电极

Claims (5)

1.一种无铅压电陶瓷组合物,其包含:由组成式(A1aM1b)c(Nbd1,Mnd2,M2d3)O3+e所示的碱类铌酸盐钙钛矿型氧化物形成的主相,其中,元素A1为碱金属中的至少1种,元素M1为Ba、Ca、Sr中的至少1种,元素M2为Ti、Zr中的至少1种,为0<a<1、0<b<1、a+b=1,c满足0.80<c<1.10,为0<d1<1、0<d2<1、0<d3<1、d1+d2+d3=1,e为表示氧缺陷或者过剩的值,
且满足b/(d2+d3)>1.0。
2.根据权利要求1所述的无铅压电陶瓷组合物,其包含:由组成式A21-xTi1-xNb1+xO5所示的氧化物、和组成式A3Ti3NbO9所示的氧化物中的一者氧化物形成的副相,其中,元素A2为碱金属中的至少1种,满足0≤x≤0.15,元素A3为碱金属中的至少1种。
3.根据权利要求1或2所述的无铅压电陶瓷组合物,其中,所述主相中所含的所述碱类铌酸盐钙钛矿型氧化物的晶体颗粒的平均粒径为0.3μm以上且3.5μm以下。
4.根据权利要求1或2所述的无铅压电陶瓷组合物,其中,所述主相中所含的所述碱类铌酸盐钙钛矿型氧化物的晶体颗粒的平均粒径为0.3μm以上且1.1μm以下。
5.一种压电元件,其具备:由权利要求1~4中任一项所述的无铅压电陶瓷组合物形成的压电体、和与所述压电体接触的电极。
CN202280055766.2A 2021-08-27 2022-05-24 无铅压电陶瓷组合物和压电元件 Pending CN117813275A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021-138559 2021-08-27
JP2021138559 2021-08-27
PCT/JP2022/021187 WO2023026614A1 (ja) 2021-08-27 2022-05-24 無鉛圧電磁気組成物、および圧電素子

Publications (1)

Publication Number Publication Date
CN117813275A true CN117813275A (zh) 2024-04-02

Family

ID=85321774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280055766.2A Pending CN117813275A (zh) 2021-08-27 2022-05-24 无铅压电陶瓷组合物和压电元件

Country Status (4)

Country Link
KR (1) KR20240009472A (zh)
CN (1) CN117813275A (zh)
TW (1) TW202315176A (zh)
WO (1) WO2023026614A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929522B1 (zh) 1968-10-15 1974-08-05
JP4929522B2 (ja) 2000-08-25 2012-05-09 株式会社豊田中央研究所 圧電磁器組成物
CN102725245B (zh) * 2010-01-29 2014-10-08 日本特殊陶业株式会社 无铅压电陶瓷组合物、包含其的压电元件、爆震传感器和无铅压电陶瓷组合物的生产方法
JP5823014B2 (ja) * 2014-04-11 2015-11-25 日本特殊陶業株式会社 無鉛圧電磁器組成物、それを用いた圧電素子、及び、無鉛圧電磁器組成物の製造方法
JP2018088524A (ja) * 2016-11-22 2018-06-07 日本特殊陶業株式会社 無鉛圧電磁器組成物及び圧電素子
JP7156632B2 (ja) * 2017-08-04 2022-10-19 キヤノン株式会社 圧電材料、圧電素子、および電子機器
JP6914151B2 (ja) * 2017-09-12 2021-08-04 日本特殊陶業株式会社 無鉛圧電磁器組成物、及び圧電素子

Also Published As

Publication number Publication date
KR20240009472A (ko) 2024-01-22
JPWO2023026614A1 (zh) 2023-03-02
WO2023026614A1 (ja) 2023-03-02
TW202315176A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
CN101374782B (zh) 压电陶瓷组合物
US7754095B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP4513948B2 (ja) 圧電磁器およびその製造方法
JP2001351828A (ja) 非還元性誘電体セラミック及びそれを用いた積層セラミックコンデンサ
JP2004244300A (ja) 圧電磁器組成物及びその製造方法,並びに圧電素子及び誘電素子
JP5929640B2 (ja) 圧電磁器および圧電素子
JP5337513B2 (ja) 圧電/電歪磁器組成物
JP2014224038A (ja) 圧電セラミックス及びこれを用いた圧電デバイス
JP6914151B2 (ja) 無鉛圧電磁器組成物、及び圧電素子
JP2008156172A (ja) 無鉛圧電磁器組成物
JP4995412B2 (ja) 圧電磁器組成物及びこれを用いた圧電素子
US20070120446A1 (en) Piezoelectric ceramic composition and piezoelectric element comprising the composition
JP2004075448A (ja) 圧電磁器組成物、圧電磁器組成物の製造方法および圧電セラミック部品
WO2023074139A1 (ja) 圧電素子、および圧電素子の製造方法
JP4726672B2 (ja) 圧電磁器
EP4322233A1 (en) Lead-free piezoelectric porcelain composition and piezoelectric element
JP2022178888A (ja) 無鉛圧電磁器組成物
CN117813275A (zh) 无铅压电陶瓷组合物和压电元件
JP2023032022A (ja) 圧電素子
JP2007261863A5 (zh)
JP5190894B2 (ja) 圧電体又は誘電体磁器組成物並びに圧電体デバイス及び誘電体デバイス
Baba et al. Vertical morphotropic phase boundary in lead-free piezoelectric ceramics (K, Na, Li) NbO3–BaZrO3–(La, Na) TiO3 system
WO2024070849A1 (ja) 無鉛圧電組成物、及び圧電素子
WO2024070626A1 (ja) 無鉛圧電組成物、及び圧電素子
JP5894222B2 (ja) 積層型電子部品およびその製法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination