CN117801569A - 一种单组分脱醇型硅酮胶用纳米碳酸钙及其制备方法 - Google Patents

一种单组分脱醇型硅酮胶用纳米碳酸钙及其制备方法 Download PDF

Info

Publication number
CN117801569A
CN117801569A CN202311836373.8A CN202311836373A CN117801569A CN 117801569 A CN117801569 A CN 117801569A CN 202311836373 A CN202311836373 A CN 202311836373A CN 117801569 A CN117801569 A CN 117801569A
Authority
CN
China
Prior art keywords
calcium carbonate
nano calcium
titanate
coupling agent
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311836373.8A
Other languages
English (en)
Inventor
吕国章
杨芮平
李娟娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Xintai Hengxin Nanomaterials Technology Co ltd
Original Assignee
Shanxi Xintai Hengxin Nanomaterials Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Xintai Hengxin Nanomaterials Technology Co ltd filed Critical Shanxi Xintai Hengxin Nanomaterials Technology Co ltd
Priority to CN202311836373.8A priority Critical patent/CN117801569A/zh
Publication of CN117801569A publication Critical patent/CN117801569A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/181Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/185After-treatment, e.g. grinding, purification, conversion of crystal morphology
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/043Drying, calcination
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明涉及纳米碳酸钙技术领域,具体涉及一种单组分脱醇型硅酮胶用纳米碳酸钙及其制备方法。制备方法包括如下步骤:S1、将Ca(OH)2精浆碳化,得到碳化液;S2、将碳化液加热至55‑75℃,加入改性剂I进行改性,得到纳米碳酸钙浆液,经压滤、干燥后得到纳米碳酸钙粉体;S3、利用改性剂II对纳米碳酸钙粉体进行改性,得到脱醇型硅酮胶用纳米碳酸钙;改性剂I由C16‑C20脂肪酸及其盐、磺酸盐及其酯、高级磷酸酯中的一种以2‑4:1的质量比与螯合型钛酸酯偶联剂混合而成;改性剂II由钛酸酯偶联剂和硅烷偶联剂混合而成。由纳米碳酸钙制备的单组分脱醇型硅酮胶具有低模量、高伸长率、高粘接性和高贮存稳定性的优异性能。

Description

一种单组分脱醇型硅酮胶用纳米碳酸钙及其制备方法
技术领域
本发明涉及纳米碳酸钙技术领域,具体涉及一种单组分脱醇型硅酮胶用纳米碳酸钙及其制备方法。
背景技术
硅酮胶,由于具有优良的耐寒、耐热、耐老化、防水、防潮性等在各种建筑工种、室内装修和工业电子等领域使用广泛,种类主要有脱酮肟型、脱醋酸型、脱醇型等。单组分脱醇型硅酮胶,因其硫化后释放的醇类小分子无腐蚀、环保、气味低,且对所接触的基材无腐蚀、有良好粘接性,同时具有良好的物理机械性能、电性能等,近年来在市场中应用越来越广。但单组分脱醇胶生产过程不稳定,对纳米钙要求高,且单组分脱醇胶一直存在贮存稳定性差,硫化速度慢,粘接性差的缺点。硫化速度慢和粘接性差的问题,各脱醇胶生产厂家的技术人员经过一定的配方改进,已经得到很大的改善,但还未彻底改进问题。
纳米碳酸钙在硅酮胶中填加量占50%左右,纳米碳酸钙的质量对硅酮胶的质量影响巨大,通过试验验证,在硅酮胶配方改进的基础上,提高纳米碳酸钙的质量,可以大幅改进或提高脱醇胶的贮存稳定性,粘接性和硫化速度等缺陷。市场上现有纳米碳酸钙产品在硅酮胶体系已有很大的用量,在单组分脱醇胶体系也有一定的用量,但存在模量、伸长率及粘接性无法兼顾的问题。
发明内容
为兼顾单组分脱醇胶模量、伸长率及粘接性,本发明提供了一种单组分脱醇型硅酮胶用纳米碳酸钙及其制备方法。
为实现上述目的,本发明采用如下技术方案:
一种脱醇型硅酮胶用纳米碳酸钙的制备方法,包括如下步骤:
S1、将Ca(OH)2精浆碳化,得到碳化液;
S2、将碳化液加热至55-75℃,加入皂化后的改性剂I进行改性,得到纳米碳酸钙浆液,经压滤、干燥后得到纳米碳酸钙粉体;
S3、将碳化液加热至55-75℃,加入碳酸钙含量2.5%-3.5%的改性剂I,保温搅拌1h-3h,得到纳米碳酸钙浆液,经压滤、干燥后得到纳米碳酸钙粉体;
S4、以碳酸钙干基计,向所述纳米碳酸钙粉体中加入其质量0.5%-1.5%的改性剂II,搅拌0.5-1h,得到所述单组分脱醇型硅酮胶用纳米碳酸钙;
所述改性剂I由C16-C20脂肪酸及其盐、磺酸盐及其酯、高级磷酸酯中的一种以2-4:1的质量比与螯合型钛酸酯偶联剂混合而成;
所述改性剂II由钛酸酯偶联剂和硅烷偶联剂以1:1的质量比混合而成。
作为本发明所述制备方法的优选,所述C16-C20脂肪酸选自棕榈酸、硬脂酸、亚油酸、油酸、二烯酸、亚麻酸、花生四烯酸和二十碳五烯酸中的的一种或多种,所述磺酸盐选自直链烷基苯磺酸钠和α-烯基磺酸钠中的一种或多种,所述高级磷酸酯选自磷酸单烷基酯、磷酸二烷基酯和磷酸三烷基酯中的一种或多种,所述螯合型钛酸酯偶联剂选自双(二辛氧基焦磷酸酯基)乙撑钛酸酯和三乙醇胺的螯合物溶液、乙撑螯合型焦磷酸酰氧基钛酸酯、双(二辛氧基焦磷酸酯基)乙撑钛酸酯中的一种。
作为本发明所述制备方法的优选,所述钛酸酯偶联剂选自异丙基三(二辛基焦磷酸酰氧基)钛酸酯、异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯、双(二辛氧基焦磷酸酯基)乙撑钛酸酯、植物酸型单烷氧基钛酸酯、焦磷酸型单烷氧基类钛酸酯、复合磷酸型单烷氧基类钛酸酯、二(辛烷基苯酚聚氧乙烯醚)磷酯和四异丙基二(二辛基亚磷酸酰氧基)钛酸酯中的一种;所述硅烷偶联剂选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷和乙烯基三(β-甲氧基乙氧基)硅烷中的一种。
作为本发明所述制备方法的优选,所述石灰石的CaCO3含量≥98.5%,MgO≤0.5%,块径5-10cm,焦炭C≥78%,石焦比为10-12:1,煅烧温度800℃-1100℃,煅烧时长48h-96h,煅烧得到草酸检测活性在5'-10'的过烧CaO。
作为本发明所述制备方法的进一步优选,所述石灰石的CaCO3含量≥98.5%,MgO≤0.5%,块径5-10cm,焦炭C≥78%,石焦比为10-12:1,煅烧温度800℃-1100℃,煅烧时长48h-96h,煅烧得到草酸检测活性在5'-10'的的过烧CaO。
作为本发明所述制备方法的进一步优选,所述消化、过筛、陈化具体为:将所述过烧CaO加80-100℃热水消化,灰水比:1:5-8,连续消化机消化,至Ca(OH)2质量浓度为9%-15%,过100目筛,50℃-70℃放置陈化100-150h,过325目筛,加水配至Ca(OH)2精浆质量浓度至5%-7%。
作为本发明所述制备方法的优选,所述碳化具体为:
将Ca(OH)2精浆泵入超重力反应机组,碳化温度18-22℃,进料体积5-10m3,CO2含量35%-45%,流量55-250L/min,反应时长15-25min,终点pH控制6.5-6.8,加入Ca(OH)2精浆质量0.5%-1.0%的分散剂,继续循环碳化1min,停止碳化,放置5-10h。
作为本发明所述制备方法的进一步优选,所述超重力反应机组由为2-3台超重力反应器并联于同一个碳化液循环罐上。
作为本发明所述制备方法的进一步优选,所述分散剂选自三乙基己基磷酸、聚丙烯酰胺、十二烷基硫酸钠和油酸钠中的一种或多种。
作为同一个发明构思,本发明还提供了所述的制备方法制备的纳米碳酸钙。
作为同一个发明构思,本发明还提供了利用所述纳米碳酸钙制备的脱醇型硅酮胶,按重量份数计算,由以下组分制成:
107胶,360份;
硅油,36份;
纳米碳酸钙,360份;
硅烷偶联剂KH550,18份;
硅烷偶联剂KH560,20份;
甲基二甲基硅烷,15份;
有机钛催化剂,8份。
作为本发明所述脱醇型硅酮胶的优选,所述有机钛Tyzor催化剂为726。
本发明的发明构思及益效果:
(1)选取高CaCO3含量石灰石,在较高温度煅烧,获得原生粒子大、表面较光滑的石灰,煅烧石灰检测草酸活性控制在5′-10′。
(2)高温消化,保温50℃-70℃陈化放置100h-150h,利于石灰颗粒的完全消化。
(3)超重力碳化反应器并联,加快反应速度,使纳米碳酸钙生成速度大于生长速度,粒径小,原生粒径大小可以通过反应器并联台数调控。
(4)碳化过程使用高浓度CO2气体,提高Ca(OH)2与CO2反应合成速度。
(5)结束碳化前加入有机分散剂、阴离子分散剂或二者的混合物,阴离子分散剂起电荷互相排斥作用,有机分散剂吸附在颗粒表面时,形成的层状结构可以有效阻止颗粒之间的接触和聚焦,起到空间位阻的效果,两种分散效果协同效应,使纳米碳酸钙颗粒凝聚性降低,团聚减少。
(6)加热碳化液加入改性剂I,使碳酸钙由亲水性变为疏水性,具体为C16-C20的脂肪酸及盐、磺酸盐有直链烷基苯磺酸钠和α-烯基磺酸钠、高级磷酸酯有磷酸单烷基酯、磷酸二烷基酯和磷酸三烷基酯及螯合型钛酸酯偶联剂,前三种任意一种和螯合型钛酸酯偶联剂混合使用,前三种常规改性剂提高纳米碳酸钙产品的分散性和亲油性,偶联剂则提高纳米碳酸钙在胶中的粘接性、触变性。
(7)二次改性为干法连续改性,改性剂II为钛酸酯偶联剂和硅烷偶联剂,滴加作用为进一步提高物料性能,提高制胶应用中的填加量、伸长率、贮存稳定性、增加与胶料的结合力,提高胶粘剂的粘接力。
(8)所得纳米碳酸钙产品孔径为25-35nm,试验证明此范围内的纳米碳酸钙产品具有一定的粘接吸附性,且不会因孔径过大,经放置渗透后,导致粘度增大,贮存性下降。
(9)所得纳米碳酸钙产品BET为15-22m2/g,水分≤0.3%,pH值8.5-9.5,挤出量60-90g/min,孔径为25-35nm,激光粒度D50<1.0um,D100<5.0um。比表适中、水分、pH值低,能有效降低胶粘剂模量,高挤出量能提高胶粘剂伸长率,孔径均一,激光粒度小,说明产品粒度均一,分散好。
具体实施方式
下面结合具体实施例对本发明进行详细说明,但不应理解为本发明的限制。如未特殊说明,下述实施例中所用的技术手段为本领域技术人员所熟知的常规手段,下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
一种脱醇型硅酮胶用纳米碳酸钙的制备方法
(1)以石灰石为原料,经煅烧、消化、过筛、陈化获得Ca(OH)2精浆,将Ca(OH)2精浆碳化,得到碳化液;
所述石灰石的CaCO3含量≥98.5%,MgO≤0.5%,块径5-10cm,焦炭C≥78%,石焦比为12:1;
煅烧:将所述石灰石在800℃-900℃煅烧96h,煅烧得到草酸检测活性为5'的过烧CaO;
消化、过筛和陈化:将所述过烧CaO加85℃热水消化,灰水比:1:8,连续回转消化机消化,至Ca(OH)2质量浓度为15%,过100目筛,保温50℃放置陈化100h,过325目筛,加水配至Ca(OH)2精浆质量浓度至6%;
碳化:将Ca(OH)2精浆泵入超重力反应机组,碳化温度18℃,进料体积10m3,CO2含量36%,流量210L/min,反应时长22min,终点pH控制6.55,加入Ca(OH)2精浆质量0.5%的分散剂,继续循环碳化1min,停止碳化,检测纳米碳酸钙孔径为35nm,放置8h,得到碳化液;
本实施例的所述超重力反应机组为2台超重力反应器并联于同一个碳化液循环罐上,并联结构,2倍加大碳化液的循环量,提高与CO2的接触面积,促进碳化合成速率,提高CO2利用率,缩短碳化反应时间,得到粒径分布窄、规整的纳米碳酸钙。
本实施例的分散剂由三乙基已基磷酸和油酸钠按质量比1:1混合。
(2)将碳化液加热至60℃,加入CaCO3含量2.5%的皂化后的改性剂I,保温搅拌1h,得到纳米碳酸钙浆液,将纳米碳酸钙浆液泵入全自动板框压滤机中,压力0.7MPa,进料1h,压榨1h,压至滤饼水分34.5%,送入干燥机中,一段浆叶干燥,水分≤5%,二段闪蒸干燥,水分≤0.3%,得纳米碳酸钙粉体;
本实施例的改性剂I由长链脂肪酸(50%硬脂酸、30%油酸、20%花生四烯酸)和螯合型钛酸酯偶联剂YB-401(乙撑螯合型焦磷酸酰氧基钛酸酯)以4:1质量比混合而成;使用方法为:将长链脂肪酸总质量0.07倍的NaOH置于18℃水中,加热至85℃,加入硬脂酸、油酸、花生四烯酸保温搅拌30min,再加入计量好的螯合型钛酸酯偶联剂,搅匀,加入待加碳酸钙浆液中。
(3)将纳米碳酸钙粉体输送入连续式粉体混料机,滴加入纳米碳酸钙粉体质量1.5%的改性剂II,搅拌30min后,出料包装,得所述脱醇型硅酮胶用纳米碳酸钙;
本实施例的改性剂II由异丙基三(二辛基焦磷酸酰氧基)钛酸酯和烯基三乙氧基硅烷以1:1质量比混合而成;使用方法为将白油和所述改性剂II以质量比1:1稀释混匀,由蠕动泵滴加于连续混料仓中搅拌后出料包装,混料仓公转转速10r/min,自转转速50r/min。
实施例2
一种脱醇型硅酮胶用纳米碳酸钙的制备方法
(1)以石灰石为原料,经煅烧、消化、过筛、陈化获得Ca(OH)2精浆,将Ca(OH)2精浆碳化,得到碳化液;
所述石灰石的CaCO3含量≥98.5%,MgO≤0.5%,块径5-10cm,焦炭C≥78%,石焦比为11.5:1;
将所述石灰石在煅烧温度900℃-1000℃件下,煅烧时长85h,煅烧得到草酸检测活性为8'的过烧CaO;
将所述过烧CaO加90℃热水消化,灰水比:1:8,连续回转消化机消化,至Ca(OH)2质量浓度为12.5%,过100目筛,保温60℃放置陈化110h,过325目筛,加水配至Ca(OH)2精浆质量浓度至7%;
将Ca(OH)2精浆泵入超重力反应机组,碳化温度19℃,进料体积10m3,CO2含量38%,流量250L/min,反应时长24min,终点pH控制6.5,加入分散剂0.7%,继续循环碳化1min,停止碳化,检测纳米碳酸钙孔径为32nm,放置10h,得到碳化液;
本实施例的超重力反应机组同实施例1。
本实施例的分散剂为聚丙烯酰胺。
(2)将碳化液加热至65℃,加入CaCO3含量2.8%的皂化后的改性剂I,保温搅拌2h,得到纳米碳酸钙浆液,将纳米碳酸钙浆液泵入全自动板框压滤机中,压力0.7MPa,进料,1h,压榨1h,压至滤饼水分37%,送入干燥机中,一段浆叶干燥,水分≤5%,二段闪蒸干燥,水分≤0.3%,得纳米碳酸钙粉体;
本实施例的改性剂I由长链脂肪酸(50%直链烷基磺酸钠、50%α-烯基磺酸钠)和螯合型钛酸酯偶联剂QX-311W(双(二辛氧基焦磷酸酯基)乙撑钛酸酯和三乙醇胺的螯合物溶液)以3:1质量比混合而成;使用方法为直链烷基磺酸钠和α-烯基磺酸钠直接加入25℃水中,加热至90℃,保温搅拌60min至全溶,再加入计量好的螯合型钛酸酯偶联剂,搅匀,加入碳酸钙浆液中。
(3)将纳米碳酸钙粉体输送入连续式粉体混料机,滴加入纳米碳酸钙粉体质量1.0%的改性剂II,搅拌40min后,出料包装,得所述脱醇型硅酮胶用纳米碳酸钙;
本实施例的改性剂II由植物酸型单烷氧基钛酸酯(钛酸酯偶联剂TC-F)和乙烯基三甲氧基硅烷以2:1质量比混合而成;使用方法为将异丙醇和所选改性剂II以质量比1:1稀释混匀,由蠕动泵滴加于连续混料仓中搅拌30min后出料包装,混料仓公转转速20r/min,自转转速60r/min。
实施例3
一种脱醇型硅酮胶用纳米碳酸钙的制备方法
(1)以石灰石为原料,经煅烧、消化、过筛、陈化获得Ca(OH)2精浆,将Ca(OH)2精浆碳化,得到碳化液;
所述石灰石的CaCO3含量≥98.5%,MgO≤0.5%,块径5-10cm,焦炭C≥78%,石焦比为10:1;
将所述石灰石在煅烧温度950℃-1000℃件下,煅烧时长60h,煅烧得到草酸检测活性为8'的过烧CaO;
将所述过烧CaO加90℃热水消化,灰水比:1:7,连续回转消化机消化,至Ca(OH)2质量浓度为10%,过100目筛,保温70℃放置陈化130h,过325目筛,加水配至Ca(OH)2精浆质量浓度至6%;
将Ca(OH)2精浆泵入超重力反应机组,碳化温度21℃,进料体积8m3,CO2含量45%,流量180L/min,反应时长18min,终点pH控制6.7,加入分散剂0.85%,继续循环碳化1min,停止碳化,检测纳米碳酸钙孔径为28nm,放置5h,得到碳化液;
本实施例的所述超重力反应机组为3台超重力反应器并联于同一个碳化液循环罐上;
本实施例的分散剂为十二烷基硫酸钠。
(2)将碳化液加热至70℃,加入CaCO3含量3.0%的皂化后的改性剂I,保温搅拌2h,得到纳米碳酸钙浆液,将纳米碳酸钙浆液泵入全自动板框压滤机中,压力0.7MPa,进料1h,压榨1h,压至滤饼水分36%,送入干燥机中,一段浆叶干燥,水分≤5%,二段闪蒸干燥,水分≤0.3%,得纳米碳酸钙粉体;
本实施例的改性剂I由长链脂肪酸(40%磷酸单烷基酯、40%磷酸二烷基酯、20%磷酸三烷基酯)和螯合型钛酸酯偶联剂KR-138S(双(二辛基焦磷酸酯)羟乙酸酯钛酸酯)以4:1质量比混合而成;使用方法为磷酸单烷基酯、磷酸二烷基酯、磷酸三烷基酯直接加入10℃水中,加热至90℃,保温搅拌60min至全溶,再加入计量好的螯合型钛酸酯偶联剂,搅匀,加入待加碳酸钙浆液中。
(3)将纳米碳酸钙粉体输送入连续式粉体混料机,滴加入纳米碳酸钙粉体质量0.8%的改性剂II,搅拌50min后,出料包装,得所述脱醇型硅酮胶用纳米碳酸钙;
本实施例的改性剂II由复合磷酸型单烷氧基钛酸酯和乙烯基三甲氧基硅烷以1:1质量比混合而成;使用方法为将乙醇和所选偶联剂1:1稀释混匀,由蠕动泵滴加于连续混料仓中搅拌30min后出料包装,混料仓公转转速10r/min,自转转速60r/min。
实施例4
一种脱醇型硅酮胶用纳米碳酸钙的制备方法
(1)以石灰石为原料,经煅烧、消化、过筛、陈化获得Ca(OH)2精浆,将Ca(OH)2精浆碳化,得到碳化液;
所述石灰石的CaCO3含量≥98.5%,MgO≤0.5%,块径5-10cm,焦炭C≥78%,石焦比为11:1;
将所述石灰石在煅烧温度1000℃-1100℃件下,煅烧时长50h,煅烧得到草酸检测活性为10'的过烧CaO;
将所述过烧CaO加98℃热水消化,灰水比:1:6,连续回转消化机消化,至Ca(OH)2质量浓度为9%,过100目筛,保温70℃放置陈化150h,过325目筛,加水配至Ca(OH)2精浆质量浓度至5.5%;
将Ca(OH)2精浆泵入超重力反应机组,碳化温度22℃,进料体积5m3,CO2含量40%,流量105L/min,反应时长16min,终点pH控制6.7,加入分散剂1.0%,继续循环碳化1min,停止碳化,检测纳米碳酸钙孔径为25nm,放置6h,得到碳化液;
本实施例的超重力反应机组同实施例3。
本实施例的分散剂由聚丙烯酰胺和油酸钠按质量比2:1混合。
(2)将碳化液加热至75℃,加入CaCO3含量3.5%的皂化后的改性剂I,保温搅拌3h,得到纳米碳酸钙浆液,将纳米碳酸钙浆液泵入全自动板框压滤机中,压力0.7MPa,进料0.5h,压榨1h,压至滤饼水分35.5%,送入干燥机中,一段浆叶干燥,水分≤5%,二段闪蒸干燥,水分≤0.3%,得纳米碳酸钙粉体;
本实施例的改性剂I由长链脂肪酸(50%硬脂酸、30%亚麻酸、20%二十碳亚烯酸)和螯合型钛酸酯偶联剂QX-311W(双(二辛氧基焦磷酸酯基)乙撑钛酸酯和三乙醇胺的螯合物溶液)以2:1质量比混合而成;使用方法将长链脂肪酸总质量0.07倍的NaOH置于10℃水中,加热至85℃,加入长链脂肪酸保温搅拌20min,再加入计量好的螯合型钛酸酯偶联剂,搅匀,加入待加碳酸钙浆液中。
(3)将纳米碳酸钙粉体输送入连续式粉体混料机,滴加入纳米碳酸钙粉体质量1.0%的改性剂II,搅拌30min后,出料包装,得所述脱醇型硅酮胶用纳米碳酸钙;
本实施例的改性剂II由四异丙基二(二辛基亚磷酸酰氧基)钛酸酯和乙烯基三(β-甲氧基乙氧基)硅烷偶联剂以1:1质量比混合而成;使用方法为将乙醇和所选偶联剂1:1稀释混匀,由蠕动泵滴加于连续混料仓中搅拌30min后出料包装,混料仓公转转速20r/min,自转转速60r/min。
对比例1
纳米碳酸钙的制备方法
(1)以石灰石为原料,经煅烧、消化、过筛、陈化获得Ca(OH)2精浆,将Ca(OH)2精浆碳化,得到碳化液;
所述石灰石的CaCO3含量≥98.5%,MgO≤0.5%,块径5-10cm,焦炭C≥78%,石焦比为10:1;
将所述石灰石在煅烧温度800℃-900℃件下,煅烧时长60h,煅烧得到草酸检测活性为3'的过烧CaO;
将所述过烧CaO加70℃热水消化,灰水比:1:8,连续回转消化机消化,至Ca(OH)2质量浓度为14.5%,过100目筛,保温38℃放置陈化60h,过325目筛,加水配至Ca(OH)2精浆质量浓度至7%;
将Ca(OH)2精浆泵入超重力反应机,碳化温度19℃,进料体积5m3,CO2含量38%,流量150L/min,反应时长38min,终点pH控制6.5,停止碳化,放置5h,得到碳化液;本对比例的超重力反应机同实施例1;
(2)将碳化液加热至65℃,加入CaCO3含量4.4%皂化后的硬脂酸,保温搅拌2h,得到纳米碳酸钙浆液,将纳米碳酸钙浆液泵入全自动板框压滤机中,压力0.7MPa,进料1h,压榨1h,压至滤饼水分37%,送入干燥机中,一段浆叶干燥,水分≤5%,二段闪蒸干燥,水分≤0.35%,得纳米碳酸钙粉体;
(3)将纳米碳酸钙粉体输送入连续式粉体混料机,出料包装,得纳米碳酸钙成品;
将实施例及对比例制备的纳米碳酸钙进行性能测试,测试方法为:
水分:GB/T 19281-2014中3.13规定进行测定。
pH值:GB/T 19281-2014中3.18规定进行测定。
BET:称取0.05g-0.50g,精确至0.0001g,按GB/T 19587规定的方法测定。
挤出量:1.2万107:CaCO3=1:1,高速搅拌机搅拌15min,在挤出机0.4MPa压力,3mm孔下,1min的挤出量。
孔径:称取1g样品,在F-Sorb3400比表面及孔径分析仪进行检测。
D50、D100:称取0.02g CaCO3样品,非离子表面活性剂溶解后,加蒸馏水40ml,外超声10min,于激光粒度仪进行检测。
测试结果如表1所示。
表1纳米碳酸钙性能测试结果
从表1可以看出,本发明的纳米碳酸钙比表适中、水分、pH值低,能有效降低胶粘剂模量,挤出量高能提高胶粘剂伸长率,孔径均一,激光粒度小,说明产品粒度均一,分散好。
实施例5
一种单组分脱醇胶,分别以实施例1-4和对比例1的纳米碳酸钙为原料制备,成品记作样品1-4以及对比样品,所述单组分脱醇胶按质量份数计算,由以下组分制成:
107胶,360份,粘度为12000mPa.s;
硅油,36份,粘度为350mPa.s;
纳米碳酸钙,360份,以实施例1-4方法及对比例1方法制得;
硅烷偶联剂KH550,18份;
硅烷偶联剂KH560,20份;
甲基二甲基硅烷,15份;
有机钛Tyzor催化剂(726),8份。
所述单组分脱醇胶的制备方法为:
先将107胶、硅油和碳酸钙投入釜中,手动搅拌无粉料,置于行星搅拌机上;开机搅拌,转速15Hz,搅拌15min;停机,揣边,开搅拌,转速40Hz,抽真空-0.08MPa以上,计时2h;停机,投硅烷偶联剂KH550、硅烷偶联剂KH560、甲基三甲基硅烷和催化剂,开机搅拌,转速35Hz,抽真空-0.08MPa以上,计时20min;停机,排空,灌胶,测挤出性和表干时间;在模板上制备胶条,要求:光滑、无颗粒、无气孔,标准温度湿度下放置7d,进行拉伸强度和断裂伸长率性能测试及模量计算;制备工字件,标准条件下放置21d测试粘接强度;测试方法为:
表干时间和贮存6个月后表干时间:按GB/T 13477.5规定的方法进行测试。
拉伸强度和断裂伸长率:按GB/T 528规定的方法进行测试,采用2.0±0.2mm厚的1型哑铃状试样。
模量:拉伸强度N除以胶条的横截面积A得到。
粘接强度:GB/T 16776-2005中6.8规定的方法测试。
挤出和贮存6个月后挤出:按GB/T 16776中6.4规定的方法进行测试。
测试结果如表2所示。
表2单组分脱醇胶性能测试结果
由表2可以看出,由本发明实施例制备的纳米碳酸钙,可以符合单组分脱醇型硅酮胶的使用要求,低模量高伸长率高粘接性,且保持胶粘剂的贮存稳定性。
需要说明的是,本发明权利要求书中涉及数值范围时,应理解为每个数值范围的两个端点以及两个端点之间任何一个数值均可选用,为了防止赘述,本发明描述了优选的实施例。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种单组分脱醇型硅酮胶用纳米碳酸钙的制备方法,其特征在于,包括如下步骤:
S1、将高CaCO3含量石灰石破碎、煅烧、消化、过筛、陈化后得到Ca(OH)2精浆;
S2、将Ca(OH)2精浆碳化,得到碳化液;
S3、将碳化液加热至55-75℃,加入碳酸钙含量2.5%-3.5%的改性剂I,保温搅拌1h-3h,得到纳米碳酸钙浆液,经压滤、干燥后得到纳米碳酸钙粉体;
S4、以碳酸钙干基计,向所述纳米碳酸钙粉体中加入其质量0.5%-1.5%的改性剂II,搅拌0.5-1h,得到所述单组分脱醇型硅酮胶用纳米碳酸钙;
所述改性剂I由C16-C20脂肪酸及其盐、磺酸盐及其酯、高级磷酸酯中的一种以2-4:1的质量比与螯合型钛酸酯偶联剂混合而成;
所述改性剂II由钛酸酯偶联剂和硅烷偶联剂以1:1的质量比混合而成。
2.根据权利要求1所述单组分脱醇型硅酮胶用纳米碳酸钙的制备方法,其特征在于,所述C16-C20脂肪酸选自棕榈酸、硬脂酸、亚油酸、油酸、二烯酸、亚麻酸、花生四烯酸和二十碳五烯酸中的的一种或多种,所述磺酸盐选自直链烷基苯磺酸钠和α-烯基磺酸钠中的一种或多种,所述高级磷酸酯选自磷酸单烷基酯、磷酸二烷基酯和磷酸三烷基酯中的一种或多种,所述螯合型钛酸酯偶联剂选自双(二辛氧基焦磷酸酯基)乙撑钛酸酯和三乙醇胺的螯合物溶液、乙撑螯合型焦磷酸酰氧基钛酸酯、双(二辛氧基焦磷酸酯基)乙撑钛酸酯中的一种。
3.根据权利要求1所述单组分脱醇型硅酮胶用纳米碳酸钙的制备方法,其特征在于,所述钛酸酯偶联剂选自异丙基三(二辛基焦磷酸酰氧基)钛酸酯、异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯、双(二辛氧基焦磷酸酯基)乙撑钛酸酯、植物酸型单烷氧基钛酸酯、焦磷酸型单烷氧基类钛酸酯、复合磷酸型单烷氧基类钛酸酯、二(辛烷基苯酚聚氧乙烯醚)磷酯和四异丙基二(二辛基亚磷酸酰氧基)钛酸酯中的一种;所述硅烷偶联剂选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷和乙烯基三(β-甲氧基乙氧基)硅烷中的一种。
4.根据权利要求3所述单组分脱醇型硅酮胶用纳米碳酸钙的制备方法,其特征在于,所述石灰石的CaCO3含量≥98.5%,MgO≤0.5%,块径5-10cm,焦炭C≥78%,石焦比为10-12:1,煅烧温度800℃-1100℃,煅烧时长48h-96h,煅烧得到草酸检测活性在5'-10'的过烧CaO。
5.根据权利要求4所述单组分脱醇型硅酮胶用纳米碳酸钙的制备方法,其特征在于,所述消化、过筛、陈化具体为:将所述过烧CaO加80-100℃热水消化,灰水比:1:5-8,连续回转消化机消化,至Ca(OH)2质量浓度为9%-15%,过100目筛,保温50℃-70℃放置陈化100-150h,过325目筛,加水配至Ca(OH)2精浆质量浓度至5%-8%。
6.根据权利要求1所述单组分脱醇型硅酮胶用纳米碳酸钙的制备方法,其特征在于,所述碳化具体为:
将Ca(OH)2精浆泵入超重力反应机组,温度18℃-22℃,进料体积5-10m3,CO2含量35%-45%,流量55-250L/min,反应时长15-25min,终点pH控制6.5-6.8,加入Ca(OH)2精浆质量0.5%-1.0%的分散剂,继续循环碳化1min,停止碳化,放置5-10h。
7.根据权利要求6所述单组分脱醇型硅酮胶用纳米碳酸钙的制备方法,其特征在于,所述超重力反应机组由为2-3台超重力反应器并联于同一个碳化液循环罐上。
8.根据权利要求6所述单组分脱醇型硅酮胶用纳米碳酸钙的制备方法,其特征在于,所述分散剂选自三乙基己基磷酸、聚丙烯酰胺、十二烷基硫酸钠和油酸钠中的一种或多种。
9.权利要求1-8任一项所述单组分脱醇型硅酮胶用纳米碳酸钙的制备方法制备的纳米碳酸钙。
10.利用权利要求9所述纳米碳酸钙制备的单组分脱醇型硅酮胶,其特征在于,按重量份数计算,由以下组分制成:
107胶,360份;
硅油,36份;
纳米碳酸钙,360份;
硅烷偶联剂KH550,18份;
硅烷偶联剂KH560,20份;
甲基二甲基硅烷,15份;
有机钛催化剂,8份。
CN202311836373.8A 2023-12-28 2023-12-28 一种单组分脱醇型硅酮胶用纳米碳酸钙及其制备方法 Pending CN117801569A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311836373.8A CN117801569A (zh) 2023-12-28 2023-12-28 一种单组分脱醇型硅酮胶用纳米碳酸钙及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311836373.8A CN117801569A (zh) 2023-12-28 2023-12-28 一种单组分脱醇型硅酮胶用纳米碳酸钙及其制备方法

Publications (1)

Publication Number Publication Date
CN117801569A true CN117801569A (zh) 2024-04-02

Family

ID=90433516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311836373.8A Pending CN117801569A (zh) 2023-12-28 2023-12-28 一种单组分脱醇型硅酮胶用纳米碳酸钙及其制备方法

Country Status (1)

Country Link
CN (1) CN117801569A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060090672A1 (en) * 2004-10-29 2006-05-04 Millennium Inorganic Chemicals, Inc. Compositions and methods comprising titanium dioxide pigments and coupling agents
CN102161841A (zh) * 2011-03-03 2011-08-24 淄博嘉泽纳米材料有限公司 具有低粘度和高触变性能纳米碳酸钙的制备方法
CN103897434A (zh) * 2014-04-19 2014-07-02 芮城新泰纳米材料有限公司 塑料母粒专用纳米碳酸钙的制备方法
CN104804473A (zh) * 2015-04-30 2015-07-29 建德市双超钙业有限公司 双组份高挤出性建筑硅酮胶专用纳米碳酸钙的生产方法
CN105400237A (zh) * 2015-12-17 2016-03-16 广西华纳新材料科技有限公司 一种应用于填充硅酮密封胶的纳米碳酸钙的表面处理方法
US20170174864A1 (en) * 2014-02-28 2017-06-22 Maruo Calcium Co., Ltd. Calcium carbonate filler for resin and resin composition including said filler
CN115595114A (zh) * 2022-10-21 2023-01-13 杭州之江有机硅化工有限公司(Cn) 一种高位移阻燃硅酮密封胶及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060090672A1 (en) * 2004-10-29 2006-05-04 Millennium Inorganic Chemicals, Inc. Compositions and methods comprising titanium dioxide pigments and coupling agents
CN102161841A (zh) * 2011-03-03 2011-08-24 淄博嘉泽纳米材料有限公司 具有低粘度和高触变性能纳米碳酸钙的制备方法
US20170174864A1 (en) * 2014-02-28 2017-06-22 Maruo Calcium Co., Ltd. Calcium carbonate filler for resin and resin composition including said filler
CN103897434A (zh) * 2014-04-19 2014-07-02 芮城新泰纳米材料有限公司 塑料母粒专用纳米碳酸钙的制备方法
CN104804473A (zh) * 2015-04-30 2015-07-29 建德市双超钙业有限公司 双组份高挤出性建筑硅酮胶专用纳米碳酸钙的生产方法
CN105400237A (zh) * 2015-12-17 2016-03-16 广西华纳新材料科技有限公司 一种应用于填充硅酮密封胶的纳米碳酸钙的表面处理方法
CN115595114A (zh) * 2022-10-21 2023-01-13 杭州之江有机硅化工有限公司(Cn) 一种高位移阻燃硅酮密封胶及其制备方法

Similar Documents

Publication Publication Date Title
CN108529923B (zh) 一种改性水泥助磨剂及其制备方法
CN110484022A (zh) 一种透明薄膜用的纳米碳酸钙的生产工艺
CN88102312A (zh) 应用高分子量磺酸盐作为结构高岭土的辅助分散剂
CN106634049A (zh) 一种制备耐候性油墨用纳米碳酸钙的方法
CN109111762A (zh) 一种油墨用改性纳米碳酸钙的制备方法
CN102516821B (zh) 室温硫化硅酮胶用纳米碳酸钙表面改性的方法
CN103613955B (zh) 车用胶粘剂专用纳米碳酸钙的制备方法
CN105883883A (zh) 一种聚氨酯密封胶专用纳米碳酸钙的制备方法
CN102689933A (zh) 一种羟基氧化钴生产方法
CN104479411A (zh) 一种硅酮密封胶专用纳米碳酸钙的表面改性方法
CN106928753A (zh) 一种用于pvc汽车底盘抗石击涂料改性碳酸钙的制备方法
CN1792803A (zh) 一种高触变性纳米碳酸钙的制备方法
CN101165105B (zh) 一种氢氧化镁晶须材料表面改性的化学包覆方法
CN105646941B (zh) 一种无水硫酸钙晶须表面改性方法
CN111908876A (zh) 一种高强度的蒸压灰砂砖生产加工方法
CN114436320A (zh) 一种核壳结构氧化锌的制备方法及其所得的氧化锌
CN114367383B (zh) 一种脂肪酸酯纳米悬浮液、其制备方法和应用
CN117801569A (zh) 一种单组分脱醇型硅酮胶用纳米碳酸钙及其制备方法
CN109082245B (zh) 单组分ms胶用纳米碳酸钙的制备方法
CN103922402B (zh) 一种制备nh4v3o8纳米带的方法
US2197953A (en) Process for making anhydrite
CN106519103A (zh) 一种两亲型陶瓷分散剂及其制备方法
CN105314651B (zh) 一种小晶粒NaY分子筛的制备方法
CN107417160A (zh) 一种微波作用下硅烷改性聚丙烯酸铵减水剂的合成方法
CN1456508A (zh) 一种轻质活性碳酸钙的生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination