CN1177776C - 硅酸盐基烧结助剂方法 - Google Patents

硅酸盐基烧结助剂方法 Download PDF

Info

Publication number
CN1177776C
CN1177776C CNB008135282A CN00813528A CN1177776C CN 1177776 C CN1177776 C CN 1177776C CN B008135282 A CNB008135282 A CN B008135282A CN 00813528 A CN00813528 A CN 00813528A CN 1177776 C CN1177776 C CN 1177776C
Authority
CN
China
Prior art keywords
barium
silicate
particle
titanatep
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008135282A
Other languages
English (en)
Other versions
CN1377330A (zh
Inventor
�ܸ��A����ʲ��
杰弗里·A·克什纳
v
戴维·V·米勒
A����ʲ
凯瑟琳·A·思拉什
ά
斯里德哈·维尼加拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Cabot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Corp filed Critical Cabot Corp
Publication of CN1377330A publication Critical patent/CN1377330A/zh
Application granted granted Critical
Publication of CN1177776C publication Critical patent/CN1177776C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/6281Alkaline earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62818Refractory metal oxides
    • C04B35/62823Zirconium or hafnium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62826Iron group metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种硅酸盐基烧结助剂和生产该烧结助剂的方法。可以将烧结助剂或熔块,包含钛酸钡基组合物,加入到介电组合物中以降低烧结温度。烧结助剂可以是通过将包含硅物质和碱土金属物质的溶液混合发生沉淀反应而制备的单组分硅酸盐或多组分硅酸盐。该烧结助剂可以制备成纳米粒径颗粒,或涂敷在预先成形的介电颗粒的表面上。在MLCCs中,可以使用包含烧结助剂的介电组合物形成介电层,特别是超薄型的介电层。

Description

硅酸盐基烧结助剂方法
                          发明领域
本发明涉及介电材料,更具体而言,涉及一种用于介电组合物的硅酸盐基烧结助剂,和形成烧结助剂的方法。
                          发明背景
在许多电子应用中使用介电组合物,包括钛酸钡基组合物。例如,这种组合物可以用来形成多层陶瓷电容器(MLCCs)的介电层。MLCCs包括介电材料和电极材料的交互层。某些类型的MLCCs利用镍基内部电极。镍基电极比贵金属(例如Pd、Pd、Ag-Pd)电极有许多优点,例如节约成本、可焊性增强和耐热冲击性增强,而且MLCC的总可靠性提高。
MLCCs的介电层通常是由高含固量分散体制备的,该分散体一般是由介电粉末和聚合粘结剂分散在溶剂中制成。可以将该分散体或泥浆浇注成陶瓷介电材料“生坯”层。然后在该生坯层上成形图案电极材料,以形成一种层叠的生坯陶瓷介电层和电极层交替的层压层结构。将该叠层切成MLCCs大小的立方体,其加热到烧掉有机材料例如粘结剂和分散剂,然后燃烧并烧结该钛酸钡基材料颗粒,形成具有层状的、致密的陶瓷介电层和电极层的电容器结构。在烧结期间,由于颗粒的熔融和熔凝而形成晶粒的结果,达到提高陶瓷介电密度目的。
常常将微量组分(例如,小于5重量%)的烧结助剂加入到介电组合物中以降低烧结温度。降低烧结温度可以降级加工成本(例如,使用较少的能量),而且可以更好地对方法加以控制。硅酸盐基玻璃形成添加剂,也叫做熔块,由于它们低熔点的温度和化学/材料可混用性而常常用作烧结助剂。特别地,大多数镍电极相容的介电成份包含熔块以降低烧结温度。熔块的例子包括纯的胶态SiO2和复合硅酸盐。
通常,使用熔融技术生产硅酸盐烧结助剂,其中将特殊的氧化物混合在一起并被加热到熔融状态,淬冷而凝固成单一玻璃相。接着将该固态玻璃粉碎并研磨以减小粒径。所得到的粉末粒径一般为约1到10微米(取决于研磨时间),具有非球状的和不规则颗粒结构,而且为多模态的粒度分布。而且,粉碎过程费时(例如几个小时)并会从研磨介电中引入杂质。
在微电子和通讯方面的最新发展已经推进了MLCCs的微型化,同时极大地提高性能要求:即小尺寸,高容量(高容量效率),较高的机械强度和可靠性。为了满足这些先进的性能特征,需要生产均匀的、超薄型的介电层(例如,小于3微米烧成厚度)。
因此,要求一种可以加入到介电组合物中的烧结助剂,该组合物用于制造介电薄层。
                         发明概要
本发明涉及一种硅酸盐基烧结助剂,制备该烧结助剂的方法,和包含该烧结助剂的介电组合物以及由这种组合物制成的电容器。
一方面,本发明提供一种制备烧结助剂的方法。该方法包括:将含硅离子物质的第一溶液与含碱土金属离子物质的第二溶液混合。该方法还包括:使硅离子物质与碱土金属离子物质反应形成硅酸盐基烧结助剂。
另一个方面,本发明提供一种烧结助剂。烧结助剂包括平均粒度小于约500纳米的碱土金属硅酸盐基颗粒。
另一个方面,本发明提供一种钛酸钡-基微粒组合物。该组合物包括涂有碱土金属硅酸盐基烧结助剂的钛酸钡基颗粒。
另一个方面,本发明提供一种钛酸钡基组合物。该组合物包括平均粒度小于约500纳米的钛酸钡基颗粒和碱土金属硅酸盐基颗粒。
另一个方面,本发明提供一种多层陶瓷电容器。该多层陶瓷电容器包括由涂有碱土金属硅酸盐基烧结助剂的钛酸钡基颗粒组成的介电层。
另一个方面,本发明提供一种多层陶瓷电容器。该多层陶瓷电容器包括由平均粒度小于约500纳米的钛酸钡基颗粒和碱土金属硅酸盐基颗粒组成的介电层。
当从下列发明的详细说明书,同时结合考虑附图和权利要求书,那么本发明的其它优点、新特性和特征将是显而易见的。
                         附图简述
从下列附图中将更充分知道上述特点以及其它的目的和优点,其中:
图1A和1B分别是在实施例1生产的硅酸钡-硅酸钙颗粒和市场上可买到的硅酸钡-硅酸钙颗粒的透射电子显微镜显微照片。
图2是在实施例1生产的硅酸钡-硅酸钙颗粒与钛酸钡基颗粒混合形成介电组合物的透射式电子显微镜显微照片。
图3表示包含实施例1生产的硅酸钡-硅酸钙颗粒的介电组合物的粒径(线A)与包含市场上可买到的硅酸钡-硅酸钙颗粒的粒径(线B)比较的曲线图。
图4是热膨胀收缩的曲线图,说明降低了分别含0摩尔%、1摩尔%、2摩尔%和3摩尔%浓度的实施例1生产的硅酸钡-硅酸钙颗粒的介电组合物的烧结温度。
图5是包含实施例1生产的硅酸钡-硅酸钙颗粒的介电组合物的热膨胀收缩曲线(线A)与包含市场上可买到的硅酸钡-硅酸钙颗粒的热膨胀收缩曲线(线B)比较的曲线图。
图6是包含实施例2生产的硅酸钡颗粒的介电组合物的热膨胀收缩曲线与包含常规二氧化硅颗粒的介电组合物的热膨胀收缩曲线比较的曲线图。
图7是包含实施例3生产的硅酸钡涂层的钛酸钡颗粒的透射式电子显微镜显微照片。
图8是包含实施例3生产的有涂层的硅酸钡颗粒的热膨胀收缩曲线与包含按照本发明方法生产的硅酸钡颗粒的介电组合物的热膨胀收缩曲线比较的曲线图。
                       发明的详细说明
本发明涉及一种硅酸盐基烧结助剂和生产该烧结助剂的方法。该烧结助剂可以是单组分硅酸盐,例如硅酸钡(BaSiO3),或多组分的硅酸盐,例如硅酸钡-硅酸钙(BaxCa1-xSiO3)。在一些实施方案中,该烧结助剂可以制成纳米大小颗粒,其可以与钛酸钡基颗粒混合形成介电组合物。在其它的实施方案中,该烧结助剂可以在钛酸钡基颗粒表面上以涂层形式形成介电组合物。例如,包含颗粒状烧结助剂或涂层烧结助剂的介电组合物,可以在相对低温下烧结,在MLCCs中,特别是在具有超薄型层的MLCCs中形成介电层。
使用沉淀反应生产硅酸盐基烧结助剂。该方法通常包括在适当条件下将适当活性粒子混合在一起引起发生沉淀反应。在一些实施方案中,将包含硅离子物质的溶液与包含碱土金属离子物质的溶液混合形成反应混合物。在适当的条件下,硅离子物质与碱土金属离子物质起反应生成所需形式的硅酸盐基烧结助剂。
如这里使用的,“硅离子物质”是包含硅且能够与碱土金属离子起反应形成硅酸盐化合物的任何离子。
适合的硅离子物质的例子是硅酸盐离子(SiO3 2-)和硅离子Si(Si4+)。在一些实施方案中,硅离子物质是以水溶液形式供给的。一些首选的水溶液包括溶解在水中的硅酸盐化合物的水溶液,例如硅酸钠(Na2SiO3),或酸,例如硅酸。在某些实施方案中,使用常规的离子交换柱可以生产硅酸,即将硅酸钠引入柱中并使钠与氢交换而形成硅酸(产生水)。含有硅离子物质的其它适合的溶液包括四氯化硅(SiCl4)溶液、氯氧化硅(SiOCl2)溶液、硅酸乙酯Si(OC2H5)4溶液和硅醇盐溶液,例如四甲氧基甲硅烷和四乙氧基甲硅烷。
如这里使用的,“碱土金属离子物质”是包含碱土金属且能够与硅离子起反应形成硅酸盐化合物的任何离子。可以选择特殊的碱土金属离子物质以生产具有所需要的硅酸盐基组合物的烧结助剂,如以下描述的。例如,碱土金属离子物质可以来源于合适的氢氧化物溶液,水合物(包括八水合物),包括钡、钙、锶或镁的碱土金属氧化物。有时,优选的碱土金属离子物质是由氢氧化钡、八水氢氧化钡、氧化钙或氢氧化钙的溶液供给的。如果生产多组分的硅酸盐(即包括一种以上碱土金属的硅酸盐),那么将一种离子以上的碱土金属离子物质加入到反应混合物中。例如,在一些实施方案中,如果生产硅酸钡-硅酸钙,那么可以将氢氧化钡和氢氧化钙两者加入到反应混合物中。在多组分的硅酸盐实施方案中,个别的活性粒子可以以相对比例加入到反应混合物中,生产出具有所需要化学计量比的硅酸盐。
有时硅离子物质和碱土金属离子物质在这里称之为“活性物质”。在一些实施方案中,可以将包括硅离子物质和碱土金属离子物质的各个溶液混合形成反应混合物。在其它的实施方案中,可以将包括硅离子物质和碱土金属离子物质溶解于相同溶液中形成反应混合物。
该反应混合物通常是含在反应室中。在一些实施方案中,该反应室可以敞开向大气中。在其它的实施方案中,虽然该反应室可以在大气压下,但是要封闭起来,以防止混合物中的物质与大气气体起反应(例如,钡离子和二氧化碳之间的反应)。在一些实施方案中,为了进一步确保反应物质与大气之间不会发生反应,可以用非活性气体例如氩气或氮气净化反应室。
有时,混合包含活性物质的水溶液的混合物和/或加热促进沉淀反应。可以使用在本领域中已知的任何标准技术完成混合。当使用加热时,将反应混合物加热到有效进行反应的温度。有时,可以将反应混合物加热到约60到100℃的温度,有时,加热到约80到90℃的温度。具体的反应温度取决于特殊的活性物质。有时可能不需要加热。特别地,当在介电颗粒上生产涂层形式的硅酸盐基烧结助剂时,可能不需要加热,如以下进一步描述的。
一般进行反应直到完成,此时一种活性物质完全地或几乎耗尽。反应时间取决于许多因素,包含反应条件和活性物质,而且一般是约几小时左右。
在一些实施方案中,在碱性条件下沉淀反应是最有效的。因为许多包含碱土金属离子物质的水溶液呈碱性(例如,BaOH),所以也许不需要单独的调节pH值的化合物以提高混合物的pH值。然而,有时,可以加入不妨碍调节pH值的化合物以保持所需要的pH值。在一些实施方案中,加入足够数量的含有碱土金属离子物质的溶液或调节pH值的化合物以保持pH值在某一水平以上,例如约12以上或约13以上。
尽管反应条件可以不同,但是可以使用相同的常规沉淀反应在预成形的介电颗粒上生成颗粒或涂层形式的硅酸盐基烧结助剂。
为了生成涂层,将反应混合物(或特殊的活性物质)与通常含有约5到20重量%钛酸钡基颗粒的料浆混合。在反应期间,由于在预先存在的表面上(即,钛酸钡基颗粒)沉淀比单独的颗粒成核需要较低的能量,所以硅酸盐化合物一般以涂层沉淀而不是以颗粒沉淀。然而,有时,硅酸盐化合物可以以涂层和颗粒两者来沉淀。当涂覆钛酸钡基颗粒时,反应混合物可能需要在生产硅酸盐基颗粒过程中更强力混合,以保证用料浆涂覆该颗粒。当在钛酸钡基颗粒上涂覆硅酸盐基烧结助剂时可能不需要加热该反应混合物,因为在现有颗粒表面上沉淀时需要较低的能量。在涂覆步骤之后,例如可以使用去离子水过滤和冲洗该颗粒,以除去残余的活性粒子。例如通过在真空加热炉中加热可以干燥冲洗的涂敷粉粒,随后再分散进一步处理形成介电层。换句话说,冲洗的涂敷粉粒可以保存在料浆中直到进一步处理。
当需要硅酸盐基颗粒时,可以直接从反应混合物沉淀得到。例如使用去离子水过滤和冲洗所得到的产品,以除去残余的活性粒子,其中该产品包含分散在水介质中硅酸盐基颗粒。例如,可以通过在真空加热炉中加热来干燥该冲洗过的颗粒在其它情况下,可以在料浆中保存冲洗过的颗粒。可以将硅酸盐基颗粒与钛酸钡基颗粒混合以形成介电组合物。在一些实施方案中,可以将硅酸盐基颗粒加入到钛酸钡基颗粒的料浆中。当加入到钛酸钡基颗粒的料浆中时,可以干燥该硅酸盐基颗粒或也可以将该硅酸盐基颗粒制成料浆。在其它的实施方案中,可以将干燥的硅酸盐基颗粒加入到干燥的钛酸钡基颗粒中。无论如何,通常优选将硅酸盐基颗粒与介电基颗粒充分地混合以生产均匀介质组合物。
硅酸盐基烧结助剂(颗粒和涂层)可以是具有通式MSiO3的任何硅酸盐基组合物,其中M表示一种或多种碱土金属。该特殊的硅酸盐组合物取决于特殊应用的技术要求。适合的碱土金属包括钡、钙、镁和锶。在实施方案中,当M表示一种碱土金属时,该组合物是单组分硅酸盐。在某些情况下,硅酸钡(BaSiO3)是一种优选的单组分硅酸盐。在实施方案中,当M表示一种以上的碱土金属时,该组合物是多组分的硅酸盐。在一些实施方案中,硅酸钡-硅酸钙(BaxCa1-xSiO3)是一种优选的多组分硅酸盐。
当制备硅酸钡-硅酸钙时,在某些优选的情况下,x可以是在约0.4和约0.6之间。
在一些情况下,在烧结助剂中存在碱土金属是所希望的,因为它使介电组合物的A/B比增加到大于1.0。A/B比是在整个介电组合物中二价金属(例如,碱土金属如钡、钙等等)与四价金属(钛、锆、锡等等)的比例。在介电组合物中可以要求高的A/B比例以提高在下面进一步描述的基底金属电极的混溶性。
当以微粒形式供给时,硅酸盐基烧结助剂的平均粒度通常为小于约500纳米。在这里使用的术语平均粒度是指组合物中初始颗粒的平均粒度。在很多情况下,硅酸盐基颗粒具有非常小的颗粒尺寸。例如,有时,硅酸盐基颗粒的平均粒度为小于约250纳米;在一些情况下小于约100纳米;在一些情况下小于约50纳米。在某些情况下,优选的硅酸盐基颗粒的平均粒度为在约10纳米到约50纳米之间。
优选地,硅酸盐基颗粒的尺寸通常是均匀的,而且颗粒粒度分布小。四分比例(d75/d25)可以小于约3,而在一些情况下小于约2。硅酸盐基颗粒优选具有实质上可以是球状的同样结构。
当在干燥状态下,本发明的硅酸盐基颗粒在一些情况下可以形成成团的颗粒或附聚物。然而,例如成团的硅酸盐基颗粒可迅速地分散在水介质中。一旦分散后,硅酸盐基颗粒通常以单独的非团聚颗粒的方式而存在。
当硅酸盐基颗粒与钛酸钡基颗粒混合来制备介电组合物时,对硅酸盐基颗粒的微粒特性通常是有益的。本发明的硅酸盐基颗粒可以均匀地分散在钛酸钡基微粒组合物中,特别是分散在具有亚微米颗粒尺寸和/或基本上为球状颗粒结构的组合物中。混合物的均匀分布可以减少在整个介电体中形成均匀烧结所需要的硅酸盐基烧结助剂的含量。由这种钛酸钡基颗粒和硅酸盐基颗粒的混合物得到的介电混合物可以适用于制备超薄型的介电层(例如,烧结之后小于3微米)。
当以涂层的方式形成时,硅酸盐基层的厚度通常为约0.1纳米到约10.0纳米,在一些情况下,其厚度可以在约0.5纳米和约5.0纳米之间。具体的厚度在某种程度上取决于钛酸钡基粒径和加入的硅酸盐基烧结助剂的重量百分数。在某些实施方案中,所希望的多半是在整个颗粒表面上形成涂层。在一些实施方案中,涂层可以具有均匀厚度,以致涂层的厚度变化小于20%。在其它情况下,在个别的钛酸钡基颗粒的表面上厚度可以变化较大。特别是如果涂层厚度薄(即小于0.5纳米),涂层的厚度可以在颗粒的不同部分上变化。在一些情况下,可能根本没有涂覆部分钛酸钡基颗粒的表面。
钛酸钡基材料的颗粒或者可以涂有硅酸盐基化合物或者与本发明的硅酸盐基颗粒混合以制备介电组合物。钛酸钡基颗粒可以包括钛酸钡、其固溶体或其它基于钡的氧化物和具有通式结构ABO3的钛酸盐,其中A表示一种或多种二价金属,例如钡、钙、铅、锶、镁和锌,而B表示一种或多种四价金属,例如钛、锡、锆和铪。一种的钛酸钡基类型材料的例子有结构Ba(1-x)AxTi(1-y)ByO3,其中x和y为0到1,其中A表示除了钡之外的一种或多种二价金属,例如铅、钙、锶、镁和锌,而B表示除了钛之外的一种或多种四价金属,例如锡、锆和铪。其中二价或四价金属以杂质形式存在,x和y值可以较小,例如小于0.1。在其它情况下,可以引入较高含量的二价或四价金属,以形成显著可辨认的化合物,例如钛酸钡-钛酸钙、钛酸钡-钛酸锶、钛酸钡-锆酸盐等等。在其它的情况下,其中x或y是1.0,可用适当价位的另外金属完全代替钡或钛,以形成例如钛酸铅或锆酸钡的化合物。在其它情况下,该化合物的多个部分钡或钛可以被取代。这种多个部分取代的组合物的例子由结构式Ba(1-x-x′-x″)PbxCax′Srx″O.Ti(1-y-y′-y″)SnyZry′Hfy″O2表示,其中x、x′、x″、y、y′和y″每个都大于0。在很多情况下,钛酸钡基材料具有钙钛矿晶体结构,但是在其它情况下它可能不具有此晶体结构。
钛酸钡基颗粒可以具有各种各样不同的粒子特性。在优选的情况下,钛酸钡基颗粒具有小粒径。钛酸钡基颗粒的平均粒度可以为小于约1.0微米;在一些情况下,该平均粒度小于约500纳米;在一些情况下,该平均粒度可以小于约150纳米;在一些情况下,该平均粒度小于约100纳米。
钛酸钡基颗粒也可以具有各种各样的形状,其在某种程度上可以取决于制备该颗粒所使用的方法。在一些情况下,优选具有实质上为球状结构的钛酸钡基颗粒。在其它情况下,钛酸钡基颗粒可以具有不规则的、非等轴形状,其可能是由粉碎过程产生的。
按照本领域已知的任何技术,包括热液处理法、固态反应方法、溶胶凝胶法以及沉淀和随后煅烧过程,例如草酸盐基处理方法可以制备钛酸钡基颗粒。在一些实施方案中,优选使用热液处理来制备钛酸钡基颗粒。热液处理通常包括:将钡源与钛源在液相环境中混合以形成水热反应混合物,其保存在高温下以促进形成钛酸钡颗粒。当水热形成钛酸钡固溶体颗粒时,也可以将包括适合的二价或四价金属的料源加入到水热反应混合物中。可以使用某些热液处理来制备实质上是球状的钛酸钡基颗粒,其平均粒度为1.0微米甚至更小,而且具有均匀粒度分布。例如,在通常拥有的美国专利号4,829,033、4,832,939和4,863,883已经描述过适合的热液处理以形成钛酸钡基颗粒,在此引入全文作为参考。
在一些实施方案中,钛酸钡基颗粒可以具有包含一种或多种掺杂化合物的涂层。掺杂物常常是金属化合物,例如氧化物或氢氧化物。掺杂化合物可以增强组合物的某些电学和机械性能。适合的掺杂化合物的例子包含锂、镁、钙、锶、钪、锆、铪、钒、铌、钽、锰、钴、镍、锌、硼、锑、锡、钇、镧、铅、铋或镧系元素。在一些实施方案中,以化学上不同的涂层方式涂覆该掺杂化合物。例如,在1997年九月4日申请的通常拥有的美国专利申请号08/923,680已经描述过适合的涂敷颗粒,在此引入全文作为参考。在这些利用掺杂物涂覆的钛酸钡基颗粒的实施方案中,可以以与涂覆的钛酸钡基颗粒混合的颗粒方式或以用上述方法制备的另一种化学性质不同的涂层方式提供硅酸盐基烧结助剂。在其它的实施方案中,也可以以与钛酸钡基颗粒混合的颗粒方式供给掺杂化合物。
可以以本领域已知的方法进一步处理微粒形式或涂层形式的包含钛酸钡基颗粒和硅酸盐基烧结助剂的介电组合物。在一些实施方案中,在形成介电层之前可以调整A/B比例。在一些情况下,将A/B比例调整到大于1的值。在某些MLCCs应用中所希望的是钛酸钡基组合物中A/B比例大于1,以提高组合物与基底金属电极的混溶性。可以按照本领域中已知的任何技术调整A/B比例。在一些实施方案中,将微粒形式的不溶解的钡化合物,例如碳酸钡(BaCO3)加入到组合物中以增加A/B比例。在其它的实施方案中,可以沉淀微粒形式沉淀不溶解的钡化合物以调整A/B比例。在其它的实施方案中,可以将钡化合物,例如碳酸钡(BaCO3)涂覆在钛酸钡基颗粒的表面上。同样地和按照与上述掺杂涂层相同的方法可以供给钡涂层。在一些实施方案中,优选以沉淀第一涂层随后沉淀掺杂涂层的方式在颗粒表面上沉淀钡涂层。
可以按照本领域中已知的方法进一步处理该介电组合物以形成介电层。在形成MLCC的介电层的说明方法中,可以以料浆的方式保存该组合物,其中可以将添加剂例如分散剂和粘结剂加入到此料浆中形成可浇注的泥浆。可以将该料浆浇注成陶瓷介电材料“生坯”层。然后在该生坯层上成形图案电极材料,以形成一种层叠的生坯陶瓷介质层和电极层交替的层压层结构。在一些实施方案中,优选的电极材料是镍基材料。将该叠层切成MLCCs大小的立方体,其加热到烧掉有机材料例如粘结剂和分散剂,然后燃烧并烧结该钛酸钡基材料颗粒,形成具有层压的、致密的陶瓷介质层和电极层的电容器结构。
该硅酸盐基烧结助剂降低烧结介电组合物所需要的温度。例如与没有烧结助剂的相同介电组合物(需要大于1400℃的烧结温度)相比,可以在低于约1250到约1350℃的温度下烧结包含烧结助剂的一般介电组合物。本发明的硅酸盐基烧结助剂在降低介电组合物的烧结温度方面也可以比常规的烧结助剂更有效。即,可以在比包含相同重量百分数的常规烧结助剂的相同介电组合物更低的温度(例如,至少低25℃)下烧结包含本发明硅酸盐烧结助剂的介电组合物。相信:降级烧结温度的优点是本发明硅酸盐基烧结助剂均匀分布在整个介电组合物中的结果。当硅酸盐基烧结助剂制备成颗粒和当制备成涂层两者时会出现这种均匀性。硅酸盐基颗粒的小粒径使它们容易地和均匀地分散在整个介电组合物中。
在某些情况下,当硅酸盐基颗粒具有均匀的粒度和基本上是球状的结构时,可以增强均匀的分散作用。在介电颗粒上形成硅酸盐基涂层,因此保证了整个组合物的均匀分布。
通过下列实施例进一步说明本发明,其实际目的在于例子说明,而不能被认为是限制本发明的范围。
                         实施例
实施例1:硅酸钡-硅酸钙烧结助剂颗粒的生产和特性
按照本发明的一种方法制备硅酸钡-硅酸钙烧结助剂。分析所得到的硅酸钡-硅酸钙颗粒的粒子特性,并与钛酸钡基颗粒混合以形成赋予更多特性的介电混合物。将硅酸钡-硅酸钙烧结助剂与市场上可买到的硅酸钡-硅酸钙烧结助剂相比。
将八水氢氧化钡的水溶液与氢氧化钙的水溶液按照比例混合以形成Ba∶Ca比例约为0.6∶0.4的碱土金属混合物。将碱土金属混合物加热到约85℃的温度下,并强力搅拌,同时加入硅酸钠水溶液以形成反应混合物。不断地搅拌该反应混合物,并保持在约85℃温度下以保证反应完成。制备组成为Ba0.6Ca0.4SiO3的硅酸钡-硅酸钙颗粒。用去离子水过滤、冲洗该产品,以除去任何过量试剂,然后干燥以制备硅酸钡-硅酸钙颗粒。
使用透射式电子显微镜(TEM)分析干燥的硅酸钡-硅酸钙颗粒的粒子特性。该颗粒具有基本上为球状的结构,平均粒度为约50纳米和均匀的粒度。典型的硅酸钡-硅酸钙颗粒呈现出图1A所示的透射式电子显微镜显微照片。当颗粒迅速地分散到单独的初始颗粒中时,出现的少量颗粒球确定为干燥处理的人工制品。
也使用透射式电子显微镜分析具有相同的组成(Ba0.6Ca0.4SiO3)的市场上可买到的硅酸钡-硅酸钙微粒以便比较。VIOX公司(西雅图,WA)使用常规的熔融方法(包括研磨步骤)制备商用的颗粒。透射式电子显微镜分析揭示:市场上可买到的颗粒具有研磨所表现出的不规则的结构,粒径在约0.5微米和约10微米之间,且具有不均匀的粒度。一般市场上可买到的硅酸钡-硅酸钙颗粒呈现出图1B所示的透射式电子显微镜显微照片。与本发明制备的颗粒(图1A)相比,商用的颗粒具有显著大的粒度,较少的球状结构和较大的粒度分布。
将硅酸钡-硅酸钙烧结助剂颗粒分散在水热作用制备的钛酸钡基颗粒(BaTiO3)中以形成烧结助剂颗粒量小于5重量%的介电组合物。使用透射式电子显微镜分析该介电组合物。透射式电子显微镜分析说明了硅酸钡-硅酸钙颗粒(平均粒度为约50纳米)和钛酸钡基颗粒(平均粒度为约120纳米)之间的粒径差别。透射式电子显微镜分析也揭示了:当硅酸钡-硅酸钙颗粒分散在整个钛酸钡基颗粒中时,是以单个颗粒的形式存在。介电组合物的一般透射式电子显微镜显微照片示于图2,其中较大颗粒是钛酸钡基颗粒,而较小颗粒是硅酸钡-硅酸钙颗粒。
使用标准光散射技术测量包含本发明的硅酸盐基颗粒和钛酸钡基颗粒的介电组合物的粒径。图3表示了由该技术得到的结果,其中线A表示包含本发明硅酸盐基颗粒的介电组合物的粒径。该曲线图说明介电组合物的平均粒度约为120纳米,其约是钛酸钡基颗粒的平均粒径。因为存在的钛酸钡基颗粒比较小的硅酸盐基颗粒多许多,所以测量中钛酸钡基粒径占优势。有利地,硅酸盐基颗粒没有增大组合物的粒径。
制备包含上述市场上可买到的硅酸钡-硅酸钙颗粒和相同粒度的钛酸钡基颗粒(平均粒度约为120纳米)的介电组合物以便比较。使用上述相同的光散射技术测量包含商用颗粒的介电组合物的粒径。图3表示了由该技术得到的结果,其中线B表示包含本发明硅酸盐基颗粒的介电组合物的粒径。该曲线图说明介电组合物的平均粒度大于钛酸钡基颗粒的粒径。因此,商用的颗粒已经增大了全部介电组合物的粒径。与包含本发明硅酸盐颗粒的介电组合物相比,包含商用硅酸盐颗粒的介电组合物具有非常大的粒径。
将包含各种重量百分数(0摩尔%、1摩尔%、2摩尔%和3摩尔%)的本发明硅酸盐基颗粒的介电组合物单向压制成圆片,然后使用热膨胀收缩测定技术分析。示于图4的收缩曲线说明了烧结温度随着硅酸盐基粒子浓度的增加而降低。推测当发生80%的收缩时的烧结温度。因此,该介电组合物的烧结温度已经从大于1350℃(引入0摩尔%硅酸盐基颗粒时)减小到约1225℃(引入3摩尔%的硅酸盐基颗粒时)。也测量熔结的圆片的电特性。该介电组合物的介电常数为1500,而且证明电容和介电损耗的温度稳定性,其符合X7R技术规范。
将包含2摩尔%的商用硅酸盐基颗粒的介电组合物单向压制成圆片,然后使用热膨胀收缩测定技术分析以便比较。图5比较了包含2摩尔%商用硅酸盐基颗粒的介电组合物的收缩曲线和包含2摩尔%本发明硅酸盐基颗粒的介电组合物的收缩曲线。在相同的重量百分数下,本发明的硅酸盐基颗粒的烧结温度比包含商用颗粒的介电组合物的烧结温度低约25℃。
该实施例说明按照本发明的方法可以制备硅酸钡-硅酸钙颗粒,以及这些颗粒可以分散在钛酸钡基颗粒中形成介电组合物,而该组合物可以烧结形成介电材料。本发明的硅酸钡-硅酸钙颗粒的粒子特性优于市场上可买到的硅酸钡-硅酸钙颗粒。而且,包含本发明硅酸钡-硅酸钙颗粒的介电组合物的性能优于包含市场上可买到的硅酸钡-硅酸钙颗粒的介电组合物的性能。
实施例2:硅酸钡烧结助剂颗粒的生产和特性
按照本发明的一种方法制备硅酸钡烧结助剂。将所得到的硅酸钡颗粒与钛酸钡基材料混合以形成赋予更多特性的介电混合物。将该硅酸钡烧结助剂与市场上可买到的二氧化硅烧结助剂相比较。
将八水氢氧化钡的水溶液与硅酸钠的水溶液按照比例混合以形成Ba∶Ca比例约为0.6∶0.4的反应混合物。不断地搅拌该反应混合物,并保持在约85℃温度下以保证反应完成。制备组成为BaSiO3的硅酸钡颗粒。用去离子水过滤、冲洗该产品,以除去任何过量试剂,然后干燥以制备硅酸钡颗粒。
将硅酸钡颗粒加入到钛酸钡基微粒组合物中以形成介电组合物。为了比较,将常规的二氧化硅(SiO2)颗粒加入到钛酸钡基组合物中制备介电组合物。两种介电组合物具有相同重量百分数的烧结助剂。使用热膨胀收缩测定技术分析两种介电组合物。示于图6中收缩曲线说明硅酸钡颗粒的烧结温度比二氧化硅颗粒的烧结温度低约25℃。
此实施例说明按照本发明的方法可以制备硅酸钡颗粒。可以有效地使用硅酸钡颗粒作为烧结助剂,而且可以将烧结温度比常规的SiO2烧结助剂降低许多。
实施例3:在钛酸钡基颗粒上硅酸盐基涂层的制备,以及该涂敷颗粒的特性
按照本发明的一种方法,用硅酸盐基涂料涂覆钛酸钡基颗粒。该涂敷颗粒被赋予更多的特性,并与包含按照本发明方法制备的硅酸盐基颗粒的介电组合物相比较。
将粒径小于500纳米的钛酸钡(BaTiO3)颗粒加入到氢氧化钡(Ba(OH)2)溶液中。混合该溶液使颗粒变成料浆,以便使它们充分地悬浮。将硅酸钠(Na2SiO3)的水溶液加入到该料浆中,同时连续混合。该硅离子物质(SiO3 2-)与钡离子物质(Ba2+)起反应在钛酸钡颗粒的表面上形成硅酸钡(BaSiO3)涂层。
使用透射式电子显微镜分析该涂敷颗粒。透射式电子显微镜分析揭示了:硅酸钡颗粒包括涂覆在它们至少一部分的表面上的钛酸钡颗粒,以及该涂敷颗粒的平均粒度小于500纳米。
图7是涂覆的钛酸钡颗粒的一般透射式电子显微镜显微照片。
将涂覆的钛酸钡颗粒的烧结性能与包含按照本发明方法制备的钛酸钡颗粒和硅酸钡颗粒的介电组合物的烧结性能相比(使用热膨胀收缩测定技术测定烧结性能)。该涂敷颗粒的组合物包含硅酸钡的重量百分数与包含硅酸钡颗粒的组合物的相同。图8中所示的收缩曲线说明了两种组合物具有同样的烧结性。
此实施例说明按照本发明的方法可以将硅酸盐烧结助剂组合物涂覆在钛酸钡基颗粒上。该涂敷颗粒组合物与包含按照本发明方法制备的硅酸盐颗粒的组合物具有同样的有利烧结性能,其如实施例1和2说明那样,比常规的烧结助剂颗粒具有优良的烧结性能。
应该清楚:虽然为了说明已经详细描述了本发明的特殊实施方案和实施例,但是在不脱离本发明和范围和精神下可以作出各种改变和改进。因此,除附属的权利要求书之外不会限制本发明。

Claims (10)

1.一种钛酸钡基微粒组合物,包括:
涂有碱土金属硅酸盐基烧结助剂涂层的钛酸钡基颗粒,其中所述钛酸钡基颗粒由式Ba(1-x)AxTi(1-y)ByO3表示,式中x和y为0到1,A代表除了钡之外的一种或多种二价金属,B代表除了钛之外的一种或多种四价金属;所述碱土金属硅酸盐基烧结助剂由式MSiO3表示,式中M代表一种或多种碱土金属。
2.权利要求1的钛酸钡基微粒组合物,其中所述钛酸钡基颗粒的平均粒度小于500纳米。
3.权利要求1的钛酸钡基微粒组合物,其中所述钛酸钡基颗粒的平均粒度小于150纳米。
4.权利要求1的钛酸钡基微粒组合物,其中所述钛酸钡基颗粒基本上是球状的。
5.权利要求1的钛酸钡基微粒组合物,其中所述碱土金属选自钡和钙。
6.权利要求1的钛酸钡基微粒组合物,其中所述碱土金属硅酸盐基烧结助剂具有式BaxCa1-xSiO3,式中0<x<1。
7.权利要求6的钛酸钡基微粒组合物,其中x为0.4到0.6。
8.权利要求1的钛酸钡基微粒组合物,其中所述涂层包含多个在化学性质上不同的层。
9.一种多层陶瓷电容器,包括:
电极层;和
在电极层上形成的介电层,该介电层含有根据权利要求1的钛酸钡基微粒组合物。
10.权利要求1的钛酸钡基微粒组合物,其中该微粒组合物由如下方法制备,该方法包括:
将所述钛酸钡基颗粒与包含硅离子物质的第一溶液及包含碱土金属离子物质的第二溶液混合;和
使所述硅离子物质与所述碱土金属离子物质反应,形成涂有碱土金属硅酸盐基烧结助剂的钛酸钡基颗粒。
CNB008135282A 1999-08-23 2000-08-18 硅酸盐基烧结助剂方法 Expired - Fee Related CN1177776C (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15027099P 1999-08-23 1999-08-23
US60/150270 1999-08-23
US60/150,270 1999-08-23
US17752700P 2000-01-21 2000-01-21
US60/177,527 2000-01-21

Publications (2)

Publication Number Publication Date
CN1377330A CN1377330A (zh) 2002-10-30
CN1177776C true CN1177776C (zh) 2004-12-01

Family

ID=26847492

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008135282A Expired - Fee Related CN1177776C (zh) 1999-08-23 2000-08-18 硅酸盐基烧结助剂方法

Country Status (13)

Country Link
US (1) US20040248724A1 (zh)
EP (1) EP1228019A1 (zh)
JP (1) JP2003507318A (zh)
KR (1) KR20020037038A (zh)
CN (1) CN1177776C (zh)
AU (1) AU1327001A (zh)
BR (1) BR0013575A (zh)
CA (1) CA2383020A1 (zh)
IL (1) IL148280A0 (zh)
MX (1) MXPA02001885A (zh)
SI (1) SI20973A (zh)
TW (1) TWI225853B (zh)
WO (1) WO2001014280A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW569254B (en) * 2001-11-14 2004-01-01 Taiyo Yuden Kk Ceramic capacitor and its manufacturing method
DE10220086A1 (de) 2002-05-05 2003-11-13 Itn Nanovation Gmbh Verfestigung mineralischer Werkstoffe
JP4758872B2 (ja) * 2006-11-22 2011-08-31 独立行政法人産業技術総合研究所 チタン酸バリウム粉末の製造方法
US10155697B2 (en) * 2012-03-22 2018-12-18 Holy Stone Enterprise Co., Ltd. Composite dielectric ceramic material having anti-reduction and high temperature stability characteristics and method for preparing same
CN102653469B (zh) * 2012-03-31 2013-10-23 国电龙源电气有限公司 一种片式多层陶瓷电容电介质瓷浆及电介质制备方法
KR101539851B1 (ko) * 2013-09-23 2015-07-27 삼성전기주식회사 복합 페롭스카이트 분말, 그 제조방법 및 이를 포함하는 내부전극용 페이스트 조성물
CN104119009B (zh) * 2014-06-30 2016-09-07 大唐国际发电股份有限公司高铝煤炭资源开发利用研发中心 硅钙渣作为水泥熟料助烧剂的用途
CN111788650B (zh) * 2018-01-30 2023-04-28 泰科纳等离子系统有限公司 用作多层陶瓷电容器中的电极材料的金属粉末及其制造和使用方法
CN110498603B (zh) * 2019-09-25 2021-11-23 山东国瓷功能材料股份有限公司 玻璃粉及其制备方法、压电陶瓷及其制备方法、压电陶瓷器件

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1222836B (de) * 1957-02-15 1966-08-11 Siemens Ag Verfahren zur Herstellung von gesinterten Titanatkoerpern mit hoher Dielektrizitaetskonstante
US3490927A (en) * 1966-08-01 1970-01-20 Sprague Electric Co Nb2o5 and ta2o5 doped bat1o3 ceramic body and process therefor
US3642527A (en) * 1968-12-30 1972-02-15 Texas Instruments Inc Method of modifying electrical resistivity characteristics of dielectric substrates
US3717487A (en) * 1970-06-17 1973-02-20 Sprague Electric Co Ceramic slip composition
US3725539A (en) * 1971-04-28 1973-04-03 Dow Chemical Co Preparation of alkaline earth metal titanate
US3754987A (en) * 1971-06-04 1973-08-28 Texas Instruments Inc Method of producing areas of relatively high electrical resistivity in dielectric substrates
DE3469161D1 (en) * 1983-10-12 1988-03-10 Asahi Chemical Ind Titanate powder and process for producing the same
JPS6131345A (ja) * 1984-07-25 1986-02-13 堺化学工業株式会社 組成物の製造方法
US4880757A (en) * 1986-01-24 1989-11-14 The Dow Chemical Company Chemical preparation of zirconium-aluminum-magnesium oxide composites
US4863883A (en) * 1986-05-05 1989-09-05 Cabot Corporation Doped BaTiO3 based compositions
US4829033A (en) * 1986-05-05 1989-05-09 Cabot Corporation Barium titanate powders
US4764493A (en) * 1986-06-16 1988-08-16 Corning Glass Works Method for the production of mono-size powders of barium titanate
GB2193713B (en) * 1986-07-14 1990-12-05 Cabot Corp Method of producing perovskite-type compounds.
US4939108A (en) * 1986-11-03 1990-07-03 Tam Ceramics, Inc. Process for producing dielectric ceramic composition with high dielectric constant, low dissipation factor and flat TC characteristics
US5029042A (en) * 1986-11-03 1991-07-02 Tam Ceramics, Inc. Dielectric ceramic with high K, low DF and flat TC
FR2617151B1 (fr) * 1987-06-29 1990-10-12 Solvay Procede pour la fabrication d'une poudre d'oxydes metalliques mixtes, et poudres d'oxydes metalliques mixtes
JP2681214B2 (ja) * 1988-05-11 1997-11-26 堺化学工業株式会社 セラミック誘電体用組成物、これを用いて得られるセラミック誘電体及びその製造方法
BE1001780A4 (fr) * 1988-06-13 1990-03-06 Solvay Procede pour la fabrication de cristaux de titanate de baryum et/ou de strontium et cristaux de titanate de baryum et/ou de strontium.
JP2710639B2 (ja) * 1988-09-20 1998-02-10 ティーディーケイ株式会社 誘電体磁器組成物
US5112433A (en) * 1988-12-09 1992-05-12 Battelle Memorial Institute Process for producing sub-micron ceramic powders of perovskite compounds with controlled stoichiometry and particle size
US5453262A (en) * 1988-12-09 1995-09-26 Battelle Memorial Institute Continuous process for production of ceramic powders with controlled morphology
US5445806A (en) * 1989-08-21 1995-08-29 Tayca Corporation Process for preparing fine powder of perovskite-type compound
US5219811A (en) * 1989-08-31 1993-06-15 Central Glass Company, Limited Powder composition for sintering into modified barium titanate semiconductive ceramic
US5258338A (en) * 1990-01-11 1993-11-02 Mra Laboratories Fine grained BaTiO3 powder mixture and method for making
US5011804A (en) * 1990-02-28 1991-04-30 E. I. Du Pont De Nemours And Company Ceramic dielectric compositions and method for improving sinterability
US5082811A (en) * 1990-02-28 1992-01-21 E. I. Du Pont De Nemours And Company Ceramic dielectric compositions and method for enhancing dielectric properties
US5082810A (en) * 1990-02-28 1992-01-21 E. I. Du Pont De Nemours And Company Ceramic dielectric composition and method for preparation
JPH05507263A (ja) * 1990-05-08 1993-10-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 被覆された耐火性組成物及びその製造方法
US5296426A (en) * 1990-06-15 1994-03-22 E. I. Du Pont De Nemours And Company Low-fire X7R compositions
US5086021A (en) * 1990-06-28 1992-02-04 E. I. Du Pont De Nemours And Company Dielectric composition
US5155072A (en) * 1990-06-29 1992-10-13 E. I. Du Pont De Nemours And Company High K dielectric compositions with fine grain size
DE4130441A1 (de) * 1991-09-13 1993-03-18 Philips Patentverwaltung Verfahren zur herstellung waesseriger keramischer suspensionen und verwendung dieser suspensionen
US5335139A (en) * 1992-07-13 1994-08-02 Tdk Corporation Multilayer ceramic chip capacitor
JP2764513B2 (ja) * 1993-01-21 1998-06-11 ティーディーケイ株式会社 耐還元性誘電体磁器組成物
US5361187A (en) * 1993-03-11 1994-11-01 Ferro Corporation Ceramic dielectric compositions and capacitors produced therefrom
US6126743A (en) * 1993-03-12 2000-10-03 Sumitomo Chemical Company, Limited Process for producing dielectrics and fine single crystal powders and thin film capacitor
DE4336694A1 (de) * 1993-10-27 1995-05-04 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung von Metall- und Keramiksinterkörpern und -schichten
US5650367A (en) * 1994-01-28 1997-07-22 Kyocera Corporation Dielectric ceramic composition
IL115053A (en) * 1994-09-01 1999-11-30 Cabot Corp Ceramic slip compositions and method for making the same
EP0739019B1 (en) * 1994-10-19 2003-12-03 TDK Corporation Multilayer ceramic chip capacitor
DE69701294T2 (de) * 1996-03-08 2000-07-06 Murata Manufacturing Co Keramisches Dielektrikum und dieses verwendendes monolithisches keramisches Elektronikbauteil
US6268054B1 (en) * 1997-02-18 2001-07-31 Cabot Corporation Dispersible, metal oxide-coated, barium titanate materials
US6043174A (en) * 1997-06-26 2000-03-28 Mra Laboratories High dielectric constant X7R ceramic capacitor, and powder for making
US6071842A (en) * 1997-09-05 2000-06-06 Tdk Corporation Barium titanate-based semiconductor ceramic
JP3039513B2 (ja) * 1998-05-12 2000-05-08 株式会社村田製作所 チタン酸バリウム粉末、および半導体セラミック、ならびに半導体セラミック素子
EP1017625B1 (en) * 1998-07-01 2002-09-11 Cabot Corporation Hydrothermal process for making barium titanate powders
US6329058B1 (en) * 1998-07-30 2001-12-11 3M Innovative Properties Company Nanosize metal oxide particles for producing transparent metal oxide colloids and ceramers
US6309995B1 (en) * 1998-12-31 2001-10-30 Mra Laboratories, Inc. Magnesium zinc titanate powder with a barium boron lithium silicate flux and a multilayer ceramic COG capacitor made therefrom
EP1024122B1 (en) * 1999-01-28 2004-08-04 Shin-Etsu Chemical Co., Ltd. Barium titanate particles with surface deposition of rare earth element

Also Published As

Publication number Publication date
KR20020037038A (ko) 2002-05-17
BR0013575A (pt) 2003-04-29
WO2001014280A1 (en) 2001-03-01
JP2003507318A (ja) 2003-02-25
US20040248724A1 (en) 2004-12-09
SI20973A (sl) 2003-02-28
CA2383020A1 (en) 2001-03-01
TWI225853B (en) 2005-01-01
IL148280A0 (en) 2002-09-12
AU1327001A (en) 2001-03-19
EP1228019A1 (en) 2002-08-07
CN1377330A (zh) 2002-10-30
MXPA02001885A (es) 2002-11-04

Similar Documents

Publication Publication Date Title
CN1107039C (zh) 可分散的涂有金属氧化物的钛酸钡材料
Ciftci et al. Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles
CN1123415C (zh) 超细粉末的制造方法
US10947161B2 (en) “MXene” particulate material, production process for the same and secondary battery
EP0641740A1 (en) Process for the synthesis of crystalline ceramic powders of perovskite compounds
KR100528330B1 (ko) 무기 분말의 코팅방법 및 이에 의하여 제조된 코팅된무기입자
EP1017625A1 (en) Hydrothermal process for making barium titanate powders
CN1177776C (zh) 硅酸盐基烧结助剂方法
CN108329027A (zh) 一种具有双层“芯-壳”结构的细晶储能介质陶瓷材料及其制备方法
JP2002255552A (ja) チタン酸バリウム粉末およびその製造方法
KR20020037284A (ko) 구형의 정방정계 티탄산바륨 입자 및 그의 제조방법
JPH05330824A (ja) チタン酸バリウムおよびその製造方法
CN1313842A (zh) 钛酸钡分散液
CN105329939A (zh) 一种尺寸可控纳米级立方相超细钛酸钡粉体的制备方法
US4152281A (en) Molten salt synthesis of lead zirconate titanate solid solution powder
US6733740B1 (en) Production of dielectric particles
WO2013039108A1 (ja) シュウ酸バリウムチタニルの製造方法及びチタン酸バリウムの製造方法
KR101730195B1 (ko) 티탄산바륨의 제조방법 및 그 방법으로 제조한 티탄산바륨 분말
JP4441306B2 (ja) カルシウムドープチタン酸バリウムの製造方法
CN117051369B (zh) 一种掺铌钛酸锶靶材的制备方法、靶材及磁控溅射薄膜
JPH06321630A (ja) セラミツク誘電体用組成物
CN115332618A (zh) 一种高熵卤化物固态电解质材料及其制备方法与应用
CN116262615A (zh) 一种硅碳负极材料的制备方法及硅碳负极及应用
CN1604245A (zh) 低频细晶陶瓷电容器介质材料的制备方法
CN114758889A (zh) 一种高容薄层化陶瓷电容器、介质材料及其制备方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee