CN117567141A - 一种多层共烧氧化铝陶瓷平板支撑体及其制备方法和应用 - Google Patents

一种多层共烧氧化铝陶瓷平板支撑体及其制备方法和应用 Download PDF

Info

Publication number
CN117567141A
CN117567141A CN202311494945.9A CN202311494945A CN117567141A CN 117567141 A CN117567141 A CN 117567141A CN 202311494945 A CN202311494945 A CN 202311494945A CN 117567141 A CN117567141 A CN 117567141A
Authority
CN
China
Prior art keywords
support
alumina
powder
layer
ceramic flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311494945.9A
Other languages
English (en)
Inventor
王永红
朱潘燕
陈雪娇
郁书中
张金龙
周浩
刘平莉
吴倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202311494945.9A priority Critical patent/CN117567141A/zh
Publication of CN117567141A publication Critical patent/CN117567141A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/30Nature of the water, waste water, sewage or sludge to be treated from the textile industry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及多孔陶瓷材料制备技术领域,具体涉及一种多层共烧氧化铝陶瓷平板支撑体及其制备方法。该方法通过模压成型技术在梯度压力条件下依次压制获得陶瓷膜支撑体的底层、过渡层、顶层,最后经干燥、一次共烧即可获得所需支撑体,工艺简单,容易操作。通过控制膜层材料组成和调节各层骨料粒径的梯度变化,有效调节了不同层的孔隙率和孔隙尺寸,制备的陶瓷平板支撑体的孔隙尺寸由顶层至底层逐渐增大,能够降低过滤阻力,增加过滤通量。本发明制备的平板陶瓷膜改善了不同膜层界面结合强度,解决了多层膜共烧收缩不匹配、产品翘曲变形大、水通量低等技术性能问题,具有生产流程短,制备成本低,膜分离精度高等综合性能,适合规模化生产及应用。

Description

一种多层共烧氧化铝陶瓷平板支撑体及其制备方法和应用
技术领域
本发明涉及多孔陶瓷材料制备技术领域,具体涉及一种多层共烧氧化铝陶瓷平板支撑体及其制备方法。
背景技术
在先进膜分离材料领域中,无机平板陶瓷膜具有耐高温、耐化学腐蚀,烧结成型后机械强度高等优点,并且使用时可循环清洗再生利用、分离过程简单、能耗低、操作维护简便、寿命长等优势,国内外应用日益广泛。
无机平板陶瓷膜由分离作用的功能膜和机械支撑作用的支撑体组成,常用的制备方法是多步制作工艺。首先采用挤出成型、颗粒堆积、发泡等工艺制备出具有大孔结构的支撑体,使材料具有较高的机械强度。然后使用喷涂、浸渍等工艺在支撑体的表面均匀覆盖一层陶瓷浆料,形成微孔结构的薄膜。但这种制备方法在制备与应用过程中还存在一些问题:1、为了保证陶瓷细粉浆料尽可能有效均匀的覆盖在支撑体表面,目前大多采用制备薄过渡层来防止因细粉粒堵塞造成支撑体过滤阻力变大的问题(参考专利CN115073202A),但这种方法需要多次烧结,过程繁杂费时,导致昂贵的无机膜生产成本;2、由于陶瓷膜支撑体与陶瓷膜过渡层通常需经两次烧成工艺,因膜层间物理化学相容性及颗粒接触条件等导致陶瓷膜过渡层与支撑体的结合强度不高;3、支撑体与过渡层间因热膨胀系数不匹配而在干燥、烧结过程中产生物理应力和热应力,从而导致样品变形并且影响过渡层与支撑体之间的结合强度以及其在高温环境下的使用寿命。
专利CN104174298A公开了一种净水用梯度碳化硅陶瓷膜,通过在支撑层上采用浸渍涂敷法制备中间层和分离层,制得的陶瓷膜连通孔隙率高、气孔分布呈梯度,但制膜过程涉及到中间层与分离层浆料的配制,浆料中含有大量有机聚合物在烧制过程中会排出对环境不利的气体,且整个制膜过程中需要经历两次干燥、三次烧结步骤,工艺复杂、耗时长。
徐磊等人通过在多孔氧化铝基板上依次浸渍涂覆微孔过渡膜和超滤膜,经过多次浸渍涂覆及烧结获得具有梯度孔结构的陶瓷超滤膜(参考:徐磊,任佳乐,李自金等.具有梯度孔结构的氧化铝超滤膜的制备及表征[J].中国陶瓷,2016,52(01):40-44.)。通过此方法制得的陶瓷膜虽具有梯度孔结构,但在膜层还存在较大孔洞,并且制备工艺繁杂耗时,需要使用控制干燥化学添加剂等功能辅助材料,工艺条件控制极为严格。
Yulong Yang等人通过一步粘贴法制备平板陶瓷膜,首先以自制的多孔氧化铝膜为支撑体,其孔径为4μm,孔隙率为36%。然后将氧化铝颗粒(W0.2)与其它添加剂按比例均匀混合,对上述混合物进行真空处理后备用。之后采用滚膜法制备塑性粘土片,将塑性粘土片粘贴在支撑体表面,将样品在80℃烘箱中干燥过夜,在1350℃下烧结2h即可制得平板陶瓷膜(参考:Yanga Y,Hua Z,Changa Q,et al.One-step pasting method forpreparation of flat-sheet ceramic membrane[J].Desalination and WaterTreatment,2020,196:102-109.)。通过该种方法虽然可以一步制得平板陶瓷膜,但需要预先制备多孔支撑体,并且对分离层的氧化铝原料要求较高,所需的氧化铝颗粒粒径极为细小,因此会导致较高的成本,同时其自制的多孔支撑体平均孔径较小,在应用中无法达到很好的处理效果。
Weiya Zhu等人通过转移涂层法将分离层粘贴到支撑体生坯上,在1300℃下烧结制得超渗透高选择性的氧化铝陶瓷膜(参考文献:Zhu W,Liu Y,Guan K,et al.Integratedpreparation of alumina microfiltration membrane with super permeability andhigh selectivity[J].Journal of the European Ceramic Society,2019,39(4):1316-1323.)。通过此方法可以一步获得氧化铝陶瓷膜,但生产过程中需要分别制备膜层和支撑体层,通过胶带铸造法制备膜层,干压法制备支撑体层,工艺繁杂,并且制膜过程中需加入大量有机物,如甘油、聚乙烯吡咯烷酮等,在烧制过程中将产生大量有害气体。
专利CN116422153A公开了一种高通量陶瓷膜的制备方法,通过在多孔陶瓷膜支撑体上制备具有耐水性的过渡层,然后直接涂覆分离层浆料并进行干燥及烧制,从而减少烧结次数,提高生产效率和降低成本。但制得的支撑体孔径为3.5μm,纯水通量较低,且制膜过程中需加入多种功能有机聚合物,工艺参数复杂,且在烧制中会产生大量有害的温室气体。
Lijuan Huang等人以不同粒径的SiC配制不同层浆料,采用真空冷冻干燥法形成多层单向梯度孔微结构的多孔SiC陶瓷膜坯体,而后经过高温烧结得到高渗透性多孔SiC陶瓷膜(参考文献:Huang L,Qin H,Hu T,et al.Fabrication of high permeability SiCceramic membrane with gradient pore structure by one-step freeze-castingprocess[J].Ceramics International,2021,47(12):17597-17605.)。该方法制得的陶瓷膜虽具有较大水通量,但制备过程使用低温冷冻和高温烧结等工艺技术,制备成本昂贵,能耗较高且排放有害气体,不适于大规模生产。
专利CN113041859A公开了亲水型陶瓷纳滤复合膜及其制备方法,通过挤出成型制备支撑体层,然后通过涂敷法制备两层过渡层,每制备一层过渡层进行一次煅烧工艺,最后采用浸渍法将陶瓷膜半成品连续在交联剂和聚乙烯亚胺溶液中浸渍,发生交联反应后,形成分离层。制得的亲水型陶瓷纳滤复合膜具有良好的亲水性,水通量高,截留分子量低,在各层之间形成厚度梯度和孔径梯度,使亲水型陶瓷纳滤复合膜的结构更加稳定。但制备工艺复杂耗时,需经过多次烧结和复杂的化学交联反应等,这对于先进膜材料的大规模生产来说是期望避免的。
发明内容
为了解决上述技术问题,本发明首先提供一种多层共烧氧化铝陶瓷平板支撑体的制备方法,
本发明采用的技术方案为:
一种多层共烧氧化铝陶瓷平板支撑体的制备方法,包括以下步骤:
步骤1.制备凝胶助烧剂:
将钛盐和镁盐分别配成溶液后混合,加入尿素溶液,用三乙醇胺或四甲基氢氧化铵溶液调节pH值至7.0~8.5;水浴并搅拌反应设定时间后得到含钛镁的混合湿凝胶,反应温度为90~100℃,搅拌速度为400~500rpm,对所得湿凝胶进行洗涤、离心分离、干燥处理后得到钛镁混合干凝胶粉体,即为所需凝胶助烧剂;
步骤2.制备支撑体底层:
取粒径90~109μm的氧化铝粉体,向所述氧化铝粉体中加入造孔剂、粘结剂以及助烧剂,共磨后过100目筛得到底层混合粉体,将所述底层混合粉体在2.0~2.5MPa压力下模压成型,得到支撑体底层生坯;
步骤3.制备支撑体过渡层:
将粒径90~109μm的氧化铝粉体和粒径35~45μm的氧化铝粉体按照质量比(6~7):1的比例混合后,加入造孔剂、粘结剂以及助烧剂,共磨后过150目筛得到过渡层混合粉体,称取占步骤2中所述支撑体底层生坯质量35%的过渡层混合粉体覆盖在所述支撑体底层生坯上,2.5~3.0MPa压力下模压成型,得到含过渡层的支撑体生坯;
步骤4.制备支撑体顶层:
将粒径35~45μm的氧化铝粉体,加入造孔剂、粘结剂,共磨后过200目筛得到顶层混合粉体,称取占步骤2中所述支撑体底层生坯质量30%的顶层混合粉体覆盖在所述含过渡层的支撑体生坯上,3.5~4.0MPa压力下模压成型,得到支撑体生坯;
步骤5.一次共烧:
将步骤4所述支撑体生坯干燥后进行一次烧结处理,获得所需陶瓷平板支撑体。
优选的,所述氧化铝粉体的原料为棕刚玉、白刚玉、铝矾土或回收刚玉中的任意一种粉体或多种的混合粉体。
优选的,所述步骤2和步骤3中,助烧剂的添加量为氧化铝粉体质量的0.7~3.0wt%。
优选的,所述造孔剂为白糖、淀粉、碳粉中的任意一种或多种的组合,所述造孔剂的平均粒径为45~50μm,添加量为氧化铝粉体质量的5~10wt%。
优选的,所述粘结剂为黄糊精或羧甲基纤维素,所述粘接剂的平均粒径为10~15μm,添加量为氧化铝粉体质量的10~20wt%。
优选的,所述钛盐为TiC14,所述TiC14在冰水浴中配制成溶液,钛离子浓度为0.5mol/L;所述镁盐为MgCl2·6H2O,所述MgCl2·6H2O在室温下配制成溶液,镁离子浓度为0.5mol/L;所述TiC14溶液和MgCl2·6H2O溶液按Mg/Ti=1.2摩尔比混合。
优选的,所述TiC14溶液和MgCl2·6H2O溶液混合后,按照体积比1:1加入尿素溶液,尿素溶液浓度6mol/L。
优选的,所述湿凝胶的干燥温度为105℃,干燥时间为12h。
优选的,所述步骤5中,干燥的温度为60℃,干燥时间2~4h。
优选的,所述步骤5中,烧结制度为:室温至200℃的升温速率为1℃/min,保温30min;200℃至600℃升温速率为1℃/min,保温30min;600℃至1000℃升温速率为4℃/min,随后1000℃至1400℃~1500℃升温速率为3℃/min,并在最高温度下保温2h;随后按照5℃/min降温速率开始冷却,冷却至800℃后,以3℃/min降温速率降温至500℃,最后自然降温,得到所需陶瓷平板支撑体。
本发明还提供一种利用如上所述的制备方法制备得到的氧化铝陶瓷平板支撑体。
本发明还提供如上所述的氧化铝陶瓷平板支撑体在新能源汽车涂装废水净化治理和/或纺织印染污水处理中的应用。
本发明的有益效果在于:
本制备方法通过模压成型技术在梯度压力条件下结合粉体组成和粒径调节,依次压制获得陶瓷膜支撑体的底层、过渡层、顶层,随后经干燥、一次共烧即可获得所需支撑体,步骤简单,容易操作,成本低。制备的陶瓷平板支撑体具有层与层之间结合较强、表面平整的优点,并具有孔径梯度细化范围10.6μm~0.4μm、渗透通量达到557677.6165L·h-1·m-1·MPa-1、微滤分离精度高等综合膜分离性能。
本发明通过调节不同层骨料粒径的梯度变化,有效调节了不同层的孔隙率和孔隙尺寸,使孔隙尺寸由顶层向内逐渐增大,降低了过滤阻力,增加了过滤通量。
本发明在支撑体底层与顶层中间制备一层由大粒径与小粒径颗粒粉体按比例混匀的过渡层,有效调节了底层与顶层的物理界面结合强度,延长了其使用寿命。
此外支撑体底层和过渡层中添加了特别配制的凝胶助烧剂,即通过胶凝反应法制备的纳米级钛镁凝胶粉体,具有无卤、无污染的特点,适合工业生产实际使用。该助烧剂经过高温烧结可形成具有负热膨胀特性钛酸镁化合物,其热膨胀系数为-1.84×10-4/K-1,加入陶瓷膜底层与过渡层中能有效调节顶层与底层收缩不匹配的问题,从而缓解产品在热处理过程翘曲变形的问题。
本方法中采用的陶瓷原料来源广泛、环保、成本低,添加的有机辅助材料均为生物质天然原料,最后仅采用一次烧成工艺,相比现有技术中多次烧结更加节能减排,并且生产效率高、生产成本低。
附图说明
图1为实施例1-9制备的陶瓷平板支撑体的孔隙率变化图。
图2为实施例1-9制备的陶瓷平板支撑体的孔径变化图。
图3为实施例1-9制备的陶瓷平板支撑体的纯水通量性能。
图4为实施例1-9制备的陶瓷平板支撑体的翘曲率变化图。
图5为实施例7制备的陶瓷平板支撑体顶层的孔径分布图。
图6为实施例7制备的陶瓷平板支撑体过渡层的孔径分布图。
图7为实施例7制备的陶瓷平板支撑体底层的孔径分布图。
图8为实施例7制备的陶瓷平板支撑体断面的扫描电子显微镜图。
实施例1
一种多层共烧氧化铝陶瓷平板支撑体的制备方法,首先制备助烧剂:
将3.25ml的TiC14在冰水浴中逐滴加入到57ml的去离子水中配制0.5mol/L的TiC14水溶液;称取6.9g MgCl2·6H2O加入到68ml去离子水中配制0.5mol/L的MgCl2·6H2O溶液;称取45g尿素加入到125ml去离子水中配制6mol/L的尿素溶液。将TiC14水溶液和MgCl2·6H2O溶液混合制得镁钛混合液。将预热到一定温度的镁钛混合液与6mol/L的尿素溶液按1:1的体积比加入到带有磁子的烧杯中,而后在温度为98℃,搅拌速度为450rpm下进行水浴反应,添加三乙醇胺调节pH至7左右,保温1h得到湿凝胶。对所得湿凝胶进行洗涤,用去离子水离心3次,在105℃下干燥12h,得到干凝胶助烧剂粉体,备用。
制备陶瓷平板支撑体,包括以下步骤:
步骤1.制备支撑体底层:
称取100g的106μm的棕刚玉骨料,分别加入6wt%的白糖、12wt%的黄糊精和0.7wt%的助烧剂,在球磨机中搅拌混合3h后过100目筛得到第一混合粉体,采用模压成型的工艺将第一混合粉体模压成型,制备支撑体底层生坯,压力为2Mpa。
步骤2.制备支撑体过渡层:
按照质量比106μm棕刚玉:38μm棕刚玉=7:1的比例称取不同粒径的棕刚玉骨料,总计100g。以棕刚玉骨料总质量计,加入6wt%的白糖、12wt%的黄糊精和0.7wt%的助烧剂,在球磨机中搅拌混合3h后过150目筛得到第二混合粉体,称取占支撑体底层生坯质量35%的第二混合粉体覆盖于支撑层底层生坯上,采用模压成型的工艺制备含过渡层的支撑体生坯,压力为3Mpa。
步骤3.制备支撑体顶层:
称取100g的38μm的棕刚玉骨料,加入6wt%的白糖、12wt%的黄糊精,在球磨机中搅拌混合3h后过200目筛得到第三混合粉体。称取占支撑体底层生坯质量30%的第三混合粉体,覆盖于含过渡层的支撑体生坯上,采用模压成型的工艺制备得到支撑体生坯,压力4Mpa。
步骤4.一次共烧:
所述支撑体生坯放入60℃烘箱干燥2h,干燥完毕后将陶瓷膜支撑体以如下热处理程序进行烧结:从室温至200℃升温速率为1℃/min,保温30min;200℃至600℃升温速率为1℃/min,保温30min;600℃至1000℃升温速率为4℃/min,随后1000℃至1400℃升温速率为3℃/min,并在1400℃保温2h;随后按照5℃/min降温速率开始冷却,冷却至800℃后,以3℃/min降温速率降温至500℃,最后自然降温,制得所需陶瓷平板支撑体。
实施例2
制备陶瓷平板支撑体,制备方法同实施例1,不同的是将最高烧结温度调整为1450℃。
实施例3
制备陶瓷平板支撑体,制备方法同实施例1,不同的是将最高烧结温度调整为1500℃。
实施例4
制备陶瓷平板支撑体,制备方法同实施例1,不同的是助烧剂粉体制备过程中采用四甲基氢氧化铵溶液为pH值调节剂,并将助烧剂的添加量调整为1.5wt%。
实施例5
制备陶瓷平板支撑体,制备方法同实施例2,不同的是助烧剂粉体制备过程中采用四甲基氢氧化铵溶液为pH值调节剂,并将助烧剂的添加量调整为1.5wt%。
实施例6
制备陶瓷平板支撑体,制备方法同实施例3,不同的是助烧剂粉体制备过程中采用四甲基氢氧化铵溶液为pH值调节剂,并将助烧剂的添加量调整为1.5wt%。
实施例7
制备陶瓷平板支撑体,制备方法同实施例1,不同的是将助烧剂的添加量调整为3.0wt%。
实施例8
制备陶瓷平板支撑体,制备方法同实施例2,不同的是将助烧剂的添加量调整为3.0wt%。
实施例9
制备陶瓷平板支撑体,制备方法同实施例3,不同的是将助烧剂的添加量调整为3.0wt%。
实施例1-9制备的陶瓷平板支撑体的孔隙率分析结果见图1,孔径变化分析结果见图2,纯水通量分析结果见图3,翘曲率分析结果见图4。
从图1、图2中可以看出随着烧结温度的升高以及助烧剂含量的增多,支撑体的孔隙率与孔径有显著变化,孔隙率从44.6%下降至36.4%,孔径从10.6μm下降至7.1μm,说明温度、助烧剂含量对支撑体的孔隙率及孔径有较大影响。
从图3中可以看到随着烧结温度的升高以及助烧剂含量的增多,纯水通量同样在不断下降,从557677.6165L·h-1·m-1·MPa-1下降至206264.3239L·h-1·m-1·MPa-1,这个现象同时与图1、图2所示变化规律一致。
图4描述了样品翘曲率随烧结温度变化以及助烧剂含量变化的关系,从图中可以看出,在助烧剂含量达到3wt%,烧结温度为1400℃时翘曲率最低,仅为0.44%。
分析实施例7制备的陶瓷平板支撑体,复合材料顶层孔径分布见图5,复合材料过渡层孔径分布见图6,复合材料底层孔径分布见图7,复合材料的断裂形貌见图8。
从不同层的孔径分布图中可以看出,材料中孔径从支撑体顶层开始逐渐减小,表明本发明实现了梯度孔结构的形成。进一步分析可得,最小孔径为0.4μm,平均孔径为2.5μm,其底层平均孔径为9.5μm。
与市售的平板式MBR陶瓷膜(厦门蓝博科技开发有限公司,表层平均孔径0.05μm~0.2μm)相比,本方法制备的陶瓷平板支撑体一方面保留了小孔径的分离层,同时还具备大孔径的底层,可以用于油污、微生物、细菌以及其它杂质的去除,在污水治理,尤其是新能源汽车涂装废水和纺织印染污水处理领域中具有广泛的应用前景。
以上实施方式仅用以说明本发明的技术方案,而并非对本发明的限制;尽管参照前述实施方式对本发明进行了详细的说明,本领域的普通技术人员应当理解:凡在本发明创造的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明创造的保护范围之内。

Claims (10)

1.一种多层共烧氧化铝陶瓷平板支撑体的制备方法,其特征在于,包括以下步骤:
步骤1.制备凝胶助烧剂:
将钛盐和镁盐分别配成溶液后混合,加入尿素溶液,用三乙醇胺或四甲基氢氧化铵溶液调节pH值至7.0~8.5;水浴并搅拌反应设定时间后得到含钛镁的混合湿凝胶,反应温度为90~100℃,搅拌速度为400~500rpm,对所得湿凝胶进行洗涤、离心分离、干燥处理后得到钛镁混合干凝胶粉体,即为所需凝胶助烧剂;
步骤2.制备支撑体底层:
取粒径90~109μm的氧化铝粉体,向所述氧化铝粉体中加入造孔剂、粘结剂以及助烧剂,共磨后过100目筛得到底层混合粉体,将所述底层混合粉体在2.0~2.5MPa压力下模压成型,得到支撑体底层生坯;
步骤3.制备支撑体过渡层:
将粒径90~109μm的氧化铝粉体和粒径35~45μm的氧化铝粉体按照质量比(6~7):1的比例混合后,加入造孔剂、粘结剂以及助烧剂,共磨后过150目筛得到过渡层混合粉体,称取占步骤2中所述支撑体底层生坯质量35%的过渡层混合粉体覆盖在所述支撑体底层生坯上,2.5~3.0MPa压力下模压成型,得到含过渡层的支撑体生坯;
步骤4.制备支撑体顶层:
将粒径35~45μm的氧化铝粉体,加入造孔剂、粘结剂,共磨后过200目筛得到顶层混合粉体,称取占步骤2中所述支撑体底层生坯质量30%的顶层混合粉体覆盖在所述含过渡层的支撑体生坯上,3.5~4.0MPa压力下模压成型,得到支撑体生坯;
步骤5.一次共烧:
将步骤4所述支撑体生坯干燥后进行一次烧结处理,获得所需陶瓷平板支撑体。
2.如权利要求1所述的一种多层共烧氧化铝陶瓷平板支撑体的制备方法,其特征在于,所述氧化铝粉体的原料为棕刚玉、白刚玉、铝矾土或回收刚玉中的任意一种粉体或多种的混合粉体。
3.如权利要求1所述的一种多层共烧氧化铝陶瓷平板支撑体的制备方法,其特征在于,所述步骤2和步骤3中,助烧剂的添加量为氧化铝粉体质量的0.7~3.0wt%。
4.如权利要求1所述的一种多层共烧氧化铝陶瓷平板支撑体的制备方法,其特征在于,所述造孔剂为白糖、淀粉、碳粉中的任意一种或多种的组合,所述造孔剂的平均粒径为45~50μm,添加量为氧化铝粉体质量的5~10wt%。
5.如权利要求1所述的一种多层共烧氧化铝陶瓷平板支撑体的制备方法,其特征在于,所述粘结剂为黄糊精或羧甲基纤维素,所述粘接剂的平均粒径为10~15μm,添加量为氧化铝粉体质量的10~20wt%。
6.如权利要求3所述的一种多层共烧氧化铝陶瓷平板支撑体的制备方法,其特征在于,所述钛盐为TiC14,所述TiC14在冰水浴中配制成溶液,钛离子浓度为0.5mol/L;所述镁盐为MgCl2·6H2O,所述MgCl2·6H2O在室温下配制成溶液,镁离子浓度为0.5mol/L;所述TiC14溶液和MgCl2·6H2O溶液按Mg/Ti=1.2摩尔比混合;所述TiC14溶液和MgCl2·6H2O溶液混合后,按照体积比1:1加入尿素溶液,尿素溶液浓度6mol/L。
7.如权利要求1所述的一种多层共烧氧化铝陶瓷平板支撑体的制备方法,其特征在于,所述步骤5中,干燥的温度为60℃,干燥时间2~4h。
8.如权利要求1所述的一种多层共烧氧化铝陶瓷平板支撑体的制备方法,其特征在于,所述步骤5中,烧结制度为:室温至200℃的升温速率为1℃/min,保温30min;200℃至600℃升温速率为1℃/min,保温30min;600℃至1000℃升温速率为4℃/min,随后1000℃至1400℃~1500℃升温速率为3℃/min,并在最高温度下保温2h;随后按照5℃/min降温速率开始冷却,冷却至800℃后,以3℃/min降温速率降温至500℃,最后自然降温,得到所需陶瓷平板支撑体。
9.一种利用如权利要求1-8任一项所述的制备方法制备得到的氧化铝陶瓷平板支撑体。
10.如权利要求9所述的氧化铝陶瓷平板支撑体在新能源汽车涂装废水净化治理和/或纺织印染污水处理中的应用。
CN202311494945.9A 2023-11-10 2023-11-10 一种多层共烧氧化铝陶瓷平板支撑体及其制备方法和应用 Pending CN117567141A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311494945.9A CN117567141A (zh) 2023-11-10 2023-11-10 一种多层共烧氧化铝陶瓷平板支撑体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311494945.9A CN117567141A (zh) 2023-11-10 2023-11-10 一种多层共烧氧化铝陶瓷平板支撑体及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN117567141A true CN117567141A (zh) 2024-02-20

Family

ID=89889117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311494945.9A Pending CN117567141A (zh) 2023-11-10 2023-11-10 一种多层共烧氧化铝陶瓷平板支撑体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117567141A (zh)

Similar Documents

Publication Publication Date Title
CN102701778B (zh) 一种多级孔结构陶瓷膜的制备方法
WO2017004776A1 (zh) 多孔氧化铝陶瓷及其制备方法
CN108706978B (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
CN113648848B (zh) 一种中空平板陶瓷膜及其制备方法
CN107619226B (zh) 一种多孔水泥膜及其制备方法和用途
CN104876638A (zh) 一种纳米级多孔陶瓷用造孔剂及其制备方法和应用
CN105854632A (zh) 一种硅藻土中空纤维陶瓷膜的制备方法
CN113999046B (zh) 一种低温反应烧结碳化硅陶瓷膜的制备方法
CN111704439A (zh) 一种用于自来水处理的平板陶瓷膜的陶瓷泥料及制备方法
CN110981453B (zh) 一种轻质陶瓷过滤膜的制备方法
CN117567141A (zh) 一种多层共烧氧化铝陶瓷平板支撑体及其制备方法和应用
CN109761639B (zh) 纳米多孔硅铝酸盐薄膜材料及其制备方法
CN114133270B (zh) 中空平板陶瓷过滤膜及其制备方法
JP2007503995A (ja) 水/アルコール分離用チタニア複合膜とこれの製造方法
CN109569313A (zh) 一种平板陶瓷分离膜及其喷涂制备方法
KR101811199B1 (ko) SiC 지지층용 조성물 및 이를 이용한 Al2O3 코팅층을 포함하는 SiC 분리막 및 그 제조 방법
CN113651633B (zh) 一种莫来石纤维增强碳化硅陶瓷过滤管及其制备方法
CN105126887A (zh) 催化剂支撑体及其制备方法和应用
Ha et al. Preparation and characterization of alumina-coated silicon carbide supports
CN114703602A (zh) 一种微纳多级多孔柔性纤维膜及制备方法
CN113651604A (zh) 一种基于转移法的氧化铝陶瓷膜制备方法
CN109126481B (zh) 一种用于有机溶剂纳滤的ldo/聚电解质复合膜制备方法
KR101123271B1 (ko) 대면적 고온 기체분리막의 제조 방법
Benito et al. Preparation of multilayer ceramic systems for deposition of mesoporous membranes
CN110898683B (zh) 一种陶瓷过滤膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination