CN117504895A - 一种逆水煤气变换催化剂及其制备方法 - Google Patents

一种逆水煤气变换催化剂及其制备方法 Download PDF

Info

Publication number
CN117504895A
CN117504895A CN202311475918.7A CN202311475918A CN117504895A CN 117504895 A CN117504895 A CN 117504895A CN 202311475918 A CN202311475918 A CN 202311475918A CN 117504895 A CN117504895 A CN 117504895A
Authority
CN
China
Prior art keywords
gas shift
cerium
water gas
shift catalyst
reverse water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311475918.7A
Other languages
English (en)
Inventor
周昌健
张家豪
戴勇
史庆乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Institute of Technology
Original Assignee
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Institute of Technology filed Critical Yancheng Institute of Technology
Priority to CN202311475918.7A priority Critical patent/CN117504895A/zh
Publication of CN117504895A publication Critical patent/CN117504895A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8898Manganese, technetium or rhenium containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/10Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
    • B01J2523/17Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/30Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
    • B01J2523/37Lanthanides
    • B01J2523/3712Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/68Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/70Constitutive chemical elements of heterogeneous catalysts of Group VII (VIIB) of the Periodic Table
    • B01J2523/72Manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及催化剂技术领域,具体为一种逆水煤气变换催化剂的制备方法,包括将硝酸铈、钼酸铵和柠檬酸溶解于去离子水中,调节pH值,在水浴中加热搅拌至凝胶状态,然后干燥过夜,煅烧即得到MoCe载体材料;之后将载体材料溶解于去离子水中,随后将硝酸铜和硝酸锰的水溶液滴加入载体溶液中,调节pH;并在室温下老化、抽滤、去离子水洗涤,然后干燥,所得固体样品煅烧后即可得到催化剂Cu/Mn/Mo/Ce;同时,本发明还提供一种逆水煤气变换催化剂;本发明的制备方法具有制备步骤简单、原料易得、操作安全等优点;且本发明所得催化剂具有优异的CO2转化率和接近100%的CO选择性。

Description

一种逆水煤气变换催化剂及其制备方法
技术领域
本发明涉及逆水煤气变换技术领域,具体涉及一种铜/锰/钼/铈逆水煤气变换催化剂及其制备方法。
背景技术
随着工业的发展和人类活动的日益加剧,全球大气中二氧化碳(CO2)浓度逐年增长。CO2作为温室气体的主要成分,在大气中的浓度不断上升,引发了气候变暖、冰川融化和海洋酸化等一系列严峻的环境问题,严重威胁到人类的生存环境。
降低大气中的CO2浓度是21世纪的主要挑战之一。目前研究者在捕获CO2方面已经取得了重大进展。通过催化反应,捕获的CO2可以转化为增值化学品和燃料。在众多的CO2催化加氢反应中,逆水煤气变换反应受到越来越多的关注,因为生成的CO和H2可以通过成熟的合成气技术进一步转化。逆水煤气变换在较高的反应温度下因为吸热而具有良好的热力学性能。在较低的反应温度下,该反应与放热强烈的甲烷化反应竞争,虽然甲烷化产物可以作为天然气的组成部分,但其内在价值较低,并且由于其高稳定性阻碍了进一步的转化。因此,开发一种用于逆水煤气变换反应的高活性和高选择性催化剂成为研究热点。
发明内容
本发明的目的是提供一种逆水煤气变换催化剂及其制备方法,以解决较低反应温度下,甲烷化反应影响CO转化的问题。
为解决上述技术问题,本发明采用了以下技术方案:
一种逆水煤气变换催化剂的制备方法,其特征在于,包括以下步骤:
步骤一,制备钼/铈双金属氧化物载体材料;
步骤二,制备铜/锰/钼/铈逆水煤气变换催化剂。
其中,步骤一中钼/铈双金属氧化物载体材料的制备方法具体为:
在容器中加入去离子水,分别称取硝酸铈(只要是铈盐就可以,主要是为了氧化铈载体,其他代替品有硝酸铈、醋酸铈、氯化铈、硫酸铈)、钼酸铵(或钼酸)和柠檬酸(醋酸、苹果酸、酒石酸、抗坏血酸、丁二酸、草酸均可)溶解在烧杯中,并采用硝酸溶液调节溶液的pH值至1-3;之后在水浴中加热搅拌至凝胶状态,干燥过夜后经马弗炉煅烧即得到钼/铈双金属氧化物载体材料。Mo和Ce的摩尔比为13-20∶1-5。柠檬酸和金属原子的摩尔比为6-20∶1-3。
其中,步骤二中铜/锰/钼/铈逆水煤气变换催化剂的制备方法具体为:
称取步骤一制得的钼/铈双金属氧化物载体材料溶解于去离子水中,得到载体溶液;随后称取相同质量分数的硝酸铜(硫酸铜、氯化铜、碳酸铜、醋酸铜均可)和硝酸锰溶于去离子水中,搅拌均匀得到混合溶液;将混合溶液滴加入载体溶液中,以碳酸钠(氢氧化钠、氢氧化钾、碳酸氢钠、氨均可)溶液调节pH至9-11,获得的沉淀物经过老化、抽滤、洗涤、干燥、煅烧后即得铜/锰/钼/铈逆水煤气变换催化剂。
其中,老化时间为3小时;煅烧温度为400-1000℃;煅烧时间为3-8小时。
同时,本发明还提供一种逆水煤气变换催化剂,催化剂中铜/锰/钼/铈的质量百分比为2-3%∶2-3%∶90-91%∶4-5%,优选为2.5%∶2.5%∶90.25%∶4.75%。
上述技术方案中提供的逆水煤气变换催化剂的制备方法,将铜/锰通过共沉淀的方法负载在钼/铈双金属氧化物载体材料上,具有制备步骤简单、原料易得、操作安全等优点。
同时,本发明所得的铜/锰/钼/铈逆水煤气变换催化剂具有优异的CO2转化率和接近100%的CO选择性。
附图说明
图1为Cu/M/Mo/Ce催化剂的XRD表征图;
图2为Cu/M/Mo/Ce催化剂在RWGS反应中的催化活性图,其中(H2∶CO2=4∶1,WHSV=30000mL·gcat1h1);图2中的a为CO2挖化率对比图;图2中的b为CO选择性对比图。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行具体说明。应当理解,以下文字仅仅用以描述本发明的一种或几种具体的实施方式,并不对本发明具体请求的保护范围进行严格限定。
实施例1
第一步,载体材料的制备
采用溶胶-凝胶法制备Mo/Ce双金属氧化物载体材料,在烧杯中加入5mL去离子水,按原子比13∶1称取硝酸铈和钼酸铵溶解在烧杯中,随后称取柠檬酸加入上述烧杯中(柠檬酸和金属原子的摩尔比为6∶1),搅拌均匀后,用适量的硝酸溶液调节溶液的pH值至1。随后将得到的混合物溶液在70℃的水浴中加热搅拌至凝胶状态,然后在110℃下的恒温烘箱中干燥过夜,所得样品放入500℃下的马弗炉空气气氛中煅烧4小时即得到Mo/Ce载体材料。
第二步,铜/锰/钼/铈逆水煤气变换催化剂的制备
通过共沉淀法制备:首先称取1g第一步中得到的载体材料溶解于50mL去离子水中(称为溶液1),再称取相同质量比例的硝酸铜和硝酸锰溶于15mL去离子水中,并将混合溶液滴加入溶液1中,同时用0.5mol/L的碳酸钠溶液控制pH在9左右。随后得到沉淀物,在室温下老化3h,进行抽滤,并用500mL去离子水洗涤沉淀物,然后将所得沉淀物在75℃的烘箱中干燥过夜,所得固体样品在650℃的空气氛围下煅烧5h即可得到催化剂Cu/Mn/Mo/Ce。
对比例1
第一步,载体材料的制备
同实施例1中的载体材料。
第二步,铜/铝/钼/铈逆水煤气变换催化剂的制备
通过共沉淀法制备。首先称取1g第一步中得到的载体材料溶解于50mL去离子水中(称为溶液1),再称取相同质量比例的硝酸铜和硝酸铝溶于15mL去离子水中,并将混合溶液滴加入溶液1中,同时用0.5mol/L的碳酸钠溶液控制pH在9左右。随后得到沉淀物,在室温下老化3h,进行抽滤,并用500mL去离子水洗涤沉淀物,然后将所得沉淀物在75℃的烘箱中干燥过夜,所得固体样品在650℃的空气氛围下煅烧5h即可得到催化剂Cu/Al/Mo/Ce。
对比例2
第一步,载体材料的制备
同实施例1中的载体材料。
第二步,铜/钆/钼/铈逆水煤气变换催化剂的制备
通过共沉淀法制备。首先称取1g第一步中得到的载体材料溶解于50mL去离子水中(称为溶液1),再称取相同质量比例的硝酸铜和硝酸钆溶于15mL去离子水中,并将混合溶液滴加入溶液1中,同时用0.5mol/L的碳酸钠溶液控制pH在9左右。随后得到沉淀物,在室温下老化3h,进行抽滤,并用500mL去离子水洗涤沉淀物,然后将所得沉淀物在75℃的烘箱中干燥过夜,所得固体样品在650℃的空气氛围下煅烧5h即可得到催化剂Cu/Gd/Mo/Ce。
对比例3
第一步,载体材料的制备
同实施例1中的载体材料。
第二步,铜/镧/钼/铈逆水煤气变换催化剂的制备
通过共沉淀法制备。首先称取1g第一步中得到的载体材料溶解于50mL去离子水中(称为溶液1),再称取相同质量比例的硝酸铜和硝酸镧溶于15mL去离子水中,并将混合溶液滴加入溶液1中,同时用0.5mol/L的碳酸钠溶液控制pH在9左右。随后得到沉淀物,在室温下老化3h,进行抽滤,并用500mL去离子水洗涤沉淀物,然后将所得沉淀物在75℃的烘箱中干燥过夜,所得固体样品在650℃的空气氛围下煅烧5h即可得到催化剂Cu/La/Mo/Ce。
对比例4
第一步,载体材料的制备
同实施例1中的载体材料。
第二步,铜/铁/钼/铈逆水煤气变换催化剂的制备
通过共沉淀法制备。首先称取1g第一步中得到的载体材料溶解于50mL去离子水中(称为溶液1),再称取相同质量比例的硝酸铜和硝酸铁溶于15mL去离子水中,并将混合溶液滴加入溶液1中,同时用0.5mol/L的碳酸钠溶液控制pH在9左右。随后得到沉淀物,在室温下老化3h,进行抽滤,并用500mL去离子水洗涤沉淀物,然后将所得沉淀物在75℃的烘箱中干燥过夜,所得固体样品在650℃的空气氛围下煅烧5h即可得到催化剂Cu/Fe/Mo/Ce。
对比例5
第一步,载体材料的制备
同实施例1中的载体材料。
第二步,铜/银/钼/铈逆水煤气变换催化剂的制备
通过共沉淀法制备。首先称取1g第一步中得到的载体材料溶解于50mL去离子水中(称为溶液1),再称取相同质量比例的硝酸铜和硝酸银溶于15mL去离子水中,并将混合溶液滴加入溶液1中,同时用0.5mol/L的碳酸钠溶液控制pH在9左右。随后得到沉淀物,在室温下老化3h,进行抽滤,并用500mL去离子水洗涤沉淀物,然后将所得沉淀物在75℃的烘箱中干燥过夜,所得固体样品在650℃的空气氛围下煅烧5h即可得到催化剂Cu/Ag/Mo/Ce。
对上述实施例和对比例获得的催化剂进行了XRD表征,展示的是2.5Cu2.5Mn(实施例1)、2.5Cu2.5A1(对比例1)、2.5Cu2.5Gd(对比例2)、2.5Cu2.5La(对比例3)、2.5Cu2.5Fe(对比例4)、2.5Cu2.5Ag(对比例5)六个催化剂样品的XRD衍射图谱。发现,2.5Cu2.5Mn、2.5Cu2.5Gd、2.5Cu2.5La、2.5Cu2.5Fe、2.5Cu2.5Ag、2.5Cu2.5Al催化剂的XRD衍射图都有明显的MoO3的衍射峰。在整个XRD衍射图中,没有发现明显的CuO和其他金属氧化物峰,但是有CuMoO4特征衍射峰,形成了新的物相,没有观察到第二种金属的钼酸相,这些现象有可能是因为掺入的金属含量少结晶度较低。掺入第二种金属后,催化剂的XRD衍射峰强度不同,2.5Cu2.5Gd最弱,2.5Cu2.5Al最强。这说明第二种掺杂进材料的位置不同,有些在内部,有些在外部,都对原本的材料产生了影响。
Cu/M/Mo/Ce催化剂在H2∶CO2=4∶1的催化效果见图2。催化剂的CO2转化率见图2中的a,在250-500℃范围,所有催化剂CO2的转化率随温度的升高而增加,当Cu负载量为2.5%时,随着温度升高,2.5Cu/Mo/Ce的CO2转化率从0.2仅增加到12.8%。当添加第二种金属后,催化剂的CO2转化率明显增加。特别是引入Mn后,Co2转化率从0.3增加到52.55%,是这几种催化剂增加最多的。CO2转化率顺序为:
2.5Cu2.5Mn>2.5Cu2.5Gd>2.5Cu2.5La>2.5Cu2.5Fe>2.5Cu2.5Ag>2.5Cu2.5Al>2.5Cu。
从图2中的b可以看出,随着温度升高,CO的选择性也增加。反应催化剂的效果要同时满足高CO2转化率和高选择性,于是通过计算这几个催化剂的收率来评估催化活性。2.5Cu2.5Mn、2.5Cu2.5Gd、2.5Cu2.5La、2.5Cu2.5Fe、2.5Cu2.5Ag、2.5Cu2.5Al、2.5Cu催化剂在500℃的收率分别为51.54%、51.15%、47.92%、44.02%、39.37%、32.09%、12.72%。与其他催化剂相比2.5Cu2.5Mn催化剂的收率达到了51.54%。因此,双金属Cu/Mn催化剂在低温RWGS反应中具有良好的催化活性。
转化率和选择性的测试方法如下:
(i)以固定床反应器作为催化剂反应活性的评价装置,其中反应管的材质为石英玻璃;
(ii)将实施例1、催化剂进行压片、过筛,选取30~50目的催化剂颗粒,称取0.1克催化剂与0.6克石英砂混合,装入石英管,待测;
(iii)打开对应的钢瓶及氢气、空气发生器,启动电脑,通过质量流量计控制进入反应系统内的气体流量,然后用氮气吹扫反应管路去除空气并捡漏;
(iv)打开程序升温仪,以5℃/min的升温速率升温到指定的还原温度600℃后,通过一定流量的氢气对煅烧后的样品在还原1小时;
(v)打开氩气,开启气相色谱仪,待柱箱温度和检测器温度分别达到80℃和140℃后,开启TCD检测器,设置桥流为50mA;
(vi)还原完毕后,通入氮气进行吹扫降至反应温度,随后打开反应原料气(氢气和二氧化碳的混合气体)开始反应,反应产物通过气相色谱仪进行在线检测分析。
另外,本发明还提供了几种现有催化剂的CO2转化率和CO选择性表格,如表1所示:
表1不同催化剂的RWGS反应条件及其CO2转化率和CO选择性对比表
其中:
[1]Wang,L.C.;Khazaneh,M.Tahvildar.;Widmann,D.;Behm,R.J.TAP reactorstudies of the oxidizing capability of CO2 on a Au/CeO2 catalyst-A first steptoward identifying a redox mechanism in the reverse water gas shiftreaction.J.Catal.,2013,302,20.
[2]·Liu,Hao-Xin.;Li,S.Q.;Wang,W.W.;Yu,W.Z.;Zhang,W.J.;Ma,C.;Jia,C.J.Partially sintered copper-ceria as excellent cata】yst forthe hightemperature reverse water gas shift reaction.Nat.Commun.,2022,13,867.
[3]Matsubu J.C.;Zhang S.;Derita L.;Marinkovic,N.S.;Chen,J.G.;Graham,G.W.;Pan,X.;Christopher,P.Adsorbate mediated strong metal supportinteractions in oxide supported Rh catalysts.Nat.Chem.,2017,9,120.
[4]Chen,X.;Su,X.;Liang,B.;Yang,X.;Ren,X.;Duan,H.;Huang,Y.;Zhang,T.Identification of relevant active sites and a mechanism study for reversewater gas shift reaction over Pt/CeO2 catalysts.J.Energ.Chem.,2016,25,1051.
[5]Zhuang,Y.;Currie,R.;McAuley Kimberley B.;Simakov,D.S.A.Highly-selective CO2 conversion via reverse water gas shift reaction over the0.5wt%Ru-promoted Cu/ZnO/Al2O3 catalyst.Appl.Catal.A-Gen.2019,575,74.
[6]Abdel-Mageed,A.;Wiese,K.;Hauble,A.;Bansmann,J.;Rabeah,J.;Parlinska-Wojtan,M.;Bruckner,A.;Behm,R.Steering the selectivity in CO2reduction on highly active Ru/TiO2 catalysts:support particle size effects.].Catal.,2021,401,160.
[7]Rabee,A.;Zhao,D.;Cisneros,S.;Kreyenschulte,Carsten R.;Kondratenko,Vita.;Bartling,Stephan.;Kubis,Christoph.;Kondratenko,Evgenii V.;Brückner,Angelika.;Rabeah,Jabor.Role of interfacial oxygen vacancies in low loaded Au-based catalysts for the low temperature reverse water gas shiftreaction.Applied Catalysis B:Environmental,2023,321,122083.
[8]Zhang,Z.Y.;Zang,Y.H.;Gao,F.;Qu,J.F.;Gu,].F.;Lin,X.T.Enhancedcatalytic activity of CO2 hydrogenation to CO over sulfur-containing Ni/ZrO2catalysts:support size effect.New J.Chem.,2022,46,22332.
[9]Kim,D.H.;Han,S.W.;Yoon,H.S.;Kim,Y.D.Reverse water gas shiftreaction catalyzed by Fe nanoparticles with high catalytic activity andstability.J.Ind.Eng.Chem.,2015,23,67.
[10]Okemoto,A.;Harada,M.R.;Ishizaka,T.;Hiyoshi,N.;Soto,K.Catalyticperformance of MoO3/FAU zeolite catalysts modified by Cu for reverse watergas shift reaction.Appl.Catal.A-Geh.,2020,592,117415.
[11]Zhang,L.;Yu,J.;Sun,X.;Sun,J.Engineering nanointerfaces of Cu-based catalysts for balancing activity and stability of reverse water gasshift reaction.J.CO2 Util.,2023,71,1 02460.
[12]Zhang,R.;Wei,A.;Zhu,M.;Wu,X.X.;Wang,H.;Zhu,X.L.;Ge,Q.F.Tuningreverse water gas shift and methanation reactions during CO2 reduction on Nicatalysts via surface modification by MoOx.J.CO2 Util.,2021,52,101678.
[13]Kharaji,A.G.;Shariati,A.;Takassi,M.A novelγ-Alumina supportedFe-Mo bimetallic catalyst for reverse water gas shift reaction.ChineseJ.Chem.Eng.,2013,21,1007.
[14]Ronda-lloret,M.;Yang,L.Q.Q.;Hammerton,M.;Marakatti,V.S.;Tromp,M.;Sofer,Z.;Sepulveda-Escribano,A.;Ramos-Fernandez,E.V.;Delgado,J.J.;Rothenberg,G.;Reina,T.R.;Shiju,N.R.Molybdenum oxide supported on Ti3AlC2 is an activereverse water gas shift catalyst.ACS Sustain.Chem.Eng.,2021,9,4957.
由上表可知,[1]、[5]、[12]所示催化剂的效果也是比较好的。
对于第[1]种催化剂,其是在600℃下具有50%的CO2转化率和100%的CO选择性,而本申请的温度是在300-500度之间,比其温度低,并且本发明方法具有制备步骤简单、原料易得、操作安全等优点;还克服了钼基催化剂对于二氧化碳转化率低、碳化钼制备方法复杂等问题。
对于第[5]种催化剂,其是在550℃下具有55%的CO2转化率和100%的CO选择性,而本申请的温度是在300-500度之间,比其温度低。
对于第[12]种催化剂,本发明所使用的金属为非贵金属,成本低廉;且制备步骤简单、原料易得、操作安全等优点;还克服了钼基催化剂对于二氧化碳转化率低、碳化钼制备方法复杂等问题。
上面结合实施例对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,对于本技术领域的普通技术人员来说,在获知本发明中记载内容后,在不脱离本发明原理的前提下,还可以对其作出若干同等变换和替代,这些同等变换和替代也应视为属于本发明的保护范围。

Claims (10)

1.一种逆水煤气变换催化剂的制备方法,其特征在于,包括以下步骤:
步骤一,制备钼/铈双金属氧化物载体材料;
步骤二,制备铜/锰/钼/铈逆水煤气变换催化剂。
2.根据权利要求1所述的逆水煤气变换催化剂的制备方法,其特征在于,步骤一中钼/铈双金属氧化物载体材料的制备方法具体为:
在容器中加入去离子水,分别称取铈盐、钼酸铵或钼酸、以及有机酸溶解在烧杯中,并调节溶液的pH值;之后在水浴中加热搅拌至凝胶状态,干燥过夜后经煅烧即得到钼/铈双金属氧化物载体材料。
3.根据权利要求2所述的逆水煤气变换催化剂的制备方法,其特征在于:Mo和Ce的摩尔比为13-20∶1-5。
4.根据权利要求2所述的逆水煤气变换催化剂的制备方法,其特征在于:有机酸和金属原子的摩尔比为6-20∶1-3;有机酸为柠檬酸、醋酸、苹果酸、酒石酸、抗坏血酸、丁二酸以及草酸中的一种。
5.根据权利要求2所述的逆水煤气变换催化剂的制备方法,其特征在于:铈盐为硝酸铈、醋酸铈、氯化铈以及硫酸铈中的一种。
6.根据权利要求1所述的逆水煤气变换催化剂的制备方法,其特征在于,步骤二中铜/锰/钼/铈逆水煤气变换催化剂的制备方法具体为:
称取步骤一制得的钼/铈双金属氧化物载体材料溶解于去离子水中,得到载体溶液;随后称取相同质量分数的铜盐和锰盐溶于去离子水中,搅拌均匀得到混合溶液;将混合溶液滴加入载体溶液中,调节pH至9-11,获得的沉淀物经过老化、抽滤、洗涤、干燥、煅烧后即得铜/锰/钼/铈逆水煤气变换催化剂。
7.根据权利要求5所述的逆水煤气变换催化剂的制备方法,其特征在于:老化时间为3小时。
8.根据权利要求5所述的逆水煤气变换催化剂的制备方法,其特征在于:煅烧温度为400-1000℃;煅烧时间为3-8小时。
9.根据权利要求5所述的逆水煤气变换催化剂的制备方法,其特征在于:所述铜盐为硫酸铜、硝酸铜、氯化铜、碳酸铜以及醋酸铜中的一种。
10.一种逆水煤气变换催化剂,其特征在于:催化剂中铜/锰/钼/铈的质量百分比为2-3%∶2-3%∶90-91%∶4-5%。
CN202311475918.7A 2023-11-07 2023-11-07 一种逆水煤气变换催化剂及其制备方法 Pending CN117504895A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311475918.7A CN117504895A (zh) 2023-11-07 2023-11-07 一种逆水煤气变换催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311475918.7A CN117504895A (zh) 2023-11-07 2023-11-07 一种逆水煤气变换催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN117504895A true CN117504895A (zh) 2024-02-06

Family

ID=89741167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311475918.7A Pending CN117504895A (zh) 2023-11-07 2023-11-07 一种逆水煤气变换催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN117504895A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101607201A (zh) * 2009-07-16 2009-12-23 复旦大学 不易自燃的水煤气变换催化剂及其制备方法和应用
KR20100089316A (ko) * 2009-02-03 2010-08-12 에스케이에너지 주식회사 수성가스 전환 반응용 촉매와 이 촉매를 이용하여 수성가스전환 반응에 의한 합성가스의 제조방법
US20120275979A1 (en) * 2009-11-09 2012-11-01 Tufts University Sulfur-tolerant water-gas shift catalysts
CN103170339A (zh) * 2013-01-22 2013-06-26 中国科学院过程工程研究所 一种富氢气氛中Cu基高温水煤气变换催化剂及其制备方法
CN104014345A (zh) * 2014-06-25 2014-09-03 福州大学 用于水煤气变换反应的CuO-CeO2催化剂及其制备方法
CN107530683A (zh) * 2015-04-29 2018-01-02 沙特基础全球技术有限公司 二氧化碳转化为合成气的方法
CN112604691A (zh) * 2020-12-14 2021-04-06 浙江海洋大学 一种逆水煤气变换催化剂及其制备方法和应用
CN114308061A (zh) * 2020-09-29 2022-04-12 中国科学院大连化学物理研究所 NiAu双金属合金纳米催化剂及其合成与应用
CN116809070A (zh) * 2023-07-13 2023-09-29 燕山大学 一种低温逆水汽变换的单原子催化剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100089316A (ko) * 2009-02-03 2010-08-12 에스케이에너지 주식회사 수성가스 전환 반응용 촉매와 이 촉매를 이용하여 수성가스전환 반응에 의한 합성가스의 제조방법
CN101607201A (zh) * 2009-07-16 2009-12-23 复旦大学 不易自燃的水煤气变换催化剂及其制备方法和应用
US20120275979A1 (en) * 2009-11-09 2012-11-01 Tufts University Sulfur-tolerant water-gas shift catalysts
CN103170339A (zh) * 2013-01-22 2013-06-26 中国科学院过程工程研究所 一种富氢气氛中Cu基高温水煤气变换催化剂及其制备方法
CN104014345A (zh) * 2014-06-25 2014-09-03 福州大学 用于水煤气变换反应的CuO-CeO2催化剂及其制备方法
CN107530683A (zh) * 2015-04-29 2018-01-02 沙特基础全球技术有限公司 二氧化碳转化为合成气的方法
CN114308061A (zh) * 2020-09-29 2022-04-12 中国科学院大连化学物理研究所 NiAu双金属合金纳米催化剂及其合成与应用
CN112604691A (zh) * 2020-12-14 2021-04-06 浙江海洋大学 一种逆水煤气变换催化剂及其制备方法和应用
CN116809070A (zh) * 2023-07-13 2023-09-29 燕山大学 一种低温逆水汽变换的单原子催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUAN GAO ET AL.: "Design of Cu/MoOx for CO2 Reduction via Reverse Water Gas Shift Reaction", 《CATALYSTS》, vol. 13, no. 684, 31 March 2023 (2023-03-31), pages 1 - 11 *

Similar Documents

Publication Publication Date Title
Yao et al. Enhancing the deNOx performance of MnOx/CeO2-ZrO2 nanorod catalyst for low-temperature NH3-SCR by TiO2 modification
Zhai et al. Highly enhanced soot oxidation activity over 3DOM Co3O4-CeO2 catalysts by synergistic promoting effect
Li et al. Low-temperature water-gas shift reaction over Cu-and Ni-loaded cerium oxide catalysts
JP4777670B2 (ja) アンモニア合成触媒及びその製造方法
Song et al. Methanol steam reforming for hydrogen production over ternary composite ZnyCe1Zr9Ox catalysts
DK1406725T3 (en) Perovskites comprising noble metals and their use as catalysts
CN108855109A (zh) 一种化学链部分氧化甲烷制合成气氧载体及其制备方法和应用
Yang et al. Synthesis of α–MnO2–like rod catalyst using YMn2O5 A–site sacrificial strategy for efficient benzene oxidation
CN106345452A (zh) 有机酸络合法制备高稳定性高温耐硫甲烷化催化剂及其方法
CN109499577A (zh) 用于逆水煤气反应的Cu-Ni基催化剂的制备及应用方法
WO2021042874A1 (zh) 一种二氧化碳甲烷化镍基催化剂及其制备方法和应用
CN107552056B (zh) 二氧化碳加氢制一氧化碳的催化剂、制备方法及其用途
KR20130074843A (ko) 황에 대한 내구성이 우수한 메탄 개질용 촉매, 이의 제조방법 및 이를 이용한 메탄개질 방법
Yu et al. Selective catalytic reduction of NO x with NH 3 over TiO 2 supported metal sulfate catalysts prepared via a sol–gel protocol
CN114272950A (zh) 一种ch4、co2重整制备合成气催化剂及其制备方法与应用
Maboudi et al. Effect of mesoporous nanocrystalline supports on the performance of the Ni–Cu catalysts in the high-temperature water-gas shift reaction
CN109718807B (zh) 甲烷干重整催化剂及其制备方法和应用以及甲烷干重整制合成气的方法
Zhang et al. Eu3+ doping-promoted Ni-CeO2 interaction for efficient low-temperature CO2 methanation
Ye et al. CuO/CeO2 catalysts prepared by modified impregnation method for ethyl acetate oxidation
Luo et al. Study on CO-SCR denitrification performance of Ho-modified OMS-2 catalyst
Sun et al. Transition metal modified Mn-based catalysts for CO-SCR in the presence of excess oxygen
La Parola et al. Plain and CeO2–Supported LaxNiOy catalysts for partial oxidation of CH4
CN113908833A (zh) 一种逆水煤气变换催化剂及其制备方法和应用
CN110329992B (zh) 甲醇低温水汽重整制氢催化剂及其制备方法
US9962685B2 (en) Catalyst and process for producing same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination