CN117326859A - 高磁导率与高介电常数的低线宽铁氧体材料及其制备方法 - Google Patents

高磁导率与高介电常数的低线宽铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN117326859A
CN117326859A CN202311089242.8A CN202311089242A CN117326859A CN 117326859 A CN117326859 A CN 117326859A CN 202311089242 A CN202311089242 A CN 202311089242A CN 117326859 A CN117326859 A CN 117326859A
Authority
CN
China
Prior art keywords
dielectric constant
ferrite material
high dielectric
linewidth
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311089242.8A
Other languages
English (en)
Inventor
王帅
李颉
孙凯
邬春阳
陈一鑫
刘颖力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202311089242.8A priority Critical patent/CN117326859A/zh
Publication of CN117326859A publication Critical patent/CN117326859A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明属于电子材料领域,具体提供一种高磁导率与高介电常数的低线宽铁氧体材料及其制备方法,该铁氧体材料作为基板材料应用于微波器件中能够实现微波器件的小型化和高性能化。本发明通过成分调控得到NiCuZn铁氧体材料:Ni0.6Cu0.224Zn0.176‑xTi2xFe1.392‑xO3.992尖晶石铁氧体材料,其中,高Ni含量离子取代能够使材料在1MHz~10MHz频段内具高磁导率特性(磁导率μ'≥180),Ti离子取代能够使材料在1MHz~300MHz频段内具有高介电常数特性(介电常数ε'≥25);同时,缺铁配方防止了Fe2+离子的生成,降低了Fe2+离子带来的磁损耗,使材料具有较低的铁磁共振线宽(ΔH≤135Oe);最终得到高磁导率、高介电常数与低铁磁共振线宽的微波基板材料,用以实现微波器件的小型化和高性能化,满足高频传输的应用需求。

Description

高磁导率与高介电常数的低线宽铁氧体材料及其制备方法
技术领域
本发明属于电子材料领域,具体涉及一种高磁导率与高介电常数的低线宽铁氧体材料及其制备方法。
背景技术
随着5G无线通信领域的高速发展,用于无线通信的高频天线、环行器等器件在微波系统中占据着重要的作用,微波集成系统的高集成度发展对天线和环行器等器件提出了更高的要求,倾向于尺寸更小和性能更高的发展方向,研究微波器件的基板材料、仿真设计小型化微波器件成为国际热点问题;采用高磁导率、高介电常数和低铁磁共振线宽的材料作为微波器件的基板,正是基于材料的电磁参数对器件尺寸和性能的影响而开展的。基于高磁导率的铁氧体材料,通过性能调控研究材料的高介电常数的性能,用以满足小型化微波器件的应用需求;同时,随着传输效率的提升,微波器件的传输损耗要求越来越低,从基础材料上,对材料的铁磁共振线宽要求越来越严格,较低的铁磁共振线宽可以使微波器件在应用过程中具有较低的微波损耗,获得较高的传输效率。具体而言,在微波器件的高频传输应用中,微波传输的本征波阻抗表示为:
Zeff=(μ'μ0/ε'ε0)1/2
其中,μ'表示器件基板材料的磁导率,μ0表示真空磁导率,ε'表示器件基板材料的介电常数,ε0表示真空介电常数;
由此可见,为了提升器件的传输阻抗,则要求铁氧体材料的高磁导率及高介电常数性能,进而实现高性能微波通信器件设计;同时,对于微波环行器或天线的小型化,环行器基片半径满足:
其中,f0表示环行器的中心频率;
由此可见,提升铁氧体材料的介电常数有利于实现微波器件的小型化;另外,铁氧体材料的铁磁共振线宽直接影响着微波器件的传输损耗,因此,作为微波器件的基板材料,铁氧体材料需要具有高磁导率、高介电常数与低铁磁共振线宽的性能。
目前,在微波器件应用中,基板材料大多数为钇铁石榴石铁氧体(YIG)材料,YIG材料作为环行器的基板材料,具有较高的磁化强度和较窄的铁磁共振线宽,但是由于YIG铁氧体的烧结工艺较为繁琐、成本较高,因此在大范围的应用方面受到限制。NiCuZn铁氧体材料作为高磁导率铁氧体材料,广泛应用于射频和微波器件中,在其基础上,本发明通过材料成分调控,制备得到高磁导率、高介电常数与低铁磁共振线宽的微波基板材料,有利于微波器件的小型化和高性能化。
发明内容
本发明的目的在于提供一种高磁导率与高介电常数的低线宽铁氧体材料及其制备方法,将该高磁导率与高介电常数的低线宽铁氧体材料作为基板材料应用于微波器件中,用以实现微波器件的小型化和高性能化。本发明在NiCuZn铁氧体材料基础上采用高Ni含量、Ti含量离子取代以及缺铁配方设计,并利用固相烧结法制备Ni0.6Cu0.224Zn0.176- xTi2xFe1.392-xO3.992尖晶石铁氧体材料,其中,高Ni含量离子取代能够使材料在1MHz~10MHz频段内具高磁导率特性(磁导率μ'≥180),Ti离子取代能够使材料在1MHz~300MHz频段内具有高介电常数特性(介电常数ε'≥25);同时,缺铁配方防止了Fe2+离子的生成,降低了Fe2 +离子带来的磁损耗,使材料具有较低的铁磁共振线宽(ΔH≤135Oe);最终得到高磁导率、高介电常数与低铁磁共振线宽的微波基板材料,用以实现微波器件的小型化和高性能化,满足高频传输的应用需求。
为实现上述目的,本发明采用的技术方案如下:
一种高磁导率与高介电常数的低线宽铁氧体材料,其特征在于,所述铁氧体材料具体为:Ni0.6Cu0.224Zn0.176-xTi2xFe1.392-xO3.992尖晶石铁氧体材料,其中,x=0.02~0.08。
进一步的,所述高磁导率与高介电常数的低线宽铁氧体材料在1MHz~10MHz频段内具有高磁导率特性:磁导率μ'≥180,在1MHz~300MHz频段内具有高介电常数特性:介电常数ε'≥25;同时,所述高磁导率与高介电常数的低线宽铁氧体材料具有低铁磁共振线宽特性:铁磁共振线宽ΔH≤135Oe。
进一步的,上述高磁导率与高介电常数的低线宽铁氧体材料的制备方法,其特征在于,包括以下步骤:
步骤1、按照Ni0.6Cu0.224Zn0.176-xTi2xFe1.392-xO3.992的化学计量比称量反应物,反应物为氧化亚镍(NiO)、氧化铜(CuO)、氧化锌(ZnO)、二氧化钛(TiO2)和三氧化二铁(Fe2O3),其中,x=0.02~0.08;
步骤2、将步骤1按照化学计量比称取的原料置于聚四氟乙烯或者尼龙球磨罐中进行一次球磨:采用氧化锆以及去离子水作为球磨介质,球磨时间为12~18小时,转速为200~280转/分钟;
步骤3、将步骤2得到的一次球磨粉料置于鼓风干燥箱中烘干,烘干温度为60℃~120℃;
步骤4、将步骤3得到的烘干粉料置于烧结炉内,在900~1100℃下烧结1~4h,得到NiCuZn铁氧体的预烧粉料;
步骤5、将步骤4得到的预烧粉料进行二次球磨:采用氧化锆以及去离子水作为球磨介质,球磨时间为8~16小时,转速为200-280转/分钟;
步骤6、将步骤5得到的二次球磨粉料,置于鼓风干燥箱中烘干,烘干温度60℃~120℃;
步骤7、将步骤6得到的烘干粉料中加入10-25wt%的聚乙烯醇(PVA)粘合剂,造粒成型后过60目~100目分样筛,将样料压制成型后于400~550℃排胶1~4h,然后在1100~1200℃下烧结1~6h,随炉自然冷却至室温,得到NiCuZn铁氧体粉料,即为所述高磁导率与高介电常数的低线宽铁氧体材料。
进一步的,本发明还提供了上述高磁导率与高介电常数的低线宽铁氧体材料在微波环行器中的应用:所述高磁导率与高介电常数的低线宽铁氧体材料应用于微波环行器中作为基板材料。
与现有技术相比,本发明的有益效果在于:
本发明提供一种高磁导率与高介电常数的低线宽铁氧体材料,通过对NiCuZn铁氧体材料的成分调控:高Ni元素、Ti元素离子取代以及缺铁配方,实现对铁氧体材料的磁导率、介电常数及铁磁共振线宽的有效调控,最终得到具有高磁导率、高介电常数与低铁磁共振线宽的NiCuZn铁氧体材料:Ni0.6Cu0.224Zn0.176-xTi2xFe1.392-xO3.992尖晶石铁氧体材料,该铁氧体材料在1MHz~10MHz频段内具有高磁导率特性:磁导率μ'≥180,在1MHz~300MHz频段内具有高介电常数特性:介电常数ε'≥25;同时,所述高磁导率与高介电常数的低线宽铁氧体材料具有低铁磁共振线宽特性:铁磁共振线宽ΔH≤135Oe,能够满足微波器件的应用需求。
在此基础上,本发明提供的高磁导率与高介电常数的低线宽铁氧体材料应用于微波器件作为基板材料时,能够很好的实现微波器件的小型化,且有利于提升环行器的传输效率,实现微波器件的高性能化,为高频和集成化的小尺寸通信设备的应用提供了新的基板材料。
附图说明
图1为本发明中高磁导率与高介电常数的低线宽铁氧体材料的制备方法流程图。
图2为本发明实施例1、2和3中高磁导率与高介电常数的低线宽铁氧体材料的微观形貌图,其中,(a)为实施例1,(b)为实施例2,(c)为实施例3。
图3为本发明实施例1中高磁导率与高介电常数的低线宽铁氧体材料的磁导率、介电常数和铁磁共振线宽测试图,其中,(a)为磁导率,(b)为介电常数,(c)为铁磁共振线宽。
图4为本发明实施例2中高磁导率与高介电常数的低线宽铁氧体材料的磁导率、介电常数和铁磁共振线宽测试图,其中,(a)为磁导率,(b)为介电常数,(c)为铁磁共振线宽。
图5为本发明实施例3中高磁导率与高介电常数的低线宽铁氧体材料的磁导率、介电常数和铁磁共振线宽测试图,其中,(a)为磁导率,(b)为介电常数,(c)为铁磁共振线宽。
具体实施方式
为使本发明的目的、技术方案与有益效果更加清楚明白,下面结合附图和实施例对本发明做进一步详细说明。
实施例1
本实施例提供一种高磁导率与高介电常数的低线宽铁氧体材料,其制备流程如图1所示,具体包括以下步骤:
步骤1、按照Ni0.6Cu0.224Zn0.156Ti0.04Fe1.372O3.992的化学计量比称量反应物(x=0.02),称取氧化亚镍(NiO)8.96g、氧化铜(CuO)3.56g、氧化锌(ZnO)2.85g、二氧化钛(TiO2)0.64g和三氧化二铁(Fe2O3)21.91g;
步骤2、将步骤1按照化学计量比称取的原料置于聚四氟乙烯磨罐中,采用氧化锆以及去离子水做磨介,进行一次球磨工艺:球磨时间为16小时,转速220转/分钟;
步骤3、将步骤2得到的一次球磨粉料,过滤氧化锆球,然后置于鼓风干燥箱中烘干,烘干温度80℃,烘干为止;
步骤4、将步骤3得到的烘干粉料置于烧结炉内,在950℃下烧结2h,得到NiCuZn铁氧体的预烧粉料;
步骤5、将步骤4得到的预烧粉料进行二次球磨,采用氧化锆以及去离子水做磨介,球磨时间为12小时,转速220转/分钟;
步骤6、将步骤5得到的二次球磨粉料,过滤氧化锆球,然后置于鼓风干燥箱中烘干,烘干温度80℃,烘干为止;
步骤7、将步骤6得到的烘干粉料,加入20wt%的聚乙烯醇(PVA)粘合剂,造粒成型,过80目分样筛,压制成型,在450℃排胶2h,然后于1150℃下烧结4h,随炉自然冷却至室温,得到NiCuZn铁氧体粉料,即为所述高磁导率与高介电常数的低线宽铁氧体材料。
实施例2
本实施例与实施例1相比,区别在于:
步骤1、按照Ni0.6Cu0.224Zn0.126Ti0.1Fe1.342O3.992的化学计量比称量反应物(x=0.05),称取氧化亚镍(NiO)8.96g、氧化铜(CuO)3.56g、氧化锌(ZnO)2.30g、二氧化钛(TiO2)1.28g和三氧化二铁(Fe2O3)21.59g;
实施例3
本实施例与实施例1相比,区别在于:
步骤1、按照Ni0.6Cu0.224Zn0.096Ti0.16Fe1.312O3.992的化学计量比称量反应物(x=0.08),称取氧化亚镍(NiO)8.96g、氧化铜(CuO)3.56g、氧化锌(ZnO)1.75g、二氧化钛(TiO2)2.56g和三氧化二铁(Fe2O3)20.82g。
对上述实施例1~实施例3制备得到的高磁导率与高介电常数的低线宽铁氧体材料分别进行测试,结果如下:
如图2所示为实施例1、2和3制备得到的高磁导率与高介电常数的低线宽铁氧体材料的SEM图,由图可见,随着Ti元素含量的变化,材料的晶粒的均匀性逐渐良好,提升了晶界的磁介作用。
如图3、图4和图5所示依次为实施例1、实施例2和实施例3制备得到的高磁导率与高介电常数的低线宽铁氧体材料的磁导率、介电常数和铁磁共振线宽测试结果,磁导率和介电常数测试在1MHz~1.5GHz频率范围下测试,铁磁共振线宽在9.56GHz下采用波导谐振腔的方法进行测试;由图可见,本发明制备得到的高磁导率与高介电常数的低线宽铁氧体材料具有良好的磁导率和介电常数特性,同时具有较低的铁磁共振线宽,能够作为微波器件的基板材料。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (4)

1.一种高磁导率与高介电常数的低线宽铁氧体材料,其特征在于,所述铁氧体材料具体为:Ni0.6Cu0.224Zn0.176-xTi2xFe1.392-xO3.992尖晶石铁氧体材料,其中,x=0.02~0.08。
2.按权利要求1所述高磁导率与高介电常数的低线宽铁氧体材料,其特征在于,所述高磁导率与高介电常数的低线宽铁氧体材料在1MHz~10MHz频段内具有高磁导率特性:磁导率μ'≥180,在1MHz~300MHz频段内具有高介电常数特性:介电常数ε'≥25;同时,所述高磁导率与高介电常数的低线宽铁氧体材料具有低铁磁共振线宽特性:铁磁共振线宽ΔH≤135Oe。
3.按权利要求1所述高磁导率与高介电常数的低线宽铁氧体材料的制备方法,其特征在于,包括以下步骤:
步骤1、按照Ni0.6Cu0.224Zn0.176-xTi2xFe1.392-xO3.992的化学计量比称量反应物,反应物为氧化亚镍(NiO)、氧化铜(CuO)、氧化锌(ZnO)、二氧化钛(TiO2)和三氧化二铁(Fe2O3),其中,x=0.02~0.08;
步骤2、将步骤1按照化学计量比称取的原料置于聚四氟乙烯或者尼龙球磨罐中进行一次球磨:采用氧化锆以及去离子水作为球磨介质,球磨时间为12~18小时,转速为200~280转/分钟;
步骤3、将步骤2得到的一次球磨粉料置于鼓风干燥箱中烘干,烘干温度为60℃~120℃;
步骤4、将步骤3得到的烘干粉料置于烧结炉内,在900~1100℃下烧结1~4h,得到NiCuZn铁氧体的预烧粉料;
步骤5、将步骤4得到的预烧粉料进行二次球磨:采用氧化锆以及去离子水作为球磨介质,球磨时间为8~16小时,转速为200-280转/分钟;
步骤6、将步骤5得到的二次球磨粉料,置于鼓风干燥箱中烘干,烘干温度60℃~120℃;
步骤7、将步骤6得到的烘干粉料中加入10-25wt%的聚乙烯醇(PVA)粘合剂,造粒成型后过60目~100目分样筛,将样料压制成型后于400~550℃排胶1~4h,然后在1100~1200℃下烧结1~6h,随炉自然冷却至室温,得到NiCuZn铁氧体粉料,即为所述高磁导率与高介电常数的低线宽铁氧体材料。
4.按权利要求1所述高磁导率与高介电常数的低线宽铁氧体材料在微波环行器中的应用,其特征在于,所述高磁导率与高介电常数的低线宽铁氧体材料应用于微波环行器中作为基板材料。
CN202311089242.8A 2023-08-28 2023-08-28 高磁导率与高介电常数的低线宽铁氧体材料及其制备方法 Pending CN117326859A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311089242.8A CN117326859A (zh) 2023-08-28 2023-08-28 高磁导率与高介电常数的低线宽铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311089242.8A CN117326859A (zh) 2023-08-28 2023-08-28 高磁导率与高介电常数的低线宽铁氧体材料及其制备方法

Publications (1)

Publication Number Publication Date
CN117326859A true CN117326859A (zh) 2024-01-02

Family

ID=89278020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311089242.8A Pending CN117326859A (zh) 2023-08-28 2023-08-28 高磁导率与高介电常数的低线宽铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117326859A (zh)

Similar Documents

Publication Publication Date Title
Yang et al. Bi3+ doping-adjusted microstructure, magnetic, and dielectric properties of nickel zinc ferrite ceramics for high frequency LTCC antennas
CN111825441B (zh) 高介电常数、高饱和磁化强度石榴石铁氧体材料、其制备方法及应用
JP6864431B2 (ja) Y相六方晶フェライト材料にカリウムをドープするための方法、高周波動作において使用されるアンテナ、およびカリウムがドープされたy相六方晶フェライト材料
CN112679204B (zh) 一种高饱和高介电常数低线宽微波铁氧体材料及其制备方法
JP2020007224A (ja) 向上した共鳴周波数を有する改良z型六方晶フェライト材料
CN111499369B (zh) 一种Ku波段用高功率旋矩铁氧体材料及其制备方法
CN105236948B (zh) Ka波段环行器用NiCuZn铁氧体厚膜材料制备方法
CN108863336B (zh) 一种镍系微波铁氧体基片材料及其制备方法
CN113078429A (zh) 一种准平面化复合基板微带环形器
Huo et al. Effects of Zn substitution on high-frequency properties of Ba1. 5Sr1. 5Co2-xZnxFe22O41 hexaferrites
CN101800107A (zh) 各向异性z型六角铁氧体及使用该铁氧体的天线
KR20170111537A (ko) 자성 복합체, 그 제조 방법, 및 자성 복합체를 포함하는 안테나
CN116496096B (zh) 一种增强软磁/硬磁复合铁氧体吸波性能的方法
CN112390637A (zh) 无钇配方的高介电常数微波铁氧体材料及其制备方法和器件
CN114956800B (zh) 一种高性能微波多晶铁氧体材料
CN117326859A (zh) 高磁导率与高介电常数的低线宽铁氧体材料及其制备方法
CN113845359A (zh) 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法
CN113511687B (zh) 一种吸波材料及其制备方法
CN110395976B (zh) 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法
CN113072371B (zh) 一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法
CN114773047A (zh) 一种宽频高阻抗的锰锌铁氧体材料及其制备方法和应用
CN114702310A (zh) 低损耗尖晶石微波铁氧体材料及其制备方法
CN106587976A (zh) 一种镁铁氧体基磁介材料及其制备方法
KR101282194B1 (ko) Y형 페라이트 및 이로 제조된 페라이트 성형체
CN117700221A (zh) 一种包覆式高介电低损耗微波铁氧体材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination